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Abstract

Random forests are a widely used machine learning algorithm, but their compu-

tational efficiency is undermined when applied to large-scale datasets with numerous

instances and useless features. Herein, we propose a nonparametric feature selection

algorithm that incorporates random forests and deep neural networks, and its the-

oretical properties are also investigated under regularity conditions. Using different

synthetic models and a real-world example, we demonstrate the advantage of the

proposed algorithm over other alternatives in terms of identifying useful features,

avoiding useless ones, and the computation efficiency. Although the algorithm is

proposed using standard random forests, it can be widely adapted to other machine

learning algorithms, as long as features can be sorted accordingly.

Key words: Feature importance, Maximum mean discrepancy, Reproducing kernel

Hilbert space.
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1 Introduction

Random forests (Breiman; 2001, RFs) are a widely used machine learning algorithm (Caru-

ana and Niculescu-Mizil; 2006; Criminisi et al.; 2012; Fernández-Delgado et al.; 2014). How-

ever, their computational efficiency is compromised when they are applied to large-scale

datasets with numerous useless features.

Since the landmark of Breiman (2001), research on RFs has been active in different

scientific fields. Xu and Jelinek (2005) used RFs for structured language learning, and

they showed that their method outperformed its competitors in terms of perplexity and

error rates. Based on a synthetic dataset generated from a certain reference distribution,

Shi and Horvath (2006) applied RFs to obtain dissimilarities among the original unlabeled

data. Payet and Todorovic (2010) proposed an RFs algorithm to directly estimate the ratio

of the proposal and posterior distributions nonparametrically for the Metropolis-Hastings

algorithm, and the corresponding theoretical properties were also investigated. Using a

Mondrian process, Lakshminarayanan et al. (2014) proposed a computationally efficient

RFs algorithm for online learning, but splits were made independent of the response of in-

terest. Inspired by the local polynomial regression, Li and Martin (2017) proposed a robust

RFs algorithm incorporating different loss functions and showed that their method gener-

alized the standard and quantile RFs (Meinshausen; 2006). Haghiri et al. (2018) proposed

a comparison-based RFs algorithm for the case when the sample was not representative

and when it was difficult to measure the distance between instances. Siblini et al. (2018)

proposed an algorithm for extreme multi-label learning using a tree-based method and

demonstrated that the computation was more efficient than other competitors in parallel.

Scornet et al. (2015), Mentch and Hooker (2016), and Wager and Athey (2018) investigated

theoretical properties of RFs algorithms. Refer to Criminisi et al. (2012) and Goel et al.

(2017) for a more comprehensive review of RFs.

Albeit it is common to have numerous features in practice, only a limited portion con-

tributes to the response of interest (Fan and Lv; 2008). Because existing RFs algorithms

do not identify useful features before growing trees, the corresponding computation effi-

ciency is undermined, especially when most features are useless. For example, it is well
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known that local polynomial regression suffers from the curse of dimensionality; thus, the

estimation efficiency of Li and Martin (2017) is questionable. In addition, the online RFs

(Lakshminarayanan et al.; 2014) may also lead to inefficient estimation when the number of

useless features is large, since splits are made based on features regardless of the response

of interest. Thus, feature selection is essential for a high dimensional dataset.

Even though RFs have been actively investigated under different scientific fields, feature

selection by RFs does not receive so much attention. There are two main approaches for

feature selection by RFs. One approach is permutation-based, using feature importance

(Breiman; 2001). Strobl et al. (2008) proposed a permutation algorithm to compute condi-

tional feature importance, but they did not provide a general guidance for feature selection.

Kursa and Rudnicki (2010) used a new set of shadow features to debias the feature impor-

tance, and a feature selection procedure was also proposed based on a “Z score”; also see

Sandri and Zuccolotto (2008) for a similar approach. Altmann et al. (2010) proposed to

permute the response vector to get the “null importance”, and it was used for feature se-

lection heuristically. Genuer et al. (2010) proposed a two-step procedure for feature section

based on feature importance, and their method worked well for highly correlated features.

However, the theoretical properties of existing permutation-based methods have not been

rigorously investigated. The other approach is based on the minimum depth proposed by

Ishwaran et al. (2010), and it has been widely applied in survival analysis (Ishwaran et al.;

2008; Twyman-Saint Victor et al.; 2015; Benci et al.; 2016). The corresponding theoretical

properties were investigated by Ishwaran et al. (2010) under strong conditions. For exam-

ple, the split for a node should always be the median of the values, but such an assumption

may undermine the estimation efficiency.

Herein, we propose a nonparametric feature selection algorithm that incorporates RFs

and deep neural networks (NFSRD). Specifically, we adopt nonparametric two-sample tests

using deep neural networks (Liu et al.; 2020) to select useful features, and the corresponding

theoretical properties are investigated under regularity conditions. To improve the com-

putational efficiency of the NFSRD, subsampling is adopted. Experiments reveal that the

NFSRD outperforms its alternatives in terms of detecting useful features, avoiding useless
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ones, and the computation efficiency. Another advantage of subsampling is that it saves

the computer memory while retaining the desired accuracy for feature selection; refer to

Section 4 for details.

The NFSRD differs from existing works in the following aspects. First, we propose the

use of nonparametric two-sample tests to select useful features incorporating RFs and deep

neural networks, and the corresponding theoretical properties can be rigorously established

under regularity conditions. In addition, subsampling is adopted for feature selection; thus,

the NFSRD is more computationally efficient than existing RFs-based feature selection

algorithms. Moreover, we do not make any strong assumption for splits, as in Ishwaran

et al. (2010). Rather, the only crucial assumption we make is that a limited portion of

the features contributes to the response of interest, and such an assumption is also widely

adopted for feature selection (Fan and Lv; 2008). Besides, the NFSRD adopts a forward

feature selection procedure based on the features sorted by their importance, so it can be

widely adapted to existing algorithms mentioned in the preceding paragraph and other

machine learning algorithms (Chen and Guestrin; 2016; Wager and Athey; 2018), as long

as the features can be sorted accordingly.

The remainder of this paper is organized as follows. The model setup is introduced

in Section 2. The detailed algorithm for the NFSRD is presented in Section 3, and the

corresponding theoretical properties are also investigated. Simulation studies are presented

in Section 4. Section 5 describes an application of the NFSRD to identify useful features

based on a superconductivity dataset. The conclusions are provided in Section 6.

2 Model Setup

Let xi “ pxi1, . . . , xipq P X be a p-dimensional feature vector and yi P R be the correspond-

ing response of interest, where i P In, In “ t1, . . . , nu is the sample index set of size n, and

X Ă Rp. Consider the following regression model:

yi “ fpxiq ` εi pi P Inq, (1)
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where fpxiq is a smooth function involving K0 ! p useful features (Fan and Lv; 2008), and

εi is white noise. We are interested in identifying the K0 useful features based on the sample

Dn “ tpxi, yiq : i P Inu. Without loss of generality, lower cases denote observed data, and

upper cases denote the associated random variables. The vectors are column-wise, unless

explicitly explained otherwise.

Before presenting the NFSRD algorithm, we briefly introduce a bagged-tree learner and

RFs. A bagged-tree learner is

pθTRpxq “ E˚ttpx;Z˚
1 , . . . ,Z

˚
nqu,

where zi “ pxi, yiq, and tZ˚
i : i P Inu is a random sample of size n generated by an empirical

distribution P˚pzq “ n´1
ř

iPIn Ipz “ ziq, Ipz “ ziq “ 1 if z “ zi and 0 otherwise, and E˚p¨q

is the expectation with respect to P˚pzq. For ease of notation, the sample size n is omitted

for pθTRpxq and other statistics.

Notably, RFs extend bagged-tree learners by allowing additional randomness within

trees to reduce the correlation among them. Specifically, an RFs learner is

pθRF pxq “ E˚ttpx; ξ,Z˚
1 , . . . ,Z

˚
nqu, (2)

where ξ „ Ξ, and Ξ is a pre-specified distribution; see Breiman (2001) for details. A

popular choice for Ξ is the random selection of candidate features for the split of each node

(Hastie et al.; 2009, §15.2). The RFs learner pθRF pxq is a bagged-tree learner pθTRpxq if Ξ is

omitted. Bootstrapping is used to approximate pθRF pxq in (2) by

pθ
pBq
RF pxq “

1

B

B
ÿ

b“1

tpx; ξb, z
˚
b1, . . . ,z

˚
bnq, (3)

where B is the number of bootstraps, ξb„Ξ, and z˚bi is a “realization” of Z˚
i for b “ 1, . . . , B

and i P In. In practice, a large B is suggested to make the approximation error between

(2) and (3) negligible .

3 NFSRD

The assumption K0 ! p validates the feature selection (Guyon and Elisseeff; 2003). The

NFSRD consists of two steps. The first step corresponds to obtaining bias-corrected feature
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importance (BCFI) by shadow features, and the second step is a forward feature selection

based on the ordered features by BCFI. Two-sample tests using maximum mean discrepancy

and deep neural networks (MMD-D) are conducted sequentially for feature selection in the

second step. To improve the computational efficiency, subsampling is applied in both steps.

Before diving into details, we briefly discuss the intuition for the NFSRD. The proposed

method is a forward-stepwise selection algorithm. To avoid including useless features as

much as possible, we first order the features based on their “importance” for estimating the

response of interest. Due to their flexibility for nonparametric modeling, RFs are imple-

mented to order the features by a subset of the instances. Based on the ordered features,

forward-stepwise selection is conducted by sequential hypothesis tests. After fitting a full

model and a reduced model only retaining the first several important features nonparamet-

rically, the corresponding null hypothesis is that the distributions of the residuals from a full

model and a reduced model are identical. If the null hypothesis holds for a certain reduced

model, then we treat the involved features as useful and the remaining ones as useless. We

still use RFs to train the full and reduced models, and other nonparametric algorithms can

be implemented as long as certain consistency results hold; see Supplementary Material

and Theorem 1 of Mentch and Hooker (2016) for details.

3.1 Bias-Corrected Feature Importance

Feature importance is a rudimentary indicator of the usefulness of features, and it serves

as a building block of the NFSRD.

Existing algorithms calculate the feature importance using the entire sample Dn. To

achieve better computational efficiency, we propose using subsampling. That is, the feature

importance is obtained based on a subsample tzi : i P A0u, where A0 is a subset of In, and

its size is m0 ă n. The numerical results reveal that m0 should be large to guarantee good

performance, and we suggest m0 ě 400 for practical guidance; see Section 4 for details. For

example, we can evaluate the feature importance by

Fk “
1

B

ÿ

tb

ÿ

j:sbj“k

∆psbj, tbq pk “ 1, . . . , pq, (4)
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where the first summation is with respect to the B trees, the second summation is with

respect the splits made for the bth tree, sbj is the feature used to split the jth node of tb,

∆psbj, tbq “ wbjVbj ´w
plq
bj V

plq
bj ´w

prq
bj V

prq
bj is the weighted decrease in variance, wbj “ nbj{m0,

nbj is the number of instances in the jth node of tb, w
plq
bj and w

prq
bj are the corresponding

proportions on the left and right subnodes after splitting the jth node by sbj, Vbj is the

sample variance of the response of interest in the jth node, and V
plq
bj and V

prq
bj are variances

of the two subnodes. See Breiman (2001) and Sandri and Zuccolotto (2008) for details.

However, the feature importance in (4) is unfairly biased toward those with numerous

distinct values (White and Liu; 1994; Louppe et al.; 2013). To debias, we incorporate

shadow features (Sandri and Zuccolotto; 2008; Kursa and Rudnicki; 2010). Specifically, for

i P A0, a shadow feature x:i is randomly selected from txi : i P A0u without replacement.

Thereafter, an RF is trained based on the extended data tz:i : i P A0u with z:i “ pxi,x
:

i , yiq;

see Sandri and Zuccolotto (2008) for details. The entire procedure is repeated R times,

and the BCFI of Xk is calculated as

Ik “
1

R

R
ÿ

r“1

pFrk ´ Frk:q pk “ 1, . . . , pq, (5)

where Frk and Frk: correspond to Xk and X:

k, respectively, and X:

k is the corresponding

shadow feature for Xk for the rth repetition; Sandri and Zuccolotto (2008) suggest that

R “ 100 in practice. Algorithm 1 shows the algorithm for BCFI.

Remark 1.

We should be cautious about algorithms using feature importance as the only criterion

for feature selection, especially as no rigorous theoretical properties have been investigated.

Thus, in the next subsection, we propose the use of nonparametric two-sample tests for

feature selection by ordered features using BCFI.

Remark 2. Other than the shadow features, another way to debias the feature importance

is to use the out of bag sample (OOB). Li et al. (2019) argued that the OOB-based feature

importance outperforms the traditional one in terms of AUC scores. In addition, we can also

consider the minimum depth (Ishwaran et al.; 2010) as an importance metric; see Section 4

for details. Thus, those two metrics can be applied to obtain the feature importance instead.

7



Algorithm 1 Bias-Corrected Feature Importance (BCFI)
Input: Dn, m0, and R.

Select A0 randomly from In.

for r “ 1, . . . , R do

for i P A0 do

Generate x:i from txi : i P A0u randomly without replacement.

end for

Train an RF using tpxi,x
:

i , yiq : i P A0u.

Solicit tpFrk, Frk:q : k “ 1, . . . , pu.

for k “ 1, . . . , p do

Calculate Irk “ Frk ´ Frk: .

end for

end for

for k “ 1, . . . , p do

Calculate Ik “ R´1
řR

r“1 Irk

end for

Output: tIk : k “ 1, . . . , pu.

3.2 Feature Selection by Deep Neural Network

Ideally, we want to identify a set of features, say XpK0q, such that

Y KXp´K0q |XpK0q,

where X K Y | Z denotes that X and Y are conditionally independent given Z, and Xp´K0q

contains features other than XpK0q. Equivalently, we want to identify xpK0q such that

fpxq “ fpxpK0qq px P X q. (6)

Based on the ordered features by BCFI, a forward feature selection algorithm is proposed

by sequentially conducting nonparametric two-sample tests using deep neural networks (FS-

D). Let the ordered BCFI be Ip1q ě Ip2q ě ¨ ¨ ¨ ě Ippq and x
pkq
i be the feature corresponding

to Ipkq for k “ 1, . . . , p. Consider the following hypothesis testing problem:

H0K : fpxq “ fpxpKqq px P X q, (7)

where xpKq “ pxp1q, . . . , xpKqq contains the first K features with respect to the ordered

BCFI, and K “ 1, . . . , p.

8



Although Scornet et al. (2015) investigated theoretical properties of an RFs estimator,

the convergence rate of gpxq ´ fpxq is still an open question, where gpxq “ EtpθRF pxqu.

Thus, it is difficult to work with (7) directly. Instead, we consider η “ y ´ gpxq and

ηpKq “ y ´ gpxpKqq, where gpxpKqq “ EtpθRF pxpKqqu. Thus, we have

ηpKq “ y ´ gpxq ` rgpxq ´ gpxpKqqs

“ η ` rgpxq ´ gpxpKqqs.

Instead of H0K in (7), we consider

H 1
0K : P “ PpKq, (8)

where P and PpKq are the distributions of η and ηpKq, respectively. If a feature is useful, it

also contributes to gpxq, and vice versa. Thus, it is valid to use (8) for feature selection.

Remark 3. Because the standard RFs (Breiman; 2001) is widely implemented in practice,

we apply it to obtain BCFI and approximate gpxq and gpxpKqq using (3). If we consider

an honest tree (Wager and Athey; 2018), we can directly use gpxq to approximate fpxq

according to the consistency result in Theorem 3 of Wager and Athey (2018).

To test H 1
0K in (8), we adopt a nonparametric two-sample test using the MMD-D (Liu

et al.; 2020). The maximum mean discrepancy between P and PpKq is

MMDpP,PpKq;Hκq “ sup
fPHκ;‖f‖Hκď1

|EtfpXqu ´ EtfpXpKq
qu|

“ tErκpη, ηqs ` ErκpηpKq, ηpKqqs ´ 2Erκpη, ηpKqqsu1{2,

(9)

where κ : R ˆ R Ñ R is the kernel for a reproducing kernel Hilbert space (RKHS) Hκ,

‖f‖Hκ is the corresponding norm; see Supplementary Material for a brief introduction

on RKHS. For a characteristic kernel κ (Fukumizu et al.; 2007; Gretton et al.; 2012),

MMDpP,PpKq;Hκq “ 0 is equivalent to P “ PpKq. Recall that a kernel κ is characteristic if

the map QÑ mQ is one-to-one, where mQ “ Eζ„Qκp¨, ζq P Hκ for Q P PR, PR is the set of

probability measures on the measurable space pR,Bq, B is the Borel σ-algebra on R, and

Eζ„Qκp¨, ζq is the expectation of κp¨, ζq with respect to ζ „ Q.
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Remark 4. The test statistic is based on (9), and its intuition is briefly discussed. Evi-

dently, the value MMDpP,PpKq;Hq is determined by the functional space H. On the one

hand, the functional space H should be sufficiently large to distinguish two different dis-

tributions P and PpKq by the supremum of |EtfpXqu ´ EtfpXpKqqu| for f P H. On the

other hand, the functional space H should also be restricted, such that the estimator of

MMDpP,PpKq;Hq converges duly to guarantee good statistical properties. Thus, a unit ball

of an RKHS, tf P Hκ; ‖f‖Hκ ď 1u, is a good choice for H. See Gretton et al. (2012) for

details on (9).

If tηi : i P A1u and tη
pKq
i : i P A2u were observed, an estimator of MMDpP,PpKq;Hκq

could be obtained by a U-statistic based on two subsamples A1 and A2:

{MMD
2

up
pP, pPpKq;κq “

1

m1pm1 ´ 1q

ÿ

i‰j

H
pKq
ij , (10)

where pPpηq “ m´1
1

ř

iPA1
Ipη “ ηjq is the empirical distribution of tηi : i P A1u, pPpKq

is the one of tη
pKq
i : i P A2u, m1 is the size of both A1 and A2, A1 X A2 “ H, and

H
pKq
ij “ κpηi, ηjq ` κpη

pKq
i , η

pKq
j q ´ κpηi, η

pKq
j q ´ κpη

pKq
i , ηjq. The disjoint condition between

A1 and A2 guarantees independence between the two error sets. The numerical results

reveal that the sample sizes of A1 and A2 should be large, and we suggest that these sizes

be larger than 400 for practical guidance ; see Section 4 for details.

However, ηi and η
pKq
i are unavailable; thus, we use pηni “ yi ´ pθ

pBq
RF pxiq for i P A1 and

pη
pKq
ni “ yi ´ pθ

pBq
RF px

pKq
i q i P A2 instead. The following theorem validates this choice:

Theorem 1. Under mild conditions, in Supplementary Material,

ČMMD
2

up
rP, rPpKq;κq “

1

m1pm1 ´ 1q

ÿ

i‰j

pH
pKq
ij

has the same limiting distribution as {MMD
2

upP,PpKq; kq in (10), where rP and rPpKq are the

empirical distributions of tpηni : i P A1u and tpη
pKq
ni : i P A2u, tpηni : i P A1u is independent of

tpη
pKq
ni : i P A2u, and pH

pKq
ij “ κppηi, pηjq ` κppη

pKq
i , pη

pKq
j q ´ κppηi, pη

pKq
j q ´ κppη

pKq
i , pηjq.

The proof of Theorem 1 is relegated to Supplementary Material. The difference between

(10) and the one in Theorem 1 is that the estimated residuals are considered instead.
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Theorem 1 validates that instead of the true residuals, we can use the estimated values,

tpηni : i P A1u and tpη
pKq
ni : i P A2u, for analysis. Thus, ČMMD

2

up
rP, rPpKq;κq serves as the test

statistic for the hypothesis testing problem (8).

To guarantee independence between tpηni : i P A1u and tpη
pKq
ni : i P A2u, we train pθ

pBq
RF pxq

and pθ
pBq
RF px

pKqq by tpxi, yiq : i P A3u and tpx
pKq
i , yiq : i P A4u separately, where A3 and

A4 are two subsamples with the same sample size m2, such that A1, . . . ,A4 are mutually

disjoint. Moreover, to avoid correlation, we suggest that A1, . . . ,A4 are generated from

mathcalInzA0. For practical guidance, we suggest that m2 ě 400; see Section 4 for details.

It is hard for simple kernels to distinguish two distributions with complex structures.

For example, a translation-invariant Gaussian kernel requires a large sample to distinguish

two distributions, since it cannot identify “direction” information around each mode in a

multivariate setup; see Figure 1 and its discussion of Liu et al. (2020) for details. To avoid

the drawbacks of traditional parametric kernels, Liu et al. (2020) proposed obtaining one

using deep neural networks:

pκω “ arg max
κω

ČMMD
2

up
pP, pPpKq;κωq

rσ1,λppP, pPpKq;κωq
,

where κω “ tp1´ ηqκrφωpxq, φωpyqs ` ηuqpx, yq, η ą 0 is predefined, φωpxq is a deep neural

network with parameter ω that extracts features, κpx, yq and qpx, yq are Gaussian kernels

with lengthscales σφ and σq, respectively, and rσ2
1,λp

pP, pPpKq;κωq “ 4m´3
1

řm1

i“1p
řm1

j“1H
pKq
ij q2´

4m´4
1 p

řm1

i“1

řm1

j“1H
pKq
ij q2 ` λ.

The limiting distributions of the U-statistic ČMMD
2

up
pP, pPpKq;Hκq are established below

for the null and alternative hypotheses.

Lemma 1. Under the null hypothesis H 1
0K : P “ PpKq and regularity conditions in Supple-

mentary Material, we have

m1
ČMMD

2

up
pP, pPpKq;κωq Ñ

8
ÿ

i“1

ζipZ
2
i ´ 2q (11)

in distribution, where ζi are the eigenvalues satisfying

ż

κωpx, zqΨipxqPpdxq “ ζiΨipzq
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for i “ 1, 2, . . . ,, tΨipxq : i “ 1, 2, . . .u are the eigenfunctions, Zi „ Np0, 2q, and N pµ, σ2q

is a normal distribution with mean µ and variance σ2.

Under the alternative hypothesis H 1
aK : P ‰ PpKq, we have

?
m1r{MMD

2

u ´MMD2
s Ñ N p0, σ2

1q

in the distribution, where σ2
1 “ 4rEpH12H13q ´ EpH12q

2s.

By Theorem 1, we can prove Lemma 1 in a manner similar to Theorem 12 of Gretton

et al. (2012), so its proof is omitted. Instead of deriving the asymptotic distributions in

Lemma 1, Liu et al. (2020) suggested permutation for hypothesis testing. Algorithm 2

shows the routine of FS-D, and the detailed algorithm for the MMD-D step is relegated to

Supplementary Material.

Remark 5. The basic idea of the NFSRD is to apply nonparametric two-sample tests

sequentially based on ordered features. Thus, the NFSRD is also applicable to other ma-

chine learning algorithms, such as XGBoost (Chen and Guestrin; 2016) and the causal tree

(Wager and Athey; 2018), as long as the features can be sorted accordingly.

4 Simulation

In this section, we conduct Monte Carlo simulations to compare the performance of the

NFSRD with its alternatives under different model setups. As mentioned in Section 1,

there are two main approaches for feature selection by random forests. Thus, we compare

the NFSRD with a feature-importance-based algorithm and a minimum-depth-based one.

We use 19 Xeon Cascade Lake (2.5 GHz) CPUs to train RFs in parallel, and an NVIDIA

Tesla T4 GPU is used for FS-D. Five-fold cross validation is conducted to tune the model

parameters for RFs; see Supplementary Material for more computational details.

4.1 Independent Features

Table 1 shows the setups for six synthetic models. Model 1 is linear and is widely used

for feature selection (Tibshirani; 1996). Model 2 represents a nonlinear model and only
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Algorithm 2 Feature Selection by Deep Neural Network (FS-D)
Input:Dn, m2, tIk : k “ 1, . . . , pu, and α.

Generates mutually disjoint sets A1, . . . ,A4 from InzA0.

Train pθ
pBq
RF pxq by tpxi, yiq : i P A3u.

Obtain tpηni : i P A1u.

for k “ 1, . . . , p do

if K “ 1 then

Train KRR by tpx
p1q
i , yiq : i P A4u.

Obtain tpη
pKq
ni : i P A2u.

else

Train pθ
pBq
RF px

pKqq by tpx
pKq
i , yiq : i P A3u.

Obtain tpη
pKq
ni : i P A2u.

end if

Conduct MMD-D with significant level α.

if H 10K is rejected then

Continue.

else

Denote pK0 “ K.

Break the for loop.

end if

end for

Output: Selected feature set P.

involves one useful feature. Both Model 1 and Model 2 are additive, and Model 3 is more

complex and is non-additive. Besides, interaction is involved in Model 3. The difference

between Models 1–3 and Models 4–6 is the distribution to generate features. Specifically,

features are generated independently from a uniform distribution over r1, 10s for Models 1–

3, and a skewed beta distribution with shape parameter (2,4) is used for Models 4–6. The

distribution parameters are chosen such that the features have approximately the same

variance in different synthetic models, and the regression parameters are selected such that

the signal-to-noise ratio (SNR) ranges from 1 to 3 approximately, where SNR is obtained

by tvarrfpXqs{varpεqu1{2, and varpXq is the variance of a random variable X. For each

model, ε „ N p0, 1q. Furthermore, we consider two feature sizes, including p “ 200 and
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p “ 400. Although the number of features is large, the useful ones are limited. The sample

size is n “ 10 000. For each synthetic model, we conduct 200 independent Monte Carlo

simulations.

Table 1: Setups for synthetic models. “MI” stands for the model index, and “Dist” rep-

resents the distribution to generate features. “Uniform” corresponds to Xk „ Up1, 10q,

and “Beta” relates to Xk „ 14.5Betap2, 4q ` 1, where k “ 1, . . . , p. The error term is

ε „ N p0, 1q.
MI Dist Model Setup SNR

1 Uniform Y “ 0.3X1 ` 0.3X2 ` ε 1.1

2 Uniform Y “ 3 sinpX1q ` ε 2.1

3 Uniform Y “ 5 sinpX1{10q
?
X2 ` ε 3.0

4 Beta Y “ 0.3X1 ` 0.3X2 ` ε 1.1

5 Beta Y “ 3 sinpX1q ` ε 2.1

6 Beta Y “ 5 sinpX1{10q
?
X2 ` ε 2.8

We compare the following methods in terms of feature selection under the significance

level α “ 0.05:

1. Boruta (Kursa and Rudnicki; 2010, BRT). BRT calculates the feature importance by a

set of shadow features, and a “Z score” is used for feature selection; see Supplementary

Material for a brief description of BRT. BRT is implemented using the R package

Boruta.

2. BRT-N. NFSRD is conducted based on the features sorted by BCFI, as obtained from

BRT.

3. Minimal depth variable selection (Ishwaran et al.; 2010, MVS). MVS selects fea-

tures using the minimum depth (Ishwaran et al.; 2010); see Supplementary Material

for a brief description of MVS. This method is implemented using the R package

randomForestSRC.
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4. MVS-N. NFSRD is conducted based on the features sorted by the minimum depth

obtained from MVS.

Although VSURF (Genuer et al.; 2015) also conducts feature selection by RFs, it is not

considered because of its heavy computational burden. For both BRT-N and MVS-N, we

consider two scenarios: m0 “ m1 “ m2 “ 200 and m0 “ m1 “ m2 “ 400. For a fair

comparison, 5m0 instances are used for feature selection by BRT and MVS.

The four methods are compared in terms of the accuracy of identifying useful features,

µc, and the average number of useless features included, nw, where µc “ p200K0q
´1

ř200
l“1

řK0

k“1 Ilk,

nw “ 200´1
ř200
l“1 nlw, Ilk “ 1 is the kth useful feature that is correctly identified in the lth

Monte Carlo simulation, and 0 otherwise, nlw is the number of useless features identified

in the lth Monte Carlo simulation. The simulation results are summarized in Table 2.

When the subsample sizes are small, µc is less than 1 for Model 1, indicating that it is

difficult for the two NFSRD algorithms to identify some useful features even for a linear

model when the SNR is small. This is because pθ
pBq
RF pxq ´ gpxq or pθ

pBq
RF px

pKqq ´ gpxpKqq is

not negligible compared with the residual; thus, we cannot test (8) correctly. However,

as the SNR increases, both BRT-N and MVS-N identify more useful features on average,

even for small subsamples and more complex models. On the one hand, even when m0

is small, BRT and MVS, on the other hand, can correctly select useful features with 5m0

instances for different models because 5m0 instances are used for feature selection. As m1

and m2 increase, useful features can be correctly identified by BRT-N and MVS-N as well as

BRT and MVS for different models. However, BRT-N and MVS-N identify far less useless

features compared with BRT and MVS, especially when m1 is large. For example, when

m1 “ 200 and p “ 400, BRT and MVS identify 2.17 and 34.88 useless features on average

for a linear model, respectively, but the average numbers are only 0.4 and 0.3 for BRT-N

and MVS-N. The same conclusion applies to the other setups. As m1 and m2 increase to

400, BRT-N and MVS-N still outperform their alternatives in terms of avoiding useless

features.

We also compare the four methods in terms of computational efficiency, and Figure 1

shows boxplots of the computation time based on the 200 Monte Carlo simulations under
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Table 2: Summary of feature selection the four methods, including BRT, BRT-N, MVS,

and MVS-N, based on 200 Monte Carlo simulations, where the features are generated

independently. “MI” stands for the model index. m0, m1 and m2 are the sizes of subsamples

for NFSRD algorithms. “BRT” represent Boruta, “MVS” stands for the minimum-depth

variable selection algorithm, and “BRT-N” and “MVS-N” are NFSRD algorithms with

features sorted by BRT and MVS, respectively. µc is proportion that useful features are

correctly identified, and nw is the average length of useless features are included. The best

result is highlighted by underline.

p MI
m0 “ m1 “ m2 “ 200 m0 “ m1 “ m2 “ 400

BRT BRT-N MVS MVS-N BRT BRT-N MVS MVS-N

200

1
µc 1.00 0.90 1.00 0.90 1.00 0.98 1.00 0.98

nw 1.75 0.38 4.91 0.34 1.35 0.40 0.02 0.46

2
µc 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

nw 2.16 0.60 5.17 0.59 1.42 0.54 0.12 0.49

3
µc 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

nw 1.52 0.83 1.21 0.95 0.98 0.82 0.00 0.88

4
µc 1.00 0.78 1.00 0.81 1.00 0.90 1.00 0.88

nw 2.21 0.26 6.83 0.32 1.43 0.32 0.04 0.43

5
µc 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

nw 1.98 0.66 4.42 0.71 1.30 0.54 0.08 0.40

6
µc 1.00 0.94 1.00 0.93 1.00 1.00 1.00 1.00

nw 1.57 0.78 1.61 0.75 1.13 0.66 0.00 0.74

400

1
µc 1.00 0.86 1.00 0.85 1.00 0.98 1.00 0.98

nw 2.19 0.37 23.72 0.24 1.44 0.42 5.50 0.46

2
µc 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

nw 2.35 0.64 19.60 0.56 1.34 0.58 5.43 0.44

3
µc 1.00 0.99 1.00 0.99 1.00 1.00 1.00 1.00

nw 1.79 1.00 3.98 1.16 1.12 0.66 1.21 0.68

4
µc 1.00 0.90 1.00 0.90 1.00 0.99 1.00 0.99

nw 2.17 0.40 34.88 0.30 1.48 0.52 7.03 0.61

5
µc 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

nw 2.30 0.73 28.79 0.47 1.38 0.47 4.75 0.58

6
µc 1.00 0.87 1.00 0.88 1.00 1.00 1.00 1.00

nw 1.58 0.61 17.16 0.66 0.99 0.81 1.28 0.76

different setups. When both m0 and p are small, the computational efficiencies of the four

methods are comparable, but, as shown in Table 2, BRT and MVS select more useless
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Figure 1: Boxplots for the computation time of different methods based on 200 Monte Carlo

simulations, where the features are independently generated. The horizontal segments

within the boxplots represent the median computation time. “BRT” represent Boruta,

“MVS” stands for the minimum-depth variable selection algorithm, and “BRT-N” and

“MVS-N” are NFSRD algorithms with features sorted by BRT and MVS, respectively.

features than BRT-N and MVS-N. Thus, BRT and MVS are still less favored. As m0 or

p increases, the computational efficiency of BRT-N and MVS-N is generally much better,

especially when both m0 and p are large. For example, when m0 “ 400 and p “ 400, the

computation time required by BRT-N and MVS-N is less than 50 seconds in general, but

it is more than 125 seconds and approximately 75 seconds for BRT and MVS, respectively.

In addition, it is far less efficient to use BRT and MVS to select features for large datasets

with numerous useless features. However, BRT-N and MVS-N can be used to solve this

problem. Compared with MVS-N, BRT-N is slightly more computationally efficient in

general, but the difference between the two methods is minor.

Remark 6. It is common to have correlated features in practice, and we conduct a simula-

tion study for this case as well. We still consider the same setups in Table 1, but the features

are generated differently. First, generate X 1
1, . . . , X

1
p independently by a uniform or skewed
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beta distribution, as shown in Table 1. Then, let X1 “ X 1
1 and Xk “ 0.7X 1

k ` 0.3X 1
k´1

for k “ 2, . . . , p. The features consist of X1, . . . , Xp, and we still use the six models in

Table 1 to generate the responses of interest. The simulation results are similar to the

aforementioned outcomes, and we relegate them to Supplementary Material.

Ishwaran et al. (2010) compared the MVS with some commonly used feature selection

algorithms, including the adaptive lasso (Zou; 2006) and the l1-regularized regression model

(Park and Hastie; 2007). Their simulation results demonstrated that the MVS outperforms

those two in terms of the false discovery rate and the false nondiscovery rate, regardless of

the correlation among features. Since the MVS-N is generally more preferable than MVS,

we do not consider those two feature selection algorithms in the simulation study.

5 Application

The superconductivity dataset Hamidieh (2018) is used to test the performance of the

NFSRD. Superconducting materials have wide applications in practice, such as magnetic

resonance imaging systems in hospitals and superconducting coils in the Large Hadron

Collider at CERN. The accurate prediction of the superconducting critical temperature

is important because the corresponding superconductor can only conduct current without

resistance at or below this temperature. There are 21 263 instances in the superconductivity

dataset with 81 features extracted for each instance, and the goal is select useful features for

the critical temperature; see Hamidieh (2018) for details about the technical information

of the features.

For BRT-N, we consider two significance levels: α “ 0.05 and α “ 0.01, and the size

of A0, . . . ,A4 is 1 000. Table 3 lists the selected useful features. As the significance level

decreases from 0.05 to 0.01, three more features are selected. In addition, all the selected

features are among the top 20 most important features by XGBoost (Chen and Guestrin;

2016); see Table 5 of Hamidieh (2018) for details. In contrast, BRT blindly identifies all

the features to be useful, even for α “ 0.05. Although BRT works reasonably for synthetic

models in Section 4, it fails to identify useful features for superconductivity data. A similar
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conclusion holds for the two minimum-depth-based methods, and, thus, we omit them.

Table 3: The selected features by BRT-N under different significance levels for the su-

perconductivity data. Selected features are indicated by “X”, and “Feature” shows the

corresponding names. “α” is the significant level.

Feature
α

0.01 0.05

range_ThermalConductivity X X

wtd_std_ThermalConductivity X X

range_atomic_radius X X

wtd_entropy_atomic_mass X X

wtd_entropy_Valence X X

wtd_mean_Valence X X

wtd_mean_ThermalConductivity X X

std_ThermalConductivity X X

wtd_gmean_Valence X

wtd_gmean_ThermalConductivity X

wtd_std_ElectronAffinity X

6 Concluding Remarks

In this study, we propose the NFSRD to identify useful features. Feature selection is con-

ducted by nonparametric two-sample tests using deep neural networks, and the theoretical

properties are also investigated. Experiments show that the NFSRD outperforms its alter-

natives in terms of identifying useful features, avoiding useless ones and the computation

efficiency.

Although the NFSRD is proposed using the standard RFs (Breiman; 2001), the same

idea can be easily adapted to other machine learning methods. In addition, other non-

parametric tests can also be used; these include other nonparametric kernel-based methods

(Scholkopf and Smola; 2018) and traditional statistical tests. However, we should pay at-

tention to some widely used tests, such as the t-test and the Kolmogorov–Smirnov test,

because they may suffer from model misspecification.
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