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Abstract

A new way of constructing flexible and unimodal circular models, focusing on

the modal direction, is proposed. Starting from a base symmetric density and

a weight function, a two–piece four parameters density is introduced. The pro-

posed density provides an extension of the base density to allow for sharply

peaked and flat–topped unimodal distributions as well as a wide range of skew-

ness. In particular, it generalizes some well–known peakedness–free models such

as the Batschelet and Papakonstantinou densities. The four parameters of the

model have a clear interpretation: modal direction, concentration, peakedness

at the left and at the right of the modal direction. Symmetric submodels are ob-

tained when the peakedness parameters are equal. The main properties related

to the shape of the new density are presented and asymptotic results for max-

imum likelihood estimators are derived. An illustrative application concerning

the flight orientation of migrating raptors is investigated.

Keywords: Circular Statistics, Flexible Modeling, Peakedness, Skewness,

Unimodality.

1. Introduction

Circular statistics became an area of particular relevance in many applied

fields as, in many examples, data can be represented on a circumference taking
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into account periodicity. Several applications related to orientations or periodic

phenomena can be found in Ley & Verdebout (2018).5

The complicated features that data tend to exhibit on the circle (Mardia,

1972, Section 1.4), such as skewness or varying peakedness (i.e., the curvature

of the density function) around the modal direction, lead to the exploration of

new more flexible models in this context. Ley & Verdebout (2017, Section 2.1.1)

determined four kinds of flexible models for linear data: the skew symmetric10

distributions (such as the Umbach & Jammalamadaka, 2009, proposal), the

transformation of variables distributions (Jones & Pewsey, 2012; Abe et al.,

2013), the mixture distributions (Mardia & Sutton, 1975) and the two–piece

distributions (see, e.g., Arellano-Valle et al., 2005; Cassart et al., 2008; Wallis,

2014; Gijbels et al., 2019, for the linear case). Up to our knowledge, none of15

the proposed models for circular data directly followed this last approach. The

only remarkable exception constitute the circular densities, constructed from

linear ones, using the wrapping approach or projections (see, e.g. Chaubey &

Karmaker, 2021). The aim of this paper is to provide a genuine new flexible two–

piece circular density. Therefore, we propose a method to introduce asymmetry20

and varying peakedness around the modal direction. We refer to this issue as

the concept of peakedness–free model. We hereby start from any symmetric

circular density f0 (the base density), which can be seen as the main submodel.

This new model is “mode–based” in the sense that a unimodal distribution is

proposed preserving the modal direction of the base density f0.25

Although even multimodal distributions can be obtained with our approach,

our focus is on unimodal densities. As then, each parameter of the model

has a clear interpretation: modal direction, concentration, peakedness at the

left and at the right of the modal direction. When the objective is modeling

multimodal phenomena, densities with more than one local maximum can still30

be obtained with a mixture of these unimodal components. Another important

advantage of the new proposed methodology is that when using the von Mises

or the cardioid as the base density, the symmetric submodels (obtained when

both peakedness parameters are equal) match the well–known peakedness–free

2



models of Batschelet and Papakonstantinou. Therefore, some results in this35

paper also complement the findings in Abe et al. (2009); Pewsey et al. (2011)

and Abe et al. (2013).

Several examples where the modal direction is of special relevance and a

flexible circular distribution is needed can be found in the literature. Some

applications include: modeling the daily time of gun crimes (Gill & Hangart-40

ner, 2010), analyzing the yearly time of wildfire occurrences (Ameijeiras-Alonso

et al., 2019), modeling the wind orientation (Agostinelli, 2007), studying the

angular positions of cracks in the cement mantle in a hip implant (Mann et al.,

2003), analyzing the hourly temperature cycle changes (Oliveira et al., 2013), or

studying the flight orientation of migrating raptors (Cabrera-Cruz & Villegas-45

Patraca, 2016b). This last example is revisited here to complement the findings

of Cabrera-Cruz & Villegas-Patraca (2016b).

The paper is organized as follows. Section 2 introduces some useful termi-

nology and includes a summary of circular models that are of special relevance

for this paper. Section 3 provides the basic formulation of the new asymmetric50

and peakedness–free model; and its associated properties, in terms of modality,

symmetry, peakedness and trigonometric moments; together with an algorithm

for generating random data from the model. In Section 4 parameter estimation

is studied. In particular, computation and asymptotic properties of maximum

likelihood (ML) estimators are studied in detail. In Section 5, we illustrate the55

application of the new proposal in an example in the ecology field. Section 6

summarizes relevant points of discussion. The Appendix summarizes some ba-

sic circular terminology and it contains proofs of the main theoretical results

provided in Sections 3 and 4. Additional results are included as Supplementary

Material: (i) proofs of the other theoretical results of the paper; (ii) a study60

of the shape of the densities and some shape measures of the proposed family

for different choices of the base and weight functions; (iii) a study of the shape

measures related to the trigonometric moments for the generalized Papakon-

stantinou model; (iv) some further details in the generation of random numbers

and in the computation of the ML estimators; and (v) the finite–sample behavior65
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of the ML estimates for the generalized Batschelet distribution.

2. Basic models for circular data

In the following, we describe some relevant circular models that are employed

throughout this paper. A recent review of different circular models can be found

in Pewsey et al. (2013, Section 4.3) and Ley & Verdebout (2017, Section 2.2).70

Our main focus is on unimodal models, i.e., distributions for which the density

has a unique local maximum at the modal direction m, and a minimum at

the antimodal direction, in the interval [−π, π). The modal direction can be

employed as a location parameter, and a circular density fm belongs to the

location family of a base density f0, if fm(θ) = f0(θ −m), for all θ ∈ [−π, π).75

Throughout this section, we assume that the reader is familiarized with the

circular statistics terminology. Alternatively, we refer to Appendix A where

some important definitions, related to the circular random variables Θ, are

summarized.

Besides the location parameter a second shape parameter indicating how80

“concentrated” the data are towards this center, called concentration c, is in-

cluded in most of the classical circular distributions (see, e.g., Mardia & Jupp,

2000, Ch. 3). Table 1 lists some circular densities depending on a concentra-

tion parameter c. For some densities, such as the cardioid, c coincides with the

mean resultant length, but for others, such as the von Mises, it is just a shape85

parameter controlling the spread of the distribution. A general mechanism for

constructing circular densities is the wrapping approach, provided in Table 1.

Besides the classic circular distributions, Table 1 also includes the wrapped

Laplace, studied by Jammalamadaka & Kozubowski (2003). The main draw-

back of the wrapped densities is that they do not always simplify to a closed90

form, as it occurs for the wrapped normal.

The classical circular densities given in Table 1 share the limitation of be-

ing symmetric around 0. Throughout this paper symmetry refers to reflective
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Name Expression of the density Parameter NSRC

standard circular densities fΘ

von Mises f0,c(θ) = exp (c cos(θ)) / (2π I0(c)) c > 0 –

cardioid f0,c(θ) = (1 + 2c cos(θ))/ (2π) c ∈ (0, 0.5) –

wrapped circular densities

fΘ(θ) =

∞∑
s=1

fX(θ + 2sπ) fX density of a linear random variable X

wrapped Cauchy fΘ;0,c(θ) = (1− c2)/
(
2π(1 + c2 − 2c cos(θ))

)
c ∈ (0, 1) –

wrapped Laplace fX;0,c(x) = c exp(−c|x|)/2 c > 0 (A6), (A7)

wrapped normal fX;0,c a normal N(0, σ2) density, c = e−σ2/2 c ∈ (0, 1) –

Table 1: Some known circular densities, depending on a concentration parameter c. The

column NSRC includes the non–satisfied regularity conditions, when using that density as a

base density of (3). In(·) is the modified Bessel function of the first kind of order n.

symmetry. Some general approaches for constructing asymmetric circular dis-95

tributions are reviewed in Table 2. Note that, for the k–sine–skewed and the

densities in Table 3, the location parameter does not designate the modal direc-

tion. Therefore the parameter µ instead of m is employed. The main drawback

of the k–sine–skewed distributions is that unimodality does not always hold.

For example, the 1–sine–skewed von Mises distribution is bimodal when the100

absolute value of s is “large” for values of c > 3 (see Abe & Pewsey, 2011, Fig.

2). The main advantage of the k–sine–skewed densities is that the normalizing

constant is the same as that of the base density f0. The inverse 2–sine–skewed

distribution has the main advantage of being always unimodal, with the same

modal and antimodal directions as the base density f0. Thus, it shares this105

property with the family proposed in this paper. A main inconvenience of the

inverse 2–sine–skewed distribution is that the density needs to be computed

numerically.

The asymmetry of a circular distribution may be measured by the skewness

coefficient s (see Appendix A). According to this coefficient, left– (with respect110

to the center of symmetry) skewed may refer to the case where s < 0, and
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Name/Reference Expression of the density Parameters

Umbach & Jammalamadaka

(2009)

gµ(θ) = 2f0(θ − µ)H0(w(θ − µ))

f0 and h0 circular densities symmetric around 0, H0(θ) =

∫ θ

−π

h0(ψ)dψ.

w : R → R, an odd and periodic weight function, satisfying |w(θ)| ≤ π

k–sine–skewed densities taking H0 = (π + θ)/(2π), w(θ) = sπ sin(kθ) k ∈ Z+

(Abe & Pewsey, 2011) gµ,s(θ) = f0(θ − µ)(1 + s sin(k(θ − µ))) s ∈ [−1, 1]

Abe et al. (2021) gm(θ) = f0
(
η−1(θ)

)
η(θ) = 2

∫ θ

−π

H0(w(ψ))dψ − π

inverse 2–sine–skewed density taking η(θ) = θ + s sin2(θ) s ∈ [−1, 1]

Table 2: Some known skewed circular densities, depending on a skewing parameter s.

right–skewed, when s > 0. A drawback of using this terminology is that β̄2 = 0

does not always imply reflective symmetry (see Section S3 of the Supplementary

Material). Testing for reflective symmetry around a point is thus not equivalent

to testing for β̄2 = 0. See e.g. Pewsey (2002) for a test for testing circular115

symmetry based on an estimator for β̄2. Given all these considerations we use

the definitions of left/right–skewed, with respect to θ0, in terms of the density

shape. Given a subset A ⊊ (0, π) and its relative complement Ac = (0, π)nA,

we define symmetry/skewness as follows.

f is


left–skewed

symmetric

right–skewed

with respect to θ0, if f(θ0 − θ)


>

=

<

f(θ0 + θ), for all θ ∈ Ac,

and f(θ0 − θ) = f(θ0 + θ), for all θ ∈ A.

(1)

The peakedness–free term indicates when a density can be more flat–topped

or more sharply peaked than a base density. In the circular literature peakedness

may be measured with the kurtosis coefficient (see Appendix A) or with the

curvature around the modal direction (see, e.g., Abe et al., 2013). Thus, in this
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paper, peakedness (curvature around the modal direction) is defined as,

|f ′′(θ)|/[1 + (f ′(θ))2]3/2, where θ is in a neighbourhood of m. (2)

Using that curvature concept, three existing peakedness–free symmetric models120

are described in Section 3; the Batschelet, the Papakonstantinou and the Abe

et al. (2013, Section 2) distributions.

Up to our knowledge, the two main competitors that allow for flexible accom-

modation of skewness and peakedness, are: the inverse Batschelet distribution

(Jones & Pewsey, 2012), which according to Pewsey et al. (2013, Section 4.3)125

was “the most flexible circular model to date”; and the Kato & Jones (2015)

density, which is termed “a very flexible unimodal distribution” in Ley & Verde-

bout (2017, Section 2.2). The density functions of these existing four parameter

distributions are provided in Table 3. When referring to the inverse Batschelet

distribution, following Jones & Pewsey (2012), we employ the von Mises as the130

base density to provide a circular density belonging to their family of distribu-

tions. The inverse Batschelet distribution is already implemented in the code

provided by Pewsey et al. (2013, Section 4.3.13).

The main advantage of the Kato & Jones (2015) distribution is its analytic

expression of the normalizing constant and a clear interpretation of the param-135

eters in terms of the classic characteristics coefficients (see Appendix A). More

specifically: µ = µ1, c = ρ1, s = β̄2 and p = ᾱ2. A disadvantage of this model is

that the parameter space of (p, s) depends on the parameter configuration (see

Table 3). For example, if c = 0.25, p ∈ [−0.125, 0.25) when s = 0, and when

s ̸= 0 the range of the support of p decreases. Conversely, if c = 0.5, p ∈ [0, 0.5)140

when s = 0, and its support range decreases when s ̸= 0. The main submodels

of the Kato & Jones (2015) distribution are: the cardioid (when s = p = 0) and

the wrapped Cauchy (when s = 0 and p = c2).

Regarding the inverse Batschelet family, one important advantage is that

the modal and antimodal directions have closed forms, (µ − 2s) and (µ ± π).145

Furthermore, there is the orthogonality between some parameters for the sub-

model with p = 0: the elements of the Fisher information matrix I, satisfy
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Name/Reference Expression of the density Parameter values

Inverse Batschelet

family of densities

gµ,c,s,p(θ) = C−1
c,pfµ,c(η2,p(η

−1
1,s(θ)))

Cc,p normalizing constant

location: µ ∈ [−π, π)

concentration: c ∈ R

(Jones & Pewsey,

2012)

η1,s(θ) = θ − s(1 + cos(θ))

η3,p(θ) = θ − (1 + p) sin(θ)/2

skewness: −1 ≤ s ≤ 1

η2,p(θ) = (1− p)θ/(1 + p) + 2pη−1
3,p(θ)/(1 + p) if peakedness: p ∈ (−1, 1]

η2,p(θ) = θ − sin(θ) if peakedness: p = −1

Inverse Batschelet

distribution

fµ,c being the von Mises density concentration: c > 0

Kato & Jones

(2015)

gµ,c,s,p(θ) = c2(c cos(θ − µ)− p)

((c2 + p2 + s2 − 2c(p cos(θ − µ)

+ s sin(θ − µ)))π)−1 + 1
2π

location: µ ∈ [−π, π)

concentration: 0 ≤ c < 1

skewness: s

peakedness: p

(p− c2)2 + s2 ≤ c2(1− c)2

(p, s) ̸= (c, 0)

Table 3: Some known four–parameter flexible circular densities.

iµc = ics = 0. A disadvantage is that the normalizing constant as well as the

inverse functions have no analytic expressions and need to be computed numer-

ically. Regarding the parameter interpretation, Jones & Pewsey (2012) claim150

that (when s = 0) the most flat–topped scenarios for their density occur when

p = −1 and the most sharply peaked when p = 1. Regarding the circular skew-

ness, studying the values of β̄2 for different configurations (when p = 0), they

found that s is equal to zero, for s = 0, negative for s > 0, and decreasing as a

function of s. The main submodel of the inverse Batschelet family of densities155

is the base density fµ,c, when s = p = 0.

3. The two–piece circular distributions and their properties

The main objective of this section is to provide the basic formulation of

the new asymmetric and peakedness–free models and their general properties.

Using any symmetric and unimodal density as a basis, with two parameters,160
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modal direction m (−π ≤ m < π) and concentration c (c ≥ 0), this new model

depends on also two extra parameters: peakedness at left (pL ∈ R) and at right

(pR ∈ R) of the modal directionm. This model is constructed with the objective

to keep unimodality with the modal direction at m, independently of whether

it is symmetrical or not.165

Given a circular symmetric and unimodal density (with a modal direction

at 0), denoted by f0,c, and a weight function w : R → R, the new density, in a

point θ ∈ [−π, π), is defined as

gm,c,pL,pR
(θ) =

1

Cc,pL,pR

f0,c[(θ −m) + pLw(θ −m)] if θ ∈ Im,1,

f0,c[(θ −m) + pRw(θ −m)] if θ ∈ Im,2,

(3)

where Cc,pL,pR
= Cc,pL

+ Cc,pR
is the normalizing constant, with Cc,pL

=∫
I0,1

f0,c[θ+pLw(θ)]dθ, Cc,pR
=
∫
I0,2

f0,c[θ+pRw(θ)]dθ, and the support Im,2 =

[−π, π)\Im,1, with Im,1 defined as

Im,1 =

[−π +m,m) if m ≥ 0,

[−π,m) ∪ [π +m,π) if m < 0.

Note that a little abuse of notation was made as both gm,c,pL,pR
and Cc,pL,pR

also depend on f0,c and w. In order to ensure that g is a density and that

some properties for this family hold, some conditions on the symmetric base

density f0,c and on the weight function w are needed. These conditions could

be relaxed if the only objective is to obtain a new circular distribution, in170

which case the density (3) is defined outside [−π, π), satisfying gm,c,pL,pR
(θ) =

gm,c,pL,pR
(θ + 2kπ), for any integer k.

The simplest sufficient conditions to guarantee that g is a circular density

function are: (i) f0,c is a circular density function; (ii) w is periodic, with period

2π; (iii) 0 < Cc,pL,pR
<∞. The latter can be obtained, e.g., if f0,c is positive and175

bounded. In what follows, we give some extra conditions, needed to establish

some properties of the two-piece distributions. Below, we denote f ′ ≡ df/dθ.

Regularity conditions on the base density.
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(A1) f0,c belongs to a location family, i.e., fm,c(θ) = f0,c(θ+m), for any θ and

m.180

(A2) f0,c is periodic with period 2π, i.e., for all integers k, f0,c(θ) = f0,c(θ+2kπ);

and
∫ π

−π
f0,c(θ)dθ = 1.

(A3) f0,c(θ) > 0, for all θ ∈ [−π, π).

(A4) f0,c is a bounded function with a unique maximum at 0 and a minimum

at −π, in the interval [−π, π).185

(A5) f0,c is an even function, i.e., f0,c(−θ) = f0,c(θ), for all θ.

(A6) f0,c has a continuous derivative satisfying f ′0,c(θ) > 0 if θ ∈ I0,1 and

f ′0,c(θ) < 0 if θ ∈ I0,2.

(A7) f0,c has a continuous second derivative in a neighborhood of 0.

Note that in the definition of density (3) we employed Condition (A1). An-190

other way of formulating this model without this condition is using fm,c instead

of f0,c in density (3). Most of the classical circular distributions satisfy Condi-

tions (A1)–(A7) (see Table 1).

Regularity conditions on the weight function.

(B1) w is periodic, with period 2π.195

(B2) w is a non–constant odd function.

(B3) w is a bounded function with continuous derivative, satisfying, for all

θ ∈ [−π, π) and for some l > 0: (i) l|w(θ)| ≤ |θ|; (ii) l|w(θ)| ≤ π− |θ|; (iii)

l|w′(θ)| < 1, if θ ̸= kπ, for any integer k. The quantity l > 0 denotes the

largest value such that the previous conditions are satisfied for all l ∈ [0, l].200

(B4) w has a continuous second derivative in a neighborhood of 0.

Some of these conditions are similar to those required on the weight func-

tion in Umbach & Jammalamadaka (2009). In their case, the non–constant
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condition (part of Condition (B2)) and Conditions (B3) and (B4) are replaced

by |w(θ)| ≤ π. The weight function w(θ) = sin(kθ), with k being a integer205

different from zero, is the main example of a function satisfying both the condi-

tions in Umbach & Jammalamadaka (2009) and Conditions (B1)–(B4). Other

examples of weight functions are provided in Table 4, and discussed below. As

before, some conditions can be removed in our setting when the objective is

only to obtain a circular density that may not be continuous or unimodal (see210

Section 3.2).

3.1. Main submodels

When considering the weight w(θ) = sin(θ) and p = pL = pR, some symmet-

ric peakedness–free models available in the literature are obtained as particular

cases of the general model in (3). For example, taking f0,c the cardioid density,215

one obtains the Papakonstantinou model (see, e.g., Abe et al., 2009). Taking

f0,c the von Mises density, density (3) results into the Batschelet density (see,

e.g., Pewsey et al., 2011). If f0,c(θ) = h(cos(θ)), where h denotes a symmet-

ric circular density which is a function of cos(θ), then the model provided in

Section 2 of Abe et al. (2013) is obtained as a special case. Thus, the general220

formulation in (3) provides a flexible way of creating asymmetric alternatives of

these densities. In the following, we focus on some of them.

Generalized Batschelet. Concerning the Batschelet distribution, an asymmetric

generalization can be obtained by taking density (3) with w(θ) = sin(θ) and

f0,c being the von Mises density. This leads to the density

gm,c,pL,pR(θ) =
1

2πI0(c)Cc,pL,pR

exp[c cos((θ −m) + pL sin(θ −m))] if θ ∈ Im,1,

exp[c cos((θ −m) + pR sin(θ −m))] if θ ∈ Im,2.

(4)

In Figure 1 this density is depicted for different values of the parameters, with

the objective of showing the flexibility and shape of this density. Note that

this density satisfies all the previous regularity conditions. Thus, one can use225

Propositions 1–4, to see that this density has a continuous derivative, a unique
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Figure 1: Generalized Batschelet density with m = 0. Solid grey line: von Mises (VM) density

when c = 3 (pL = pR = 0). Broken black lines: parameters indicated in the graphics. Left:

effect of the concentration parameter. Center and right: effect of peakedness parameter at

right, when peakedness at left is negative (pL = −0.75, center) and positive (pL = 0.75, right).

modal direction at m, and that the parameters pL and pR control the symmetry

and peakedness behaviour.

Generalized Papakonstantinou. This model is obtained when considering as
base density f0,c the cardioid density and w(θ) = sin(θ). For this particular
case, the normalizing constant has an explicit analytic expression that can be
obtained as an immediate consequence of having a symmetric density g0,c,p,p for
which the normalizing constant is 1 − cJ1(p) (see Abe et al., 2009). Then, we
obtain the density

gm,c,pL,pR
(θ) =

1

2π − πc(J1(pL) + J1(pR))

1 + c cos[(θ − m) + pL sin(θ − m)] if θ ∈ Im,1,

1 + c cos[(θ − m) + pR sin(θ − m)] if θ ∈ Im,2.

(5)

As is explained in Section 3.3, this density is not very suitable for modeling

“concentrated” data. This disadvantage is similar to the one already observed230

for the cardioid base model. Figure 2 (left) presents density (5) for different

parameter configurations.

k–sine–weighted submodels. A simplification of the model is obtained when con-

sidering w(θ) = sin(kθ), with k ∈ Z and k ̸= 0. When k = 1 and the base

density is f0(θ) = h(cos(θ)), with h a symmetric circular density, the gener-235

alized Abe et al. (2013, Section 2) distribution is obtained. Figure 2 shows

the sine–weighted submodels for different base densities satisfying ρ1 = 0.45,

in its symmetric version. From Figure 2 it is seen that, while respecting the
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shape of the base model, the sine–weighted submodels allow for wider ranges

of skewness and peakedness. In Section S2 of the Supplementary Material we240

further illustrate the flexibility of this model, comparing its appropriateness us-

ing three base densities (the cardioid, the von Mises and the wrapped Cauchy

densities) when data are generated from some other circular distribution. In

general, the sine–weighted submodels provide a good approximation to many

existing circular unimodal densities.245

The main cases where the previous statement is not true is when for a circular

unimodal density the modal and antimodal direction are pronounced and “close”

to each other (see Section 3.2). The ranges of the shape measures in (3) may

be very wide depending on the base density. The generalized Papakonstantinou

density does not allow for “highly” concentrated distributions (ρ1 > 0.79, see250

Section 3.3). In Table S1 of Section S2 we study the ranges of the shape measures

related to the trigonometric moments, s and k, of the sine–weighted submodels,

when using the cardioid, the von Mises or the wrapped Cauchy as base densities,

for different parameter configurations. One of the findings there is that the

proposed model allows for wider ranges of the skewness and kurtosis coefficients255

as ρ1 increases. Thus, the generalized Batschelet and the sine–weighted wrapped

Cauchy allow for wider ranges of skewness and kurtosis than the generalized

Papakonstantinou. When ρ1 is large (0.7 < ρ1 ≤ 0.9), the wrapped Cauchy

allows for wider ranges of the shape measures than the von Mises base density.

This effect can be also seen in the different plots of Section S2. The wrapped260

Cauchy base density seems to be more appropriate to obtain a good model for

data generated from highly concentrated densities.

In Table S1, the generalized Batschelet, the generalized Papakonstantinou

and the sine–weighted wrapped Cauchy are also compared with the other two

very flexible unimodal circular distributions described in Table 3, in terms of s265

and k. In general, the inverse Batschelet distribution is the distribution obtain-

ing the wider ranges of s and k. For the different studied scenarios, independent

of ρ1 and whether s is “small” or “large”, both the generalized Batschelet and

the inverse Batschelet always contain a submodel with the same kurtosis as the
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Figure 2: Density (3) with m = 0, w(θ) = sin(θ) and the base models: cardioid (left), wrapped

Cauchy (center) and wrapped Laplace (right). Solid grey line: symmetric submodels, with

ρ1 = 0.45. Broken lines: asymmetric submodels, with different peakedness parameters.

wrapped normal (k = 0), while the same does not hold for the Kato & Jones270

(2015) distribution. In the studied scenarios, the inverse Batschelet distribu-

tion is the one allowing for larger and smaller values of k, independently on the

configurations of ρ1 and s. But, by comparing the results with the three base

densities, it seems that the proposed model could have larger values of k if a

more highly–peaked distribution is used as base density. For “small” absolute275

values of k, the generalized Batschelet or the Kato & Jones (2015) distributions

(depending on ρ1) are the ones having wider ranges of s. For “large” absolute

values of k, the inverse Batschelet is the distribution that provides wider ranges

of s.

The weights sin(kθ), when |k| > 1, can be useful to model data coming from280

a density that presents “shoulders”, i.e., a density with almost flat parts outside

the modal and antimodal directions (see Figure 3, left). One advantage of the

newly proposed density when comparing with the k–sine–skewed densities (Abe

& Pewsey, 2011) is that unimodality always holds if −1/|k| ≤ pL, pR ≤ 1/|k|

(see Proposition 2).285

Other weighting functions. Weight functions are not limited to k–sine functions.

Some useful weighting functions are summarized in Table 4. The effect of these

weighting functions, when the von Mises is employed as base density, is shown
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Weight function NSRC

Control of left/

right skewness

by pL and pR?

w(θ) = sin(k θ) k ∈ Z, k ̸= 0 – if |k| = 1

w(θ)= a linear combination of sin(kθ) functions – depends

w(θ) = Re {iLik(exp(−iθ))}, k > 1 – yes

Lik(z) polylogarithm function of order k, i.e. Lik(z) =
∞∑
q=1

zq

qk

w(θ) = sin(2πH(θ))

H cumulative distribution function (CDF) of a circular density

symmetric around 0, with H(0) = 0

depends

on H

yes

H being the CDF of VMM(µ, κ) = (VM(µ, κ)+VM(−µ, κ))/2 – yes

triangle wave weight function

w(θ) =


π + θ if −π ≤ θ ≤ −π/2

|θ| if −π/2 ≤ θ ≤ π/2

π − θ if π/2 ≤ θ < π

(B3), (B4) yes

w(θ) = w(θ + 2kπ), ∀k ∈ N

Table 4: Examples of weight functions w. The column NSRC includes the non–satisfied

regularity conditions, when using w as a weight function of (3).

in Figure 3. Different weight functions lead to more flexibility and the shape of

the proposed density moves away from the original von Mises shape.290

3.2. Basic properties

As can already be anticipated from Figure 1, the general regularity condi-

tions on w and f0,c lead to some interesting properties of density model (3). In

particular, it is shown that under appropriate conditions: gm,c,pL,pR
is a circu-

lar density with a continuous derivative; is unimodal with modal direction at295

m when −l ≤ pL, pR ≤ l, where l is the positive value in (B3); the density is

symmetric if and only if pL = pR. These results are stated formally in Propo-

sitions 1–4, the proofs of which are provided in Appendix B.1 or in Section S1

of the Supplementary Material.

15



0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

− π − π 2 0 π 2 π

f0 = VM(0, 2), pL = 0.75l, pR = − 0.75l

sin(2θ)
sin(3θ)
Triangle wave

l = 1 2

l = 1 3

l = 1

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

− π − π 2 0 π 2 π

f0 = VM(0, 2), pL = 0.75l, pR = − 0.75l

4sin(θ) + sin(4θ)
sin(3θ) + sin(10θ)
Re(iLi2(exp(− iθ)))

l = 1 8

l = 1 13

l = 0.608

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

− π − π 2 0 π 2 π

f0 = VM(0, 2), pL = 0.75l, pR = − 0.75l

VMM(0, 3)
VMM(π 2, 1)
VMM(π 2, 10)

l = 0.243

l = 1.249

l = 0.451

Figure 3: Density (3), g0,2,3l/4,−3l/4, when employing the von Mises as base density, with the

weights of Table 4 and where the values of l are given in the right–hand legend.

In Appendix B.1 and Section S1, we also comment on how to relax the300

conditions on f0,c and w, while still obtaining some of the properties below.

Among the simplest examples of base densities are the wrapped unimodal two–

piece densities, that have a continuous derivative, except at the modal direction,

as for the wrapped Laplace distribution (Table 1 and Figure 2, right). From

the proofs, it is seen that with the wrapped Laplace as a base density, the305

density gm,c,pL,pR
in fact has all properties below, except for having a continuous

derivative at the modal direction. A similar remark can be made for the triangle

wave function (see Table 4, and Figure 3, left panel, dotted line), with which

gm,c,pL,pR
satisfies all properties below (when l approaches to one from the left),

with exception of the continuity of the derivative at the points m± π/2.310

Proposition 1. If f0,c satisfies Conditions (A1)–(A4) and w verifies (B1),

then gm,c,pL,pR
is a circular density. If, in addition, Conditions (A6), (B2) and

(B3) hold, then gm,c,pL,pR
has a continuous derivative.

Proposition 2. If f0,c satisfies Conditions (A1)–(A4) and (A6), w verifies

(B1)–(B3), and −l ≤ pL, pR ≤ l, where l is the positive value in Condition315

(B3); then gm,c,pL,pR
is a unimodal density, in [−π, π), with modal direction at

m and antimodal direction at (m± π).

In particular, when considering the sine as the weight function, unimodality

always holds considering l = 1. So, the generalized Papakonstantinou and

16



Batschelet densities are always unimodal if −1 ≤ pL, pR ≤ 1. The same result320

is indicated by Abe et al. (2009) and Pewsey et al. (2011) for the particular case

when pL = pR. In the case of considering the sine weight function, Proposition 2

is an if and only if result. From the proof in Section S1, it is easy to see that

if |pL| > 1 or |pR| > 1, there would be at least one extra modal direction,

respectively, in the arc Im,1 or Im,2.325

If l ̸= 1, alternatively, for a general w function, the “normalized” weight

function w(θ)/l may be considered, so gm,c,pL,pR
is always unimodal if −1 ≤

pL, pR ≤ 1.

Proposition 2 also highlights the main limitation of density (3): under the

mentioned hypotheses, one important constraint is that the modal and the anti-330

modal directions are antipodal. Thus, a distribution belonging to the proposed

family should not be employed for modeling data for which the modal and anti-

modal direction are pronounced and “close” to each other. An example of this

“bad” fitting can be seen, e.g., in Figure S3 of the Supplementary Material, for

data from the Kato & Jones (2015) distribution.335

Proposition 3. If f0,c satisfies (A1)–(A6) and w verifies (B1)–(B3), then

gm,c,pL,pR
is reflective symmetric around m if and only if pL = pR. Also, when

pL ̸= pR, if (pL − pR)w(θ) ≥ 0, for all θ ∈ (−π, 0), then gm,c,pL,pR
is skewed to

the left (see Equation 1), while if (pL − pR)w(θ) ≤ 0, for all θ ∈ (−π, 0), then

gm,c,pL,pR
is right–skewed.340

From Proposition 3 we can see that the peakedness parameters may also con-

trol when the proposed distribution is left– or right–skewed. Table 4 indicates

which weight functions allow for this feature. For the other weight functions,

the skewness behavior can be analyzed only, locally, in a neighborhood of the

modal direction.345

Proposition 4. Suppose that f0,c satisfies (A1)–(A7) and w verifies (B1)–(B4).

17



Then, considering the values −l ≤ pL1 , pL2 , pR1 , pR2 ≤ l,

sgn

(
lim

θ→m−
g′′m,c,pL1

,pR1
(θ)− lim

θ→m−
g′′m,c,pL2

,pR1
(θ)

)
= −sgn

(
w′(0)

)
· sgn

(
pL1

− pL2

)
,

sgn

(
lim

θ→m+
g′′m,c,pL1

,pR1
(θ)− lim

θ→m+
g′′m,c,pL1

,pR2
(θ)

)
= −sgn

(
w′(0)

)
· sgn

(
pR1

− pR2

)
.

Considering that g′m,c,pL,pR
(m) = 0 and w′(0) ̸= 0, we obtain, from Propo-

sition 4, that the parameter pL (respectively pR) controls the peakedness at the

left (respectively at the right) of the modal direction (see Equation 2).

3.3. Trigonometric moments

Given density (3), the expression of the trigonometric moments can be ob-350

tained as follows,

αr =
1

Cc,pL,pR

(∫
Im,1

cos(rθ)f0,c[(θ −m) + pLw(θ −m)]dθ

+

∫
Im,2

cos(rθ)f0,c[(θ −m) + pRw(θ −m)]dθ

)
, (6)

βr =
1

Cc,pL,pR

(∫
Im,1

sin(rθ)f0,c[(θ −m) + pLw(θ −m)]dθ

+

∫
Im,2

sin(rθ)f0,c[(θ −m) + pRw(θ −m)]dθ

)
. (7)

Even for the simple case with pL = pR and f0,c being the von Mises density,

Pewsey et al. (2011) claim that there is no known analytical expression for

these quantities and hence they must be calculated numerically. The same

occurs when computing the trigonometric moments about the mean direction,355

with the extra difficulty that, in general, m ̸= µ1, except when pL = pR. In that

case, gm,c,pL,pR
is symmetric and the modal direction coincides with the mean

direction. When pL = pR, because of the symmetry, the value of the rth sine

moment about µ1 is β̄r = 0, for all r ∈ Z (see Mardia & Jupp, 2000, Section

3.4.4). This allows us to provide the mean resultant length, 0 ≤ ρ1 ≤ 1, of360

the symmetric version of the new model when the weight is the sine function,

w(θ) = sin(θ). The result is stated in the following proposition.
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Proposition 5. If f0,c satisfies Conditions (A1)–(A5), w(θ) = sin(θ) and pL =

pR = p ̸= 0, then ρ1 = ᾱ1 = (1− 2Cc,p)/(2pCc,p), where Cc,p = Cc,p,p/2.

This proposition gives an analytical expression of the mean resultant length365

from the values of the normalizing constant Cc,p. Thus, it can be useful when

the objective is to directly compute the mean resultant length of the Pewsey

et al. (2011) or Abe et al. (2013, Section 2) models from their value of Cc,p. It

also provides an idea about how concentrated the density is at the left and at

the right of the modal direction in the proposed model.370

Generalized Papakonstantinou. As mentioned before, in general, explicit ex-

pressions for the different integrals in (6) and (7) cannot be provided. However

for the generalized Papakonstantinou density presented in (5) in Section 3.1 we

can provide such explicit expressions. In that case, if pL, pR ̸= 0, the rth cosine

and sine moments are equal to375

αr =
c

2π − πc(J1(pL) + J1(pR))



∑∞
s=1

4r sin(rm)

r2−4s2
(J ′

2s(pL)− J ′
2s(pR))

+πr
(

Jr(pL)
pL

+ Jr(pR)
pR

)
cos(rm) , if r is odd,∑∞

s=1
4r(2s−1) sin(rm)

r2−(2s−1)2

(
J2s−1(pL)

pL
− J2s−1(pR)

pR

)
+π(J ′

r(pL) + J ′
r(pR)) cos(rm) , if r is even,

βr =
c

2π − πc(J1(pL) + J1(pR))



∑∞
s=1

4r cos(rm)

r2−4s2
(J ′

2s(pR)− J ′
2s(pL))

+πr
(

Jr(pL)
pL

+ Jr(pR)
pR

)
sin(rm) , if r is odd,∑∞

s=1
4r(2s−1) cos(rm)

r2−(2s−1)2

(
J2s−1(pR)

pR
− J2s−1(pL)

pL

)
+π(J ′

r(pL) + J ′
r(pR)) sin(rm) , if r is even.

The terms Jr(pL)/pL, if pL = 0, or Jr(pR)/pR, if pR = 0, are replaced by

1/2 when r = 1 and by 0 otherwise. The derivation of these results is given in

Section S1.5 of the Supplementary Material. The values of αr and βr can be

computed, in practice, by approximating the infinite sums by a finite number of

terms, where the committed error can be controlled from |Js(p)| < 0.675s−1/3
380

(see Landau, 2000). Note also that for the Papakonstantinou model (i.e., when

pL = pR), the infinite sum disappears and the same results as in Abe et al.
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(2009) are obtained using that 2pJr(p)/p = Jr−1(p) + Jr+1(p) and 2J ′
r(p) =

Jr−1(p)− Jr+1(p).

From the previous expressions, we can see that the circular mean direction,385

µ1, only depends on m, pL and pR, being a monotonically increasing function

with respect to pL and monotonically decreasing with respect to pR. Regarding

the mean resultant length value ρ1, we obtain that ρ1 ≤ J1(1)/(1 − J1(1)) ≈

0.7859, thus the generalized Papakonstantinou is not a suitable distribution

for modeling “concentrated” data. The previous result is obtained by noting390

that the derivative of ρ1 with respect to c is positive, and, numerically, we

observed that the largest value of ρ1 is obtained when considering lim c→ 0.5−

and pL = pR = 1. These and other shape measures of this distribution are

analyzed in Section S3 of the Supplementary Material.

3.4. Simulation of random numbers395

Assuming that we know how to generate random numbers from the base

density f0,c, we propose to employ an adaptive acceptance–rejection method to

generate random numbers from the circular random variable Θ with density (3).

Let h be a density function satisfying gm,c,pL,pR
(θ) ≤Mh(θ), for all θ ∈ [−π, π)

and for someM ≥ 1. In general terms, the rejection sampling algorithm consists400

in generating two random values, one from the uniform distribution U(0, 1),

denoted as Ui, and another from the distribution associated with h(θ), and

denoted by Ψi. The random value Ψi is accepted (as a random value drawn

from gm,c,pL,pR
) if Ui < gm,c,pL,pR

(Ψi)/(Mh(Ψi)).

The key point for obtaining a computationally fast algorithm is then to get

a close envelope bounding of the target density gm,c,pL,pR
. With that objective

in mind we propose to employ the following auxiliary function,

h1;m,c,b(θ) =


f0,c(θ −m+ b)/Cc,pL,pR

if − π ≤ θ −m < −b,

f0,c(0)/Cc,pL,pR
if − b ≤ θ −m ≤ b,

f0,c(θ −m− b)/Cc,pL,pR
if b < θ −m < π,

(8)
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Figure 4: Solid grey line: generalized Batschelet density with m = 0 and c = 1. Dashed line:

bounding function employed to generate random values. Vertical dotted lines: separating

pieces in which the support is divided for obtaining the auxiliary functions. Left: pL = −0.8

and pR = −0.3 (h1;m,c,1). Center: pL = −0.8 and pR = 0 (h2;m,c,b,pL,pR ). Right: pL = 0.4

and pR = 0.1 (h2;m,c,b,pL,pR ).

where b = maxθ(l|w(θ)|) ≤ π/2, and with b = 1 when w(θ) = sin(θ). Under the405

assumptions of Proposition 3, the inequality gm,c,pL,pR
(θ) ≤ h1;m,c,1(θ)/Cc,pL,pR

always holds, as f0,c[(θ−m)+pLw(θ−m)] ≤ f0,c(θ−m+b) when θ−m ∈ [−π,−b)

and the same applies in the other part of the support. In Figure 4 (left), this

bounding envelope (dashed line) is shown for the generalized Batschelet density

(grey solid line).410

Note that if pL = 0 or pR = 0, we can use the original base density as the

bounding function in Im,1 or Im,2. Even more, since f0,c(θ) is increasing in

[−π, 0), then, if pLw(θ) ≤ 0 when θ ∈ [−π, 0), it holds that gm,c,pL,pR
(θ) ≤

f0,c(θ)/Cc,pL,pR
, for these values of θ, and the same applies for θ ∈ [0, π) if

pRw(θ) ≥ 0. Thus, a computationally faster algorithm can be obtained consid-

ering the following auxiliary function:

h2;m,c,b,pL,pR
(θ) =


f0,c(θ −m)/Cc,pL,pR

if θ ∈ Im,1, and pLw(θ) ≤ 0,

f0,c(θ −m)/Cc,pL,pR
if θ ∈ Im,2 and pRw(θ) ≥ 0,

h1;m,c,b(θ) otherwise.

(9)

For illustrative purposes, we depict function (9) in Figure 4 for the general-

ized Batschelet. Section S4 of the Supplementary Material provides more details
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of the proposed algorithm for generating random numbers from (3).

Remark 1. Note that this algorithm also provides a computationally faster

method to generate data from the different particular cases of the density (3).415

For the Batschelet distribution, the described algorithm is faster than the one

suggested in Section 2.2 of Pewsey et al. (2011). In the acceptance–rejection

method, the average number of random values required to generate a datum

point is equal to M . Considering pL = pR = p ≥ 0, this quantity is equal

to 1/Cc,p,p, for the algorithm proposed in this section; while M is equal to420

exp(c)/(I0(c)Cc,p,p), for the Pewsey et al. (2011) algorithm. Thus, for example,

when c = 10, the average number of random values required to generate a datum

point is divided by exp(10)/I0(10) ≈ 7.82 with respect to the algorithm proposed

by Pewsey et al. (2011). The higher the c value, the better the performance.

When c → 0, both algorithms accept almost all values, and thus show a similar425

performance.

4. Parameter estimation

Let Θ = (Θ1, . . . ,Θn) denote a random sample of angles obtained from a

distribution with density (3). Given a base density f0,c and a weight function

w, the objective of this section is to discuss maximum likelihood estimation of430

the parameters m, c, pL and pR, to establish the asymptotic behaviour of the

ML estimates, and to discuss the construction of the confidence intervals (CIs)

for the parameters.

We focus on the maximum likelihood estimation procedure, as the method

of moments may provide multiple solutions or no solution. For example, for435

the symmetric version of the Papakonstantinou distribution (i.e., with pL =

pR = p), Abe et al. (2009) propose to use, as method of moments estimators,

the sample mean direction µ̂1 = Arg(
∑n

i=1 exp(iΘi)) to estimate m, and ā1

and ā2, with ār = n−1
∑n

i=1 cos r(Θi − µ̂1), to estimate c and p, through ρ1

and ρ2 = |E[Z2]|. In their paper, they showed that there is no solution when440

ā2/ā1 > J ′
2(1)/J1(1) ≈ 0.478. Since even for one of the most simple subcases,
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the method of moments may not provide a solution we do not recommended

to use this method for obtaining parameter estimators. Therefore the focus is

entirely on maximum likelihood estimation.

4.1. Maximum likelihood estimation445

The log–likelihood function for the full vector of parameters (m, c, pL, pR) of

density (3) is

ℓ(m, c, pL, pR) = −n ln(Cc,pL,pR) +

n∑
i=1

I(Θi ∈ Im,1) ln[f0,c((Θi −m) + pLw(Θi −m))]

+
n∑

i=1

I(Θi ∈ Im,2) ln[f0,c((Θi −m) + pRw(Θi −m))], (10)

where I denotes the indicator function. If Sc denotes the support for c for

the base density, i.e., c ∈ Sc, then the ML estimator of λ = (m, c, pL, pR)
T

is the solution of λ̂n = (m̂n, ĉn, p̂Ln , p̂Rn)
T = argmaxλ∈Λℓ(m, c, pL, pR), where

Λ = [−π, π)×Sc× [−l, l]× [−l, l] is the parameter space of λ and the superscript

T denotes the transpose of the vector. For instance, the parameter space of the450

generalized Batschelet density (4) is Λ = [−π, π)× R+ × [−1, 1]× [−1, 1].

When maximizing the log–likelihood function (10) the main issue is that, in

general, this function is not differentiable with respect to the parameter m at

the points m = Θi+kπ, with i ∈ {1, . . . , n} and k being an integer. Under some

assumptions (see Proposition 1), the log–likelihood has a continuous derivative455

in almost every point. In Section S5 of the Supplementary Material, we discuss

the algorithm that is employed for searching the parameters maximizing the

log–likelihood, using the box–constraints provided by Λ. The use of different

initial values is generally recommended when performing the optimization to

avoid identifying a local maximum, rather than the global maximum of the460

log–likelihood. Concerning the computational efficiency, we experienced in our

simulation studies for the generalized Batschelet density that when using as

starting values in the algorithm the ML estimators of the base density f0,c and

the peakedness parameters pL and pR equal to zero, the true global maximum of

the log–likelihood is correctly identified, with high probability. See Sections S5465

and S6 in the Supplementary Material.
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4.2. Asymptotic behavior of the maximum likelihood estimators

We next study the asymptotic behavior of the ML estimator λ̂n. Note that

in our context we cannot apply the classical asymptotic theory as the log–

likelihood function (10) is not differentiable in some points of the support. In470

what follows, we show that λ̂n is a consistent estimator of the true parameter

λ0 = (m0, c0, p0L, p
0
R)

T and derive its asymptotic distribution under certain spec-

ified assumptions. The proofs of these asymptotic results are given in Appendix

B or in Section S1.6 of the Supplementary Material.

Assumptions for the asymptotic results.475

(C1) Let ΛR be a compact subset of Λ and assume that λ0 is in the interior of

ΛR.

(C2) If c1 > c2, the base density satisfies that f0,c1(0) > f0,c2(0) and f0,c1(−π) <

f0,c2(−π).

(C3) The base density f0,c is differentiable with respect to c and the following480

functions have a bounded integral with respect to θ in the interval [−π, π):

(i) f ′0,c(θ), (ii) (∂/∂c)f0,c(θ) and (iii) w(θ)f ′0,c(θ + pw(θ)), for any −l ≤

p ≤ l.

(C4) For any −l ≤ pL, pR ≤ l, the quantities:

Dk1,k2,k3,k4;−
c,pL,pR

=

∫ 0

−π

[f0,c(θ + pLw(θ))]
−1

[w(θ)]k1 [w′(θ)]k2

× [f ′0,c(θ + pLw(θ))]
k3

[
∂

∂c
f0,c(θ + pLw(θ))

]k4

dθ,

Dk1,k2,k3,k4;+
c,pL,pR

=

∫ π

0

[f0,c(θ + pRw(θ))]
−1[w(θ)]k1 [w′(θ)]k2

× [f ′0,c(θ + pRw(θ))]
k3

[
∂

∂c
f0,c(θ + pRw(θ))

]k4

dθ,

Dk1,k2,k3,k4;±
c,pL,pR

= Dk1,k2,k3,k4;−
c,pL,pR

+Dk1,k2,k3,k4;+
c,pL,pR

,
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have a finite value when the following elements are considered in the vec-485

tor (k1, k2, k3, k4): (0, 0, 0, 2), (0, 0, 2, 0), (0, 1, 2, 0), (0, 2, 2, 0), (1, 0, 1, 1),

(1, 0, 2, 0), (1, 1, 2, 0), (2, 0, 2, 0).

(C5) f0,c and w have a bounded continuous second order derivative with respect

to θ and also with respect to c (in the case of f0,c).

(C6) (∂/∂c)f0,c is an even function.490

Note that (∂/∂c)f0,c(θ + pw(θ)) denotes the partial derivative of f0,c with

respect to c evaluated at the point (θ + pw(θ)). Assumptions (C3) and (C4)

are always satisfied if f ′0,c(θ) and (∂/∂c)f0,c(θ) are bounded in [−π, π) (so they

are a consequence of Assumption (C5)) and infθ f0,c(θ) > 0. Assumption (C2)

should always be satisfied using the traditional concept of concentration. In495

particular, Conditions (C2)–(C5) are satisfied for the following circular densities:

von Mises, cardioid, wrapped Cauchy. Condition (C6) is only needed to simplify

the expression of the Fisher information matrix.

Excluded here are the cases where the parameters are at the boundary of

the parameter space. For the reader interested in parameter estimation when500

parameters are at the boundary of the parameter space, we refer to, for example,

Self & Liang (1987). We also exclude base and weight densities that do not have

a continuous derivative. Following the proofs in Appendix B and Section S1.6

one can see that the previous conditions may be relaxed. This is the case for

f0,c being the wrapped Laplace or w being the triangle wave. In general, the505

following results remain true when the base and weight densities have a bounded

continuous second order derivative with respect to θ and c in almost every point.

Theorem 1. Suppose that the base density f0,c satisfies (A1)–(A4) and (A6)

and the weight function w verifies (B1)–(B3). Then under Assumptions (C1)

and (C2) the ML estimator λ̂n of λ0 is weakly consistent, i.e., λ̂n
P→ λ0, as510

n→ ∞.

In Proposition 6, we establish results for the Fisher information matrix, of

which the elements depend on the base density f0,c and on the weight function
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w. We also prove that the expected value, with respect to the true underlying

distribution, of the score vector of Θ is zero.515

Proposition 6. Suppose that the base density f0,c satisfies (A1)–(A6) and the

weight function w verifies (B1)–(B3). Then under Assumption (C3) the expected

value of the derivative of ln gλ(Θ) with respect to each parameter is zero, i.e.,

E
[
∂

∂λ
ln gλ(Θ)

]
= 0.

If in addition Assumption (C4) holds, then all elements of the Fisher informa-

tion matrix I are finite. If, furthermore, Assumption (C6) holds, then element

(1, 2), denoted imc, and the element (2, 1), denoted icm, of the Fisher informa-

tion matrix are equal to zero, i.e.,

E
[(

∂

∂m
ln gλ(Θ)

)(
∂

∂c
ln gλ(Θ)

)]
= 0.

When considering the symmetric submodel with p = pL = pR, the element (1, 3),

denoted imp, and the element (3, 1), denoted ipm, of the Fisher information

matrix associated with the parameters (m, c, p) are also equal to zero, i.e.,

E
[(

∂

∂m
ln gλ(Θ)

)(
∂

∂p
ln gλ(Θ)

)]
= 0.

Under the mentioned assumptions, Proposition 6 reveals that the pair of

parameters (m, c) is always orthogonal. Therefore, the ML estimator of m is

asymptotically independent of that for c. This proposition also shows that the

estimator of m is asymptotically independent of the remaining parameters when

considering the symmetric submodel with p = pL = pR.520

Denoting by Cλi
c,pL,pR

the partial derivative of Cc,pL,pR
with respect to the

parameter λi, the elements of the symmetric Fisher Information matrix are (see

Section S1.6 of the Supplementary Material for derivations)

imm =
1

Cc,pL,pR

(
D0,0,2,0;±

c,pL,pR + p2LD
0,2,2,0;−
c,pL,pR + 2pLD

0,1,2,0;−
c,pL,pR + p2RD

0,2,2,0;+
c,pL,pR

+ 2pRD
0,1,2,0;+
c,pL,pR

)
,

imc =
1

Cc,pL,pR

(
−
∫ π

−π

f ′
0,c(θ)

(
∂
∂c
f0,c(θ)

)
f0,c(θ)

dθ

)
(= 0 if Assumption (C6) holds),
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impL =
1

Cc,pL,pR

(
−D1,0,2,0;−

c,pL,pR − pLD
1,1,2,0;−
c,pL,pR

)
,

impR =
1

Cc,pL,pR

(
−D1,0,2,0;+

c,pL,pR − pRD
1,1,2,0;+
c,pL,pR

)
,

icc =
1

Cc,pL,pR

(
−
(Cc

c,pL,pR)
2

Cc,pL,pR

+D0,0,0,2;±
c,pL,pR

)
,

icpL =
1

Cc,pL,pR

(
−
(Cc

c,pL,pR)(C
pL
c,pL,pR)

Cc,pL,pR

+D1,0,1,1;−
c,pL,pR

)
,

icpR =
1

Cc,pL,pR

(
−
(Cc

c,pL,pR)(C
pR
c,pL,pR)

Cc,pL,pR

+D1,0,1,1;+
c,pL,pR

)
,

ipLpL =
1

Cc,pL,pR

(
− (CpL

c,pL,pR)
2

Cc,pL,pR

+D2,0,2,0;−
c,pL,pR

)
,

ipLpR =
1

Cc,pL,pR

(
− (CpL

c,pL,pR)(C
pR
c,pL,pR)

Cc,pL,pR

)
,

ipRpR =
1

Cc,pL,pR

(
− (CpR

c,pL,pR)
2

Cc,pL,pR

+D2,0,2,0;+
c,pL,pR

)
.

Theorem 2. Suppose the base density f0,c satisfies (A1)–(A6) and the weight

function w verifies (B1)–(B3). Then under Assumptions (C1), (C2) and (C5) if

the determinant of the Fisher information matrix is not null (i.e., det(I) ̸= 0),

the ML estimator λ̂n of λ0 is asymptotically normally distributed with mean λ0

and variance–covariance matrix the inverse of nI, i.e.,

√
n(λ̂n − λ0)

d→ N
(
0, I−1

)
, as n→ ∞.

With tr A denoting the trace of a matrix A and I4 the 4 by 4 identity matrix,

the variance–covariance matrix I−1 equals

1

det(I)

[
1

6

(
(tr I)3 − 3tr(I)tr

(
I2)+ 2tr

(
I3)) I4 − 1

2

(
(tr I)2 − tr I2) I+ (tr I)I2 − I3

]
.

Note that for establishing Theorem 2, the assumption det(I) ̸= 0 is needed.

Numerically, we have observed that det(I) ̸= 0 for the sine–weighted submodels525

when the von Mises, cardioid or the wrapped Cauchy are employed as base

density. This is not the case in the vicinity of symmetry for the 1–sine–skewed

von Mises distribution (i.e., in a vicinity of s = 0, see Table 2), due to the

collinearity of the scores for location and skewness. This is an important issue

as, in that case, locally and asymptotically optimal tests–in the Le Cam sense–530
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against asymmetric alternatives of the 1–sine–skewed von Mises distribution

cannot be derived (see Ameijeiras-Alonso et al., 2021).

A similar result to that provided by Proposition 6 and Theorem 2 can be

derived for the symmetric submodel with p = pL = pR. When iccipp ̸= i2cp,

a proof similar to that employed for Theorem 2 yields that, under the same

assumptions, the asymptotic distribution of (m̂n, ĉn, p̂n)
T , as n→ ∞, is

√
n
(
(m̂n, ĉn, p̂n)

T − (m0, c0, p0)T
) d→ N

0,


1

imm
0 0

0
ipp

iccipp−i2cp
− icp

iccipp−i2cp

0 − icp
iccipp−i2cp

icc
iccipp−i2cp


 .

(11)

Remark 2. From (11) and Proposition 6, the asymptotic behavior of the model

proposed by Abe et al. (2013, Section 2) is obtained as a special case. For the

particular case of the Batschelet and Papakonstantinou distributions, taking w535

the sine function and f0,c respectively the von Mises and the cardioid distribu-

tion, the asymptotic normality in (11) coincides with the results in Pewsey et al.

(2011, Section 3.2 and Appendix 3) and Abe et al. (2009, Section 3.2).

In Section S6 of the Supplementary Material we present a simulation study to

investigate the finite-sample performance of the ML estimates when considering540

the generalized Batschelet density (4).

4.3. Confidence intervals

Confidence intervals for the parameters of density (3) can be constructed in

two ways: using the asymptotic theory or bootstrap methods. Given a signifi-

cance level α, the (1−α)100% asymptotic CIs or confidence regions are obtained545

directly from Theorem 2, using the Gaussian distribution N(λ̂n, (nÎ)
−1), where

Î is the Fisher information matrix obtained by replacing, in the expression of

I, the unknown parameters by their ML estimates. The approximate limits for

the confidence interval (CI) for the parameter λj are λ̂jn ± zα/2((Î
−1)jj/n)

1/2,

where (Î−1)jj is the (j, j)th component of Î−1. Alternatively one can apply550
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parametric bootstrap to obtain approximate CIs, according to the following re-

sampling strategy. (i) Compute the ML estimators of the parameters, λ̂, from

the original sample Θ = (Θ1, . . . ,Θn). (ii) Generate B parametric bootstrap

resamples of size n from the distribution associated with gλ̂ (see Section 3.4),

and denote these bootstrap resamples by Θ∗b, with b ∈ {1, . . . , B}. (iii) For555

each bootstrap resample Θ∗b compute the ML estimator, λ̂∗b. Given a signif-

icance level α, compute the α/2 and (1 − α/2) sample quantiles of λ̂∗b
j , with

b ∈ {1, . . . , B}, for each parameter λj .

5. Real data application

In ecology, one can find many applications where the use of circular statis-560

tics is necessary. In particular, our objective is modeling the flight orientation

of migrating raptors in response to an increasing number of wind farms. The

data, available in Cabrera-Cruz & Villegas-Patraca (2016a), consist of 3169

flight bearings of migrating raptors recorded in an area located on an impor-

tant migratory corridor in southern Mexico (6 km radius of radar detection565

around the centroid 16.590◦ North latitude, −94.822◦ West longitude). Data

were collected during the autumn migration seasons (from mid–September un-

til early November) from 2009 to 2014, with the number of observations per

year: 789, 228, 166, 894, 827 and 265. Data were obtained with a marine radar

and hawk–watch monitoring stations, a full description of the employed tools570

and the data are provided in Cabrera-Cruz & Villegas-Patraca (2016b). This

region and period were chosen as the number of wind farms increased from one

(period 2009–2011, located at the centroid of the studied area) to three (period

2012–2014). The two new wind farms being located to the east and northeast

of the first wind farm. One of the main objectives of the study in Cabrera-Cruz575

& Villegas-Patraca (2016b) was to analyze if migrating raptors adjusted their

main flight orientations to avoid new wind farms. Thus, for modeling these

data, the proposed mode–based family of distributions can be very useful as

m̂n already provides an estimator of the preferred orientation of the migrating
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raptors.580

The histograms provided by Cabrera-Cruz & Villegas-Patraca (2016b) are

reproduced on the real line in Figure 5 (gray rectangles). From these plots, a

unimodal pattern is observed in the first period (2009–2011), with an almost

flat–zero part in the region being at a distance π from the histogram peak(s).

Thus this dataset concerns an example where the newly introduced model can585

be useful. The estimated densities when employing the generalized Batschelet

density on the flight orientation data, for the first period, are displayed in Fig-

ure 5 (continuous black lines). Table 5 gives the estimated parameters and the

corresponding 95% asymptotic and bootstrap CIs.

Since for the second period (2012–2014) it seems that a bimodal pattern

is obtained, a two–component mixture of generalized Batschelet densities is

employed for modeling the data during these years 2012–2014. Hence the con-

sidered density is

hm,c,pL,pR,γ(θ) = γgm1,c1,pL1,pR1
(θ) + (1− γ)gm2,c2,pL2,pR2

(θ), (12)

where γ ∈ [0, 1] and g is the generalized Batschelet density function. The pa-590

rameters of the mixture model are estimated by maximum likelihood, using

the same algorithm as the one described in Section S5, considering the nine

parameters and including the constraint γ ∈ [0, 1]. The estimated densities

hm̂,ĉ,p̂L,p̂R,γ̂(θ), for the second period, are shown in Figure 5 (continuous black

lines). Table 5 contains the estimated parameters and the corresponding 95%595

bootstrap CIs. Note that the component label of the bootstrap estimated pa-

rameters was assigned according to the distance between the bootstrap modal

directions, m̂∗b
1,n and m̂∗b

2,n, and the original modal directions, m̂1,n and m̂2,n.

We first discuss the results in Table 5, referring to the period where the

studied area had just one wind farm (2009–2011). First note that almost the600

same behavior is observed when comparing the asymptotic and the bootstrap

CIs, with the only exception of c in 2010 and 2011. The latter is probably due

to the “small” sample size and the “large” estimated value of the concentration

parameter (see Section S6). Looking at the CIs for m, it is clear that the mi-
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grating raptors always kept the same peak orientation during these years, all the605

CIs contain the arc (134◦, 137◦). Note that the modal direction estimator al-

ready provides more insight into the results in Cabrera-Cruz & Villegas-Patraca

(2016b). They studied the mean direction (around 141.8◦) and could not con-

clude that the main flight orientation did not change during these years. The

point estimate of the concentration changed during the studied years. Data610

were more concentrated towards the modal direction in 2010 (ĉn = 6.546) than

in 2009 (ĉn = 2.227). Looking at the CIs for c, all of them include the range

2.068–2.446, for the three years. Studying the point estimates of the peakedness

parameters, a right–skewed distribution, (p̂Ln
− p̂Rn

) > 0, is always obtained.

The estimated density is more peaked at the left than at the right of the modal615

direction; being at the left always more peaked than the corresponding von

Mises density, p̂Ln > 0. Regarding the CIs for pL it is noted that, for the year

2009, the lower CI limit for pL is larger than the upper CI limit for pR. Thus

the symmetric Batschelet density is not an appropriate density to describe these

data. The point 0 is always contained in the CIs for pL and pR for the years620

2010 and 2011. For that reason we investigate below (see Table 6) whether a

simpler von Mises distribution could be an appropriate model.

As mentioned before the two–component mixture (12) is employed to model

the data in the second period (2012–2014). From Figure 5 as well as Table 5

it is clear that the flight orientation of the migrating raptors changed in the625

second period. For both components the modal direction in 2013 (lower 95%

confidence limits are 86◦ and 169◦) was different from the modal direction in

2012 (upper 95% confidence limits are 82◦ and 168◦). Just in the year 2014, we

could assume that a group of birds had the same peak flight orientation as that

followed by the migrating raptors in 2009–2011. The modal direction estimators630

for the first period are contained in the 95% CI of m1. But according to the

95% CI of γ, at most 51% of the birds followed the direction associated with

that first component.

Looking a the CIs for all nine parameters, we can observe that the flight

orientation was similar in the years 2012 and 2014. The year 2013 exhibits635
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a different behavior, with respect to the other two years, with a first compo-

nent less concentrated and a second component more concentrated around the

modal direction. Also, the probability to belong to the first component is larger

in the year 2013 (lower 95% confidence limit is 0.7) than in 2012 or 2014 (upper

95% confidence limits are 0.541 and 0.51). Regarding the point estimates for640

the peakedness parameters we always obtained a right–skewed first component

and a left–skewed second component. According to the 95% CIs, for the first

component in 2012 and 2013, the estimated density is more peaked at the left

and more flat–topped at the right than the von Mises density. For the second

component in 2012, the opposite behavior is observed. Thus, for 2012 (both645

components) and 2013 (first component), the asymmetric version of the gener-

alized Batschelet distribution is needed to model these data. Using the 95% CIs

of pL1, pL2, pR1 and pR2, it could be assumed that the von Mises mixture is a

“good distribution” to model the flight orientation data in 2014.

To investigate further the appropriateness of model (3), and possible other650

models, we also fitted the two very–flexible four–parameter models: the inverse

Batschelet distribution (Jones & Pewsey, 2012) and the Kato & Jones (2015)

distribution; and its main submodel, the von Mises distribution. As mentioned

before a bimodal pattern is observed in the second period and the estimate of at

least one of the peakedness parameters in the generalized Batschelet distribu-655

tion is at the boundary. These facts motivated the relaxation of the peakedness

parameter restrictions when using a one–component distribution in the second

period. The results in Table 6, for all the years in the period 2012–2014, are

obtained with p̂Ln
> 1. Note that even if Proposition 2 does not hold, m̂n is still

the point at which gm̂n,ĉn,p̂Ln ,p̂Rn
achieves its global maximum. Also, for the660

second period, the two–component mixture of the previous distributions are em-

ployed to determine which model provided the highest estimated log–likelihood

value and the lowest Akaike Information Criterion (AIC). The achieved results

are given in Table 6. Note that for the mixture models the number of parameters

is twice the number of parameters of each component plus one parameter for665

the mixing probability, i.e, it is always 9, except for the mixture of von Mises,
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Year m c pL pR

2009

Est 2.310(132◦) 2.227 0.966 0.374

ACL 2.227(128◦) 2.393(137◦) 2.008 2.446 0.639 1 0.167 0.580

BCL 2.253(129◦) 2.393(137◦) 2.068 2.504 0.651 1 0.165 0.593

2010

Est 2.450(140◦) 6.546 0.622 -0.119

ACL 2.332(134◦) 2.568(147◦) 0.212 12.88 -0.378 1 -0.730 0.493

BCL 2.308(132◦) 2.570(147◦) 4.425 36.115 -0.394 1 -0.740 0.268

2011

Est 2.261(130◦) 3.970 0.831 -0.000

ACL 2.103(121◦) 2.420(139◦) 2.048 5.891 -0.012 1 -0.449 0.449

BCL 2.112(121◦) 2.448(140◦) 3.127 14.226 -0.149 1 -0.638 0.397

Year m1 c1 pL1
pR1

2012
Est 1.342(77◦) 33.368 1 -0.627

BCL 1.273(73◦) 1.431(82◦) 18.759 164.736 0.250 1 -0.916 -0.381

2013
Est 1.56(89◦) 2.545 1 -0.132

BCL 1.496(86◦) 1.682(96◦) 2.322 3.061 0.534 1 -0.382 0.161

2014
Est 1.380(79◦) 9.477 0.885 0.779

BCL 1.227(70◦) 1.533(88◦) 6.007 104.663 -0.529 1 -0.567 1

Year m2 c2 pL2
pR2

2012
Est 2.852(163◦) 2.896 -0.589 1

BCL 2.641(151◦) 2.935(168◦) 2.529 4.197 -0.930 -0.050 0.285 1

2013
Est 3.030(174◦) 18.649 0.330 1

BCL 2.952(169◦) 3.099(178◦) 18.602 67.847 -0.409 0.945 -0.065 1

2014
Est 2.723(156◦) 2.181 -0.360 0.627

BCL 2.054(118◦) 2.964(170◦) 1.750 3.445 -1 1 -0.548 1

Year 2012 2013 2014

γ
Est 0.436 0.753 0.314

BCL 0.351 0.541 0.700 0.796 0.199 0.510

Table 5: Flight orientation data: parameter estimates, in the first block (2009–2011) for the

generalized Batschelet distribution; in the second block (2012–2014) for the two–component

mixture of generalized Batschelet distributions. Est indicates the point estimates, ACL refers

to the asymptotic and BCL to the bootstrap 95% confidence limits.
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Figure 5: Flight orientation data. Histogram and maximum likelihood fits of different dis-

tributions, as indicated on the legends. Top: with one wind farm; from left to right, years

2009–2011. Bottom: with three wind farms; from left to right, years 2012–2014.

where this number is equal to 5. The estimated densities are shown in Figure 5.

Among the studied distributions, the generalized Batschelet is always the

“best” one for the first period according to the log–likelihood and AIC, except

in 2011, where it is the second best one and a slightly better performance is670

obtained with the inverse Batschelet. In the second period (years 2012–2014),

there is always at least one mixture model that provided a better model fit than

the one–component generalized Batschelet density. Note that in 2012 the gen-

eralized Batschelet density provides a better fit than the other two-component

mixtures. The generalized Batschelet mixture gives the best performance in675

terms of log–likelihood in the years 2012 and 2014, and in terms of AIC in 2012.

For 2013, the inverse Batschelet mixture, and for 2014 the von Mises distribu-

tion (due to fewer parameters) provided a better model fit (than the generalized

Batschelet density) in terms of AIC.
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Year 2009 2010 2011 2012 2013 2014

L
og
–l
ik
el
ih
o
o
d

Generalized Batschelet -714.927 -87.534 -96.040 -803.692 -854.823 -296.753

Kato–Jones -724.157 -104.998 -101.888 -888.831 -979.946 -310.360

Inverse Batschelet -717.602 -89.311 -95.231 -837.414 -918.090 -299.529

Von Mises -751.599 -91.257 -99.931 -889.829 -959.163 -320.127

Two–component mixtures

Generalized Batschelet — — — -759.168 -806.165 -283.902

Kato–Jones — — — -810.811 -799.289 -284.017

Inverse Batschelet — — — -772.575 -792.025 -284.323

Von Mises — — — -807.873 -848.354 -285.541

A
IC

Generalized Batschelet 1437.854 183.068 200.080 1615.384 1717.647 601.505

Kato–Jones 1456.314 217.995 211.777 1785.661 1967.893 628.719

Inverse Batschelet 1443.204 186.622 198.462 1682.827 1844.180 607.058

Von Mises 1507.199 186.514 203.862 1783.658 1922.325 644.254

Two–component mixtures

Generalized Batschelet — — — 1536.337 1630.329 585.804

Kato–Jones — — — 1639.622 1616.578 586.035

Inverse Batschelet — — — 1563.150 1602.050 586.646

Von Mises — — — 1625.746 1706.707 581.082

Table 6: Flight orientation data. Estimated maximal log–likelihood and AIC values for the

generalized Batschelet, the inverse Batschelet, the Kato & Jones (2015) and the von Mises

distributions. For the second period (2012–2014), the two–component mixture of these dis-

tributions is also employed. In bold the best obtained value for the one– and two–component

distributions.

In this section, among the possible models belonging to the proposed family680

of two-piece distributions, we decided, for simplicity, to only explore the general-

ized Batschelet. The reason being that its two- and three-parameters submodels

correspond to two of the most well-known circular distributions. Alternatively,

if one is interested in obtaining the “best” fitting, in terms of the estimated log–

likelihood, one could explore different combinations of the base density function685

in Table 1, with the weight functions in Table 4. Table 7 reports the estimated

maximal log–likelihood for model (3), when combining different base functions
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sin(θ) sin(2θ) sin(3θ)

Year VM WC WN VM WC WN VM WC WN

2009 -714.93 -718.27 -724.77 -727.85 -718.92 -747.16 -749.26 -732.85 -804.27

2010 -87.53 -90.26 -88.08 -86.37 -92.94 -86.36 -91.03 -103.27 -90.36

2011 -96.04 -99.98 -95.73 -98.42 -101.72 -98.23 -99.66 -107.75 -99.91

2012 -803.69 -820.83 -809.36 -830.79 -780.67 -854.47 -835.69 -915.12 -861.58

2013 -854.82 -821.72 -877.05 -872.64 -805.08 -915.36 -861.77 -894.09 -869.76

2014 -296.75 -292.49 -297.92 -295.12 -298.62 -300.79 -307.08 -326.30 -306.98

Table 7: Flight orientation data. Estimated maximal log–likelihood values for the two-pieces

distributions. When employing as base functions: the von Mises (VM), wrapped Cauchy

(WC), and wrapped normal (WN) densities. The used weight functions are the sin(kθ), with

k ∈ {1, 2, 3}. For each year, in bold is highlighted the best–obtained log–likelihood value.

(von Mises, wrapped Cauchy and wrapped normal) with the weight functions

sin(kθ), k ∈ {1, 2, 3}. Note that, as before, for the first period, we constrained

the peakedness parameters, so the estimated distribution is unimodal, while for690

the second period this requirement was lifted. In Table 7, we can see that in

the years 2010–2014, other configurations would provide a better fitting than

the generalized Batschelet, in terms of the estimated log–likelihood.

6. Conclusions

In this paper, a new way of constructing two–piece densities for the circular695

case was proposed. Starting with a two parameters base model (location and

concentration), which can be thought as the main submodel, these new four

parameters distributions can model wider ranges of peakedness (at the left and

at the right of the modal direction) and asymmetry. From the applied point of

view, besides their flexibility and the clear parameter interpretation, these new700

distributions have the advantage of preserving the modal direction.

We established the general properties of the proposed model, together with

the asymptotic normality of the ML estimators. Since the newly proposed den-

sities also provide an extension of two of the most well–known peakedness–free
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models in the circular literature (the Papakonstantinou and Batschelet models),705

our findings complement previous results provided for both models.

Drawbacks are that there is generally no closed–form expression for comput-

ing the normalizing constant or the trigonometric moments and that the modal

and antimodal directions are antipodal. The computational disadvantage of

having to perform numerical approximations, in practice, is shared by most of710

the circular flexible and non–flexible models, such as the inverse Batschelet or

the wrapped normal. In this paper, we also provide an easy way of simulating

data from the model with density (3) and a way of computing the parameter

estimates.

In comparison with the other four parameter flexible models, obtaining the715

ML estimators is more involved than in the Kato & Jones (2015) case, due to

the normalizing constant. When analysing the data in Section 5 and in gener-

ated random samples, we found out that fewer random initial points are needed

to compute the ML estimators with the generalized Batschelet. This makes the

“computational expenses” comparable for both distributions. Another advan-720

tage of both, the proposed family and the inverse Batschelet, with respect to

the Kato & Jones (2015) distribution, is that the main submodel is chosen by

the practitioner. Thus, the von Mises or any other circular distribution can be

chosen as the main submodel of the proposed distribution. This flexibility also

allows, in practice, for wider ranges of symmetry and peakedness.725

The proposed density provides a clear parameter interpretation in terms of

the density shape. Alternatively to the proposed parametrization, Proposition 3

also suggests employing, as the third parameter, a skewness parameter (pL−pR),

which is only equal to zero when the distribution is symmetric. In that case,

one possible fourth parameter candidate would be (pL + pR)/2, which could730

be coined as the (two-sided) peakedness parameter. Note that, for the sym-

metric subdistributions considered in this paper, the fourth parameter would

coincide with their peakedness parameter. Thus, that parametrization would

allow mimicking the classical “location-scale-skewness-kurtosis” paradigm. Fi-

nally, for the reader interested in the parameter interpretation in terms of the735
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shape measures related to the trigonometric moments, we refer to the Kato &

Jones (2015) distribution.

We applied the proposed generalized Batschelet distribution on data from

the ecological field. The objective was to provide a further insight in the analysis

of the flight orientation of migration raptors. This example shows the need for740

having a mode–based model since the estimated parameters provide information

on the preferred orientation of the birds. By fitting various plausible densities,

and using model selection type criteria, it was illustrated that the proposed

general family of distributions can lead to a useful model in a practical setting.

The use of this model in a semiparametric regression approach is part of745

current research. Future research will include the study of the extension of a

similar model to the multivariate (toroidal) setting.
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Appendix A. Basic circular terminology

The first objective of this section is to define the main terminology, related760

with a circular random variable Θ. With that objective, let us denote the rth

order complex exponential with Zr = exp(irΘ), r ∈ Z and i the imaginary unit.

Then, the cosine and sine trigonometric moments are, respectively, defined as
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αr = Re (E[Zr]) and βr = Im (E[Zr]), where Re(z) denotes the real part and

Im(z) the imaginary part of z ∈ C. The circular mean direction µ1 is equal765

to the argument of E[Z1], i.e., µ1 = Arg (E[Z1]). The mean resultant length

ρ1 is the modulus of E[Z1], ρ1 = |E[Z1]|. The cosine and sine trigonometric

moments about the mean direction are, respectively, ᾱr = Re (E[Zr − µ1]) and

β̄r = Im (E[Zr − µ1]). Using the previous notation, in general, in the circular

literature (see, e.g. Mardia & Jupp, 2000, Section 3.4), the skewness coefficient770

is defined as s = β̄2/(1 − ρ1)
3/2, while the kurtosis coefficient is k = (ᾱ2 −

ρ41)/(1− ρ1)
2.

Appendix B. Proofs of the main theoretical results

Appendix B.1. Proof of Proposition 1

For simplicity, in order to use Equation (3), we consider that Condition (A1)775

is also satisfied. But note that this condition is not necessary for deriving this

result. Under Conditions (A3) and (A4), it is easy to see that 0 < Cc,pL,pR
<∞.

The first inequality is obtained from the fact that the integral of a strictly

positive-definite function in a non-zero measure set is always positive, f0,c[θ −

m+ pLw(θ−m)] > 0 and f0,c[θ−m+ pRw(θ−m)] > 0. The second inequality780

is a consequence of f0,c[θ−m+pLw(θ−m)] and f0,c[θ−m+pRw(θ−m)] being

bounded functions which are integrated over a bounded set.

Now, if 0 < Cc,pL,pR
< ∞, to show that gm,c,pL,pR

is a circular density,

Conditions (A2), (A3) and (B1) are enough. The function gm,c,pL,pR
is a circular

density (see, e.g., Mardia & Jupp, 2000, Section 3.2) if:785

(i) gm,c,pL,pR
(θ) ≥ 0, almost everywhere on (−∞,∞).

(ii)
∫ π

−π
gm,c,pL,pR

(θ)dθ = 1.

(iii) gm,c,pL,pR
(θ) = gm,c,pL,pR

(θ + 2kπ), almost everywhere on (−∞,∞), for

any integer k.

The first two parts, (i) and (ii), are immediate consequences of having a
strictly positive and finite value of Cc,pL,pR

and Conditions (A2) and (A3).
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Now, in order to prove (iii), by Conditions (A2) and (B1), for any integer k, we
have that

f0,c[θ−m+pLw(θ−m)] = f0,c[θ−m+pLw(θ−m)+2kπ] = f0,c[(θ+2kπ−m)+pLw(θ+2kπ−m)],

and the same is true replacing pL by pR, which leads to Condition (iii).790

Remark 3. Note that if the only objective is to provide a circular density from

(3), some of the previous conditions could be relaxed in order to obtain a more

broad family. In particular, providing that the normalizing constant has a finite

non–zero value, the strict inequality in (A3) could be replaced by a non–strict

one, i.e., gm,c,pL,pR
(θ) = 0 for some values of θ. Then, just Conditions (A2)795

on f0,c and (B1) on w are needed in order to obtain a circular density.

Finally, for seeing that gm,c,pL,pR
has a continuous derivative, using Condi-

tions (A2), (A6), (B1), (B2) and (B3), we have that the composite of continuous

mappings is continuous, thus the derivative of gm,c,pL,pR
is continuous in the in-

terior of the subsets Im,1 and Im,2. Now, referring to the two remaining points,800

m and (m− π) or (m+ π) (depending on the value of m), using (A2) and (A6)

we obtain that f ′0,c(0) = 0 and f ′0,c(π) = 0. Using (B1) and (B2), we can see

also that w(0) = w(−π) = 0. Finally, for the derivative we find that

lim
θ→m−

g′m,c,pL,pR
(θ) = lim

θ→m−
C−1

c,pL,pR
[1 + pLw

′(θ −m)]f ′
0,c[(θ −m) + pLw(θ −m)] = 0,

lim
θ→m+

g′m,c,pL,pR
(θ) = lim

θ→m+
C−1

c,pL,pR
[1 + pRw′(θ −m)]f ′

0,c[(θ −m) + pRw(θ −m)] = 0.

In an analogous way, the same result is derived for (m ± π). These same

arguments could be employed to see the continuity of gm,c,pL,pR
in these two805

points. Thus, if just the continuity of gm,c,pL,pR
is required, Conditions (A6)

and (B3) could be relaxed, replacing them by the continuity of f0,c and w.

Appendix B.2. Proof of Theorem 1

For obtaining the consistency of the ML estimators, sufficient conditions are

given in Theorem 2.1 of Newey & McFadden (1994). Now, if the density gλ810

satisfies the following assumptions, the sufficient conditions of Theorem 2.1 are

obtained using Lemmas 2.2 and 2.4 of Newey & McFadden (1994).

D.1 ΛR is compact.
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D.2 λ0 is identified, i.e., if λ ̸= λ0 and λ0,λ ∈ ΛR, then gλ(·) ̸= gλ0(·).

D.3 E[| ln gλ(Θ)|] <∞, for all λ ∈ ΛR.815

D.4 ln gλ(Θi), with i = 1 . . . , n; is continuous at each λ ∈ ΛR with probability

one.

Condition D.1 is satisfied by considering Assumption (C1). For obtaining

Condition D.2, we assume that gλ(·) = gλ0(·) for some λ ̸= λ0, being λ =

(m, c, pL, pR)
T ∈ ΛR. Since both densities are equal, this implies that both820

have the same modal direction, thus m = m0.

Referring to the parameter c, first note that, since gλ(m) = gλ0(m0), the

following equality is obtained f0,c(0)/Cc,pL,pR
= f0,c0(0)/Cc,p0

L,p0
R
. Now, assume

that c ̸= c0, then if c > c0, by Assumption (C2), f0,c(0) > f0,c0(0). Thus,

Cc,pL,pR
> Cc0,p0

L,p0
R
. Applying the same arguments when evaluating g in the825

antimodal direction m±π we obtain that Cc,pL,pR
< Cc0,p0

L,p0
R
, which leads to a

contradiction. The same arguments applies when considering c < c0, thus, the

only possibility is c = c0. In that case, we also obtain that Cc,pL,pR
= Cc0,p0

L,p0
R
.

We see next that pL = p0L and pR = p0R. Using the regularity Condition (B2)

on w, there exists a point θ0 < 0 for which w(θ0) ̸= 0. Condition (B3) implies830

that there exists a neighborhood of θ0 for which sign(w(θ)) = sign(w(ψ)) ̸= 0,

for all the points θ, ψ ∈ (θ0 − δ, θ0 + δ), with δ > 0. Now if pL ̸= p0L, pLw(θ) <

p0Lw(θ) or pLw(θ) > p0Lw(θ), for all θ ∈ (θ0 − δ, θ0 + δ). Assume the first case,

then, by Condition (B3), (θ −m) + pLw(θ −m) < (θ −m) + p0Lw(θ −m) < 0.

Since, by Condition (A3), the base density is strictly increasing in (−π, 0),835

f0,c[(θ−m)+pLw(θ−m)] < f0,c0 [(θ−m)+p0Lw(θ−m)], for all θ ∈ (θ0−δ, θ0+δ)

as c = c0. Now, combining this last inequality with gλ(·) = gλ0(·), we obtain

that the only possibility is Cc,pL,pR
> Cc,p0

L,p0
R
. Arguing in the same way, if

pLw(θ) > p0Lw(θ), Cc,pL,pR
< Cc,p0

L,p0
R
. As we saw in the previous paragraph

that Cc,pL,pR
= Cc0,p0

L,p0
L
, the only possibility is pL = p0L. The same arguments840

can be employed to obtain that pR = p0R.

For deriving Condition D.3, we first consider the expression for ln gλ(θ),
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ln gλ(θ) = − ln(Cc,pL,pR
) + I(θ ∈ Im,1) ln[f0,c((θ −m) + pLw(θ −m))]

+ I(θ ∈ Im,2) ln[f0,c((θ −m) + pRw(θ −m))]. (B.1)

Then, for any λ ∈ ΛR, we obtain that

E[| ln gλ(Θ)|] ≤ | ln(Cc,pL,pR)|+ E [I(Θ ∈ Im,1)| ln(f0,c((Θ−m) + pLw(Θ−m)))|]

+ E [I(Θ ∈ Im,2)| ln(f0,c((Θ−m) + pRw(Θ−m)))|] .

Now, since 0 < Cc,pL,pR < ∞ (see Section Appendix B.1) and 0 < f0,c(θ) < ∞

by Conditions (A3) and (A4), both | ln(Cc,pL,pR)| and | ln(f0,c(·)| are bounded. Thus,

using that the supports Im,1 and Im,2 are also bounded, we obtain that the expected845

value in Condition D.3 is bounded.

Finally, Condition D.4 is an immediate consequence of (A6) and the continuity of

the composition of continuous functions.

Appendix B.3. Proof of Theorem 2

Since we have that the likelihood function is non–differentiable, the proof of The-

orem 2 is obtained following Huber (1967). For doing so, first, let us introduce some

notation,

Φ(θ,λ) =



∂
∂m

ln gλ(θ)

∂
∂c

ln gλ(θ)

∂
∂pL

ln gλ(θ)

∂
∂pR

ln gλ(θ)


. (B.2)

From Equation (S1.5, see Section S1.6 of the Supplementary Material), if the base

density satisfies Condition (A6) and the weight function (B3), we obtain that Φ(θ,λ)

is a continuous function but, even if the base density f0,c has a continuous second

derivative, it may be non differentiable at the points θ = m + kπ with k an integer.

The quantity ϖ(λ) represents the expected value of Φ(Θ,λ), i.e.,

ϖ(λ) = E[Φ(Θ,λ)].

Denoting by || · || to the Euclidean norm, the function u is defined as follows,

u(θ,λ, δ) = sup
||ϑ−λ||≤δ

||Φ(θ,ϑ)−Φ(θ,λ)||.
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Using these definitions, if the Fisher information matrix is invertible and the con-850

ditions below are satisfied, from the corollary of Theorem 3 of Huber (1967), we obtain

the asymptotic normal distribution of
√
n(λ̂n − λ0) with mean zero and asymptotic

variance–covariance matrix upper bounded by I−1. The variance–covariance matrix

is equal to this upper bound when the Fisher information matrix is continuous at λ0,

which is the case under Assumption (C5).855

E.1 For each λ ∈ ΛR, Φ(θ,λ) is F–measurable and separable (in the sense of Doob),

where the σ–algebra F is a collection of all the possible events.

E.2 There is a λ0 ∈ ΛR such that ϖ(λ0) = 0.

E.3 There exist strictly positive numbers a, b, c, δ0 such that

(a) ||ϖ(λ)|| ≥ a||λ− λ0||, for ||λ− λ0|| ≤ δ0,860

(b) E[u(Θ,λ, δ)] ≤ bδ, for ||λ− λ0||+ δ ≤ δ0, with δ ≥ 0;

(c) E[u(Θ,λ, δ)2] ≤ cδ, for ||λ− λ0||+ δ ≤ δ0, with δ ≥ 0.

E.4 The expectation E[||Φ(Θ,λ)||2] is finite.

E.5 (1/
√
n)
∑n

i=1 Φ(Θi, λ̂n) → 0 in probability.

Condition E.1 can be obtained taking into account that Φ is a continuous function865

and ΛR is a compact set by Assumption (C1). Conditions E.2 and E.4 are immediate

consequences of Proposition 6. Condition E.5 is a consequence of the ML estimates

being weakly consistent (see Theorem 1).

Then, the only condition that remains to be proven is Condition E.3. Condi-

tions E.3(b) and E.3(c) are a consequence of g and u(θ,λ, δ) being continuous and870

bounded on the compact set ΛR. Now, to prove Condition E.3(a), first assume that

λ ̸= λ0 (if they are equal, this condition is trivially satisfied). Using the theorem’s

assumptions, ||ϖ(λ0)|| = 0 and the total derivative of ϖ(λ) exists at λ0 and it is

equal to −I. Since the determinant of the Fisher information matrix is non–null, its

norm is also different to zero. Using the reverse triangular inequality and the sub–875

multiplicativity of the norm, for any value of ϵ satisfying 0 < ϵ < ||I||, there exists a

δ0 such that if ||λ− λ0|| ≤ δ0, then

−ϵ||λ− λ0|| ≤ −||ϖ(λ)−ϖ(λ0) + I(λ− λ0)||

≤ ||ϖ(λ)|| − ||ϖ(λ0)|| − ||I|| · ||(λ− λ0)||.

Thus, considering a = ||I|| − ϵ > 0, the proof of Condition E.3(a) is finished.
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Abstract

Section S1 of this Supplementary Material part contains the remaining proofs of the the-
oretical results provided in Sections 3 and 4. In Section S2, the shape of the sine–weighted
submodels for different choices of the base density is investigated, with the aim to find out the
appropriateness of these models for modelling data generated from different circular distribu-
tions. We also analyze the ranges of the shape measures related to the trigonometric moments.
Section S3 includes further details on the study of the shape measures related to the trigono-
metric moments, for the generalized Papakonstantinou density. The complete description of the
algorithm for generating random numbers from the proposed family of densities is provided in
Section S4. Section S5 contains more details on the computation of the ML estimators. An
investigation on the finite–sample behavior of the ML estimators for the generalized Batschelet
density is provided in Section S6.

Keywords: Circular Statistics; Flexible Modeling; Peakedness; Skewness; Unimodality.

S1 Remaining proofs of the theoretical results

S1.1 Proof of Proposition 2

Using Condition (A1), we can see that the distribution associated with the density (3) is a location
family. Without loss of generality, we assume that m � 0. Now, since both f0,c and w have a
continuous derivative, we obtain that

g10,c,pL,pRpθq � r1� pLw
1pθqsf 10,crθ � pLwpθqs{Cc,pL,pR (S1.1)
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European Regional Development Fund (ERDF) and the Competitive Reference Groups 2017–2020 (ED431C 2017/38)
from the Xunta de Galicia through the ERDF.
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is continuous. Looking to the different terms in (S1.1), we have that the three terms are positive when
θ P p�π, 0q. First, by Condition (B3, iii), if θ � kπ, k being an integer, |pLw1pθq| ¤ l|w1pθq|   1,
then p1 � pLw

1pθqq ¡ 0. Second, using Condition (B3, i and ii), pθ � pLwpθqq P p�π, 0q, thus
f 10,crθ � pLwpθqs ¡ 0 by Condition (A6). Third, 0   Cc,pL,pR   8 by Proposition 1. Hence,
g10,c,pL,pRpθq ¡ 0 if θ P p�π, 0q. In an analogous way, when θ P p0, πq, all the terms are positive,
except for f 10,crθ � pLwpθqs   0, thus g10,c,pL,pRpθq   0. Then, the value 0 is a modal direction and
�π is an antimodal direction of g0,c,pL,pR .

S1.2 Proof of Proposition 3

Without loss of generality, we assume that m � 0. Depending on the value of θ, pL and pR, we have
three different scenarios: θ P t0,�πu; pL � pR and θ R t0,�πu; pL � pR and θ R t0,�πu.

In the first scenario, if θ P t0,�πu, then wp�πq � wp0q � 0 and thus the equality g0,c,pL,pRp�θq �
g0,c,pL,pRpθq trivially holds.

If θ P p�π, 0q, then by Conditions (A5) and (B2), we have that

g0,c,pL,pRp�θq � f0,cr�θ � pRwp�θqs{Cc,pL,pR � f0,crθ � pRwpθqs{Cc,pL,pR . (S1.2)

From the previous equality if pL � pR, g0,c,pL,pRp�θq � g0,c,pL,pRpθq. Similar arguments can be
applied for θ P p0, πq.

If pL � pR, using (A6), since f0,c is a symmetric density strictly increasing in p�π, 0q and decreasing
in p0, πq, f0,crθ�pLwpθqs � f0,crθ�pRwpθqs, unless pLwpθq�pRwpθq � 2kπ for some integer k at
any value θ P p�π, πqzt0u. Now this result is true if for each θ, wpθq � 2kπ{ppL � pRq for some k,
but since w is continuous by Condition (B3), the only possibility is having a constant function wpθq
which cannot be the case due to Condition (B2).

Remark S1. Note that for obtaining the asymmetry of the model when pL � pR, Condition (B3) can
be relaxed just imposing that for some θ0 P p�π, πqzt0u, wpθ0q � 2kπ{ppL � pRq, for any integer
value k.

Considering pL � pR, we showed that g0,c,pL,pR is not symmetric. Now, from Equality (S1.2), proving
that a density is left–skewed is equivalent to seeing that

f0,crθ � pLwpθqs ¥ f0,crθ � pRwpθqs, for all θ P p�π, 0q. (S1.3)

Using Condition (B3, i and ii), we obtain that �π   rθ � pLwpθqs   0 and �π   rθ � pRwpθqs   0.
Then, under the assumption that pLwpθq ¥ pRwpθq, it is obtained that 0 ¡ rθ � pLwpθqs ¥ rθ �

pRwpθqs ¡ �π. Thus, since, by Condition (A6), f0,c is an increasing function in p�π, 0q, we obtain
the result (S1.3). The same ideas can be applied to show the right–skewed condition.
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S1.3 Proof of Proposition 4

First, assume that m � 0 then, since both f0,c and w have a continuous second derivative in
p�r1, r1q for some positive value r1 ¡ 0, we obtain that g20,c,pL,pR is continuous in p�r1, 0q, with its
value, if θ P p�r1, 0q, equal to

g20,c,pL,pRpθq �
1

Cc,pL,pR

p1� pLw
1pθqq2f20,crθ � pLwpθqs � pLw

2pθqf 10,crθ � pLwpθqs.

Employing Condition (B2), we obtain that limθÑ0�pθ � pLwpθqq � 0. Now, using that f0,c has
a continuous second derivative in p�r1, r1q and (A6), we derive that f 10,cp0q � 0 and also that
f20,cp0q   0. From these results, we obtain that

lim
θÑ0�

g20,c,pL1
,pR
pθq ¡ lim

θÑ0�
g20,c,pL2

,pR
pθq,

if limθÑ0�ppL1�pL2qw
1pθq   0. Then, whenw1p0qppL1�pL2q   0, the value of the second derivative

of g20,c,pL1
,pR

at the left of 0 is lower than this value referred to g20,c,pL2
,pR

. The remaining inequalities
of Proposition 4 can be obtained in an analogous way.

S1.4 Proof of Proposition 5

In order to obtain the mean resultant length of the symmetric submodel, just consider that since
gm,c,p,p is symmetric, then µ1 � m and β̄r � 0, for all r P Z. Thus, ρ1 � ᾱ1 � ErcospΘ �mqs, and
this last quantity is equal to

ErcospΘ�mqs �
1

Cc,p,p

» π

�π
cospθqf0,crθ � p sinpθqsdθ

�
1

2pCc,p

» π

�π
p1� p cospθq � 1qf0,crθ � p sinpθqsdθ

�
1

2pCc,p

�» π

�π
f0,cpψqdψ �

» π

�π
f0,crθ � p sinpθqsdθ



�

1

2pCc,p
p1� 2Cc,pq .

S1.5 Trigonometric moments of the generalized Papakonstantinou density

For obtaining the trigonometric moments of the generalized Papakonstantinou density, consider the
following equality derived from the relationships provided by Abramowitz and Stegun (1965, Section
9) (see, also, Abe et al., 2009, Lemma 3).

cospθ � p sinpθqq �
8̧

s�1

�
2p2s� 1q

p
J2s�1ppq cospp2s� 1qθq � 2J 12sppq cosp2sxq



� J1ppq. (S1.4)
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Now, the derivation of the rth cosine moment is an immediate consequence of combining equality
(S1.4) together with the following integral values

» 0

�π
cosprpθ �mqq cospsxqdθ �

$''&''%
2r

r2�s2
sinprmq if pr � sq odd,

π cosprmq{2 if r � s

0 otherwise,

» π

0
cosprpθ �mqq cospsxqdθ �

$''&''%
� 2r

r2�s2
sinprmq if pr � sq odd,

π cosprmq{2 if r � s

0 otherwise.

In an analogous way, from equality (S1.4) and the equalities below, the rth sine moment can be
derived.

» 0

�π
sinprpθ �mqq cospsxqdθ �

$''&''%
� 2r

r2�s2
cosprmq if pr � sq odd,

π sinprmq{2 if r � s

0 otherwise,

» π

0
sinprpθ �mqq cospsxqdθ �

$''&''%
2r

r2�s2
cosprmq if pr � sq odd,

π sinprmq{2 if r � s

0 otherwise.

S1.6 Proof of Proposition 6

From the expression of ln gλpθq in Equation (B.1), we obtain its partial derivatives with respect to
each parameter:

B

Bm
ln gλpθq � Ipθ P Im,1q

�p1� pLw
1pθ �mqqf 10,crpθ �mq � pLwpθ �mqs

f0,crpθ �mq � pLwpθ �mqs

� Ipθ P Im,2q
�p1� pRw

1pθ �mqqf 10,crpθ �mq � pRwpθ �mqs

f0,crpθ �mq � pRwpθ �mqs
, (S1.5)

B

Bc
ln gλpθq � �

B
BcCc,pL,pR

Cc,pL,pR

� Ipθ P Im,1q
B
Bcf0,crpθ �mq � pLwpθ �mqs

f0,crpθ �mq � pLwpθ �mqs

� Ipθ P Im,2q
B
Bcf0,crpθ �mq � pRwpθ �mqs

f0,crpθ �mq � pRwpθ �mqs
, (S1.6)

B

BpL
ln gλpθq � �

B
BpL

Cc,pL,pR

Cc,pL,pR

� Ipθ P Im,1q
wpθ �mqf 10,crpθ �mq � pLwpθ �mqs

f0,crpθ �mq � pLwpθ �mqs
, (S1.7)

B

BpR
ln gλpθq � �

B
BpR

Cc,pL,pR

Cc,pL,pR

� Ipθ P Im,2q
wpθ �mqf 10,crpθ �mq � pRwpθ �mqs

f0,crpθ �mq � pRwpθ �mqs
.(S1.8)
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If the normalizing constant is strictly positive and finite (see Proposition 1), using Conditions (A3),
(A5), (A6) and (C3) on the base density and Conditions (B1)–(B3) on w, it is shown below that the
expected value with respect to the true underlying distribution of the score vector for Θ is zero. For
obtaining this result we have taken into account that the derivative of an even function is odd and
also that the function θ� pwpθq is always increasing in θ and differentiable by Condition (B3). Then,
we can use this function when integrating by substitution. We find

E
�
B

Bm
ln gλpΘq

�
�

1

Cc,pL,pR

�
�

» 0

�π
f 10,cpθqdθ �

» π

0
f 10,cpψqdψ



� 0,

E
�
B

Bc
ln gλpΘq

�
� �

B
BcCc,pL,pR

Cc,pL,pR

�

³
Im,1

B
Bcf0,crpθ �mq � pLwpθ �mqsdθ

Cc,pL,pR

�

³
Im,2

B
Bcf0,crpθ �mq � pRwpθ �mqsdθ

Cc,pL,pR

� �
B
BcCc,pL,pR

Cc,pL,pR

�
B
BcCc,pL,pR

Cc,pL,pR

� 0,

E
�
B

BpL
ln gλpΘq

�
� �

³
Im,1

wpθ �mqf 10,crpθ �mq � pLwpθ �mqsdθ

Cc,pL,pR

�

³
Im,1

wpθ �mqf 10,crpθ �mq � pLwpθ �mqsdθ

Cc,pL,pR

� 0,

E
�
B

BpR
ln gλpΘq

�
� �

³
Im,2

wpθ �mqf 10,crpθ �mq � pRwpθ �mqsdθ

Cc,pL,pR

�

³
Im,2

wpθ �mqf 10,crpθ �mq � pRwpθ �mqsdθ

Cc,pL,pR

� 0.

Now, regarding the diagonal of the Fisher information matrix, i.e., the expected value of the square
of the partial derivatives of ln gλpΘq with respect to its parameters, we can see that,

E

��
B

Bm
ln gλpΘq


2
�

�

» 0

�π

p1� pLw
1pθqq2pf 10,crθ � pLwpθqsq

2

f0,crθ � pRwpθqs
dθ

�

» π

0

p1� pRw
1pθqq2pf 10,crθ � pRwpθqsq

2

f0,crθ � pRwpθqs
dθ

�
,

E

��
B

Bc
ln gλpΘq


2
�

� �

�
B
BcCc,pL,pR

Cc,pL,pR

�2

�
1

Cc,pL,pR

�» 0

�π

p B
Bcf0,crθ � pLwpθqsq

2

f0,crθ � pLwpθqs
dθ

�

» π

0

p B
Bcf0,crθ � pRwpθqsq

2

f0,crθ � pRwpθqs
dθ

�
,

E

��
B

BpL
ln gλpΘq


2
�

�
1

Cc,pL,pR

�» 0

�π

pwpθqf 10,crθ � pLwpθqsq
2

f0,crθ � pLwpθqs
dθ

�
�

�
B
BpL

Cc,pL,pR

Cc,pL,pR

�2

,

E

��
B

BpR
ln gλpΘq


2
�

�
1

Cc,pL,pR

�» π

0

pwpθqf 10,crθ � pRwpθqsq
2

f0,crθ � pRwpθqs
dθ

�
�

�
B
BpR

Cc,pL,pR

Cc,pL,pR

�2

.
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The elements of the Fisher information matrix of the first column or row are,

E
��

B

Bm
ln gλpΘq


�
B

Bc
ln gλpΘq


�
� �

1

Cc,pL,pR

» π

�π

f 10,cpθq
�
B

Bc
f0,cpθq

�
f0,cpθq

dθ,

E
��

B

Bm
ln gλpΘq


�
B

BpL
ln gλpΘq


�
� �

1

Cc,pL,pR

�

�» 0

�π

p1� pLw
1pθqqwpθqpf 10,crθ � pLwpθqsq

2

f0,crθ � pLwpθqs
dθ



,

E
��

B

Bm
ln gλpΘq


�
B

BpR
ln gλpΘq


�
� �

1

Cc,pL,pR

�

�» π

0

p1� pRw
1pθqqwpθqpf 10,crθ � pRwpθqsq

2

f0,crθ � pRwpθqs
dθ



.

The remaining terms of the Fisher information matrix are provided below.

E
��

B

Bc
ln gλpΘq


�
B

BpL
ln gλpΘq


�
�

1

Cc,pL,pR

�
�

³0
�π

wpθqf 10,crθ � pLwpθqsdθ

Cc,pL,pR

�

» 0

�π

B

Bc
f0,crθ � pLwpθqsdθ �

» 0

�π

wpθqpf 10,crθ � pLwpθqsq
B

Bcf0,crθ � pLwpθqs

f0,crθ � pLwpθqs
dθ

�
,

E
��

B

Bc
ln gλpΘq


�
B

BpR
ln gλpΘq


�
�

1

Cc,pL,pR

�
�

³π
0
wpθqf 10,crθ � pRwpθqsdθ

Cc,pL,pR

�

» π

0

B

Bc
f0,crθ � pRwpθqsdθ �

» π

0

wpθqpf 10,crθ � pRwpθqsq
B

Bcf0,crθ � pRwpθqs

f0,crθ � pRwpθqs
dθ

�
,

E
��

B

BpL
ln gλpΘq


�
B

BpR
ln gλpΘq


�
� �

B

BpL
Cc,pL,pR

B

BpR
Cc,pL,pR

C2
c,pL,pR

.

Remark S2. Note that E
��

B
Bm ln gλpΘq

� �
B
Bc ln gλpΘq

��
� 0, when B{Bcf0,cpθq is an even function.

This is the case, e.g., when using the von Mises or the cardioid as a base density. Also, when con-
sidering the symmetric submodel with just one parameter of p � pL � pR, the parity of the different
functions when considering the integral over r�π, πq yield that E

��
B
Bm ln gλpΘq

� �
B
Bp ln gλpΘq

	�
�

0. This is the case for the peakedness–free model proposed by Abe et al. (2013, Section 2).

S2 The shape of the proposed model

In this section we study the shape of the sine–weighted submodels for different base densities, using
data generated from different circular distributions. The objective is to show how close our model
can approximate the true underlying density from which the data were drawn. For doing so, the
sine function is employed as the weight function and three base density models are considered: the
cardioid, the von Mises and the wrapped Cauchy densities, abbreviated as “C”, “VM” and “WC” in
the legends of the figures. The ML estimators of our model are obtained from 10 000 data points
generated from each of the different distributions:
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* In Figure S1, the estimated densities are shown based on data generated from the symmetric
densities: cardioid, von Mises, wrapped Cauchy and the Jones and Pewsey (2005) family.

* In Figure S2 data are drawn from the asymmetric densities: wrapped skew-normal (Pewsey,
2000); k–sine–skewed (Abe and Pewsey, 2011) with the cardioid, the von Mises and the
wrapped Cauchy densities as base densities.

* Finally, in Figure S3 data are generated from the following asymmetric densities: the inverse
Batschelet family (Jones and Pewsey, 2012); the cosine transformation approach of Abe et al.
(2013, Section 3), using in these two the von Mises as base density; and from the Kato and
Jones (2010) and Kato and Jones (2015) densities.

In all cases, an abuse of notation is made in order to preserve the original parametrization of the
different models. A review of all these families can be found in Pewsey et al. (2013, Section 4.3) and
in Ley and Verdebout (2017, Section 2.2).

Our intention with Figures S1, S2 and S3 is to give an idea about the variety of different shapes of the
studied densities, with low (plots in the first column), medium (plots in the second column) and high
concentration (plots in the third column). In general, the three base densities adapt well to the first
column models, indicating that when the concentration is “low” a good performance is expected with
these three base densities. Focusing at the first columns, a slightly better adaptation is observed with
the cardioid base in the sine–skewed models, i.e. the generalized Papakonstantinou density, (see
Figure S2, rows 2 to 4; while in the remaining densities a similar behavior is observed with the three
base densities. A similar comment applies for the second columns at least when the cardioid base
density is capable to reach the necessary concentration. In these second columns, there are two
models where the von Mises base seems to perform better than the wrapped Cauchy: the wrapped
skew-normal (Figure S2, top row) and the cosine transformation approach (see Figure S3, second
row). In both the second and third columns, when the models are more peaked, as in the case of the
Kato and Jones (2010, 2015) densities, the wrapped Cauchy base density is the one showing the
best performance. Looking at the plots in the third columns, the wrapped skew–normal (Figure S1,
top row) is the only model where a better behavior is observed with the von Mises than with the
wrapped Cauchy base. The main cases where the sine–weighted submodels do not approximate
in a satisfactory way the true density is when the modal and antimodal direction are pronounced
and “close” to each other as occurs for the Abe et al. (2013, Section 3) (Figure S3, second row, first
column) and Kato and Jones (2015) distributions (Figure S3, fourth row, third column).

In order to support these findings and the subsequent recommendations, we analyzed in Table S1
the ranges of the skewness s and kurtosis k coefficients, i.e. the shape measures related to the
trigonometric moments (see Appendix A). For comparative purpose we also included, in Table S1,
the two main competitors for flexible modeling for circular data: the inverse Batschelet distribution
(Jones and Pewsey, 2012) and the Kato and Jones (2015) distribution. For doing so, we employed
a grid of 41 values of p, s (for the inverse Batschelet distribution), pL and pR (the proposed family of
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Figure S1: Estimated probability density function g (black lines) when wpxq � sinpxq and f0,c is the
von Mises (solid), the cardioid (dashed) or the wrapped Cauchy (dotted) density. Parameters are the
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family pµ, κ, ψq. In grey, shape of true underlying densities.

8



0
.1

0
0
.1

5
0
.2

0
0
.2

5

WSN(0,2,1)
f0 = VM
f0 = C
f0 = WC

− π − π 2 0 π 2 π
0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

WSN(0,1,2)
f0 = VM
f0 = C
f0 = WC

− π − π 2 0 π 2 π

0
.0

0
.2

0
.4

0
.6

0
.8

WSN(0,0.75,4)
f0 = VM
f0 = C
f0 = WC

− π − π 2 0 π 2 π

0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5
0
.3

0

kssVM(0,0.5,1,0.8)
f0 = VM
f0 = C
f0 = WC

− π − π 2 0 π 2 π

0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5
0
.3

0
0
.3

5
0
.4

0

kssVM(0,1,1,0.6)
f0 = VM
f0 = C
f0 = WC

− π − π 2 0 π 2 π

0
.0

0
.2

0
.4

0
.6

kssVM(0,3,1,0.9)
f0 = VM
f0 = C
f0 = WC

− π − π 2 0 π 2 π

0
.1

0
0
.1

5
0
.2

0
0
.2

5
0
.3

0

kssC(0,.25,1,0.5)
f0 = VM
f0 = C
f0 = WC

− π − π 2 0 π 2 π

0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5
0
.3

0
0
.3

5 kssC(0,.25,1,0.9)
f0 = VM
f0 = C
f0 = WC

− π − π 2 0 π 2 π

0
.0

0
.1

0
.2

0
.3

0
.4

kssC(0,.45,1,0.8)
f0 = VM
f0 = C
f0 = WC

− π − π 2 0 π 2 π

0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5
0
.3

0 kssWC(0,.25,1,0.6)
f0 = VM
f0 = C
f0 = WC

− π − π 2 0 π 2 π

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5 kssWC(0,.5,1,0.8)

f0 = VM
f0 = C
f0 = WC

− π − π 2 0 π 2 π

0
.0

0
.2

0
.4

0
.6

0
.8

kssWC(0,.7,1,0.9)
f0 = VM
f0 = C
f0 = WC

− π − π 2 0 π 2 π

Figure S2: Estimated probability density function g (black lines) when wpxq � sinpxq and f0,c is the
von Mises (solid), the cardioid (dashed) or the wrapped Cauchy (dotted) density. Parameters are the
ML estimators obtained from 10 000 data points generated from the asymmetric models (separated
by rows): wrapped skew-Normal pξ, η, λq and k–sine–skewed (von Mises, cardioid and wrapped
Cauchy) pµ, ρ, k, λq. In grey, shape of true underlying densities.
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Figure S3: Estimated probability density function g (black lines) when wpxq � sinpxq and f0,c is
the von Mises (solid), the cardioid (dashed) or the wrapped Cauchy (dotted) density. Parameters
are the ML estimators obtained from 10 000 data points generated from the asymmetric densities
(separated by rows): inverse Batschelet pµ, κ, ν, λq, Abe et al. (2013, Section 3) pµ, κ, νq, Kato and
Jones (2010) pµ, ν, r, κq and Kato and Jones (2015) pµ, γ, ρ, λq. In grey, shape of true underlying
densities.
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distributions), equally distributed in the interval r�1, 1s; and a grid of 52 non–equally distributed con-
centration values in the intervals r0.05, 0.495s (cardioid and wrapped Cauchy base density), r0.1, 30s
(von Mises base density) and r0.05, 0.97s (wrapped Cauchy base density). These parameters were
chosen in a way that we can see the general behavior of the values of s and k when the mean resul-
tant length ρ1 belongs to r0.1, 0.9s. Since the parameters of the Kato and Jones (2015) distribution
are related to the shape measures s and k, we employed the parameter constraints given in Table 3.
Section 3.1 of the main paper reports on the main findings regarding the behavior of s and k.

S3 Population circular measures for the generalized Papakonstanti-
nou distribution

The aim of this section is to investigate how the mean direction µ1, the mean resultant length ρ1,
the skewness coefficient s and the kurtosis coefficient k, are influenced by the population circular
measuresm, pL and pR and c in case of the generalized Papakonstantinou distribution. As indicated
in Section 3.3 the mean direction µ1 only depends onm, pL and pR (and not on the concentration c).
In the sequel we assume for simplicity that the modal direction m � 0. In Figure S4 (left) we show
the mean direction values achieved for different values of pL and pR. From this figure we observe
that the mean direction is a monotonically increasing function with respect to pL, and monotonically
decreasing with respect to pR. Note that the mean direction being at the “left” of the modal direction,
i.e. µ1 P p�0.06994, 0q and m � 0, coincides with the case when the density is left skewed, i.e.,
when pL   pR (see Theorem 3). An analogous remark can be made for the right skewness property.
In Figure S4 (left) we observe that µ1 � m � 0 only holds for the diagonal case ppL � pRq.

In Figure S5, in respectively the left, middle and right columns, we present the values of respectively
the mean resultant length ρ1,the skewness coefficient s and the kurtosis coefficient k, as function
of the parameters pL and pR for four values of the concentration parameter c: 0.05, 0.2, 0.35 and
0.45. The side bars with the legends for the colors and the realized values should be consulted when
looking at the figures. As such it is seen from Figure S5 (left column) that the parameter c directly
controls the mean resultant length ρ1 in the sense that larger values of c lead to larger values of
ρ1. The largest values of ρ1 are thus obtained when considering c close to 0.5. If unimodality
needs to be preserved, this corresponds to the main limitation of this model as “concentrated” data
cannot be modeled by this distribution (see Figure S4, right). This limitation of the generalized
Papakonstantinou density is inherited from the cardioid base density as shown in Figure S4 (right).
But, as is clear from Figure S5 (left column), not only c but also pL and pR control the mean resultant
length ρ1. Figure S5 (left column) can also be employed to study the circular variance which is
defined as τ � 1� ρ1, and for this analogous comments can be made.

In the middle column of Figure S5 the circular skewness s (see Appendix A) is explored. From
the side bar legends it is seen that the range of possible values of s enlarges with c. A value
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Distr Range s Range k

Restrictions |k| ¤ 0.001 |k| ¡ 0.001 |s| ¤ 0.001 |s| ¡ 0.001

0.1 ¤ ρ1 ¤ 0.3

gP (-0.008,0.008) (-0.043,0.043) (-0.307,0.249) (-0.301,0.244)
gB (-0.018,0.018) (-0.038,0.038) (-0.218,0.319) (-0.195,0.315)

sWC (-0.03,0.03) (-0.044,0.044) (-0.136,0.387) (-0.13,0.386)
iB (-0.46,0.645) (-1.427,1.549) (-0.199,1.817) (-1.73,1.858)
KJ (-0.33,0.33) (-0.358,0.358) (-0.254,0.592) (-0.254,0.592)

Restrictions |k| ¤ 0.01 |k| ¡ 0.01 |s| ¤ 0.01 |s| ¡ 0.01

0.3   ρ1 ¤ 0.5

gP (-0.088,0.088) (-0.117,0.117) (-0.322,0.685) (-0.4,0.636)
gB (-0.046,0.046) (-0.104,0.104) (-0.546,0.883) (-0.508,0.861)

sWC (-0.061,0.061) (-0.121,0.121) (-0.199,1.248) (-0.172,1.247)
iB (-1.754,1.124) (-1.872,1.554) (-2.853,3.134) (-2.845,3.362)
KJ (-0.475,0.475) (-0.706,0.706) (-0.286,1.744) (-0.286,1.744)

Restrictions |k| ¤ 0.1 |k| ¡ 0.1 |s| ¤ 0.1 |s| ¡ 0.1

0.5   ρ1 ¤ 0.7

gP (-0.283,0.283) (-0.281,0.281) (-0.566,1.089) (-0.483,0.759)
gB (-0.133,0.133) (-0.321,0.321) (-1.086,2.706) (-0.829,2.297)

sWC (-0.086,0.086) (-0.335,0.335) (-0.2,4.077) (0.174,3.479)
iB (0.002,0.063) (-1.85,1.35) (-4.073,8.01) (-5.751,8.058)
KJ (-0.534,0.534) (-1.256,1.256) (-0.242,4.955) (-0.234,4.955)

Restrictions |k| ¤ 1 |k| ¡ 1 |s| ¤ 1 |s| ¡ 1

0.7   ρ1 ¤ 0.9

gP (-0.266,0.266) (0,0) (0.047,1.03) —
gB (-1.103,1.103) (-1.071,1.071) (-1.398,8.327) (-0.1,1.674)

sWC (-0.202,0.202) (-1.242,1.242) (-0.116,20.488) (7.137,11.773)
iB (-0.266,0.985) (-1.51,1.138) (-8.16,26.461) (-2.94,20.242)
KJ (-0.823,0.823) (-2.84,2.84) (0.456,24.36) (1.338,23.773)

Table S1: Ranges of the skewness s and kurtosis k coefficients, under different restrictions for
the mean resultant length ρ1. For the distributions: generalized Papakonstantinou (gP), generalized
Batschelet (gB), sine–weighted wrapped Cauchy (sWC), inverse Batschelet (iB) and Kato and Jones
(2015) (KJ).
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Figure S4: Generalized Papakonstantinou density. Left: mean direction µ1 when m � 0 and pL

and pR are equal to the values showed in the axis of the plot. Right: most concentrated generalized
Papakonstantinou density (solid grey line); most concentrated cardioid density (dotted line); von
Mises p0, 2.3q density (dashed line); Wrapped Cauchy p0, 0.6q density (dot-dashed line).

of the skewness coeffcient s equal to zero is obtained when pL � �pR (see the light blue-green
colors along the diagonals). So, for the generalized Papakonstantinou density, s � 0 does not imply
symmetry. Also, in general, Figure S5 (second column) shows that positive values for the skewness
coefficient s are obtained when both |pR| ¡ pL and |pR| ¡ �pL; and negative values are achieved
when both |pL| ¡ pR and |pL| ¡ �pR. Thus, in general, a positive value in the skewness coefficient
s does not imply having a right skewed distribution, according to the definition in Equation 1.

The behaviour of the kurtosis coefficient k (see Appendix A) is shown in Figure S5 (right column).
Overall, larger values of k are obtained for larger values of c, pL and pR; but this is not always
the case. In Figure S5 (right column) it is seen that close to pL � pR � 1, larger values of k are
obtained for c � 0.35 than for c � 0.495. The same kurtosis as for the wrapped normal distribution
(k � 0) can be obtained by the generalized Papakonstantinou density for the four values of c studied
in Figure S5 for different configurations of pL and pR.

From the results of this section and Table S1, it is clear that the parameters of our distribution do not
have a straightforward interpretation in terms of s and k. For example, the most negative peakedness
measures are not always obtained for the smallest values of pL and pR. The sign of the skewness
coefficient s may be controlled by pL and pR, but its sign might not coincide with our statement of
when a density is left or right skewed, according to Equation 1. The parameters of the proposed
model (3) have a clear interpretation in terms of the circular measures defined in Equations 1 and 2,
and some interpretation in terms of s and k. If however the objective is of having a model whose
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parameters directly say something about ρ1, s and k, it is better to consider the Kato and Jones
(2015) distribution.
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Figure S5: From left to right: mean resultant length ρ1, skewness coefficient s and kurtosis coefficient
k for the generalized Papakonstantinou density when m � 0 and the remaining parameters are as
indicated in the corresponding plots.
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S4 An algorithm for generating random numbers

For generating random numbers from model (3), one can think of different algorithms. For example,
for the generalized Papakonstantinou density, since the distribution function can be obtained, one
could think of inverse transform sampling. In general however, the distribution function is unknown
or it is difficult to get the inverse, and then one can rely on the algorithm as exposed in Section 3.4.

Using the functions (8) and (9) of Section 3.4, we propose the following adaptive acceptance-
rejection method. For the bounding function (9), of which function (8) is a particular case, we have
two possible scenarios: either f0,cpx�mq{Cc,pL,pR bounds gm,c,pL,pR on the entire support r�π, πq
(as in Figure 4, right); or a three–piece density is needed (as in Figure 4, left and center). In the
first case, the rejection algorithm outlined in Section 3.4 is enough to obtain a sample from density
(3). In the second case, things are more involved as a two–steps acceptance–rejection method is
needed. After (randomly) selecting from which part of the support a datum point data is sampled,
a rejection method is needed to determine if the generated point was sampled from the associated
density on that piece.

Before providing the entire algorithm below, we first introduce the following example for illustrative
purposes. Consider random generation for the generalized Batschelet density plotted in Figure 4
(center). For generating random numbers from that density, we first divide the support in three
parts: S1 � r�π,�1q, S2 � r�1, 0q and S3 � r0, πq. Second, we compute the area of the bounding
function associated to each part: f0,cpθ � 1q in S1, f0,cp0q in S2 and f0,cpθq in S3. Third, according
to these areas, we select from which piece we generate a new random point. Assume that S1 is
chosen, then a datum point Θi is generated from f0,cpθ�1q and it is accepted as a possible candidate
for being a random point of the generalized Batschelet density if it belongs to S1, otherwise, it is
directly rejected. With an accepted value of Θi, we utilize the classical rejection sampling algorithm
to determine if it was drawn from our distribution.

In general, for any distribution belonging to the proposed family (3), the sampling method can be
outlined as follows.

Step 1 Divide the support into the subsets related to each part of the piecewise function (9): S1, S2
and S3; or just S1 � r�π, πq.

Step 2 For each subset Sj compute its integral value Cj �
³
Sj
h2;m,c,b,pL,pRpθqdθ, with j � 1, . . . , J ;

and C �
°J

j�1Cj ; J � 1 or J � 3, depending on the case. Then, we employ the rejection
sampling algorithm with the probability density function h2;m,c,b,pL,pRp�q{C.

Step 3 For each i � 1, . . . , n, with n the desired sample size,

(a) Select randomly one element of Sj for j P t1, . . . , Ju, with associated probabilities pj �
Cj{C.
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(b) Generate one random value Θi P Sj from the density, namely h3;j , associated to the
subset Sj : f0,cpθ �mq, f0,cpθ �m� bq, f0,cpθ �m� bq or the constant function f0,cp0q.
Sample also an independent Ui from the uniform distribution on the unit interval r0, 1s.

i. If h3;j � f0,cpθ �m�q, with m� P tm,m � b,m � bu, generate a value rΘi from its
associated distribution.

• If Sj � r�π, πq or Sj � Im,1 and rΘi P Im,1 or Sj � Im,2 and rΘi P Im,2,
then Θi � rΘi. If Sj � Im,1 and rΘi P Im,2, then Θi � m � dpm, rΘiq, where
d denotes the circular (geodesic) distance. If Sj � Im,2 and rΘi P Im,1, then
Θi � m � dpm, rΘiq. In general, if Θi ¥ π then the point Θi � 2π is considered
and if Θi   �π then the point Θi � 2π is taken.

• If Θi P Sj , then go to the Step 3c. Otherwise, return to Step 3(b)i.

ii. If h3;j � f0,cp0q, then generate a random value Θi from the uniform distribution in Sj
and go to Step 3c.

(c) If Ui   Cc,pL,pRgm,c,pL,pRpΘiq{h3;jpΘiq, then consider Θi as a sample value drawn from
our new circular distribution. Otherwise, return to the Step 3a.

Remark S3. When pLwpθq ¤ 0 and pRwpθq ¥ 0 for all θ P r�π, 0q, the average number of random
values required to generate a datum point from density (3) is 1{Cc,pL,pR . Numerically, we found
that this average number is always bounded by 2 for the generalized Batschelet density. When
referring to the generalized Papakonstantinou density, we can see that Cc,pL,pR � 1 � cpJ1ppLq �

J1ppRqq{2 which is a decreasing function of c, pL and pR. Thus, the most inefficient scenario, with
respect to cost for generating random numbers, occurs when pL � pR � 1 and lim cÑ 0.5� is
considered. In that case, the average number of random values required to generate one datum
point is 1{C0.5�,1,1 � 1.786.

S5 Details of the maximum likelihood estimators

In this section, we provide more details of how to compute the ML estimators. For that purpose, first,
given an index j, with 1 ¤ j ¤ n, with n the sample size, denote as IΘj ,2 � r�π, πqzIΘj ,1, where
IΘj ,1 is defined as follows

IΘj ,1 �

$&%r�π �Θj ,Θjq if Θj ¥ 0,

r�π,Θjq Y rπ �Θj , πq if Θj   0.

Then, by Conditions (A3), (A6) and (B3), when considering the partial derivative of the log–likelihood
function with respect to m, two possible values can be obtained,
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ℓm,1pm, c, pL, pRq �
ņ

i�1

IpΘi P IΘj ,1q
�p1� pLw

1pΘi �mqqf 10,crpΘi �mq � pLwpΘi �mqs

f0,crpΘi �mq � pLwpΘi �mqs

�
ņ

i�1

IpΘi P IΘj ,2q
�p1� pRw

1pΘi �mqqf 10,crpΘi �mq � pRwpΘi �mqs

f0,crpΘi �mq � pRwpΘi �mqs
, (S5.1)

or

ℓm,2pm, c, pL, pRq �
ņ

i�1

IpΘi P tIΘj ,1 YΘjuq
�p1� pLw

1pΘi �mqqf 10,crpΘi �mq � pLwpXi �mqs

f0,crpΘi �mq � pLwpΘi �mqs

�
ņ

i�1

IpΘi P Iθj ,2zθjq
�p1� pRw

1pΘi �mqqf 10,crpΘi �mq � pRwpΘi �mqs

f0,crpΘi �mq � pRwpΘi �mqs
.

When evaluating the partial derivative of the log–likelihood function with respect to m at the points
Θj , with j P t1, . . . , nu, its values at left B

Bmℓpm, c, pL, pRq
�|m�Θj � ℓm,2pm, c, pL, pRq|m�Θj and

at right B
Bmℓpm, c, pL, pRq

�|m�Θj � ℓm,1pm, c, pL, pRq|m�Θj are different if pL � pR. The same
happens when evaluating at points Θj�π, then B

Bmℓpm, c, pL, pRq
�|m�Θj � ℓm,1pm, c, pL, pRq|m�Θj

and B
Bmℓpm, c, pL, pRq

�|m�Θj � ℓm,2pm, c, pL, pRq|m�Θj . Otherwise, the log–likelihood function is
differentiable with respect to m, being its value B

Bmℓpm, c, pL, pRq|m�m̂n � ℓm,1pm, c, pL, pRq|m�m̂n .
Then, under the hypothesis that m̂n � Θj � kπ, with k an integer, the ML estimator is obtained by
setting ℓm,1pm, c, pL, pRq|m�m̂n � 0.

When studying the behavior of the derivative of the log–likelihood function, under Assumption (C5),
we obtain that this function is differentiable with respect to the other three parameters (c, pL, and pR)
at any point of their support if the base density is differentiable with respect to c and its derivative is
integrable. We denote the partial derivatives of the log–likelihood function with respect to c, pL and
pL by respectively ℓc, ℓpL and ℓpR . These partical derivatives have the following expressions:

ℓcpm, c, pL, pRq � �n
B

Bc
Cc,pL,pR

Cc,pL,pR

�
ņ

i�1

IpΘi P Im,1q
B

Bc
f0,crpΘi �mq � pLwpΘi �mqs

f0,crpΘi �mq � pLwpΘi �mqs

�
ņ

i�1

IpΘi P Im,2q
B

Bc
f0,crpΘi �mq � pRwpΘi �mqs

f0,crpΘi �mq � pRwpΘi �mqs
, (S5.2)

ℓpLpm, c, pL, pRq � �n

B

BpL
Cc,pL,pR

Cc,pL,pR

�
ņ

i�1

IpΘi P Im,1q
wpΘi �mqf 10,crpΘi �mq � pLwpΘi �mqs

f0,crpΘi �mq � pLwpΘi �mqs
, (S5.3)

ℓpRpm, c, pL, pRq � �n

B

BpR
Cc,pL,pR

Cc,pL,pR

�
ņ

i�1

IpΘi P Im,2q
wpΘi �mqf 10,crpXi �mq � pRwpΘi �mqs

f0,crpΘi �mq � pRwpΘi �mqs
. (S5.4)

In general, analytic expressions for obtaining the maximum log–likelihood estimators cannot be de-
rived. Since the log–likelihood function is not differentiable in some points of the support of m,
several approaches can be considered for solving this maximum log-likelihood optimization prob-
lem. First, one could consider to follow the approach of Ardalan et al. (2012) which consists of
studying the behavior of the derivatives both at the left and at the right of the points Θj and Θj � π,
with j P t1, . . . , nu. This approach would be especially useful if the base density is chosen in such a
way that gm,c,pL,pR is concave. A second approach is to use an approximating function in the discon-
tinuity points of the derivative in order to obtain a log–likelihood function for which the derivative is
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continuous. However, as shown by Zhang et al. (2000), such a method in general, does not perform
better than just assuming that the non–differentiable finite points do not exist.

This last result combined with the box–constraints on the parameters motivate the use of the function
optim, with the argument method=‘‘L-BFGS-B’’ (Byrd et al., 1995), available in the stats pack-
age of R (R Core Team, 2021), for obtaining the ML estimators. For performing the algorithm, we
use as the derivatives of the log–likelihood function, with respect to each parameter, the functions
ℓm,1 (S5.1), ℓc (S5.2), ℓpL (S5.3) and ℓpR (S5.4). In this case, special care should be taken with the
local maxima of m occurring at the points Θj and Θj � π, with j P t1, . . . , nu.

Note that even when assuming differentiability of f over m, as is the case when pL � pR, there may
be multiple local maxima on the surface of the log–likelihood surface (see, e.g., Abe et al., 2009;
Pewsey et al., 2011). To deal with this issue of multiple local maxima, a method of optimization with
different initial values should be employed. As initial values for the optimization method, we suggest
to employ the values pL � pR � 0 and, then to use the ML estimators for the parameters pm, cq in
the base density as initial values of m and c. In the simulation results reported on in Section S6, we
have tried five different strategies with respect to the choice of initial values for m and c: (i) using
as initial values the ML estimators of the base density; (ii) employing a modal direction estimator
(see Ameijeiras-Alonso et al., 2019); (iii) taking ten random initializations; (iv) considering the true
parameter values as the initial values (which is only possible in a simulation setting of course); (v)
using the method of moments estimators as initial values for m and c. It is to be remarked that in
case of the generalized Batschelet density strategies (i) and (v) coincides, since in that case the
maximum likelihood estimators for m and c are the same as the method of moment estimators.
Therefore, in Section S6 and below we do not report on findings for strategy (v).

In our simulation study for the generalized Batschelet density in Section S6 we compared the log-
likelihood values of the estimators obtained when using strategies (i)–(iv). Obviously, the best fitting
should be obtained when using the true parameters as initial parameters (i.e. strategy (iv)). In the
simulation study we evaluated the combination of strategies (i) and (iii), in the following sense: of the
estimates obtained from these two strategies, employ as estimated parameters these that gave the
highest estimated log-likelihood values. Doing so we observed that, most of the times, the resulting
associated log–likelihood values are larger than or equal to those obtained with strategy (i). Just in
0.1% of the times (when n � 50), strategy (iv) provided a better performance than the combination
of strategies (i) and (iii). If the objective is to obtain a computationally fast algorithm, we observed
that for the generalized Batschelet density, strategy (i) is at least as good as all other strategies,
in the following percentages of times: 96%, when n � 50; 98%, when n � 200; and 99%, when
n � 1 000.
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S6 Simulation results for the generalized Batschelet density

The aim of the following simulation study is to analyze the finite–sample behavior of the ML esti-
mators (see Section 4.1) for the generalized Batschelet density. For this simulation study, 1 000
different samples of size n � 50, n � 200 and n � 1 000 were drawn, using the algorithm described
in Section 3.4, from the generalized Batschelet density in (4). For each parameter, the sample
estimates correspond to the ones having the best performance, in terms of log–likelihood, among
strategies (i)–(vi) described in Section S5. This particular simulation model is chosen for compara-
tive purposes, as the submodel provided by the Batschelet distribution is already studied by Pewsey
et al. (2011).

Figures S6–S9 summarize, via boxplots, the differences between each sample estimate, m̂n, ĉn,
p̂Ln and p̂Rn; and the true parameter values m, c, pL and pR. Tables S2 and S3 report on the
sample bias and the mean squared error of these differences.

As expected, location estimators (sample bias and median in the boxplots) of the differences be-
tween the sample estimates and the true parameter value, and dispersion estimators (sample vari-
ance and interquartile range in the boxplots) of the different estimators are decreasing to zero with
increasing sample size, and approaching to zero when n � 1 000. In the following paragraphs, we
comment more in detail on the finite–sample behavior of each parameter estimator.

The location estimators of pm̂n �mq (see Figure S6 and Table S2) are, in general, closer to zero
(being essentially unbiased, even for n � 50) in the symmetric cases (when pL � pR). These
location estimators also decrease in absolute value when increasing the value of the concentration
c (from top row to bottom row in Figure S6). The dispersion estimators are smaller when both
peakedness parameters are large (close to 0.9 in absolute value) and have the same sign. In this
case, also the variability of the estimator decreases with the concentration. The worst cases occur
when c is “small” and the parameters pL and pR have opposite sign and both are large. Also, then
the absolute value of the sample bias and MSE decrease at the slowest rate with increasing sample
size. The worst studied scenario for n � 1 000, is when c � 0.5, pL � �0.9 and pR � 0.9, for which
the sample bias is �0.437 and the sample MSE is 0.474.

In general, the sample bias of ĉn (Table S2) and the median of pĉn � cq (Figure S7) are positive or
close to zero. Both its location and dispersion estimators are mainly influenced by the true parameter
value of c and they are close to zero when considering smaller values of the concentration parameter
and also when both peakedness parameters are negative and close to �1. In terms of dispersion, if
c � 0.5 a similar behavior is observed independently of pL and pR. When c � 2, good scenarios are
also observed if pL � pR � 0.9. When increasing the sample size (n � 1 000) the worst behavior
occurs when c � 4, pL � �0.9 and pR is large (pR � 0.5 or p � 0.9), with a sample bias close to
0.4 and sample MSE close to 2.6.

Regarding the behavior of p̂Ln (Figure S8 and Table S3), note first that an asymmetric behavior is
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obtained due to the compactness of the support of this parameter. Thus, our comments about the
variability in the boxplots focus on the largest difference between the first or the third quartile and the
median. For both estimators p̂Ln and p̂Rn a very large variability is observed when the sample size
is small (n � 50). In case of p̂Ln, we observe a different behavior in median depending on the value
of c. When c is small (c � 0.5), in general a positive median value is obtained and closer to zero
values are observed for the symmetric cases. Also, in these cases (at least when n is large), small
interquartile ranges are obtained. In contrast, when c is large (c � 4), in general a negative median
value is obtained, and the symmetric cases present the largest median values. In this case, the
smallest variability is noted when pL is small (pL close to �0.9). In terms of sample bias, negative
values are obtained when both pL and pR are positive, the largest absolute values when |pL| is large
and pL and pR have opposite signs. In terms of MSE, when c � 4, the worst scenario occurs when
pL � pR � 0.9. If c is small, the worst cases occur when pL � �0.9 and pR is positive. If n � 1 000,
the worst scenario happens to be with c � 0.5 and pL � �0.9 and pR � 0.9, where the sample bias
is 0.594 and the sample MSE is 0.84.

Regarding the variability, similar comments apply when considering p̂Rn (Figure S9). But, in this
case, due to the parameters configuration, we observe negative median and mean values in general,
except for pL � pR � �0.9, independently on the value of c. Also, the worst cases are when
pL � �0.9 and pR is positive, independent of c. When n � 1 000, the worst scenario again coincides
with c � 0.5 and pL � �0.9 and pR � 0.9, where the sample bias is �0.629 and the sample MSE is
0.922.
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pL �0.9 �0.5 0.5 0.9

pR �0.9 �0.5 0.5 0.9 �0.5 0.5 0.9 0.5 0.9 0.9

c n Sample bias (m̂n)

0.5

50 0.008 -0.129 -0.511 -0.609 0.004 -0.397 -0.512 0.01 -0.145 -0.024
200 0.009 -0.116 -0.49 -0.582 -0.008 -0.358 -0.403 0.007 -0.074 -0.018
1000 -0.006 -0.053 -0.337 -0.437 0.011 -0.229 -0.263 0.001 -0.03 -0.001

2

50 0.002 -0.115 -0.51 -0.525 -0.002 -0.278 -0.282 -0.003 -0.034 -0.001
200 0.003 -0.068 -0.362 -0.336 0.013 -0.126 -0.098 0.002 -0.012 0.001
1000 0.001 -0.02 -0.092 -0.055 0 -0.008 -0.014 0.003 -0.002 0

4

50 0.001 -0.156 -0.433 -0.422 0.024 -0.141 -0.13 -0.008 0.001 0.006
200 0.003 -0.074 -0.308 -0.241 -0.003 -0.025 -0.031 0 -0.003 0.001
1000 0.001 -0.017 -0.064 -0.029 0.007 -0.002 -0.008 0 -0.002 0

c n Sample MSE (m̂n)

0.5

50 0.455 0.413 0.638 0.709 0.365 0.535 0.618 0.326 0.319 0.3
200 0.097 0.143 0.491 0.602 0.153 0.338 0.391 0.109 0.09 0.054
1000 0.017 0.039 0.334 0.474 0.068 0.225 0.236 0.041 0.02 0.009

2

50 0.06 0.111 0.476 0.489 0.121 0.247 0.229 0.039 0.026 0.013
200 0.015 0.041 0.353 0.339 0.083 0.12 0.065 0.012 0.006 0.003
1000 0.005 0.009 0.089 0.044 0.025 0.013 0.004 0.002 0.001 0.001

4

50 0.035 0.099 0.343 0.342 0.106 0.118 0.094 0.028 0.02 0.014
200 0.013 0.046 0.253 0.193 0.086 0.03 0.013 0.005 0.003 0.002
1000 0.004 0.01 0.051 0.017 0.033 0.004 0.002 0.001 0.001 0

c n Sample bias (ĉn)

0.5

50 0.095 0.119 0.135 0.175 0.128 0.147 0.148 0.116 0.103 0.11
200 0.012 0.027 0.051 0.068 0.023 0.039 0.054 0.013 0.027 0.025
1000 0.003 0.003 0.016 0.028 -0.001 0.005 0.015 -0.002 0.004 0.005

2

50 0.137 0.364 1.315 1.82 0.409 0.82 1.104 0.35 0.63 0.385
200 0.031 0.071 0.159 0.269 0.024 0.076 0.136 0.045 0.056 0.081
1000 0 0.021 0.038 0.035 0.005 0.016 0.025 0.001 0.011 0.013

4

50 0.814 1.913 8.579 11.445 2.939 6.22 6.231 12.644 20.104 25.188
200 0.135 0.46 2.812 3.585 0.299 0.725 0.831 1.83 2.578 4.409
1000 0.063 0.075 0.392 0.38 -0.033 0.1 0.179 0.158 0.208 0.214

c n Sample MSE (ĉn)

0.5

50 0.064 0.072 0.07 0.091 0.085 0.077 0.071 0.056 0.047 0.049
200 0.017 0.017 0.015 0.017 0.014 0.013 0.013 0.009 0.01 0.009
1000 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.002 0.002

2

50 0.599 1.229 10.461 18.252 1.439 7.79 11.968 2.033 27.786 2.278
200 0.095 0.141 0.215 0.562 0.124 0.129 0.145 0.057 0.044 0.043
1000 0.022 0.023 0.029 0.019 0.02 0.019 0.013 0.008 0.011 0.006

4

50 5.602 16.454 279.481 664.741 46.089 455.165 409.151 1061.73 2517.427 3755.572
200 0.811 2.177 41.535 72.173 2.217 7.031 3.825 36.08 64.319 243.794
1000 0.176 0.239 2.165 2.628 0.249 0.271 0.239 0.364 0.352 0.385

Table S2: Sample bias and MSE for m̂ and ĉ.
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pL �0.9 �0.5 0.5 0.9

pR �0.9 �0.5 0.5 0.9 �0.5 0.5 0.9 0.5 0.9 0.9

c n Sample bias (p̂Ln)

0.5

50 0.648 0.606 0.824 0.822 0.233 0.441 0.554 -0.227 -0.165 -0.507
200 0.199 0.293 0.683 0.786 0.076 0.425 0.478 -0.019 0.015 -0.169
1000 0.066 0.113 0.464 0.594 -0.037 0.274 0.324 0.029 0.043 -0.059

2

50 0.118 0.187 0.554 0.519 0.002 0.272 0.249 -0.011 0.001 -0.146
200 0.031 0.085 0.444 0.393 -0.026 0.142 0.09 0.006 0.018 -0.051
1000 0.005 0.022 0.114 0.064 -0.005 0.004 0.009 -0.001 0.005 -0.01

4

50 0.036 0.14 0.329 0.275 -0.056 0.059 0.003 -0.289 -0.437 -0.652
200 0.014 0.066 0.226 0.13 0.018 -0.007 -0.021 -0.11 -0.161 -0.294
1000 -0.002 0.013 0.043 0.007 0.004 -0.004 -0.009 -0.023 -0.03 -0.049

c n Sample MSE (p̂Ln)

0.5

50 1.15 1.051 1.387 1.342 0.718 0.861 0.951 0.712 0.638 0.84

200 0.271 0.409 1.001 1.137 0.394 0.678 0.686 0.318 0.274 0.199

1000 0.05 0.095 0.637 0.84 0.15 0.391 0.386 0.125 0.085 0.045

2

50 0.157 0.275 0.797 0.673 0.288 0.418 0.366 0.21 0.188 0.137

200 0.032 0.065 0.574 0.51 0.139 0.189 0.103 0.068 0.055 0.033

1000 0.011 0.015 0.143 0.065 0.034 0.02 0.009 0.013 0.012 0.01

4

50 0.075 0.189 0.423 0.323 0.253 0.208 0.174 0.451 0.533 0.823

200 0.025 0.061 0.219 0.104 0.154 0.042 0.031 0.147 0.159 0.264

1000 0.008 0.011 0.031 0.007 0.039 0.007 0.006 0.022 0.02 0.025

c n Sample bias (p̂Rn)

0.5

50 0.618 0.227 -0.523 -0.895 0.237 -0.488 -0.81 -0.215 -0.52 -0.504
200 0.21 -0.01 -0.575 -0.841 0.056 -0.458 -0.617 -0.01 -0.238 -0.191
1000 0.06 -0.057 -0.404 -0.629 -0.011 -0.261 -0.389 0.021 -0.089 -0.051

2

50 0.11 -0.088 -0.72 -0.935 0.002 -0.375 -0.562 -0.019 -0.192 -0.145
200 0.035 -0.074 -0.451 -0.55 0.004 -0.123 -0.205 0.019 -0.057 -0.049
1000 0.008 -0.019 -0.113 -0.105 -0.006 0.003 -0.041 0.008 -0.008 -0.015

4

50 0.045 -0.162 -0.725 -0.916 0.011 -0.246 -0.453 -0.323 -0.526 -0.623
200 0.019 -0.08 -0.503 -0.558 0.011 -0.028 -0.179 -0.109 -0.225 -0.283
1000 -0.002 -0.016 -0.093 -0.101 0.02 0 -0.058 -0.02 -0.046 -0.047

c n Sample MSE (p̂Rn)

0.5

50 1.08 0.726 0.971 1.508 0.739 0.948 1.348 0.676 0.885 0.844
200 0.303 0.327 0.808 1.271 0.379 0.682 0.89 0.302 0.297 0.237
1000 0.054 0.108 0.548 0.922 0.145 0.419 0.519 0.118 0.063 0.04

2

50 0.151 0.215 1.024 1.517 0.297 0.678 0.846 0.211 0.19 0.139
200 0.034 0.088 0.644 0.84 0.138 0.309 0.226 0.071 0.041 0.034
1000 0.011 0.018 0.173 0.121 0.037 0.053 0.028 0.013 0.012 0.01

4

50 0.078 0.197 1.133 1.58 0.31 0.582 0.654 0.467 0.667 0.778
200 0.025 0.081 0.781 0.911 0.143 0.202 0.152 0.145 0.197 0.261
1000 0.007 0.018 0.187 0.111 0.046 0.044 0.031 0.021 0.023 0.023

Table S3: Sample bias and MSE for p̂Ln and p̂Rn.
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