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Abstract. As an example for the fast calculation of distributional parameters
of Gaussian processes, we propose a new Monte Carlo algorithm for the com-
putation of quantiles of the supremum norm of weighted Brownian bridges. As
it is known, the corresponding distributions arise asymptotically for weighted
CUSUM statistics for change-point detection. The new algorithm employs an
adaptive (sequential) time discretization for the trajectories of the Brownian
bridge. A simulation study shows that the new algorithm by far outperforms
the standard approach, which employs a uniform time discretization.

1. Introduction

In statistical inference, asymptotics frequently leads to the distribution of nonlin-
ear functionals of Gaussian processes. E.g., the construction of uniform asymptotic
confidence bands for a regression function based on kernel estimates requires the
study of the supremum of the absolute values of a certain Gaussian process, cf.
Härdle (1990, Sec. 4.3). To mention another example, for testing the equality of
mean functions in functional data analysis, a test statistic is used which under
the hypothesis converges in distribution to an integral of the square of a Gaussian
process, cf. Horváth and Kokoszka (2012, Sec. 5.1).

In some cases like the first example above, cf. Bickel and Rosenblatt (1973), the
distribution of the nonlinear functional may be derived in a form which, in par-
ticular, allows for the calculation of quantiles for tests and confidence assessments.
In many other cases, however, distributional characteristics have to be calculated
numerically by Monte Carlo simulation. Even in rather simple cases where the
Gaussian process is just a Wiener process or a Brownian bridge, using the standard
approximation of a continuous-time Gaussian process by a corresponding discrete-
time process on an equidistant grid may result in a severe computational load if a
decent quality of approximation is required. We shall discuss this below in more
detail for a specific case.

In this paper, we show that this problem can be overcome by using fast adaptive
approximation methods for the strong (or pathwise) approximation of nonlinear
functionals of Gaussian processes. Adaptive algorithms employ sequential strategies
to construct the underlying discretization, which may therefore be adjusted to key
features of the individual trajectories.

For illustrating our approach, we focus on weighted CUSUM tests for change-
points, which leads to the distribution of the supremum of a weighted reflecting
Brownian bridge, i.e., the supremum norm of a weighted Brownian bridge. We
stress that the basic idea can be transferred to other situations where, e.g., quantiles
of nonlinear functionals of Gaussian processes have to be calculated by Monte Carlo
simulation.
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Change-point tests are of interest in many areas of applications, e.g., in produc-
tion monitoring, see Page (1957), on-line-monitoring of intensive-care patients, see
Fried and Imhoff (2004), or global warming studies, see Gallagher, Lund, and Rob-
bins (2013), to name just a few. The first publications about testing for a change
in data go back to the 1950s, see, e.g., Page (1957), who has considered testing for
a change in the mean and has used weighted cumulated sums of sample residuals,
so called weighted CUSUM statistics. The corresponding weight function is given
by

w(t) = (t · (1− t))−1/2

for 0 < t < 1, so that the weighted cumulated sums are variance stable. The distri-
bution of those statistics is determined asymptotically in a variant of the Darling-
Erdös Theorem, see Theorem 1, which immediately yields asymptotic quantiles.

To cope with performance problems regarding size and power, the standard
weights of CUSUM statistics have been modified which results asymptotically in
the distribution of the supremum of a weighted reflecting Brownian bridge. Those
statistics have no size problems and better power against changes of the mean closer
to the boundaries of the observation interval. Simulation studies using different
weight functions and analyzing the power of the corresponding CUSUM-type tests
for different positions of the change (early, middle and late) show the importance of
the weight function, see Csörgő and Horváth (1997), Kirch and Tadjuidje Kamgaing
(2016), and Schwaar (2016). An overview to such general CUSUM-type tests is
given in Aue and Horváth (2013).

In the present paper we consider weight functions of the form

wη,γ(t) = 1]η,1−η[(t) · (t · (1− t))−γ

for 0 < t < 1 with parameters 0 ≤ η < 1/2 and 0 ≤ γ ≤ 1/2, and the corresponding
convergence result for (η, γ) 6= (0, 1/2) is formulated in Theorem 2. Except for
the extremal cases γ = 0 and γ = 1/2, there is no known method for analytically
calculating quantiles or other characteristics of the limit distributions for these or
more general weight functions. Hence, we have to use Monte Carlo simulation
where a crucial part consists in generating paths of a Brownian bridge. This is in
particular computationally very expensive if we are interested in calculating, e.g.,
extreme quantiles beyond the common levels 0.05 or 0.01 with a high precision up
to 10−3. Such extreme levels of confidence are common in many applications in
industry or medicine where a high degree of reliability is required. Also, in view
of the Bonferroni inequality, low p-values of tests are of interest in multiple testing
situations including many hypotheses, see, e.g., Hochberg (1988).

In this paper, we propose an adaptive algorithm which reduces the computation
time for calculating asymptotic quantiles of CUSUM test statistics with weight
function wη,γ for γ 6∈ {0, 1/2}, where the reduction turns out to be dramatic in
the more challenging situations. Consider, for instance, the task to compute the
0.95-quantile with accuracy 10−2 for the parameters η = 0 and γ = 0.45. On
a common up-to-date processor the standard algorithm with an equidistant grid
requires more than two hours of computation time, while the adaptive algorithm
achieves the same goal within 12 seconds. The reason for this is, roughly speaking,
that the adaptive algorithm allows to sample almost exactly from the correct limit
distribution at a reasonable computational cost.

This paper is organized as follows. In Section 2 we give a brief sketch of the
change-point application that is used as a demonstrator for our approach. In
Sections 3 and 4 we consider the strong approximation of the supremum of the
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unweighted Brownian motion and of weighted reflecting Brownian bridges, respec-
tively. For the former problem, Calvin, Hefter, and Herzwurm (2017) have con-
structed an adaptive algorithm that strikingly outperforms all non-adaptive al-
gorithms, see Theorems 7 and 9. See also Calvin (1997, 2001, 2004) for related
convergence results. No such result is known for weighted reflecting Brownian
bridges, but still we construct a modification of the adaptive algorithm for these
processes in Section 4.1. Numerical experiments reveal again the vast superiority
of the adaptive algorithm over, at least, the standard algorithm that is based on
an equidistant grid, see Section 4.2. In Section 5 we study quantile computation
for the supremum of a weighted reflecting Brownian bridge. We present a new
algorithm, with the adaptive algorithm from Section 4.1 as the key ingredient, that
yields a quantile up to a user-specified error tolerance, see Section 5.1. Numerical
experiments, which show the superiority of the new algorithm over the standard
approach, are presented in Section 5.2.

2. The Statistical Problem: Change-Point Test

We are interested in detecting a structural change, specifically at most one change
(AMOC), in a time series model, and for illustration we consider the following most
simple model with a possible mean change. The model, which is one of the earliest
change-point models analyzed, is given by

ξi =
{
εi, if i ≤ m,
d+ εi, if i > m,

for i = 1, . . . , n, where n,m ∈ N with n ≥ 2 and

1 ≤ m = m(n) ≤ n,

and where d ∈ R with d 6= 0, see Page (1957). The residuals εi are assumed to be
iid, each centered with finite second moment σ2 > 0, which is assumed to be known
for simplicity. If m < n, then a structural change is present, and m is called the
change-point. A test is constructed for

H0 : m = n, H1 : m < n.

Based on the quasi likelihood ratio test, the weighted CUSUM statistic

Tn(w) = max
1≤k<n

w(k/n) · |Tk,n|√
n

with

Tk,n =
k∑
i=1

ξi −
k

n

n∑
i=1

ξi

and with suitable weight functions w : ]0, 1[ → [0,∞[ has been derived. We add
that under H0 (no change)

Tk,n =
k∑
i=1

εi −
k

n

n∑
i=1

εi = n ·
(
k

n
·
(

1− k

n

))
·

(
1
k

k∑
i=1

εi −
1

n− k

n∑
i=k+1

εi

)
.

See Csörgő and Horváth (1997, Thm. 2.1.2) for the following result.

Theorem 1 (Darling-Erdös Theorem). Let

w(t) = (t · (1− t))−1/2

for 0 < t < 1, and assume that E(|εi|2+δ) <∞ for some δ > 0. Under H0 we have

lim
n→∞

P ({Tn(w) ≤ cn(α)}) = 1− α
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for 0 < α < 1 and

cn(α) = σ

a(logn)
(
− log

(
− 1

2 log(1− α)
)

+ b(logn)
)
,

with
a(x) =

√
2 log x and b(x) = 2 log x+ 1

2 log log x− 1
2 log π.

Theorem 1 immediately yields an asymptotic level α test, see Remark 4. How-
ever, for small sample sizes n the convergence in the Darling-Erdös Theorem often
leads to level distortion, see Kirch (2006). To overcome this problem modifications
of the weight function w are considered, see, e.g., Csörgő and Horváth (1988). In
this paper we study weight functions wη,γ of the form

(1) wη,γ(t) = 1]η,1−η[(t) · (t · (1− t))−γ

for 0 < t < 1, where

0 ≤ η < 1/2, 0 ≤ γ ≤ 1/2.

Observe that Theorem 1 deals with the case (η, γ) = (0, 1/2).
For any real-valued stochastic process X = (X(t))t∈]0,1[ we put

S(X) = sup
0<t<1

X(t).

Furthermore, B = (B(t))t∈[0,1] denotes a standard Brownian bridge on the unit
interval. The process |B| = (|B(t)|)t∈[0,1] is called a reflecting Brownian bridge.
The following theorem is a consequence of a general result from Kirch and Tad-
juidje Kamgaing (2016) and Schwaar (2016), who study general weight functions
under suitable regularity conditions.

Theorem 2. Let wη,γ be given by (1) with (η, γ) 6= (0, 1/2). Under H0 we have
1
σ
· Tn(wη,γ) d−→ S(wη,γ |B|).

Basically, Theorem 2 yields an asymptotic level α test. However, for applica-
tion the quantiles of the supremum S(wη,γ |B|) of the weighted reflecting Brownian
bridge wη,γ |B| are needed, i.e., they have to be known analytically or to be eas-
ily computed numerically, see Remark 4. In Schwaar (2020) besides data driven
weighted change-point estimators, data driven weighted change-point tests are con-
sidered, where the parameter γ is replaced by an estimator and η = 0. Especially
then knowledge about the quantiles for the weighted test statistic with non-extreme
values is required.

For completeness we add that S(w0,1/2|B|) = ∞ with probability one, which
follows from the law of the iterated logarithm, and hence Theorem 2 implies
Tn(w0,1/2) p−→∞.

Remark 3. Consider the extremal cases γ = 0 and γ = 1/2. For (η, γ) = (0, 0)
the series representation of the c.d.f. of the Kolmogorov distribution may be used
to compute the quantiles. More generally, for γ = 0 and 0 ≤ η < 1/2 a series
representation of the c.d.f. of the supremum of a reflecting Brownian motion for
given initial and terminal value, see Borodin and Salminen (2002, Eqn. (3.1.1.1.8)),
may be used.

For γ = 1/2 and 0 < η < 1/2 DeLong (1981) has studied the distribution of
S(wη,1/2|B|) and related quantities, see also Yor (1984). The Mellin transform of a
corresponding hitting time for a standard Brownian motion has been determined,
and values of the c.d.f. have been obtained via numerical inversion.
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To the best knowledge of the authors, no (semi-)analytic way to determine the
quantiles is known beyond the extremal cases, i.e., for 0 < γ < 1/2 and 0 ≤ η < 1/2,
cf. Salminen and Yor (2011, p. 76).

Remark 4. Let cη,γ,n > 0. Consider the test that rejects H0 if and only if

|Tk,n|√
n

> cη,γ,n ·
(
k

n
·
(

1− k

n

))γ
for some k ∈ N with

η · n < k < (1− η) · n.
To obtain an asymptotic level α test we proceed as follows. For 0 ≤ γ < 1/2 the
critical value cη,γ = cη,γ,n is determined by

P ({S(wη,γ |B|) ≤ cη,γ/σ}) = 1− α,

see Theorem 2, which may be solved semi-analytically if γ = 0 and numerically,
using the algorithm presented in Section 5, if 0 < γ < 1/2. For γ = 1/2 we may
employ Theorem 1 to determine cη,γ,n.

Example 5. We illustrate the role of the parameter γ in the case η = 0. Let σ = 1
and α = 0.05. In Figure 1 the threshold function

fγ,n(t) = c0,γ,n · (t · (1− t))γ

is presented for γ = 0, 0.25, 0.45, and for γ = 0.5 with n = 102, 103. The critical
values are given numerically as follows. Remark 3 yields c0,0.0 = 1.358, and the
adaptive algorithm Qad

ε (w, q) according to Section 5 with ε = 10−2 yields c0,0.25 =
1.99 and c0,0.45 = 2.91. Furthermore, c0,0.5,102 ≈ 3.241 and c0,0.5,103 ≈ 3.353 due
to Theorem 1.

0 0.5 10

0.5

1

1.5

t

f γ
,n

(t
)

γ = 0
γ = 0.25
γ = 0.45
γ = 0.5 n = 102

γ = 0.5 n = 103

Figure 1. Threshold function fγ,n from Example 5 for η = 0,
σ = 1, and α = 0.05.

We observe from Figure 1 that the power of the test with a weight function
having γ close to 1/2 is higher for early and late changes. In the case of a change
in the middle, the test with γ = 0 has a higher power than the one with γ close to
1/2.
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Remark 6. The construction of change-point tests in more complicated time series
models, e.g., with a serial dependence, may also be based on CUSUM statistics
and quantiles of S(X) for suitable processes X. See Aue and Horváth (2013) for
models that lead to X = w|B| with weight functions w, or to X =

∑`
j=1 B

2
j with

independent standard Brownian bridges Bj . More generally, see Aue, Rice, and
Sönmez (2018) for functional time series models that lead to X =

∑∞
j=1 λjB

2
j with

non-negative scalars λj . Our approach in Section 5 can easily be adapted to these
classes of processes.

3. Approximation of the Supremum of a Brownian Motion

In this section we discuss the strong (or pathwise) approximation of the supre-
mum S(W ) of a standard Brownian motion W = (W (t))t∈[0,1] on the unit interval.
We consider algorithms A that evaluate W at a finite number of points tk ∈ ]0, 1]
and approximate S(W ) by the discrete maximum of W at these points. The error
e(A) of any such measurable algorithm A is defined by

e(A) = E (|S(W )−A(W )|) .
We recall known results that demonstrate that suitable adaptive algorithms, i.e.,
algorithms that sequentially evaluate any trajectory of W , are far superior to non-
adaptive algorithms, i.e., algorithms that are based on a fixed, a priori given dis-
cretization of ]0, 1].

At first we consider the class of all non-adaptive algorithms that use n evaluations
of W . The following result is due to Ritter (1990).

Theorem 7. There exist constants c1, c2 > 0 with the following properties for every
n ∈ N. The algorithm Aeq

n given by
Aeq
n (W ) = max

k=1,...,n
W (k/n)

satisfies

(2) e(Aeq
n ) ≤ c1 · n−1/2.

For every choice of t1, . . . , tn ∈ ]0, 1] the algorithm Anon
n given by

Anon
n (W ) = max

k=1,...,n
W (tk)

satisfies

(3) e(Anon
n ) ≥ c2 · n−1/2.

For the purpose of this paper the crucial part of Theorem 7 is the lower bound (3),
which says that non-adaptive algorithms achieve at most the order of convergence
1/2. This lower bound is sharp, up to constants, as we have a matching upper
bound (2), which is already achieved by an equidistant discretization.

Remark 8. We conjecture that the lower bound (3) is also valid for algorithms Anon
n

of the form Anon
n (W ) = ζ(W (t1), . . . ,W (tn)), where ζ : Rn → R is any measurable

mapping. The conjecture is true at least if tk = k/n, see Hefter and Herzwurm
(2017, Prop. 2.1 and proof of Thm. 3.3), or if the L2-error of Anon

n is considered,
instead of the L1-error e(Anon

n ), see Calvin (2004, beginning of proof of Thm. 2.1).
The asymptotic distribution of the error S(W ) − Aeq

n (W ) has been derived in
Asmussen, Glynn, and Pitman (1995, Thm. 1).

An adaptive algorithm Aad
n that uses n evaluations of the Brownian motion W

is formally defined by a point t1 ∈ ]0, 1] and Borel-measurable mappings

χk : Rk−1 → ]0, 1]
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for k = 2, . . . , n. Iteratively the algorithm computes y1 = W (t1) and

yk = W (χk(y1, . . . , yk−1))

for k = 2, . . . , n, and it yields the output

Aad
n (W ) = max

k=1,...,n
yk.

In this way the k-th evaluation site χk(y1, . . . , yk−1) may depend on the previously
obtained values y1, . . . , yk−1 (and the corresponding evaluation sites). Of course,
the non-adaptive algorithms, which are considered in Theorem 7, correspond to the
particular case of constant mappings χk.

The following result is due to Calvin, Hefter, and Herzwurm (2017).

Theorem 9. There exists a sequence of adaptive algorithms Aad
n with the following

property. For every ρ > 0 there exists a constant c > 0 such that for every n ∈ N

e(Aad
n ) ≤ c · n−ρ.

We refer to Calvin, Hefter, and Herzwurm (2017) for the construction of the
algorithms Aad

n that are considered in Theorem 9; see also Section 4 for basic ideas.
According to Theorem 9 suitable adaptive algorithms achieve, roughly speaking,

the polynomial order of convergence ∞. Combining Theorems 7 and 9 we see
that adaptive algorithms strikingly outperform all non-adaptive algorithms for the
strong approximation of the supremum S(W ) of a Brownian motion.

Of course, Theorems 7 and 9 are irrelevant for the computation of quantiles of
S(W ), since the distribution of S(W ) is known explicitly. The theorems strongly
suggest, however, that adaptive algorithms should be considered for quantile com-
putation if (semi-)analytic methods are not available. The latter holds true for the
processes wη,γ |B| with γ 6∈ {0, 1/2}, see Section 2.

4. Approximation of the Supremum of a Weighted Reflecting
Brownian Bridge

For notational convenience we put

w = wη,γ ,

where (η, γ) 6= (0, 1/2).

4.1. The Adaptive Algorithm. In this section we present an adaptive algorithm
for the strong approximation of the supremum S(w|B|) of the weighted reflecting
Brownian bridge w|B|. This algorithm is a modification of the algorithm con-
structed in Calvin, Hefter, and Herzwurm (2017), which achieves the error bound
in Theorem 9 for the strong approximation of the supremum S(W ) of a standard
Brownian motion W .

Both of these adaptive algorithms are greedy algorithms, and the basic idea in
the construction is as follows. After the k-th step the algorithm has computed
a partition of the interval [0, 1] into k subintervals together with the values of
the underlying stochastic process at the boundary points of all these intervals. A
score value is available for each subinterval, and the subinterval with the highest
score will be split at the midpoint. Ideally, the score value should be the condi-
tional probability that the corresponding subinterval contains a global maximizer
of w|B|. Reasonable substitutes for these conditional probabilities are needed in
the computation.

In the sequel we present the algorithm for the strong approximation of S(w|B|)
in detail. Based on the weight function w we assign a weight v(`, r) to any interval
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[`, r] ⊆ [0, 1] with positive length in the following way. Let

c = `+ r

2 .

For a weight function w that is positive and differentiable with a ‘small’ derivative
everywhere on ]0, 1[ it is reasonable to take v(`, r) = w(c). Since these conditions are
not met for w = wη,γ , except for the trivial case (η, γ) = 0, we proceed differently.
To avoid a too small score value we take

v(`, r) =
{

0, if [`, r] ⊆ [0, η] ∪ [1− η, 1],
(c · (1− c))−γ , otherwise.

In fact, observe that v(`, r) 6= w(c) if and only if c ≤ η < r or ` < 1 − η ≤ c. If
v(`, r) 6= w(c), then w(c) = 0 while v(`, r) may potentially be very large.

Suppose that x = B(`) and y = B(r) are known, while no values of B are known
inside of ]`, r[. It is reasonable to compare v(`, r) ·B(c) with a certain threshold m,
e.g., with the largest value of w|B| known so far, under the conditional distribution
of B(c). The latter is the normal distribution with mean (x + y)/2 and variance
(r − `)/4. More precisely, we define the score function

ϕ : D × R2 × [0,∞[→ [0,∞[

by
ϕ(`, r, x, y,m) = E

(
(v(`, r) · Z −m)+)+ E

(
(v(`, r) · Z +m)−

)
,

where
D = {(`, r) ∈ [0, 1]2 : ` < r}

and
Z ∼ N((x+ y)/2, (r − `)/4).

Remark 10. The score function is easily computed as follows. Let Φ denote the
distribution function of Y ∼ N(0, 1), and let a ∈ R. Put

ψ(a) = Φ′(a) + a · Φ(a).

Since E ((Y + a)+) = ψ(a), we obtain

ϕ(`, r, x, y,m)

= v(`, r) ·
√
r − `
2 ·

(
ψ

(
x+ y − 2m/v(`, r)√

r − `

)
+ ψ

(
−x+ y + 2m/v(`, r)√

r − `

))
if v(`, r) > 0. Otherwise ϕ(`, r, x, y,m) = 0, since m ≥ 0.

To avoid rounding errors in the evaluation of ψ one may use

lim
a→∞

ψ(a)
a

= 1

and

lim
a→−∞

ψ(a)
a−2 · Φ′(a) = 1.

We use this asymptotic behavior for |a| > 3, i.e., we replace ψ by

ψ̃(a) =


a, if a > 3,
a−2 · Φ′(a), if a < −3,
ψ(a), otherwise,

in the computation of ϕ(`, r, x, y,m).
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We are ready to define the adaptive algorithm, which will be denoted byAad
n (w, ·).

The algorithm will sequentially evaluate any trajectory of B, and the relevant in-
formation about the corresponding partition of [0, 1] after k steps is represented by
a set Ik as follows. There are k elements in Ik, which correspond to the k subinter-
vals in this partition. More precisely, (`, r, x, y, s) ∈ Ik represents a subinterval [`, r]
with boundary values x = B(`) and y = B(r) and with score value s. Furthermore,
mk ≥ 0 denotes the discrete maximum of w|B| after k steps. In the first step we
put

m1 = 0, I1 = {(0, 1, 0, 0, ϕ(0, 1, 0, 0,m1))}.

In the k-th step with 2 ≤ k ≤ n we choose any I = (`, r, x, y, s) ∈ Ik−1 with the
maximal value of s among all elements of Ik−1, i.e., with the largest score value
(this choice needs not to be unique), and we evaluate B at the midpoint of the
corresponding subinterval, i.e., we compute

z = B(c).

The new discrete maximum of w|B| is given by
mk = max (mk−1, w(c) · |z|) ,

and the new partition is represented by
Ik = (Ik−1 \ {I}) ∪ {I1, I2}

with
I1 = (`, c, x, z, ϕ(`, c, x, z,mk)), I2 = (c, r, z, y, ϕ(c, r, z, y,mk)).

After n steps the adaptive algorithm returns the output
Aad
n (w,B) = mn.

Remark 11. We discuss the computational cost to simulate Aad
n (w,B). First of

all, we use a max-priority queue for storing the elements of the sets I1, . . . , In. This
allows to choose (`, r, x, y, s) ∈ Ik−1 with the maximal value of s at a cost of order
ln(k) in the k-th step, see Cormen, Leiserson, Rivest, and Stein (2003, Sec. 6.5).
Thereafter B(c) may be simulated at a constant cost, independently of k, under the
conditional distribution. By definition, no updates of the score values are computed
for the elements in Ik ∩ Ik−1, although mk may be larger than mk−1. It follows
that the total cost to simulate Aad

n (w,B) is of the order n ln(n).

4.2. Numerical Experiments. We compare the adaptive algorithm Aad
n (w, ·) and

the non-adaptive algorithm Aeq
n (w, ·) given by

Aeq
n (w,B) = max

k=1,...,n−1
w(tk) · |B(tk)|

with tk = k/n, which has been used by, e.g., Eastwood and Eastwood (1998) and
Orasch and Pouliot (2004), and for a similar problem by Akashi, Dette, and Liu
(2018).

Analogously to Section 3 we consider the error
(4) e(An(w, ·)) = E (|S(w|B|)−An(w,B)|)
for An(w, ·) = Aad

n (w, ·) and An(w, ·) = Aeq
n (w, ·). We add that exact values or

upper or lower bounds of the error are not available for any of these algorithms.
Therefore we determine the error via a Monte Carlo simulation, where we replace
S(w|B|) in (4) by Aad

n0
(w,B) or Aeq

n0
(w,B), respectively, with n0 being 10 times

larger than the largest value of n that is considered in the numerical experiment.
Simultaneously, we determine the average run-time of both algorithms. For each
value of n we use 103 Monte Carlo replications.
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101 102 103 104

10−5

10−4

10−3

10−2

n

tim
e
in

se
c

γ = 0.45 (eq)
γ = 0.25 (eq)
γ = 0.45 (ad)
γ = 0.25 (ad)
order n
order n ln(n)

Figure 2. Average run-time vs. number n of discretization points
for the strong approximation of S(w|B|).

All programs are written in C++, and the computations are performed on a
single Intel Xeon Gold 6126 processor. All results are presented together with
asymptotic confidence intervals with confidence level 0.95. In the numerical exper-
iments we consider η = 0 and γ = 0.25 or γ = 0.45, cf. Example 5.

In Figure 2 we relate the average run-time to the number n of discretization
points. For n ≤ 104 the computational overhead due to adaption is moderate, as
the non-adaptive algorithm is at most 10 times faster than the adaptive algorithm
in this range. Furthermore, the average run-times for both algorithms are in line
with the worst case behavior, namely, order n ln(n) for Aad

n (w, ·), see Remark 11,
and order n for Aeq

n (w, ·). Finally, we see that the average run-time does not depend
on γ.

The relation between the error and the average run-time, which is most im-
portant, is presented in Figure 3. First of all, we observe a polynomial order of
convergence ∞ for the adaptive algorithm, in contrast to a polynomial order of
convergence of only about 1/2 for the non-adaptive algorithm. This is in line
with the corresponding theoretical results for Brownian motion, see Theorem 7
and Theorem 9. We add that the confidence intervals regarding time are rather
small and therefore not visible. As to be expected, a stronger singularity of the
weight function, i.e., a larger value of γ, deteriorates the speed of convergence for
both algorithms. For the same average run-time of 10−2 seconds the adaptive al-
gorithm achieves an error of less than 10−8 for both values of γ, while the error
of the non-adaptive algorithm is about 10−2. For quantile computation we may
therefore sample almost from the correct distribution by means of the adaptive
algorithm with a reasonable average run-time, while this is impossible by means of
the non-adaptive algorithm.
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γ = 0.45 (eq)
γ = 0.25 (eq)
γ = 0.45 (ad)
γ = 0.25 (ad)
order 1/2
order 1/2

Figure 3. Error given by (4) vs. average run-time for the strong
approximation of S(w|B|).

5. Quantile Computation for a Weighted Reflecting Brownian
Bridge

In this section we present an algorithm for the computation of the q-quantile of
S(w|B|). The inputs of this algorithm, which will be denoted by Qad

ε (w, q), are the
weight w, i.e., η and γ, as well as 0 < q < 1 and an error tolerance ε > 0. The
key ingredient is the algorithm Aad

n (w, ·) from Section 4. Our construction is rather
ad hoc and many improvements are possible. We mainly want to demonstrate
the potential of using an adaptive algorithm as the building block for quantile
computation.

5.1. The Algorithm. The algorithm Qad
ε (w, q) starts with a precomputing step

in order to ideally determine the minimal integer n0 ∈ N such that

e(Aad
n0

(w, ·)) ≤ ε.

Due to the fast convergence of Aad
n (w,B) towards the supremum S(w|B|), which

has been observed in the numerical experiments in Section 4, we use E(∆n) with

∆n = |Aad
2n(w,B)−Aad

n (w,B)|

as an approximation to e(Aad
n (w, ·)). Moreover, we use a simple Monte Carlo al-

gorithm X
(m)
n with m independent samples of ∆n to approximate the expectation

E(∆n). In the precomputing step we take

m = 103,

and we compute the minimal integer n0 ∈ N of the form

n0 = 10 · 2i

with i ∈ N0 such that
X(m)
n0
≤ ε.
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If no such n0 exists, then the output of the algorithm Qad
ε (w, q) is undefined. We

add that this happens with probability zero if, as we conjecture, ∆n
p−→ 0.

In the second step we generate a certain number k0 of independent samples of
Aad
n0

(w,B), which are independent from the precomputing step, too. The choice of
this number is motivated by the following fact.

Remark 12. Consider iid random variables Y1, Y2, . . . with a continuous density
function f . Assume that f(F−1(q)) > 0 for the q-quantile F−1(q) of Y1, and let
Zq,k denote the dq · ke-th order statistic of Y1, . . . , Yk. Then

cq ·
√
k · (Zq,k − F−1(q)) d−→ Z

with Z ∼ N(0, 1) and

cq = f(F−1(q))√
q · (1− q)

,

see, e.g., David and Nagaraja (2003, Thm. 10.3).

Replacing the unknown constant cq from Remark 12 by one, we take
k0 = dε−2e

samples of Aad
n0

(w,B), and the algorithm Qad
ε (w, q) returns the dq · k0e-th order

statistic of these samples.
The following fact may be used to compute confidence intervals for the q-quantile

of Aad
n0

(w,B), which yields a quality control for the second step. Observe, however,
that the precomputing step does not yield a rigorous link to the q-quantile of
S(w|B|).

Remark 13. Consider iid random variables Y1, . . . , Yk, and let Y(i) the corre-
sponding i-th order statistic. Furthermore, let 0 < α < 1, and assume that
a, b ∈ {1, . . . , k} with a < b satisfy

P ({Z ∈ {a, . . . , b− 1}}) ≥ 1− α,
where Z is binomially distributed with parameters k and q. Then [Y(a), Y(b)] is
a (conservative) confidence interval for the q-quantile of Y1 with confidence level
1− α, see, e.g., David and Nagaraja (2003, Sec. 7.1).

5.2. Numerical Experiments. We compare the algorithm Qad
ε (w, q) and an al-

gorithm Qeq
ε (w, q) that is constructed as Qad

ε (w, q), but instead of Aad
n (w, ·) the

non-adaptive algorithm Aeq
n (w, ·) is used as the building block. Furthermore, in the

precomputing step of Qeq
ε (w, q) we fully use the findings from Figures 2 and 3 for

free in order to determine the value of n0. This comes very close to choosing exactly
and at no computational cost the minimal integer n0 ∈ N such that e(Aeq

n0
(w, ·)) ≤ ε,

and thus is very much in favor of Qeq
ε (w, q) compared to of Qad

ε (w, q).
We consider the error

e(Qε(w, q)) = E
(∣∣F−1(w, q)−Qε(w, q)

∣∣)(5)

for Qε(w, q) = Qad
ε (w, q) and Qε(w, q) = Qeq

ε (w, q), where F−1(w, q) denotes the
q-quantile of S(w|B|).

We proceed as in the previous section. The only difference is that a deterministic
quantity, F−1(w, q), instead of a random variable, S(w|B|), is unknown in the
definition of the error.

The error e(Qε(w, q)) and the average run-time are determined via a Monte
Carlo simulation, where we use 102 replications for each value of ε, and the results
are presented together with asymptotic confidence intervals as before. We also use
the same set of parameters η and γ, the same hardware system, and the same
programming language as before. The value of q is chosen as q = 0.95.
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In the Monte Carlo simulation we replace F−1(w, q) by a highly accurate ap-
proximation, namely 2.0008 for γ = 0.25 and 2.9222 for γ = 0.45. The latter is
obtained as the dq ·k0e-th order statistic of k0 samples of Aad

n0
(w,B), where n0 = 103

and where k0 is close to 4 · 108. According to the findings from Section 4 the dis-
tributions of Aad

n0
(w,B) and S(w|B|) should almost coincide for this value of n0.

Furthermore, using Remark 13 with confidence level 0.99, we have obtained the
confidence intervals [2.0006, 2.0010] for γ = 0.25 and [2.9220, 2.9224] for γ = 0.45.
We add that this master computation has required a run-time of about three weeks
for each value of γ.

In Figure 4 we relate the actual error to the error tolerance ε. We see that both
algorithms almost perfectly achieve the computational goal, namely, an error close
to the input ε.

10−3 10−2 10−1

10−3

10−2

10−1

ε

er
ro
r

γ = 0.45 (eq)
γ = 0.25 (eq)
γ = 0.45 (ad)
γ = 0.25 (ad)

Figure 4. Error given by (5) vs. error tolerance ε for the quantile
approximation of S(w|B|) with q = 0.95.

As for the strong approximation, the relation between the error and the average
run-time is most important, see Figure 5 for the results. For Qad

ε (w, q) we observe
a polynomial order of convergence of about 1/2, while the corresponding order for
Qeq
ε (w, q) is only about 1/4. This corresponds to the findings from Section 4 and

to Remark 12: The orders of convergence of Aad
n (w, ·) and Aeq

n (w, ·) for the strong
approximation of S(w|B|) are given by ∞ and 1/2, respectively, see Figure 3,
and the order of convergence for the quantile approximation should be 1/2, see
Remark 12.

The algorithm Qad
ε (w, q) achieves an error 10−2 in 5 seconds for γ = 0.25 and

in 12 seconds for γ = 0.45, and even an error 10−3 in less than 15 or 35 minutes,
respectively. The algorithm Qeq

ε (w, q) achieves the error 10−2 in 2 minutes for γ =
0.25 and (based on a extrapolation beyond the range of our numerical experiment)
in more than 2 hours for γ = 0.45; the corresponding run-times for the error 10−3

are 6 days and 6 years, respectively.
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10−1 100 101 102 103 10410−4

10−3

10−2

10−1

time in sec
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γ = 0.45 (eq)
γ = 0.25 (eq)
γ = 0.45 (ad)
γ = 0.25 (ad)
order 1/4
order 1/4
order 1/2
order 1/2

Figure 5. Error given by (5) vs. average run-time for the quantile
approximation of S(w|B|) with q = 0.95.
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