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Abstract: We develop a variational Bayesian (VB) approach for estimating large-scale dy-
namic network models in the network autoregression framework. The VB approach allows
for the automatic identification of the dynamic structure of such a model and obtains a direct
approximation of the posterior density. Compared to Markov Chain Monte Carlo (MCMC)
based sampling approaches, the VB approach achieves enhanced computational efficiency
without sacrificing estimation accuracy. In the simulation study conducted here, the pro-
posed VB approach detects various types of proper active structures for dynamic network
models. Compared to the alternative approach, the proposed method achieves similar or
better accuracy, and its computational time is halved. In a real data analysis scenario of
day-ahead natural gas flow prediction in the German gas transmission network with 51 nodes
between October 2013 and September 2015, the VB approach delivers promising forecasting
accuracy along with clearly detected structures in terms of dynamic dependence.
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1 Introduction

Networks have emerged and become available in various fields, such as energy transmission,

logistics and transportation, and financial systems. Networks are dynamic in terms of their

temporal dependence, and they often have large scales. The understanding and inference of

network dynamics have profound implications for operations and decision making in modern

industries. Tremendous growth and heterogeneity in both nodes/edges and dependence over

time are the key characteristics of such networks. However, conventional statistical methods

either assume that networks are static or consider only low-dimensional temporal data. This

creates a need for efficient computational approaches that are able to reveal the essential

dependence structures in high dimensions and simultaneously deliver accurate inferences

with a low computational cost.

Industrial networks contain series of temporal-spatial data collected over time. While

the nodes/edges are often fixed or possess trivial changes, the lead-lag temporal dependence

issue can no longer be ignored in network inference. Graph theory has been widely used

for unraveling structural information in large-scale network analysis. For example, Fan et

al. (2009) and Guo et al. (2011) proposed a sparse graphic network. Liu et al. (2012)

proposed the semiparametric Gaussian copula graphical model. Despite their efficiency,

these graphical models assume static networks, and the evolution of the network dependence

is not considered in their estimation processes.

The temporal dependence of a network can be represented in the vector autoregressive

(VAR) modeling framework. In the VAR framework, each node is considered as one time

series, and the network dependence is measured as the lead-lag cross-correlations among

multiple time series. Both the theoretical properties and empirical performance of VAR have

been well studied with respect to multivariate data; see Lütkepohl (2007) and Bańbura et al.

(2010). However, the application of VAR for large-scale network analysis is still challenging.

Given a network with 𝑚 models, which correspond to 𝑚 time series, and supposing that the

dynamics depend on the last 𝑝 lags, to the result is that there are 𝑝𝑚2 unknown coefficients

in the VAR model. When the number of nodes 𝑚 becomes large or the temporal dependence

𝑝 increases, VAR is overparameterized and this leads to low estimation accuracy or even
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infeasibility with regard to model inference.

A unique feature in industrial networks is that their lead-lag temporal dependences, such

as concurrent dependence among their nodes, are less dense than the networks themselves.

Individual networks are also much sparser than other social networks. It is conceivable

that large-scale industrial networks, are driven by a few essential and cohesive connections

among their nodes to facilitate network evolution. This motivates the modeling of large-scale

dynamic networks using sparse VAR. In particular, penalties are imposed on the parameter

space of the VAR framework with various possible types of structural assumptions. For

the purpose of both estimation and interpretability, structural sparsity can be enabled in

elements, groups and lags. Lag sparsity investigates the effect of time-lagged information,

while group sparsity highlights the impacts of certain nodes on others. In addition to the

universal effect on a group of lag coefficients, a sparse element illustrates a single effect. Basu

& Michailidis (2015) investigated the theoretical properties of ℓ1-regularized estimates, where

multiple time series were assumed to be stable Gaussian processes. Melnyk & Banerjee (2016)

established bounds on the non-asymptotic estimation error of the Lasso-type estimator for

structured VAR parameters. Nicholson et al. (2014) proposed several structures for VAR and

Lasso, group Lasso and sparse group penatly functions to achieve sparsity in the elements

and groups of a network; see also Hsu et al. (2008), Song & Bickel (2011), and Chen et al.

(2020). Moreover, VAR models can be easily extended to the above three kinds of sparsity

by building up a hierarchical lag structure in the autoregression model via the inclusion of

high-dimensional exogenous variables.

The estimation of the structured of a VAR framework faces two challenges. First, the

sparse structure needs to be specified to avoid the overfitting of the high-dimensional models.

Second, the framework should be able to adapt to different kinds of stochastic behaviors,

as empirical data are likely non-Gaussian. Bayesian methods are natural choices because

they deliver stable performances without prespecified assumptions about the structure and

distribution of the model. Stochastic search variable selection (SSVS), for example, is the

most commonly used Bayesian variable selection approach. It introduces latent indicators

embedded in the priors and stochastically searches subsets by generating posterior samples

with the Markov Chain Monte Carlo (MCMC) algorithm; see George & McCulloch (1993).
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Geweke (1996) proposed the component-wise Gibbs method for the purpose of improving

computational efficiency. By using the spike-and-slab prior, it avoids computing inverse

matrices and thus reduces the computational cost. However, the Gibbs sampler requests

either random or systematic updating of the coefficients. Chen et al. (2011) proposed the

stochastic matching pursuit (SMP) algorithm, which updates the coefficients of each step for

obtaining the best fit based on the current residual vector. In terms of structural selection,

Farcomeni (2010) introduced Bayesian-constrained variable selection. Chen et al. (2016)

proposed the groupwise Gibbs sampler. As a proof of concept, Chu et al. (2019) implemented

a Bayesian variable selection approach in the VAR framework and named it the VAGSA,

the vector autoregression-based Gibbs sampler algorithm. For the high-dimensional VAR

model, Kastner & Huber (2020) proposed a large Bayesian vector autoregression approach

with a Dirichlet-Laplace prior and factor stochastic volatility (FSV), and they applied it on

high-dimensional US economic data.

Nevertheless, these MCMC algorithms are known to be computationally expensive for

sequentially generating posterior samples. Variational inference, as an alternative, shows

great potential in terms of improving computational speed without sacrificing much accu-

racy. It obtains an approximation of the target posterior density using the Kullbak-Leibler

divergence, based on which an EM-type algorithm is devised a reduced computational cost.

Titsias & Lázaro-Gredilla (2011) and Carbonetto & Stephens (2012) introduced variational

Bayesian approaches with spike-and-slab priors for dealing with variable selection problems

in linear regression models. Cai et al. (2020) proposed a variational Bayesian method for

sparse group selection in linear models and extended it to multiple response models.

In our study, we propose a variational Bayesian (VB) approach for estimating a large-

scale dynamic network model. The serial dependence in a given network is represented

in a vector autoregression framework with three possible types of structural assumptions

and various nesting types. Here, we also call this model a network autoregression (NAR)

model. We derive variational inferences and develop the corresponding algorithms. The VB

approach allows for the automatic identification of the dynamic structure of data and obtains

an approximation of the posterior density directly. Compared to MCMC-based sampling

approaches, such as the VAGSA in Chu et al. (2019), the VB approach achieves enhanced
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numerical performance with similar accuracy. A simulation study shows that compared with

existing methods, the VB approach not only detects the proper active structures in various

dynamic network models but also halves the computational time, with similar or better

accuracies. In a real data analysis, we predict day-ahead natural gas flows for a German

network with 51 nodes over 2 years from Oct 1, 2013, to Sep 30, 2015. Germany’s gas

transport system is essential to the European energy supply. The adequate, high-precision

estimation of supply and demand is a crucial issue for efficient control and operations in gas

transmission. The VB approach delivers a clear dynamic dependence structure, providing

interpretability and insights for understanding and managing the gas transmission network.

To the best of our knowledge, this is the first attempt to derive variational inference for a

large-scale dynamic network analysis in a structured NAR/VAR framework.

This paper is organized as follows. Section 2 introduces the dynamic network model

in the VAR framework. Several types of structural assumptions are also demonstrated.

Section 3 presents the proposed variational Bayesian algorithms for large-scale dynamic

network inference. Section 4 investigates the finite-sample performance of the proposed VB

approach. Section 5 reports the network inference for day-ahead gas flow forecasting with 51

high-pressure nodes in the natural gas transmission network in Germany. Section 6 provides

a brief conclusion of our work.

2 Model

Let Y𝑡 ∈ R1×𝑚 denote a vectorized time series of networks with 𝑚 nodes at time 𝑡 over the

time period [1, 𝑇]. Without loss of generality, Y𝑡 is demeaned. We consider a dynamic

network model in a vector autoregression framework Y𝑡 which is assumed to depend on the

past values of the network at lags 1 to 𝑝, i.e.,

Y𝑡 = Y𝑡−1𝐵1 + · · · + Y𝑡−𝑝𝐵𝑝 + 𝜖𝑡 , 𝑡 = 𝑝 + 1, 𝑝 + 2, . . . , 𝑇 .

Here, we let 𝐵ℓ be an 𝑚 × 𝑚 coefficient matrix for lag-ℓ, ℓ = 1, 2, · · · , 𝑝, which is used to

measure the lead-lag temporal dependence in the network. The number of coefficients in Bℓ

5



grows quadratically with the number of nodes 𝑚. Given 𝑚 = 51 in the gas transformation

network, there are 512 = 2601 unknown coefficients for each 𝐵ℓ. Obviously, the diagonal

elements of 𝐵ℓ indicate the serial dependence of each node on its own lag-ℓ value and the

dependences of off-diagonal elements on other nodes' lag-ℓ values. The term {𝜖𝑡}𝑇𝑡=𝑝+1 is a

sequence of serially uncorrelated 1 × 𝑚 random vectors, with a mean vector of zero and a

covariance matrix Σ. Then, the dynamic network model can be represented in matrix form

as follows:

Y = XB + ε, (1)

where Y ∈ R(𝑇−𝑝)×𝑚 is the response matrix, X = (X1, ...,Xℓ) is a (𝑇 − 𝑝) × 𝑚 matrix

with Xℓ =

(
Y ′
𝑝+1−ℓ ,Y ′

𝑝+2−ℓ, . . . ,Y
′
𝑇−ℓ

)′
, ℓ = 1, 2, · · · , 𝑝, B =

(
𝐵′1, 𝐵

′
2, . . . , 𝐵

′
𝑝

)′
, and ε =(

𝜖 ′
𝑝+1, 𝜖

′
2, · · · , 𝜖

′
𝑇

)′
.

In this paper, we consider a structured NAR/VAR framework, i.e., dynamic dependence

is sparsely motivated by a large-scale industrial network, such as the German gas transforma-

tion network. Figure 1 displays the lag-1 and lag-3 cross-correlations of 11 nodes arbitrarily

selected from the German natural gas transmission network. The 11 nodes belong to 4 dif-

ferent types: municipal (labeled with M), industrial (I), border (B), and others (O). The

left-hand side of Figure 1 is the lag-1 cross-correlation matrix. The right-hand side of Fig-

ure 1 is the cross-correlation matrix for lag-3. This shows the coexistence of strong serial

dependence and sparsity in elements, groups, and lags. According to Figure 1, due to their

cross-correlation values, nodes sharing the same type may possess similar patterns. Thus,

the dynamics of the network are not driven by each node individually, every group of nodes,

or each lagged network in the past.

While element sparsity and lag sparsity are clear, there are different kinds of group

sparsity. Following Song & Bickel (2011), we categorize the various structures into three

types and discuss them as follows.

• UG Structure: The universal grouping (UG) structure in the coefficient matrix 𝐵ℓ

means that the off-diagonal coefficients have the same sparsity pattern across the dif-

ferent columns. For example, municipal nodes M3, M4, M5, and M6 may have similar
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Figure 1: The cross-correlations of 11 nodes arbitrarily selected from the German natural
gas transmission network.

patterns, and we can treat them as a group. Therefore, if one node affects another node,

the others are all influenced by this node. As shown in Figure 2, node M4 affects other

nodes, and nodes M3, M5 and M6 do not affect other nodes. As such, the coefficient

matrix can be separated into a diagonal matrix reflecting the dynamic dependence of

each node on its own, and a sparse matrix showing the temporal dependence of each

node on others. In network analysis, the columns that have the same row sparsity are

grouped together.

• SG Structure: For the segmentation grouping (SG) structure in 𝐵ℓ, the nodes in the

same segment interact with each other but are independent from the other nodes. This

is associated with the empirical observation that there are different types of nodes in

the network. Figure 3 illustrates the SG structure among municipal and industrial

nodes. The network is divided into disjoint segments of the municipal and industrial

types. The estimation process can be conducted segment by segment.
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Figure 2: An illustration of the coefficient matrix for the universal grouping structure.

• NG Structure: Consider the “no grouping” (NG) structure in 𝐵ℓ. Each node has its

own impact on the other nodes over time. This is a scenario where no regular pattern is

identified among the nodes. Figure 4 shows an example with different types of nodes.

In fact, there are no similar patterns among them. In this case, we separate them

during the inference procedure.

It is easy to see that the first and third types of structures, UG and NG, are two special

cases of the SG structure when the numbers of segments are 1 and 𝑚, respectively. While the

three types of structures are defined for each coefficient matrix, they may appear in different

time lags. The identification of a proper structure can help not only increase the estimation

accuracy but also enhance computational time of the algorithm.
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Figure 3: An illustration of the coefficient matrix for the segmentation grouping
structure.

3 Variational Approximation Algorithm

We introduce the variational Bayesian approach for NAR/VAR structure inference in high-

dimensional scenarios, and it is expected to automatically choose the proper structure and

perform estimation at a low computational cost. Here, we derive only the VB method for the

segmentation grouping structure because it nests the other two types of structures as special

cases of segmentation grouping. Thus, it is a derivation under a general setup. To simplify

the procedure, we assume that all coefficient matrices share the same segmentation grouping

structure. Denote 𝑆 =
{
𝑠1, 𝑠2, · · · , 𝑠𝑔

}
as an overall index set for the columns in each 𝐵ℓ,

where 𝑠𝑘 is the index set of the 𝑘th segment with size 0 < |𝑠𝑘 | < 𝑚 and
∑𝑔

𝑘=1 |𝑠𝑘 | = 𝑚, and

𝑔 is the total number of segments (groups). In this section, we start by introducing the
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Figure 4: An illustration of the coefficient matrix for the “no grouping” structure.

Bayesian structure selection approach, and then we mention the details of the proposed VB

method.

3.1 The Bayesian structure selection algorithm

For the Bayesian hierarchical model used to select segmentation structures, Chu et al. (2019)

introduced two indicators 𝛾ℓ,𝑖 and [ℓ,𝑖,𝑘 to identify the active structures. These indicators

denote the active nonzero coefficients of the 𝑘th segment in the 𝑖th row in 𝐵ℓ with respect

to the lag values of itself and others. For its own lags, 𝛾ℓ,𝑖 = 1 denotes that the element

of the 𝑖th row and the 𝑖th column in the coefficient matrix for lag-ℓ, 𝐵ℓ,𝑖,𝑖, is nonzero, and

𝛾ℓ,𝑖 = 0 indicates a coefficient of zero, i.e., 𝐵ℓ,𝑖,𝑖 = 0. In addition, [ℓ,𝑖,𝑘 = 1 indicates that

the 𝑖th row in 𝐵ℓ and the columns of the 𝑘th segment for the off-diagonal elements in 𝐵ℓ

are all nonzero, i.e. 𝐵𝑙,𝑖,̃𝑠𝑘 ≠ 0, and [𝑙,𝑖,𝑘 = 0 otherwise. Consider the Bayesian structure
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selection approach for determining the segmentation structure in the NAR/VAR model.

Following the literature, the prior distributions of the indicators 𝛾ℓ,𝑖 and [ℓ,𝑖,𝑘 are chosen

to be independent Bernoulli distributions with 𝑃
(
𝛾ℓ,𝑖 = 1

)
= 𝜋1 and 𝑃

(
[ℓ,𝑖,𝑘 = 1

)
= 𝜋2, i.e.,

𝐵𝑒𝑟 (𝜋1) and 𝐵𝑒𝑟 (𝜋2), respectively. The priors of the elements in matrix 𝐵ℓ are dependent

on γ` and η`, which are the vectors of the indicators in lag-ℓ, as follows:

𝐵ℓ,𝑖,𝑖 |𝛾ℓ,𝑖, 𝜎2
𝐵 ∼ 𝛾ℓ,𝑖𝑁 (0, 𝜎2

𝐵) + (1 − 𝛾ℓ,𝑖)𝛿0, (2)

𝐵ℓ,𝑖,̃𝑠𝑘 |[ℓ,𝑖,𝑘 , 𝜎
2
𝐵 ∼ [ℓ,𝑖,𝑘𝑀𝑁1×| �̃�𝑘 | (0, 𝐼, 𝜎

2
𝐵𝐼 | �̃�𝑘 |) + (1 − [ℓ,𝑖,𝑘 )𝛿0, (3)

where �̃�𝑘 is the index set of the 𝑘th segment except 𝑖, i.e., 𝑖 ∈ 𝑠𝑘 , �̃�𝑘 = 𝑠𝑘 \ {𝑖}, and | �̃�𝑘 |

denotes the number of elements contained in �̃�𝑘 . In addition, 𝑀𝑁1×| �̃�𝑘 | (0, I , 𝜎2
𝐵
𝐼 | �̃�𝑘 |) is a

1 × | �̃�𝑘 | multivariate normal distribution with a mean vector of 0 and a covariance matrix,

𝜎2
𝐵
𝐼 | �̃�𝑘 |, and 𝛿0 and 𝛿0 are a point mass at 0 and a zero vector 0, respectively. Therefore,

the coefficient prior is a mixture prior of the normal distribution and a point mass. Last,(
𝐵ℓ,𝑖,𝑖, 𝛾ℓ,𝑖

)
and

(
𝐵ℓ,𝑖,̃𝑠𝑘 , [ℓ,𝑖,𝑘

)
for 𝑘 = 1, 2, · · · , 𝑔, 𝑖 = 1, 2, . . . , 𝑚 and 𝑙 = 1, 2, · · · , 𝑝 are assumed

to be independent.

Based on these prior assumptions regarding the coefficients and the additional inverse-

Wishart prior for the covariance matrix of the NAR/VAR model, coefficient inference can be

performed by the vector autoregression Gibbs sampler (VAGSA, Chu et al., 2019). Basically,

in the VAGSA, we need to iteratively generate the posterior samples of the two indicators

and coefficients for the further inference. Similar to other MCMC algorithms, the VAGSA

is computationally expensive, especially when the number of nodes increases. Instead of

generating the posterior samples as an approximation of the posterior distribution, the vari-

ational Bayesian approach is adopted in our study to directly obtain the approximation of

the posterior density function. Here, an EM-type algorithm is used to solve the correspond-

ing optimization problem, and this is expected to significantly improve the computational

efficiency of our approach.
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3.2 The Variational inference procedure

Before introducing the variational Bayesian method, we first reparametrize the NAR/VAR

model. Recall that in the VAGSA, the coefficient prior is a mixture distribution with a

normal distribution and a delta function at point zero. When an indicator is equal to zero,

we can simply set the corresponding coefficient to zero. To simplify the model structure,

we reparametrize the coefficient as the product of the coefficient and the indicator. That

is, 𝐵ℓ,𝑖,𝑖 = 𝛾ℓ,𝑖𝐵ℓ,𝑖,𝑖 and 𝐵ℓ,𝑖,̃𝑠𝑘 = [ℓ,𝑖,𝑘𝐵ℓ,𝑖,̃𝑠𝑘 . Here, the priors of the indicators, 𝛾𝑙,𝑖 and [𝑙,𝑖,𝑘 ,

are still independent Bernoulli distributions with probabilities 𝜋1 and 𝜋2, respectively. In

addition, the prior of 𝐵ℓ,𝑖,𝑖 is chosen as a normal distribution with mean zero and variance

𝜎2
𝛽
, and the prior of 𝐵ℓ,𝑖,̃𝑠𝑘 comes from the multivariate normal distribution with a mean

zero vector and a covariance matrix 𝜎2
𝛽
I| �̃�𝑘 |. Among them, the priors of 𝐵ℓ,𝑖,𝑖 and 𝐵ℓ,𝑖,̃𝑠𝑘 are

independent of 𝛾ℓ,𝑖 and [ℓ,𝑖,𝑘 . Thus, 𝛾ℓ,𝑖𝐵ℓ,𝑖,𝑖 and [ℓ,𝑖,𝑘𝐵ℓ,𝑖,̃𝑠𝑘 have the same effects as those

shown in Eqs. (2) and (3).

Instead of generating the posterior samples directly, the variational Bayesian approach

identifies the best approximate distribution of the true posterior for the further Bayesian

inference. According to the ordinary variational Bayesian approach (Bishop, 2006), the

Kullback-Leibler divergence (KL divergence) is used to measure the dissimilarity of the true

posterior distribution from the approximated posterior distribution. Let \ =
{
𝜋1, 𝜋2,Σ, 𝜎

2
𝐵

}
be the set of parameters and

{
η, γ, B̃

}
be the set of the indicator variables and coefficient

matrices, where η is the vector of [ℓ,𝑖,𝑘 , γ is the vector of 𝛾ℓ,𝑖, and B̃ =

(
𝐵′1, 𝐵

′
2, . . . , 𝐵

′
𝑝

)′
.

Given the prior assumptions, the posterior density function of η, γ, B̃ is proportional to the

the following joint density function:

𝑃(Y ,η, γ, B̃ |X , \) =𝑃(Y |η, γ, B̃,X , \)𝑃(η, γ, B̃ |X , \)

=𝑀𝑁𝑇×𝑚 (XB, I ,Σ)
𝑝∏
ℓ

𝑚∏
𝑖

𝑁 (0, 𝜎2
𝐵)𝜋1𝛾ℓ,𝑖 (1 − 𝜋1)

(1−𝛾ℓ,𝑖)

𝑔∏
𝑘

𝑀𝑁1×| �̃�𝑘 | (0, I , 𝜎
2
𝐵𝐼 | �̃�𝑘 |)𝜋2

[ℓ,𝑖,𝑘 (1 − 𝜋2) (1−[ℓ,𝑖,𝑘 ) , (4)
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Define 𝑞(η, γ, B̃) as an approximate posterior density function of 𝑃(B̃,η, γ |Y ,X). Since

𝐾𝐿 (𝑞 | |𝑃) =
∫ ∑︁

γ

∑︁
η

𝑞(B̃, γ,η) log
(

𝑞(B̃, γ,η)
𝑃(B̃, γ,η |Y ,X; \)

)
𝑑B̃

=

∫ ∑︁
γ

∑︁
η

𝑞(B̃, γ,η) log
(

𝑞(B̃, γ,η)
𝑃(B̃, γ,η,Y |X; \)

)
𝑑B̃︸                                                                 ︷︷                                                                 ︸

−𝐿 (𝑞)

+
∫ ∑︁

γ

∑︁
η

𝑞(B̃, γ,η) log 𝑃(Y |X; \)𝑑B̃︸                                                 ︷︷                                                 ︸
log 𝑃(Y |X;θ)

, (5)

we have

log 𝑃(Y |X;θ) = 𝐿 (𝑞) + 𝐾𝐿 (𝑞 | |𝑃). (6)

According to Eq. (5), the marginal likelihood log 𝑃(Y |X; \) is independent of 𝑞 and can

be treated as a fixed constant. Thus, 𝐿 (𝑞) can be defined as the lower bound of the KL

divergence between 𝑞 and 𝑃. Minimizing the KL divergence with respect to 𝑞, is equivalent

to maximizing the lower bound 𝐿 (𝑞) of 𝑞. Here, one key is to specify the approximation

density 𝑞 via a factorization structure. Following Titsias & Lázaro-Gredilla (2011) and Cai

et al. (2020), due to the independence assumption among the disjoint groups and their own

lags, the following hierarchically factorized distribution is chosen as an approximate density

function: 𝑞(η, γ, B̃), i.e.,

𝑞(η, γ, 𝐵) =
𝑝∏
ℓ

𝑚∏
𝑖

𝑔∏
𝑘

𝑞ℓ,𝑖 (𝐵ℓ,𝑖,𝑖, 𝛾ℓ,𝑖)𝑞ℓ,𝑖,𝑘 (𝐵ℓ,𝑖,̃𝑠𝑘 , [ℓ,𝑖,𝑘 ),

where 𝑞ℓ,𝑖 (𝐵ℓ,𝑖,𝑖, 𝛾ℓ,𝑖) and 𝑞ℓ,𝑖,𝑘 (𝐵ℓ,𝑖,̃𝑠𝑘 , [ℓ,𝑖,𝑘 ) are chosen from the corresponding prior distri-

butions. Then, a variational extension of the EM algorithm is adopted in the estimation

process by maximizing the corresponding 𝐿 (𝑞) with respect to the parameters. In the E-

step, one would take the expectation of 𝐿 (𝑞) with respect to η, γ and 𝐵, and then in the

M-step, one optimizes 𝐿 (𝑞) with respect to \. Iterate the two steps until the lower bound

𝐿 (𝑞) converges.
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In the E-step, 𝑞(η, γ, 𝐵) is updated as follows:

𝑞(η, γ, 𝐵) =

𝑝∏
ℓ

𝑚∏
𝑖

𝑔∏
𝑘

𝑞ℓ,𝑖 (𝐵ℓ,𝑖,𝑖 |𝛾ℓ,𝑖)𝑞ℓ,𝑖 (𝛾ℓ,𝑖)𝑞ℓ,𝑖,𝑘 (𝐵ℓ,𝑖,̃𝑠𝑘 |[ℓ,𝑖,𝑘 )𝑞ℓ,𝑖,𝑘 ([ℓ,𝑖,𝑘 ).

=

𝑝∏
ℓ

𝑚∏
𝑖

𝑔∏
𝑘

(
𝜙1,ℓ,𝑖𝑁

(
`1,ℓ,𝑖,𝑖,Σ𝐵ℓ,𝑖,𝑖

) )𝛾ℓ,𝑖 ( (1 − 𝜙1,ℓ,𝑖 ) 𝑁 (0, 𝜎2
𝐵)

) (1−𝛾ℓ,𝑖)
(
𝜙2,ℓ,𝑖,𝑘𝑀𝑁1×| �̃�𝑘 | (µ2,ℓ,𝑖,̃𝑠𝑘 , I ,Σ𝐵ℓ,𝑖,�̃�𝑘 )

)[ℓ,𝑖,𝑘 ( (
1 − 𝜙2,ℓ,𝑖,𝑘

)
𝑀𝑁1×| �̃�𝑘 | (0, I , 𝜎

2
𝐵𝐼 | �̃�𝑘 |)

) (1−[ℓ,𝑖,𝑘 )
,

where

Σ𝐵ℓ,𝑖,𝑖 =

(
X (𝑖) ′
ℓ

X (𝑖)
ℓ
(Σ−1)𝑖,𝑖 + 𝜎2

𝐵

)−1
,

`1,ℓ,𝑖,𝑖 = Σ𝐵ℓ,𝑖
©«(Σ−1)𝑖,𝑖X (𝑖) ′

ℓ

©«𝑌 (𝑖) −
𝑝∑︁
𝑗≠𝑙

X 𝑗𝐸 (𝐵(𝑖)
𝑗
) −X (−𝑖)

ℓ
𝐸 (𝐵(−𝑖,𝑖)

ℓ
)ª®¬

+𝐸
(
𝑡𝑟

(
(Σ−1)−𝑖,𝑖X (𝑖) ′

ℓ

(
𝑌 (−𝑖) −XB (−𝑖)

))))
,

𝜙1,ℓ,𝑖 = 𝐼𝑛𝑣 − 𝑙𝑜𝑔𝑖𝑡
{
𝑙𝑜𝑔𝑖𝑡 (𝜋1) −

1

2
log(𝜎2

𝐵) +
1

2
log(𝑑𝑒𝑡 (Σ𝐵ℓ,𝑖,𝑖 )) +

(Σ𝐵ℓ,𝑖,𝑖 )−1`21,ℓ,𝑖,𝑖
2

}
,

Σ𝐵ℓ,𝑖,�̃�𝑘
=

(
X (𝑖) ′
ℓ

X (𝑖)
ℓ
(Σ−1)�̃�𝑘 ,̃𝑠𝑘 + 𝜎

2
𝐵I| �̃�𝑘 |

)−1
,

µ2,ℓ,𝑖,̃𝑠𝑘 =
©«X (𝑖) ′

ℓ

©«𝑌 ( �̃�𝑘 ) −
𝑝∑︁
𝑗≠𝑙

X 𝑗𝐸 (𝐵( �̃�𝑘 )
𝑗

) −X (−𝑖)
ℓ

𝐸 (𝐵(−𝑖,̃𝑠𝑘 )
ℓ

)ª®¬ (Σ−1)�̃�𝑘 ,̃𝑠𝑘

+𝐸
(
𝑡𝑟

(
X (𝑖) ′
ℓ

(
𝑌 (−�̃�𝑘 ) −XB (−�̃�𝑘 )

)
(Σ−1)−�̃�𝑘 ,̃𝑠𝑘

)))
Σ𝐵ℓ,𝑖,�̃�𝑘

,

𝜙2,ℓ,𝑖,𝑘 = 𝐼𝑛𝑣 − 𝑙𝑜𝑔𝑖𝑡
{
𝑙𝑜𝑔𝑖𝑡 (𝜋2) −

1

2
log(𝑑𝑒𝑡 (𝜎2

𝛽I�̃�𝑘 )) +
1

2
log(𝑑𝑒𝑡 (Σ𝐵ℓ,𝑖,�̃�𝑘 ))

+1
2
𝑡𝑟

(
(Σ𝐵ℓ,𝑖,�̃�𝑘 )

−1µ′
2,ℓ,𝑖,̃𝑠𝑘

µ2,ℓ,𝑖,̃𝑠𝑘

)}
.

Here, X (𝑖)
ℓ

and X (−𝑖)
ℓ

denote the 𝑖th column of Xℓ and matrix Xℓ excluding the 𝑖th column,

respectively. The same definition structure is used for Y and 𝐵. In addition, 𝐵(−𝑖,𝑖)
ℓ

and

(Σ)−1−𝑖,𝑖 denote the 𝑖th column of 𝐵ℓ and Σ−1 without 𝑖th element. 𝐼𝑛𝑣 − 𝑙𝑜𝑔𝑖𝑡 (·) is an inverse

logistic function.

In the M-step, we take the derivative of 𝐿 (𝑞) with respect to \ and then set it as a zero
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vector. Thus, the components in \ can be updated as the solutions of the normal equations,

i.e.,

𝜋1 =

∑𝑝

ℓ=1

∑𝑚
𝑖=1 𝜙1,ℓ,𝑖

𝑚𝑝
,

𝜋2 =

∑𝑝

ℓ=1

∑𝑚
𝑖=1

∑𝑔

𝑘=1 𝜙2,ℓ,𝑖,𝑘∑𝑔

𝑘=1 | �̃�𝑘 |𝑚𝑝
,

Σ =
𝐸

(
(Y −XB)′ (Y −XB)

)
𝑇

,

𝜎2
𝐵 =

∑𝑝

𝑙

∑𝑚
𝑖 𝜙1,𝑙,𝑖 (Σ𝐵,𝑙,𝑖,𝑖 + `21,𝑙,𝑖) +

∑𝑝

𝑙

∑𝑚
𝑖

∑𝑔

𝑘
𝜙2,𝑙,𝑖,𝑘 𝑡𝑟 (Σ𝐵,𝑙,𝑖,̃𝑠𝑘 + µ′

2,𝑙,𝑖,̃𝑠𝑘
µ2,𝑙,𝑖,̃𝑠𝑘 )∑𝑝

𝑙

∑𝑚
𝑖

(
𝜙1,𝑙,𝑖 +

∑𝑔

𝑘
| �̃�𝑘 |𝜙2,𝑙,𝑖,𝑘

) .

More details regarding both steps are shown in the supplementary materials.

Since we iterate the E- and M-steps sequentially, a natural choice of a stopping criterion

is that the difference between the values of 𝐿 (𝑞) in two consecutive iterations is less than a

certain threshold. Then one can approximate the posterior inclusion probabilities as follows:

𝑃([ℓ,𝑖,𝑘 = 1|Y ,X , \̂) ≈ 𝑞([ℓ,𝑖,𝑘 = 1|\̂) = 𝜙2,ℓ,𝑖,𝑘 ,

𝑃(𝛾ℓ,𝑖,𝑖 = 1|Y ,X , \̂) ≈ 𝑞(𝛾ℓ,𝑖,𝑖 = 1|\̂) = 𝜙1,ℓ,𝑖 .

Thus, based on the median probability criterion (Barbieri & Berger, 2004), 𝐵ℓ,𝑖,𝑖 or 𝐵ℓ,𝑖,̃𝑠𝑘 is

identified as non zero if 𝜙1,𝑙,𝑖 or 𝜙2,𝑙,𝑖,𝑘 is larger than or equal to 1/2. Finally, the one-step

head prediction Ŷ𝑇+1 can be obtained by Ŷ𝑇+1 = Y𝑇𝐵1 + Y𝑇−1𝐵2 + . . . ,Y𝑇+1−𝑝𝐵𝑝, where the

𝐵ℓ are estimated based on the identified active structures.

The EM-type method is a locally optimal approach and may be sensitive to the initial

status. Realistic initial values of \ may provide poor estimation results due to improper

choices of the initial prior probabilities. In our study, the initial values of the prior probabil-

ities, 𝜋1 and 𝜋2, are set to be small, e.g., 𝜋1 = 𝜋2 = 0.01. The initial values of the coefficient

matrix, 𝐵, are obtained via the least-squares estimation method, and the initial value of Σ is

set as the sample variance of Y divided by 2. The threshold value of the stopping criterion

is usually set to a prespecified value, which is less than or equal to 10−6.
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4 Simulation

This section investigates the finite-sample performance of the proposed VB approach com-

pared with that of a known data generation process. We first revisit the simulation studies of

VAGSA in Chu et al. (2019). Given dynamic networks, we care not only about the structure

selection ability but also about the computational efficiency of our approach. For medium-

sized examples, i.e., 𝑚 = 10 and 20, we directly compare the performances of the VB method

and the VAGSA. When the dimensionality increases to 𝑚 = 50, the VAGSA requires an

extremely long computational time, and thus, we illustrate only the results of the proposed

VB method.

4.1 Medium-sized network examples

We follow the simulation setups in Chu et al. (2019) and generate medium-sized network

series with 𝑚 = 10 and 20 for a fair comparison. We assume that there are multiple lags 𝑝

in the VAR framework. Three dependence structures are considered in the simulations.

m10UG and m20UG: The true models follow the universal grouping structure with (𝑚, 𝑝) =

(10, 5) and (20, 5), respectively. There are 72 and 145 nonzero coefficients in two cases.

m10SG and m20SG: The segmentation structure is considered in these two simulations

with 𝑚 = 10 and 20. Let 𝑆𝑚,𝑔 denote a specific group structure with 𝑚 time series for

𝑔 disjoint groups. We set 𝑆10,3 = {(1, 2, 3), (4, 5, 6), (7, 8, 9, 10)} for (𝑔, 𝑚, 𝑝) = (3, 10, 5)

and 𝑆20,4 = {(1, 2, 3, 4, 5), (6, 7, 8, 9, 10), (11, 12, 13), (14, . . . , 20)} for the case where

(𝑔, 𝑚, 𝑝) = (4, 20, 5). There are 40 and 109 nonzero coefficients, respectively.

m10NG and m20NG: In the “no grouping” cases, there are 18 and 27 nonzero coefficients

for (𝑚, 𝑝) = (10, 5) and (20, 5), respectively.

In addition, the error terms are generated from a multinormal distribution with zero mean.

We consider two different covariance matrices when generating the stochastic noises, namely,

an identity matrix I𝑚 indicating that there are no concurrent correlations among the nodes

and a symmetric matrix Σ defined as follows:
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Σ10: The diagonal of Σ10 is (0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.8, 0.8, 0.8, 0.8), and the off-diagonal

correlation coefficients of Σ10 are 0.4|𝑖
′−𝑖 | for 𝑖′ ≠ 𝑖.

Σ20: The diagonal of Σ20 is (0.9, 0.9, 0.9, 0.8, 0.8, 0.8, 0.9, · · · , 0.9), and the off-diagonal cor-

relation coefficients of Σ20 are 0.4|𝑖
′−𝑖 | for 𝑖′ ≠ 𝑖.

For each simulation, we generate data with 𝑇 = 301, where the first 300 samples are used

for model training and the last point 𝑌301 is used to demonstrate the prediction ability of

the proposed method. Each simulation is replicated 𝑁 = 100 times, and the segmentation

structure is assumed to be known. We simply fix the number of lags 𝑝 to 10 and set the

threshold value of the stopping criteria to 10−8 in all simulations.

As mentioned before, we also implement the VAGSA for the simulation cases for com-

parison purposes. According to Chu et al. (2019), first, we add the inverse Wishart prior

for Σ with 𝑚 degrees of freedom and a scale matrix 𝐼𝑚. For the other parameters, the prior

probabilities, 𝜋1 and 𝜋2, are fixed at 0.5, and for the variance in the mixture prior distribu-

tion, 𝜎𝐵 is 0.5 for the cases of m10UG, m20UG, m10SG and m20SG and 15 for the other

two cases, m10NG and m20NG. When we implement the VAGSA, there are 3000 sweeps in

total, and we take the last 1000 samples for inference. For the details of implementing the

VAGSA, please refer to Chu et al. (2019).

4.2 Large-scale network examples

To illustrate the feasibility of the proposed VB approach for high-dimensional scenarios, we

conduct simulations with 𝑚 = 50 nodes. The setups of the large-scale simulations are similar

to those used in Section 4.1. Here, we also consider the three different grouping structures,

and the details of three cases are shown as follows.

m50UG: There are 355 nonzero coefficients in 𝐵1, 𝐵3 and 𝐵5 for (𝑚, 𝑝) = (50, 5).

m50SG: We set 𝑆50,8 = {(1, 2, 3, 4, 5), (6, 7, 8, 9, 10), (11, 12, 13), (14, . . . , 20), (21, . . . , 30),

(31, . . . , 35), (36, . . . , 40), (41, . . . , 50)}. There are 360 nonzero coefficients in 𝐵1, 𝐵3

and 𝐵5 for (𝑚, 𝑝) = (50, 5).

m50NG: There are 128 nonzero coefficients in 𝐵1, 𝐵3 and 𝐵6 for (𝑚, 𝑝) = (50, 5).
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Figure 5 visualizes the true sparsity of the network dependence with the nonzero coefficients

marked in bold. Note that only the active coefficient matrices are displayed, while the others,

such as lag-2 and lag-4, are omitted as zero everywhere.

Similarly, two different noise covariance matrices are used for data generation, i.e., a

50 × 50 identity matrix I50 and a symmetric matrix Σ50, which is defined as follows:

Σ50: The diagonal elements are
©«0.9, 0.9, 0.9, 0.8, 0.8, 0.8, 0.9, · · · , 0.9︸        ︷︷        ︸

14

, 0.8, · · · , 0.8︸        ︷︷        ︸
20

, 0.9, · · · , 0.9︸        ︷︷        ︸
10

ª®®¬,
and the correlation coefficients of Σ50 are set as 0.4|𝑖

′−𝑖 | for 𝑖′ ≠ 𝑖.

In this simulation example, we generate data with 𝑇 = 701. The first 700 samples are used

for model training, and the last sample 𝑌701 is used to illustrate the prediction ability of the

model.

4.3 Simulation results

Based on the simulation setups in Sections 4.1 and 4.2, we independently repeat each case

100 times. When we implement the proposed VB approach, the initial setups are basically

the same as those use in Section 3, except for the case of m50NG with a covariance matrix

of Σ50. For this case, we set 𝜋1 = 𝜋2 = 0.5, instead of 0.01. To illustrate the performances of

the proposed method, we consider four measurements. The true positive rate (TPR) and the

false positive rate (FPR) are designed to show the accuracy of structure identification. The

average model size (AMS) measures how many active elements are identified. Compared to

the TPR and the FPR, the AMS gives an overall indicator of identification accuracy. The

last measurement is the average of the mean square prediction errors (MSPEs), and this is

used to report the prediction ability of the model. The definitions of these four measurements
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(a) m50UG (b) m50SG (c) m50NG

Figure 5: The true active coefficient matrices for all UG, SG and NG cases.
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are shown as follows:

TPR =
# correctly identified active variables

# true active variables
,

FPR =
# incorrectly identified active variables

# true inactive variables
,

𝐴𝑀𝑆 =
1

𝑁

𝑁∑︁
𝑗

# identified active variables in the 𝑗th replicate,

where 𝑁 is the number of replicates and

MSPE =
1

𝑚𝑁

𝑚∑︁
𝑖=1

𝑁∑︁
𝑗=1

(
𝑌𝑇+1,𝑖, 𝑗 − 𝑌𝑇+1,𝑖, 𝑗

)2
.

Last, the average CPU time for a replication is also reported in seconds. Here, we run the

R code for the proposed VB method, and we run the VAGSA based on its MATLAB code.

All codes are implemented on a PC with an Intel(R) Core(TM) i7-4770 CPU @3.400 GHz

and 16.0 GB of RAM.

The results of all cases are summarized in Table 1. For the medium-sized networks with

𝑚 = 10 and 𝑚 = 20, both the VB and VAGSA results are reported. For large-scale networks

with 𝑚 = 50, only the VB results are reported and the measurements for the VAGSA are

denoted by “-”. Consider the performances of the medium-sized networks. According to Table

1, both Bayesian methods achieve similar structural identifications and inference accuracies

for medium-sized networks. In particular, the TPRs are perfect with values close to 100%,

implying that all active elements are successfully identified. In terms of AMS, both methods

share similar AMS values and are all close to the true model sizes. In addition, the VB

method has better performance in terms of the FPR than the alternative VAGSA. For the

UG and SG cases, the FDR values of the VB method are less than a quarter of those of the

VAGSA. The VAGSA performs slightly better for the four NG cases; however, the differences

between the two methods are minor. To check the selection results in detail, we find that the

VB approach might not identify a variable with a small coefficient for the NG cases. Finally,

consider the prediction ability. The VB method has slightly better accuracies than those of

the VAGSA in most cases, as reflected in the MSPE. Most importantly, there is a dramatic
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improvement in terms of the average CPU time when using the VB method. In general, it

only needs approximately 1/7 of the computational cost required by the VAGSA. For some

cases with 𝑚 = 10 and 𝐼10, the VB approach even saves 34/35 CPU time, without sacrificing

accuracy.

The good performance of the VB method continues for the large-scale networks because

it is computationally possible. Figures 6 and 7 show the average estimates of the coefficient

matrices for two different covariance matrices. These coefficient matrices are all close to

the true matrices. Use the UG case as an example. The structure identification results are

perfect because the TPR = 100%, the FPR = 0% and the AMS is still close to the true

value. In the NG case with a covariance matrix of, Σ50, the corresponding TPR is 92%,

which is slight lower than the TPRs in the other cases. This may be because the VB method

is used to approximate the true posterior distribution, and thus, active variables with small

coefficients might not be detected. Overall, the proposed VB method has good performance

in identifying the active structures for large-scale network cases. In addition, the average

CPU times show that the case with a higher level structure, namely, UG, requires the least

computational time, followed by the SG and NG cases.
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Table 1: Numerical Comparison between the VB Method and the VAGSA

VB/VAGSA TPR(%) FPR(%) AMS MSPE Ave. CPU Time

m10UG-𝐼10 100/100 0.07/0.31 72.62/74.90 1.00/1.01 4/148

m10UG-Σ10 100/100 0.06/0.28 72.51/74.59 1.00/0.83 5/138

m10SG-𝐼10 100/100 0.15/0.63 41.35/46.02 1.07/1.09 12/303

m10SG-Σ10 100/100 0.13/0.26 41.17/46.02 0.86/1.09 11/303

m10NG-𝐼10 98/97 0.15/0.11 19.07/18.58 1.00/1.00 40/628

m10NG-Σ10 99/99 0.11/0.08 18.86/18.55 0.89/0.88 36/653

m20UG-𝐼20 100/100 0.03/0.18 145.79/151.89 0.98/0.99 15/236

m20UG-Σ20 100/100 0.02/0.14 145.56/150.54 0.95/0.95 180/237

m20SG-𝐼20 100/100 0.06/0.26 109.25/117.05 1.10/1.11 44/652

m20SG-Σ20 100/100 0.06/0.21 109.22/115.20 0.90/0.90 51/672

m20NG-𝐼20 97/98 0.08/0.15 29.29/32.39 0.99/0.99 291/2183

m20NG-Σ20 97/98 0.06/0.13 28.55/31.43 0.86/0.86 262/2247

m50UG-𝐼50 100/- 0.00/- 355.47/- 1.02/- 213/-

m50UG-Σ50 100/- 0.00/- 355.57/- 0.87/- 239/-

m50SG-𝐼50 100/- 0.01/- 361.58/- 1.02/- 1082/-

m50SG-Σ50 100/- 0.01/- 361.15/- 0.88/- 1767/-

m50NG-𝐼50 100/- 0.03/- 134.67/- 1.02/- 7860/-

m50NG-Σ50 92/- 0.03/- 123.33/- 0.89/- 58194/-

5 Empirical Study

We apply the VB approach to estimate the temporal dependences of the German natural

gas flow networks and perform day-ahead forecasting with the NAR/VAR framework. The

data cover two years, from 1st October 2013 to 30th September 2015. The gas flows contain

both inflows (supply) and outflows (demand) recorded 7 days a week at 51 distribution

nodes belonging to 4 categories with different functions. There are 34 municipal nodes, that

provide gas to local residential areas and small business districts. The 11 industry nodes

are responsible for factory production. Moreover there is 1 border node, which is important

in Germany, because these nodes serve as network transfer points for natural gas imported
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(a) m50UG (b) m50SG (c) m50NG

Figure 6: Estimated coefficient matrices with Σ = I50 for all UG, SG and NG cases.

23



(a) m50UG (b) m50SG (c) m50NG

Figure 7: Estimated coefficient matrices with Σ = Σ50 for all UG, SG and NG cases.
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Municipal (34 nodes) Industrial (11 nodes)

Border (1 node) Others (5 nodes)

Figure 8: Normalize daily gas flows values in different types.

and exported via Germany. The rest 5 nodes are categorized to “others” that serve as switch

nodes or perform other functions. Figure 8 displays the time series of the 51 nodes that

show different dynamic patterns. For further analysis, we normalize the values of the flows.

In addition, note that the data in municipal nodes have been seasonally adjusted via the

daily temperature, and 3 nodes, O3, O4, and O5, in the “others” category have also been

seasonally adjusted.

We adopt the NAR/VAR model with the segmentation structure to analyze the gas

network data. Here, the segmented grouping structures are defined based on the types of

nodes that are involved. That is, each type of node is treated as a group. In addition, we

set the number of lags 𝑝 as 14 to incorporate social dependence up to two weeks ahead.
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We use the data from Oct 1st, 2013, to March 31, 2015, as the in-sample training data.

The threshold value of the stopping criterion for the proposed VB method is set to be 10−6,

and the other initial settings are the same as those used we set in the simulation studies

in Section 4. After learning the model via the VB method, we perform a one-step ahead

forecast. That is, at each daily point, we shift one more day, use the expanded sample to

retrain the model coefficients based on the active segmentation structures, and perform a

one-day ahead forecast. Note that we repeat the iterative forecast for the remaining 0.5

years.

Overall, we obtain 183 forecasts. To illustrate the performance of the proposed VB

method, in addition to the mean absolute percentage estimator (MAPE), the normalized

MSE (NRMSE) for the 51 nodes is also used, and both measures are defined as follows:

𝑀𝐴𝑃𝐸 =
1

183 × 51

729∑︁
𝑡=547

51∑︁
𝑖=1

|𝑌𝑡+1,𝑖 − 𝑌𝑡+1,𝑖 |
|𝑌𝑡+1,𝑖 |

, (7)

𝑁𝑅𝑀𝑆𝐸 =
1

183 × 51

(
729∑︁
𝑡=547

51∑︁
𝑖=1

(𝑌𝑡+1,𝑖 − 𝑌𝑡+1,𝑖)2
)
/ 1

183 × 51

729∑︁
𝑡=547

51∑︁
𝑖=1

𝑌𝑡+1,𝑖 . (8)

Figures 9 displays the estimated coefficient matrices for lag-1 to lag-3, and these three

coefficient matrices are quite sparse. For lag-1, it can be observed that the 4th and 14th

rows, corresponding to municipal nodes M4 and M14, affect the other municipal nodes. In

the 35th row, an industry node, I1, influences the other industry nodes but not the other

three types. The 51st row is the status of node O5; the others node only have relations

with municipal nodes. On the other hand, the only border node is only related to itself and

has no interactions with the others. For lag-2, only the 35th row I1 influences the nodes in

the other category. For lag-3, some nodes have minor influences by themselves. As the lag

increases, there are fewer and fewer nodes that may influence others. Furthermore, there is

no more serial dependence in the network after lag-10.

Table 2 reports the overall model fitting and forecasting performances via the obtained

MAPE and NRMSE values. The details of individual nodes are shown in the Appendix.

Basically, the VB method delivers good performances for both the in-sample training period

from 1st October 2014 to 31st March 2015 and the out-of-sample forecasting period from

26



Figure 9: The coefficient matrix for lag-1 to lag-3.
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Table 2: The MAPEs and NRMSEs for the fitted and forecast results classified by type.

In sample from 01/10/2014 to 31/03/2015
Type Number MAPE (%) Range (%) SD NRMSE Range SD

Municipal 34 6.28 (3.20, 14.70) 1.93 0.09 (0.04, 0.36) 0.05
Industrial 11 11.69 (0.89, 34.22) 11.74 0.12 (0.01, 0.31) 0.10
Border 1 9.36 − − 0.11 − −
Others 5 13.05 (3.78, 36.30) 13.26 0.14 (0.05, 0.34) 0.12

Out of sample from 01/04/2015 to 30/09/2015
Municipal 34 7.89 (4.66, 11.85) 1.60 0.10 (0.06, 0.15) 0.02
Industrial 11 15.98 (1.70, 54.57) 19.00 0.12 (0.02, 0.30) 0.10
Border 1 11.77 − − 0.14 − −
Others 5 8.65 (5.52, 13.47) 3.32 0.10 (0.07, 0.12) 0.02

1st April 2015 to 30th September 2015. According to Table 2, regardless of whether the

in-sample training and out-of-sample forecasting results are examined, the average values

of the MAPE are less than 15%, and the corresponding NRMSE values are all less than

0.15. Thus, we can claim that the NAR/VAR model with segmentation structures fits

the in-sample training data well and provides good prediction capability for out-of-sample

forecasting. According to Table A1 in the Appendix, most nodes have small mean values

and standard deviations with repect to MAPE and NRMSE. For nodes I5, I8 and I10, both

the MAPE and NRMSE values are large. A possible reason for this phenomenon may be the

violation of the stationarity assumption in the NAR/VAR model because the corresponding

trend of the daily data changes frequently. In addition, in the “others” type, due to some

extreme values for a few special days, node O1 may not have good model fitting results.

When we consider the out-of-sample forecasting performance, the corresponding MAPE and

NRMSE values share similar patterns to those witnessed in the in-sample training results.

Nodes I5, I8, and I10 still have large values for both measurements. However, node O1 does

have good MAPE and NRMSE values because there are no extreme values shown in the

prediction period. Overall, the out-of-sample forecasting performance is acceptable because

the average MAPE and NRMSE values are 9.78% and 0.11, respectively.

6 Conclusion

In this paper, we focus on Bayesian analysis with NAR/VAR models, especially when there

are many time series involved. First, to simplify the model complexity, the model structure
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assumptions in Song & Bickel (2011) are adopted. Then, model inference can be performed

via a Bayesian structure selection approach. Here, to denote active structures, indicators

are added to the NAR/VAR model. Instead of generating the posterior samples of these

indicators via an MCMC algorithm, we directly obtain the proper approximation of the

posterior density function via a variational Bayesian approach. Based on a factorized ap-

proximation assumption for the latent structures, a variational EM-type algorithm is used to

obtain the best approximation; then, according to the approximated posterior probabilities

of the indicators, the median probability criterion is used to determine the active structures

in the corresponding coefficient matrices. The simulation results support the notion that the

proposed variational Bayesian approach not only identifies the proper active structures in

NAR/VAR models but also significantly reduces the computational cost. Finally, German

gas flow network data with 51 nodes are analyzed to illustrate the performance of the pro-

posed method. The analytical results of the proposed VB method yield the trends of nodes,

which may be useful for assisting operators with performing appropriate operations.

There are several possible future research directions. The first concerns the parameter

turning strategy for the proposed VB method. In our experience, the performance may be

sensitive to the chosen initial parameters, especially for the prior probabilities 𝜋1 and 𝜋2.

According to Ormerod et al. (2017) and Zhang et al. (2019), we suggest setting 𝜋𝑖 as small

probabilities, as this would tend to select a compact model. However, sometimes the model

may not identify active variables with small coefficients. For example, in the simulated NG

case with m = 50 and a covariance matrix of Σ50, we set 𝜋1 = 𝜋2 = 0.5, instead of 0.01.

Thus, choosing the proper initial setups should be an considered issue for the proposed VB

method. The cross-validation approach should be examined as a possible strategy, and other

possibilities should be related to proper information criteria. The second research direction

is to take the group sparsity assumption into account. That is, the variables within an active

segmentation still satisfy the elementwise sparsity assumption. Following Chen et al. (2016),

we need to add new indicators for the variables within each segmentation. The idea of the

variational Bayesian approach in Cai et al. (2020) could be modified for analyses using NAR

models. In our real example, the segmentation structures are defined based on the types

of nodes present. However, these may not be the best segmentation structures based on
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these prespecified gas station types. Following Chu et al. (2019), we may apply a data-

driven clustering approach to identify other segmentation structures for the corresponding

NAR models. Thus, it would be an interesting research direction to integrate the clustering

algorithm with the variational Bayesian approach. That is, we can identify the proper

segmentation structures and determine the active structures simultaneously.
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A Appendix

Table A1: The MAPEs and NRMSEs for the in-sample training period from 01/10/2014 to
31/03/2015 classified by type.

Municipal:

MAPE
(%) 1 2 3 4 5 6 7 8 9 10 11 12

mean 4.53 5.04 8.89 6.04 8.00 4.89 6.00 5.04 5.58 6.285 5.62 6.36
sd 3.59 3.58 7.30 4.66 6.58 3.98 4.81 4.04 4.80 5.30 4.39 5.07

NRMSE 0.06 0.06 0.11 0.08 0.10 0.06 0.08 0.07 0.07 0.08 0.07 0.08
MAPE

(%) 13 14 15 16 17 18 19 20 21 22 23 24

mean 5.77 4.38 6.53 5.65 6.93 6.93 5.41 7.24 3.20 7.00 7.32 14.70
sd 4.59 3.46 4.89 4.23 5.53 5.70 4.74 5.31 2.44 5.31 5.37 23.15

NRMSE 0.07 0.06 0.09 0.07 0.09 0.09 0.07 0.09 0.04 0.09 0.10 0.36
MAPE

(%) 25 26 27 28 29 30 31 32 33 34

mean 4.50 5.48 6.61 5.27 8.25 6.38 7.89 4.94 5.41 5.44
sd 3.54 4.46 5.42 4.17 6.78 5.37 6.72 3.50 3.98 4.48

NRMSE 0.06 0.07 0.09 0.07 0.10 0.8 0.10 0.06 0.07 0.07
Industry:

MAPE
(%) 1 2 3 4 5 6 7 8 9 10 11

mean 11.04 8.30 2.80 10.94 24.35 1.68 4.71 27.73 1.96 34.22 0.89
sd 10.20 9.05 2.34 11.57 33.19 1.76 4.51 39.21 1.63 41.65 0.10

0.12 0.10 0.04 0.14 0.22 0.02 0.06 0.22 0.03 0.31 0.01
Border:

MAPE
(%) 1

mean 9.36
sd 14.23

NRMSE 0.11
Others:

MAPE
(%) 1 2 3 4 5

mean 36.297 8.507 10.711 5.93 3.78
sd 20.69 10.28 10.73 4.46 3.00

NRMSE 0.34 0.07 0.13 0.08 0.05
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Table A2: The MAPEs and RMSEs for the out-of-sample forecasting period 01/01/2015 to
30/09/2015 classified by type.

Municipal:

MAPE
(%) 1 2 3 4 5 6 6 8 9 10 11 12

mean 7.56 7.42 10.20 7.51 10.05 7.23 8.13 7.54 7.66 7.70 7.45 8.77
sd 5.66 5.69 7.63 5.74 7.23 5.60 6.34 6.10 5.85 6.15 5.91 6.78

NRMSE 0.10 0.10 0.13 0.10 0.13 0.10 0.11 0.10 0.10 0.10 0.10 0.11
MAPE

(%) 13 14 15 16 17 18 19 20 21 22 23 24

mean 6.59 6.34 9.82 8.93 8.52 8.20 6.50 10.28 5.23 10.49 11.8 8.16
sd 4.91 5.11 7.75 7.37 6.45 6.71 8.35 8.75 4.25 8.88 9.30 6.31

NRMSE 0.09 0.08 0.12 0.12 0.11 0.10 0.09 0.13 0.07 0.13 0.15 0.12
MAPE

(%) 25 261 27 28 29 30 31 32 33 34

mean 4.65 7.91 8.79 7.67 8.85 5.81 8.06 6.60 5.92 5.90
sd 3.79 5.69 6.44 5.90 7.54 4.31 6.74 4.95 4.61 4.31

NRMSE 0.06 0.10 0.11 0.10 0.11 0.74 0.10 0.08 0.08 0.08
Industry:

MAPE
(%) 1 2 3 4 5 6 7 8 9 10 11

mean 9.32 8.52 2.51 9.93 32.62 2.98 6.30 54.57 1.70 45.35 1.94
sd 8.21 9.87 2.80 8.44 61.38 5.15 5.61 121.58 1.41 80.72 3.70

NRMSE 0.11 0.10 0.03 0.12 0.23 0.05 0.08 0.27 0.02 0.30 0.04
Border:

MAPE
(%) 1

mean 11.77
sd 11.40

NRMSE 0.15
Others:

MAPE
(%) 1 2 3 4 5

mean 5.76 9.73 13.47 9.03 5.53
sd 5.43 9.87 23.81 6.80 4.75

NRMSE 0.08 0.11 0.12 0.11 0.07
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B Supplementary Document

B.1 Variational EM algorithm for th NAR model

In this extra supplementary document, we provide more details about the EM algorithm for

the VB approach with respect to the NAR/VAR model.

B.1.1 E-Step

Let \ =
{
𝜋1, 𝜋2,Σ, 𝜎

2
𝐵

}
be the collection of NAR model parameters and {η, γ,B} be the set

of latent variables. The joint probability of Y ,η, γ, 𝐵 and as follows:

𝑃(Y ,η, γ, B̃ |X , \) =𝑃(Y |η, γ, B̃,X , \)𝑃(η, γ, B̃ |X , \)

=𝑀𝑁𝑇×𝑚 (XB, I ,Σ)
𝑝∏
𝑙

𝑚∏
𝑖

𝑁 (0, 𝜎2
𝐵)𝜋1𝛾ℓ,𝑖 (1 − 𝜋1)

(1−𝛾ℓ,𝑖)

𝑔∏
𝑘

𝑀𝑁1×| �̃�𝑘 | (0, I , 𝜎
2
𝐵𝐼 | �̃�𝑘 |)𝜋2

[ℓ,𝑖,𝑘 (1 − 𝜋2) (1−[ℓ,𝑖,𝑘 ) .

As mentioned before, in this study, we can maximize the lower bound 𝐿 (𝑞) with respect to

the approximate density function 𝑞. In the reparameterized spike-and-slab prior, each pair

of variables
{
𝐵ℓ,𝑖,𝑖, 𝛾ℓ,𝑖

}
and

{
𝐵ℓ,𝑖,̃𝑠𝑘 , [ℓ,𝑖,𝑘

}
are strongly correlated since their product is the

underlying variable that interacts with the data. Thus, a sensible approximation must treat

each pair
{
𝐵ℓ,𝑖,𝑖, 𝛾ℓ,𝑖

}
and

{
𝐵ℓ,𝑖,̃𝑠𝑘 , [ℓ,𝑖,𝑘

}
as a unit so that

{
𝐵ℓ,𝑖,𝑖, 𝛾ℓ,𝑖

}
and

{
𝐵ℓ,𝑖,̃𝑠𝑘 , [ℓ,𝑖,𝑘

}
are

placed in the same factor of the variational distribution. The simplest factorization that

achieves this is:

𝑞(η, γ, 𝐵) =
𝑝∏
ℓ

𝑚∏
𝑖

𝑔∏
𝑘

𝑞ℓ,𝑖 (𝐵ℓ,𝑖,𝑖, 𝛾ℓ,𝑖)𝑞ℓ,𝑖,𝑘 (𝐵ℓ,𝑖,̃𝑠𝑘 , [ℓ,𝑖,𝑘 ),
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and we assume that 𝑞 can have the following formulation:

𝑞(η, γ, 𝐵) =
𝑝∏
ℓ

𝑚∏
𝑖

𝑔∏
𝑘

𝑞ℓ,𝑖 (𝐵ℓ,𝑖,𝑖, 𝛾ℓ,𝑖)𝑞ℓ,𝑖,𝑘 (𝐵ℓ,𝑖,̃𝑠𝑘 , [ℓ,𝑖,𝑘 ), (9)

=

𝑝∏
𝑙

𝑚∏
𝑖

𝑔∏
𝑘

𝑞ℓ,𝑖 (𝐵ℓ,𝑖,𝑖 |𝛾ℓ,𝑖)𝑞ℓ,𝑖 (𝛾ℓ,𝑖)𝑞ℓ,𝑖,𝑘 (𝐵ℓ,𝑖,̃𝑠𝑘 |[ℓ,𝑖,𝑘 )𝑞ℓ,𝑖,𝑘 ([ℓ,𝑖,𝑘 ),

where 𝑞ℓ,𝑖 (𝐵ℓ,𝑖,𝑖 |𝛾ℓ,𝑖), 𝑞ℓ,𝑖,𝑘 (𝐵ℓ,𝑖,̃𝑠𝑘 |[ℓ,𝑖,𝑘 ), 𝑞ℓ,𝑖 (𝛾ℓ,𝑖), and 𝑞ℓ,𝑖,𝑘 ([ℓ,𝑖,𝑘 ) are the approximated pos-

terior distribution of 𝐵ℓ,𝑖,𝑖 |𝛾ℓ,𝑖, 𝐵ℓ,𝑖,̃𝑠𝑘 |[ℓ,𝑖,𝑘 , 𝛾ℓ,𝑖, and [ℓ,𝑖,𝑘 , respectively, which were obtained

from the prior distributions. We have assumed that segments are independent and that the

elements with their own lags are also independent. With this assumption, we rewrite the

lower bound as

𝐿 (𝑞) = 𝐸𝑞(γ),𝑞(η)
[
𝐸
𝑞(B̃ |η,γ)

[
log 𝑃

(
Y ,η, γ, B̃ |X , \

)
− log 𝑞

(
η, γ, B̃

)] ]
.
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Hence, we have

𝐿 (𝑞) =
∑︁
𝛾

∏
ℓ

∏
𝑖

𝑞(𝛾ℓ,𝑖)
∑︁
[

∏
ℓ

∏
𝑖

∏
𝑘

𝑞([ℓ,𝑖,𝑘 )
∫
𝐵

(
log 𝑃(Y , γ,η, B̃ |X , \) − log 𝑞(γ,η, B̃)

)
𝑝∏
ℓ

𝑚∏
𝑖

𝑝∏
𝑘

𝑞(𝐵ℓ,𝑖,̃𝑠𝑘 |ηℓ,𝑖,𝑘 )
𝑝∏
ℓ

𝑚∏
𝑖

𝑞(𝐵ℓ,𝑖,𝑖 |𝛾ℓ,𝑖)𝑑B̃

=
∑︁
𝛾ℓ,𝑖

𝑞(𝛾ℓ,𝑖)
∑︁
η

∏
ℓ

∏
𝑖

∏
𝑘

𝑞([ℓ,𝑖,𝑘 )
∫ ∫

𝑞(𝐵ℓ,𝑖,𝑖 |𝛾ℓ,𝑖)
[∫

log 𝑃(Y , γ,η, B̃ |X , \)

∑︁
𝛾ℓ ′,𝑖

∏
ℓ′≠ℓ

∏
𝑖

𝑞(𝛾ℓ′,𝑖)𝑞(𝐵ℓ′,𝑖,𝑖 |𝛾ℓ′,𝑖,𝑖)𝑑𝐵ℓ′,𝑖,𝑖 +
∑︁
𝛾ℓ,𝑖′

∏
ℓ

∏
𝑖′≠𝑖

𝑞(𝛾ℓ,𝑖′)𝑞(𝐵ℓ,𝑖′,𝑖′ |𝛾ℓ,𝑖′,𝑖′)𝑑𝐵ℓ,𝑖′,𝑖′


𝑑𝐵ℓ,𝑖,𝑖

∏
ℓ

∏
𝑖

∏
𝑘

𝑞(𝐵ℓ,𝑖,̃𝑠𝑘 |[ℓ,𝑖,𝑘 )𝑑𝐵ℓ,𝑖,̃𝑠𝑘

−
∑︁
𝛾ℓ,𝑖

𝑞(𝛾ℓ,𝑖)
∑︁
η

∏
ℓ

∏
𝑖

∏
𝑘

𝑞([ℓ,𝑖,𝑘 )
∫ ∫

𝑞(𝐵ℓ,𝑖,𝑖 |𝛾ℓ,𝑖)
[
log

(
𝑞(𝐵ℓ,𝑖,𝑖 |𝛾ℓ,𝑖)𝑞(𝛾𝑙,𝑖)

)
+ log

(
𝑞(𝐵ℓ,𝑖,̃𝑠𝑘 |[𝑙,𝑖,𝑘 )𝑞([𝑙,𝑖,𝑘 )

)]
𝑑𝐵𝑙,𝑖,𝑖𝑑𝐵𝑙,𝑖,̃𝑠𝑘 + constant

=𝐸
𝑞(η),𝑞(B̃[ |η)

[
𝐸
𝑞(𝐵ℓ,𝑖,𝑖 |𝛾ℓ,𝑖=1)

[
𝐸ℓ′≠ℓ,𝑖

(
log

(
𝑃(Y , B̃, γℓ′,𝑖, 𝛾ℓ,𝑖 = 1,η |X , \)

))
+ 𝐸ℓ,𝑖′≠𝑖

(
log

(
𝑃(Y , B̃, γℓ,𝑖′, 𝛾ℓ,𝑖 = 1,η |X , \)

))
− log

(
𝑞(𝐵ℓ,𝑖,𝑖 |𝛾ℓ,𝑖 = 1)

)] ]
𝑞(𝛾ℓ,𝑖 = 1)

+𝐸
𝑞(η),𝑞(B̃[ |η)

[
𝐸
𝑞(𝐵ℓ,𝑖,𝑖 |𝛾ℓ,𝑖=0)

[
𝐸ℓ′≠ℓ,𝑖

(
log

(
𝑃(Y , B̃, γℓ′,𝑖, 𝛾ℓ,𝑖 = 0,η |X , \)

))
+ 𝐸ℓ,𝑖′≠𝑖

(
log

(
𝑃(Y , B̃, γℓ,𝑖′, 𝛾ℓ,𝑖 = 0,η |X , \)

))
− log

(
𝑞(𝐵ℓ,𝑖,𝑖 |𝛾ℓ,𝑖 = 0)

)] ]
𝑞(𝛾ℓ,𝑖 = 0)

+ constant,

where 𝐸ℓ′≠ℓ,𝑖 (·) denotes that the expectation is taken with respect to all the 𝑖th column

variables except lag-ℓ, and 𝐸ℓ,𝑖′≠𝑖 (·) denotes taking the expectation for all the lag-ℓ except

the 𝑖th column. For a fixed 𝛾ℓ,𝑖 = 1, 𝐿 (𝑞) can be represented as

𝐸
𝑞(η),𝑞(B̃[ |η)

[
𝐸
𝑞(𝐵ℓ,𝑖,𝑖 |𝛾ℓ,𝑖=1)

[
𝐸ℓ′≠𝑙,𝑖

(
log

(
𝑃(Y , B̃, γℓ′,𝑖, 𝛾ℓ,𝑖 = 1,η |X , \)

))
+ 𝐸ℓ,𝑖′≠𝑖

(
𝑙𝑜𝑔

(
𝑃(Y , B̃, γℓ,𝑖′, 𝛾ℓ,𝑖 = 1,η |X , \)

))
− 𝑙𝑜𝑔

(
𝑞(𝐵ℓ,𝑖,𝑖 |𝛾ℓ,𝑖 = 1)

)] ]
.

This formulate can be treated as the negative KL divergence between 𝐸ℓ′≠𝑙,𝑖
(
log

(
𝑃(Y , B̃, γℓ′,𝑖

, 𝛾ℓ,𝑖 = 1,η |X , \)
) )
+ 𝐸ℓ,𝑖′≠𝑖

(
log

(
𝑃(Y , B̃, γℓ,𝑖′, 𝛾ℓ,𝑖 = 1,η |X , \)

))
and 𝑞(𝐵ℓ,𝑖,𝑖 |𝛾ℓ,𝑖 = 1). Thus,
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when

log
(
𝑞(𝐵ℓ,𝑖,𝑖 |𝛾ℓ,𝑖 = 1)

)
= 𝐸ℓ′≠ℓ,𝑖

(
log

(
𝑃(Y , B̃, γℓ′,𝑖, 𝛾ℓ,𝑖 = 1,η |X , \)

))
(10)

+ 𝐸ℓ,𝑖′≠𝑖
(
log

(
𝑃(Y , B̃, γℓ,𝑖′, 𝛾ℓ,𝑖 = 1,η |X , \)

))
,

we can obtain the best approximation 𝑞(𝐵ℓ,𝑖,𝑖 |𝛾ℓ,𝑖 = 1). Again, the cases for the given 𝛾ℓ,𝑖 = 0,

[ℓ,𝑖,𝑘 = 1, and [ℓ,𝑖,𝑘 = 0 can be derived with the same procedure. Since both 𝛾ℓ,𝑖 and [ℓ,𝑖,𝑘 are

from the independent Bernoulli distribution, with Eq. (10), we can add some variational pa-

rameters regarding 𝑞(𝛾ℓ,𝑖) and 𝑞([ℓ,𝑖,𝑘 ) and then derive the conditional distributiona of 𝐵ℓ,𝑖,𝑖

given 𝛾ℓ,𝑖 and 𝐵ℓ,𝑖,̃𝑠𝑘 given [ℓ,𝑖,𝑘 . Last, we optimize 𝐿 (𝑞) to find the variational parameters.

First, we derive 𝑞(𝐵ℓ,𝑖,𝑖 |𝛾ℓ,𝑖) and 𝑞(𝐵ℓ,𝑖,̃𝑠𝑘 |[ℓ,𝑖,𝑘 ) where this involves the joint probability func-

tion. To find the optimal form of Eq. (10), we rearrange the joint probability function to
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retain only the terms involving ℓ, 𝑖, and �̃�𝑘 as follows:

log
(
𝑃(Y , B̃, γ,η |X; \)

)
=
−𝑇𝑚
2

log(2𝜋) − 𝑇
2
log(𝑑𝑒𝑡 (Σ)) (11)

− 1

2

(
−1
2
𝑡𝑟

(
Σ−1(Y −XB)′(Y −XB)

))
− 𝑝𝑚

2

(
log(2𝜋) + log(𝜎2

𝐵)
)
−

∑
ℓ

∑
𝑖 𝐵

2
ℓ,𝑖,𝑖

2𝜎2
𝐵

− 𝑝𝑚(𝑚 − 1)
2

(
log(2𝜋) + log(𝜎2

𝐵)
)

−
∑︁
ℓ

∑︁
𝑖

∑︁
| �̃�𝑘 |

1

2
𝑡𝑟

(
(𝜎2

𝐵𝐼 | �̃�𝑘 |)
−1𝐵′

ℓ,𝑖,̃𝑠𝑘
𝐵ℓ,𝑖,̃𝑠𝑘

)
+

∑︁
ℓ

∑︁
𝑖

𝛾ℓ,𝑖 log(𝜋1) +
∑︁
ℓ

∑︁
𝑖

(1 − 𝛾ℓ,𝑖) log(1 − 𝜋1)

+
∑︁
ℓ

∑︁
𝑖

∑︁
𝑘

[ℓ,𝑖,𝑘 log(𝜋2) +
∑︁
ℓ

∑︁
𝑖

∑︁
𝑘

(1 − [ℓ,𝑖,𝑘 ) log(1 − 𝜋2)

∝ −𝑇
2
log(𝑑𝑒𝑡 (Σ)) − 1

2
𝑡𝑟

(
Σ−1(Y −XB)′(Y −XB)

)
−

∑︁
ℓ

∑︁
𝑖

1

2

(
(1 − 𝛾ℓ,𝑖) + 𝛾ℓ,𝑖

)
log(𝜎2

𝐵) −
∑
ℓ

∑
𝑖

(
(1 − 𝛾ℓ,𝑖 + 𝛾ℓ,𝑖)

)
𝐵2
ℓ,𝑖,𝑖

2𝜎2
𝐵

−
∑︁
ℓ

∑︁
𝑖

∑︁
𝑘

(
(1 − [ℓ,𝑖,𝑘 ) + [ℓ,𝑖,𝑘

)
log(𝑑𝑒𝑡 (𝜎2

𝐵𝐼 | �̃�𝑘 |))

− 1

2
𝑡𝑟

(
(𝜎2

𝐵𝐼 | �̃�𝑘 |)
−1 (

(1 − [ℓ,𝑖,𝑘 ) + [ℓ,𝑖,𝑘
)
𝐵′
ℓ,𝑖,̃𝑠𝑘

𝐵ℓ,𝑖,̃𝑠𝑘

)
+

∑︁
ℓ

∑︁
𝑖

𝛾ℓ,𝑖 log(
𝜋1

1 − 𝜋1
) +

∑︁
ℓ

∑︁
𝑖

∑︁
𝑘

[ℓ,𝑖,𝑘 log(
𝜋2

1 − 𝜋2
)

+ 𝑝𝑚 (log(1 − 𝜋1)) + 𝑝𝑚𝑔 (log(1 − 𝜋2)) + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.

We can derive log(𝑞(𝐵ℓ,𝑖,𝑖 |𝛾ℓ,𝑖)) by taking the expectation in Eq. (10). When 𝛾ℓ,𝑖 = 1, we

have

log
(
𝑞(𝐵ℓ,𝑖,𝑖 |𝛾ℓ,𝑖 = 1)

)
= −1

2

[
(Σ)−1𝑖,𝑖 (X

(𝑖)
ℓ
)′X (𝑖)

ℓ
+ 1

𝜎2
𝐵

]
𝐵2ℓ,𝑖,𝑖

− (Σ)−1𝑖,𝑖 𝐵′ℓ,𝑖,𝑖
[
(X (𝑖)

ℓ
)′(Y (𝑖) −X−𝑙𝐸 (𝐵(𝑖)

−ℓ) −X (−𝑖)
ℓ

𝐸 (𝐵(−𝑖,𝑖)
ℓ

))
]

− 𝐸
(
𝑡𝑟 ((Σ)−1−𝑖,𝑖𝐵′ℓ,𝑖,𝑖 ((X

(𝑖)
ℓ
)′(Y (−𝑖) − (XB) (−𝑖))))

)
+ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.
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We can find that this is a quadratic form of 𝐵ℓ,𝑖,𝑖, the posterior of 𝑞(𝐵ℓ,𝑖,𝑖 |𝛾ℓ,𝑖 = 1) that follows

a normal distribution in the form 𝑁 (`1,ℓ,𝑖,𝑖,Σ𝐵ℓ,𝑖,𝑖 ), where

Σ𝐵ℓ,𝑖,𝑖 =

(
X (𝑖) ′
ℓ

X (𝑖)
ℓ
(Σ−1)𝑖,𝑖 + 𝜎2

𝐵

)−1
,

`1,ℓ,𝑖,𝑖 = Σ𝐵ℓ,𝑖
©«(Σ−1)𝑖,𝑖X (𝑖) ′

ℓ

©«𝑌 (𝑖) −
𝑝∑︁
𝑗≠𝑙

X 𝑗𝐸 (𝐵(𝑖)
𝑗
) −X (−𝑖)

ℓ
𝐸 (𝐵(−𝑖,𝑖)

ℓ
)ª®¬

+𝐸
(
𝑡𝑟

(
(Σ−1)−𝑖,𝑖X (𝑖) ′

ℓ

(
𝑌 (−𝑖) −X𝐵(−𝑖)

))))
.

Similarly, 𝑙𝑜𝑔(𝑞(𝐵ℓ,𝑖,̃𝑠𝑘 |[ℓ,𝑖,𝑘 )) takes the expectation in Eq. (10); when [ℓ,𝑖,𝑘 = 1, we have

log
(
𝑞(𝐵ℓ,𝑖,̃𝑠𝑘 |[ℓ,𝑖,𝑘 = 1)

)
= −1

2
𝑡𝑟

(
(Σ)−1

�̃�𝑘 ,̃𝑠𝑘
(X (𝑖)

ℓ
)′X (𝑖)

ℓ
𝐵′
ℓ,𝑖,̃𝑠𝑘

𝐵ℓ,𝑖,̃𝑠𝑘

)
− 1

2
𝑡𝑟

(
(𝜎𝐵𝐼 | �̃�𝑘 |)

−1𝐵′
ℓ,𝑖,̃𝑠𝑘

𝐵ℓ,𝑖,̃𝑠𝑘

)
− 𝑡𝑟

(
(X (𝑖)

ℓ
)′(Y ( �̃�𝑘 ) −X−𝑙𝐸 (𝐵( �̃�𝑘 )

−ℓ ) −X (−𝑖)
ℓ

𝐸 (𝐵(−𝑖,̃𝑠𝑘 )
ℓ

)) (Σ−1)�̃�𝑘 ,̃𝑠𝑘
)

− 𝐸
(
𝑡𝑟

(
(X (𝑖)

ℓ
)′(Y (−�̃�𝑘 ) − (XB) (−�̃�𝑘 )) (Σ−1)�̃�𝑘 ,𝑖

))
+ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡,

where the posterior 𝑞(𝐵ℓ,𝑖,̃𝑠𝑘 |[ℓ,𝑖,̃𝑠𝑘 = 1) follows the 1 × | �̃�𝑘 | multivariate normal distribution

𝑁1×| �̃�𝑘 | (µ2,ℓ,𝑖,̃𝑠𝑘 , I ,Σ𝐵ℓ,𝑖,�̃�𝑘 ), in which

Σ𝐵ℓ,𝑖,�̃�𝑘
=

(
(X (𝑖)

ℓ
)′X (𝑖)

ℓ
(Σ−1)�̃�𝑘 ,̃𝑠𝑘 + 𝜎

2
𝐵𝐼 | �̃�𝑘 |

)−1
,

µ2,ℓ,𝑖,̃𝑠𝑘 =
©«(X (𝑖)

ℓ
)′ ©«𝑌 ( �̃�𝑘 ) −

𝑝∑︁
𝑗≠𝑙

X 𝑗𝐸 (𝐵( �̃�𝑘 )
𝑗

) −X (−𝑖)
ℓ

𝐸 (𝐵(−𝑖,̃𝑠𝑘 )
ℓ

)ª®¬ (Σ−1)�̃�𝑘 ,̃𝑠𝑘

+𝐸
(
𝑡𝑟

(
(X (𝑖)

ℓ
)′

(
𝑌 (−�̃�𝑘 ) −X𝐵(−�̃�𝑘 )

)
(Σ−1)−�̃�𝑘 ,̃𝑠𝑘

)))
Σ𝐵ℓ,𝑖,�̃�𝑘

.

According to the same process mentioned above, when 𝛾ℓ,𝑖 = 0 and [ℓ,𝑖,𝑘 = 0, we have

𝑞(𝐵ℓ,𝑖,𝑖 |𝛾ℓ,𝑖 = 0) ∼ 𝑁 (0, 𝜎2
𝐵),

𝑞(𝐵ℓ,𝑖,̃𝑠𝑘 |[ℓ,𝑖,̃𝑠𝑘 = 0) ∼ 𝑁1×| �̃�𝑘 | (0, I , 𝜎
2
𝐵𝐼 | �̃�𝑘 |).
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Therefore, 𝜙1,ℓ,𝑖 and 𝜙2,ℓ,𝑖,𝑘 are the probabilities of 𝛾ℓ,𝑖 = 1 and [ℓ,𝑖,𝑘 = 1, respectively, and

we have

𝑞(η, γ, 𝐵) =
𝑝∏
𝑙

𝑚∏
𝑖

(
𝜙1,ℓ,𝑖𝑁

(
`1,ℓ,𝑖,𝑖,Σ𝐵ℓ,𝑖,𝑖

) )𝛾ℓ,𝑖 ( (1 − 𝜙1,ℓ,𝑖 ) 𝑁 (0, 𝜎2
𝐵)

) (1−𝛾ℓ,𝑖)
𝑔∏
𝑘

(
𝜙2,ℓ,𝑖,𝑘𝑁1×| �̃�𝑘 | (`2,ℓ,𝑖,̃𝑠𝑘 , I ,Σ𝐵ℓ,𝑖,�̃�𝑘 )

)[ℓ,𝑖,𝑘 ( (
1 − 𝜙2,ℓ,𝑖,𝑘

)
𝑁1×| �̃�𝑘 | (0, I , 𝜎

2
𝐵𝐼 | �̃�𝑘 |)

) (1−[ℓ,𝑖,𝑘 )
,

where 𝜙1,ℓ,𝑖 and 𝜙2,ℓ,𝑖,𝑘 are

𝜙1,ℓ,𝑖 = 𝐼𝑛𝑣 − 𝑙𝑜𝑔𝑖𝑡
{
𝑙𝑜𝑔𝑖𝑡 (𝜋1) −

1

2
𝑙𝑜𝑔(𝜎2

𝐵) +
1

2
𝑙𝑜𝑔(𝑑𝑒𝑡 (Σ𝐵ℓ,𝑖,𝑖 )) +

(Σ𝐵ℓ,𝑖,𝑖 )−1`21,ℓ,𝑖,𝑖
2

}
and

𝜙2,ℓ,𝑖,𝑘 = 𝐼𝑛𝑣 − 𝑙𝑜𝑔𝑖𝑡
{
𝑙𝑜𝑔𝑖𝑡 (𝜋2) −

1

2
𝑙𝑜𝑔(𝑑𝑒𝑡 (𝜎2

𝛽 𝐼 | �̃�𝑘 |)) +
1

2
𝑙𝑜𝑔(𝑑𝑒𝑡 (Σ𝐵ℓ,𝑖,𝑘 ))

+ 1

2
𝑡𝑟

(
(Σ𝐵ℓ,𝑖,�̃�𝑘 )

−1µ′
2,ℓ,𝑖,̃𝑠𝑘

µ2,ℓ,𝑖,̃𝑠𝑘

)}
.

B.1.2 M-Step

During the M-step, we update the parameters \ =
{
𝜋1, 𝜋2,Σ, 𝜎

2
𝐵

}
with 𝐿 (𝑞)

𝜕\
= 0. Considering

𝜋1 and 𝜋2, by setting 𝐿 (𝑞)
𝜕𝜋1

= 0 and 𝐿 (𝑞)
𝜕𝜋2

= 0, we obtain

𝜋1 =

∑𝑝

ℓ

∑𝑚
𝑖 𝜙1,ℓ,𝑖

𝑝𝑚
,

𝜋2 =

∑𝑝

ℓ

∑𝑚
𝑖

∑𝑔

𝑘
𝜙2,ℓ,𝑖,𝑘∑𝑔

𝑘
| �̃�𝑘 |𝑝𝑚

.

For Σ and 𝜎2
𝛽
, setting 𝐿 (𝑞)

𝜕Σ
= 0 and 𝐿 (𝑞)

𝜕𝜎2
𝛽

= 0, we obtain

Σ =
𝐸 ((Y −XB)′(Y −XB))

𝑇
,

𝜎2
𝐵 =

∑𝑝

ℓ

∑𝑚
𝑖 𝜙1,ℓ,𝑖 (Σ𝐵,ℓ,𝑖,𝑖 + `21,ℓ,𝑖) +

∑𝑝

ℓ

∑𝑚
𝑖

∑𝑔

𝑘
𝜙2,ℓ,𝑖,𝑘 𝑡𝑟 (Σ𝐵,𝑙,𝑖,̃𝑠𝑘 + µ′

2,ℓ,𝑖,̃𝑠𝑘
µ2,ℓ,𝑖,̃𝑠𝑘 )∑𝑝

ℓ

∑𝑚
𝑖

(
𝜙1,ℓ,𝑖 +

∑𝑔

𝑘
| �̃�𝑘 |𝜙2,ℓ,𝑖,𝑘

) .
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