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Abstract

In statistics, time-to-event analysis methods traditionally focus on the estimation of haz-
ards. In recent years, machine learning methods have been proposed to directly predict the
event times. We propose a method based on vine copula models to make point and interval
predictions for a right-censored response variable given mixed discrete-continuous explana-
tory variables. Extensive experiments on simulated and real datasets show that our proposed
vine copula approach provides a decent approximation to other time-to-event analysis models
including Cox proportional hazards and Accelerate Failure Time models. When the Cox pro-
portional hazards or Accelerate Failure Time assumptions do not hold, predictions based on
vine copulas can signi�cantly outperform other models, depending on the shape of the con-
ditional quantile functions. This shows the �exibility of our proposed vine copula approach
for general time-to-event datasets.

Keywords: Survival analysis, time-to-event analysis, conditional quantiles, vine copula, copula
regression, prediction interval.

1 Introduction

In time-to-event and survival studies, the goal is to model the response variable Y (i.e., the
time-to-event) with the explanatory variables X = (X1, . . . , Xp) to get point and interval pre-
dictions. The response Y can be right-censored and the explanatory variables are random in an
observational study. A binary treatment variable can be accommodated if there is randomiza-
tion to two treatments. The explanatory variables can be unbounded so that locally-based linear
approximations can be poor. For an observational study, a natural approach is �tting a joint dis-
tribution for (X1, . . . , Xp, Y ) assuming a random sample (xi1, . . . , xip, yi) for i = 1, . . . , n, and
then obtain the predictive distribution for Y givenX = x.
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Linear regression methods for time-to-event response data include the semi-parametric Cox
proportional hazards model, and parametric methods such as Weibull regression and other accel-
erated failure time (AFT) models. The focus often is on �nding signi�cant explanatory variables
and not on assessing quality of predictions.

In the past several decades, machine learning methods have also been proposed to predict a
censored time-to-event response. Survival trees (Gordon and Olshen (1985)) are a type of regres-
sion trees tailored to predict a censored response using a di�erent splitting criterion. Random
survival forest (Ishwaran et al. (2008)) extends survival trees by using a forest of these trees. Fard
et al. (2016) combine Bayesian methods including Naive Bayes, Tree-Augmented Naive Bayes, and
Bayesian Network with the AFT model to predict event times using training data obtained at an
early stage of the study. Biganzoli et al. (1998) use the partial logistic arti�cial neural network to
analyze the relationship between the explanatory variables and the event times. Khan and Zubek
(2008) propose a support vector regression based method and adapt it for a censored response
by using an updated asymmetric loss function. Hothorn et al. (2006) extend gradient boosting
machines to minimize a weighted risk function for time-to-event data. A review of methods is
summarized based on Wang et al. (2019). However, these machine learning methods only focus
on point prediction and do not indicate how to get interval predictions. It can be di�cult to obtain
prediction intervals based on these methods.

In recent years, the vine pair-copula construction has proven to be a �exible tool in high-
dimensional non-Gaussian dependence modeling and prediction for observational studies. This
method consists of estimating the joint distribution FY,X followed by inferences, such as point
and interval predictions, based on the conditional distribution FY |X ; FY,X is obtained from a vine
pair-copula construction for the dependence, combined with univariate marginal distributions
FX1 , . . . , FXp , FY ; see Kraus and Czado (2017) and Schallhorn et al. (2017) for continuous response
and Chang and Joe (2019) for responses that can be continuous or ordinal.

In this paper, we extend the methodology in Chang and Joe (2019) for point and interval predic-
tions with a censored response variable and a set of discrete or continuous explanatory variables.
Compared with parametric time-to-event analysis methods such as the Weibull Accelerated Fail-
ure Time (AFT) model, vine copulas separate the estimation of univariate marginal distributions
from the modeling of multivariate dependence structure and allow for more �exible forms for
conditional quantile functions F−1Y |X(p|x) for 0 < p < 1. For example, they could be �attening
in the extremes of the predictor space, something that cannot be achieved with a linear method
such as AFT.

The remaining sections are organized as follows. A brief introduction to time-to-event analysis
is included in Section 2. Section 3 gives an overview of copula models and vine copulas. Our
proposed method of using vine copulas for time-to-event prediction is presented in Section 4.
Comparison criteria to assess time-to-event prediction performances are summarized in Section 5.
Simulation studies comparing di�erent methods are performed in Section 6. Section 7 applies our
proposed method to the analysis of the primary biliary cirrhosis (PBC) dataset. Finally, Section 8
consists of concluding discussions.
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2 Survival or Time to Event Analysis

In this section, we �rst give a summary of regression methods for a right-censored survival or
time-to-event response. Comprehensive references for linear methods are in Lawless (2011) and
Klein and Moeschberger (2003).

2.1 Notation for Survival Analysis

Suppose there is a random sample of sizen and the explanatory variables are coded asx1, . . . , xp.
For subject i, let xi = (xi1, . . . , xip)

T , yi be the survival time or time to an event, and let δi be a
binary event indicator with value 1 if yi is observed and value 0 if yi is right-censored. Let FY be
the distribution of Y with density fY . The survival function is S = 1−FY , the cumulative hazard
is H = logS and the hazard (rate) is h = H ′ = fY /S.

2.2 Cox Proportional Hazards Model

The hazard function for the Cox proportional hazards model has the form

h(y|xi) = h0(y) exp(xTi β), (1)

where the baseline hazard h0(y) is obtained when x = 0 and β = (β1, . . . , βp)
T is the coe�cient

vector. The model is semi-parametric if the baseline hazard function h0(y) is unspeci�ed and not
estimated when optimizing the partial log-likelihood function. The survival function is

S(y|xi) = exp
(
−H0(y) exp(xTi β)

)
, (2)

where H0(y) =
∫ y
0
h0(u)du. The Breslow estimator (Breslow (1972)) is commonly used to esti-

mate H0(y); it is a piecewise constant function that is unde�ned beyond the largest uncensored
observation. The Cox model with this estimator for H0 cannot be used to get reliable prediction
intervals. However, if a parametric form is used for H0, and the estimation of H0 follows the
maximum partial likelihood estimator of β, then prediction intervals can be obtained.

2.3 Weibull Regression or Accelerated Failure Time Model

The Accelerated Failure Time (AFT) model has stochastic representation for the log time-to-
event:

log yi = γ0 + xTi γ + σWi,

where γ = (γ1, . . . , γp)
T is the coe�cient vector, γ0 is the intercept, σ > 0 is the scale parameter,

Wi are independent and identically distributed random variables with distribution FW . This is a
location-scale model based on FW with location parameter γ0 +xTi γ that depends linearly on xi.
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WhenWi has a standard extreme value distribution (for minima), Yi follows a Weibull distribution
with survival function

S(y|xi) = exp
[
−
(
y exp(−γ0 − xTi γ)

)1/σ]
. (3)

If we let H0(y) = (y/eγ0)1/σ and β = −γ/σ in Equation (2), then it becomes the same as Equa-
tion (3). Therefore, the AFT model can be seen as a special parametric form of the Cox proportional
hazards model with a speci�c baseline hazard function. ForH0 to be interpreted as a baseline haz-
ard, all continuous explanatory variables should be centered around 0 and all binary or ordinal
discrete explanatory variables take value 0 for the baseline category.

The Weibull model is the most widely used parametric distribution for time-to-event analy-
sis. Standard numerical maximum likelihood estimation techniques can be used to estimate the
parameters. Point and interval predictions can be obtained from FY |X(·|x) = 1 − S(·|x) and
F−1Y |X(p|x) for 0 < p < 1.

2.4 Multivariate Distribution for Observational Study

IfX and Y are obtained from a random sample, one �exible approach is to estimate the joint
distribution FX,Y from which to get the conditional distribution FY |X(·|x) for inferences such as
conditional quantiles. The case of a binary treatment variable is covered if subjects are randomized
to the treatment level. The vine pair-copula construction, which can handle a mix of discrete and
continuous variables, is an approach that can cover a wide range of dependence structures and
joint tail behavior. This construction is summarized in the next section.

3 Vine Copula Models

In this section, vine copulas and notation for them are summarized for results in subsec-
tions. For �tting a vine copula, we assume that the dataset consists of (xi1, . . . , xid) for i =
1, . . . , n; these vectors are considered as independent realizations of a continuous random vec-
tor (X1, . . . , Xd). The response variable can be considered as the last variable Xd. After �tting
univariate distributions to individuals variables, probability integral transforms are applied to
convert them to transformed observation vectors in [0, 1]d.

3.1 Introduction to Copulas

A copula is a multivariate distribution function with univariate Uniform (0,1) margins. Sklar’s
theorem (Sklar (1959)) implies that a joint distribution F is a composition of a copula C and its
univariate marginal distributions F1, . . . , Fd. The copula associated with a d-variate distribu-
tion F is a distribution function C : [0, 1]d → [0, 1] with U(0, 1) margins that satis�es F (x) =
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C(F1(x1), . . . , Fd(xd)), for x ∈ Rd. If F is a continuous d-variate distribution function with
univariate margins F1, . . . , Fd, and quantile functions F−11 , . . . , F−1d , then the copula C(u) =
F (F−11 (u1), . . . , F

−1(ud)), for u ∈ [0, 1]d, is the unique choice. Vine copulas or pair-copula
constructions are constructed from a sequence of bivariate copulas. Detailed introductions to
multivariate copula constructions can be found in Joe (2014) and Czado (2019).

3.2 Overview of Vine Structure

A regular vine (R-vine) is a nested set of trees where the edges in the �rst tree are the nodes
of the second tree, the edges of the second tree are the nodes of the third tree, etc. Vines are
useful in specifying the dependence structure for general multivariate distributions on d vari-
ables with edges in the �rst tree representing pairwise dependence and edges in subsequent trees
representing conditional dependence.

The �rst tree in a vine represents d variables as nodes and the bivariate dependence of d− 1
pairs of variables as edges. The second tree describes the conditional dependence of d−2 pairs of
variables conditioned on another variable; nodes are the edges in tree 1, and a pair of nodes can
be connected if there is a common variable in the pair. The third tree describes the conditional
dependence of d − 3 pairs of variables conditioned on two other variables; nodes are the edges
in tree 2, and a pair of nodes could be connected if there are two common conditioning variables
in the pair. This continues until tree d − 1 has only one edge that describes the conditional
dependence of two variables conditioned on the remaining d− 2 variables.

The de�nition of a vine as a sequence of trees is �rst given in Bedford and Cooke (2002).

De�nition 1 V is a vine on d variables, with E(V ) =
⋃d−1
`=1 E(T`) denoting the set of edges of V if

1. V = (T1, . . . , Td−1);
2. T1 is a tree with nodes N(T1) = {1, 2, . . . , d}, and edges E(T1). For ` > 1, T` is a tree with

nodes N(T`) = E(T`−1);
3. (proximity condition) For ` = 2, . . . , d − 1, for {n1, n2} ∈ E(T`), #(n14n2) = 2, where 4

denotes symmetric di�erence and # denotes cardinality.

An R-vine can be represented by the edge sets at each level E(T`) or by a graph. A vine
array is a compact method to encode the conditional dependence in a vine. A vine array A =
(a`j)`=1,...,d;j=`,...,d, for an R-vine V = (T1, . . . , Td−1) on d elements is a d × d upper triangular
matrix. It satis�es the following two conditions:

• The diagonal of A is a permutation of (1, . . . , d).
• For j = 2, . . . , d, the jth column has (a1j, . . . , aj−1,j) being a permutation of (a11, . . . , aj−1,j−1).

In the �rst row, a1j can be any element in {a11, . . . , aj−1,j−1}. For ` = 2, . . . , j − 1, the set
{a1j, . . . , a`j} is equal to {a1k, . . . , a`−1,k, akk} for at least one k in columns `, . . . , j − 1.
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For ` = 2, . . . , d − 1 and ` < j ≤ d, row ` and column j of the vine array indicates that the
variable a`j is connected to the variable ajj in tree T`, conditioned on variables a1j, . . . , a`−1,j . In
other words, the �rst ` rows of A and the diagonal elements encode the `th tree T`, such that the
edge [a`j, ajj|a1j, . . . , a`−1,j] ∈ E(T`) summarizes the conditional dependence on `− 1 variables,
for `+ 1 ≤ j ≤ d.

To get a multivariate distribution from a vine, bivariate distributions are assigned to edges on
the �rst tree and bivariate conditional distributions are assigned to edges on the subsequent trees.
The bivariate copula corresponding to a`j of the vine array A for 1 ≤ l < j ≤ d is denoted by
Ca`j ,ajj ;S`j with density function ca`j ,ajj ;S`j , where S`j = {a1j, . . . , a`−1,j} is the conditioning set
for this position. Note that S`j = ∅ if ` = 1 and in tree 1, Ca1j ,ajj summarizes the dependence of
a pair of variables for j = 2, . . . , d. In tree ` ∈ {2, . . . , d − 1}, the bivariate copula Ca`j ,ajj ;S`j is
used to link the conditional distributions Fa`j |S`j and Fajj |S`j , and it summarizes the conditional
dependence of variables indexed as a`j and ajj given the variables in the index set S`j .

Let f1, . . . , fd be the univariate densities. For absolutely continuous variables, the joint density
of (X1, . . . , Xd) based on the vine structure speci�ed by a vine array A = (a`j)`=1,...,d;j=`,...,d can
be decomposed as

f1:d(x1, . . . , xd) =
d∏
i=1

fi(xi) ·
d−1∏
`=1

d∏
j=`+1

ca`j ,ajj ;S`j
[
Fa`j |S`j

(
xa`j |xS`j

)
, Fajj |S`j

(
xajj |xS`j

)]
, (4)

where the conditional distributions Fa`j |S`j and Fajj |S`j are determined in a recursive manner,
using bivariate copulas on the edges in previous trees. Derivations of Equation (4) are given in
Bedford and Cooke (2001), Section 3.9 of Joe (2014) and Theorem 5.15 in Czado (2019). See Section
3.9.5 of Joe (2014) for a similar joint density when some of the variables are discrete.

Since a joint distribution can be decomposed into univariate marginal distributions and a de-
pendence structure among variables, estimation can proceed in a two-stage manner. The �rst
step estimates the univariate marginal distributions F̂j for j = 1, . . . , d. The u-scores vectors
u = (ui1, . . . , uid) and u− = (u−i1, . . . , u

−
id) for i = 1, . . . , n are obtained by applying the proba-

bility integral transform:

ui,j = F̂j(xi,j), u−i,j = F̂j(x
−
i,j), j = 1, . . . , p, i = 1, . . . , n (5)

The u−i,j are needed only for discrete variables. The second step �ts a vine copula model based on
the u-score vectors. In our approach, the second step involves two components: �nding a vine
structure describing the underlying dependence and deciding on suitable bivariate parametric
copula families to use on the edges of the vine.

4 Predicting Times to Event with Vine Copulas

Assume the dataset contains p explanatory variablesX1, . . . , Xp and a response variable Y as a
sample of size n. The observed data are (xi1, . . . , xip, ti) and the event indicator δi for i = 1, . . . , n.
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The observed time-to-event ti is equal to yi if δi = 1. It is equal to y∗i where y∗i ≤ yi and yi is
unobserved if δi = 0. The data (xi1, . . . , xip, yi) are considered as independent realizations of a
random vector (X1, . . . , Xp, Y ). To simplify the notation, we use Xd to represent the response
variable Y , i.e., the observed data are (xi1, xi2, . . . , xid) = (xi1, . . . , xip, ti) with d = p+ 1.

Our goal is to extend the methodology in Chang and Joe (2019) to a right-censored response
variable. The �rst step is to estimate a van der Waerden correlation matrix; this is reasonable if
a Gaussian copula model is a �rst order model and variables are monotonically related. For this
step, Section 4.1 has the theory on computing a van der Waerden correlation when one variable is
right-censored and the other is continuous or discrete. The second step is to obtain a vine structure
such that the response variable Y is a leaf variable of each vine tree, and pairs of variables with
the strongest dependence are represented in edges of low-order trees.

In the third step, we select the bivariate copula models on each edge in the selected vine
structure. Copula models only associated with explanatory variables can be chosen based on
existing algorithms. Copula models associated with the censored response variable can be chosen
based on a stepwise procedure proposed in Section 4.3.3. We also include an algorithm to evaluate
the log-likelihood of a vine copula containing mixed discrete-continuous explanatory variables
and a censored response variable in Section 4.3.2. In the fourth step, point and interval predictions
are obtained based on the �tted vine copula model. These steps are explained in details in the
remainder of this section.

4.1 Correlation Matrix Estimation

In this section, we propose a method to estimate the van der Waerden correlation between a
continuous or discrete explanatory variable with a right-censored response variable when they
are monotonically correlated. The main idea is to transform both variables to normal scores and
then �nd the maximum likelihood estimator of the correlation coe�cient assuming a bivariate
Gaussian copula. The �rst d−1 rows and columns of the correlation matrixRd×d can be obtained
by computing the usual correlation coe�cients while the last row and column associated with the
censored response can be obtained using the results in the subsections given below.

4.1.1 Van der Waerden Correlation for Continuous and Right-censored

First we consider the case where X = Xj is a continuous explanatory variable with observa-
tions x1, . . . , xn and Y is the censored continuous response with observations (t1, δ1), . . . , (tn, δn).
The van der Waerden correlation between X and Y can be computed as follows.

1. Let F̂X be the empirical CDF ofX . Convert {xi} to u-scores with ui1 = [F̂X(xi)+F̂X(x−i )]/2
for i = 1, . . . , n, equivalently ui1 = [rank (xi)− 1/2] /n. Further convert the u-scores to
normal scores with zi1 = Φ−1(ui1), where Φ−1(·) is the inverse of the CDF of the standard
normal distribution.
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2. Based on (ti, δi), obtain the Kaplan-Meier estimators for F̂Y (ti) for i = 1, . . . , n. The
Kaplan-Meier estimators are computed as

F̂Y (y) = 1−
∏
i:ti<y

(
1− di/ni

)
,

where ti is a time when at least one event happens, di is the number of events that happen
at time ti, and ni are the number of subjects known to have survived up to time ti.

3. If δi = 1, convert ti to u-score with ui2 = [F̂Y (ti) + F̂Y (t−i )]/2. Further convert the u-
scores to normal scores with zi2 = Φ−1(ui2). If δi = 0, apply the same conversions, but the
computed zi2 is right-censored.

4. The van der Waerden correlation between X and Y is the maximum likelihood estimate
of the log-likelihood function based on (zi1, zi2, δi) assuming the normal scores follow a
bivariate Gaussian distribution:

ρ̂ = arg max
ρ∈(−1,1)

logL(ρ) = arg max
ρ∈(−1,1)

∑
i:δi=1

log φ2(zi1, zi2; ρ)+
∑
i:δi=0

log Φ
[
(zi2 − ρzi1)/(1− ρ2)1/2

]
,

where φ2(·, ·; ρ) is the bivariate Gaussian density with correlation ρ.

4.1.2 Van der Waerden Correlation for Discrete and Right-censored

Next we consider the case whereX = Xj is a discrete explanatory variable with observations
x1, . . . , xn and Y is the censored continuous response with observations (t1, δ − 1), . . . , (tn, δn).
The van der Waerden correlation between X and Y can be computed as follows.

1. Let F̂X be the empirical CDF of X . De�ne zi1l = Φ−1(F̂X(x−i )) and zi1u = Φ−1(F̂X(xi)).
Then the z-score of xi satis�es zi1 ∈ (zi1l, zi1u].

2. The observations (ti, δi) for Y can be computed to zi2 following the same steps stated in
the previous subsection.

3. The van der Waerden correlation between X and Y is the maximum likelihood estimate of
the log-likelihood function based on (zi1l, zi1uzi2, δi) assuming the normal scores follow a
bivariate Gaussian distribution:

ρ̂ = arg max
ρ∈(−1,1)

logL(ρ)

= arg max
ρ∈(−1,1)

∑
i:δi=1

log
{

Φ
[
(zi1u − ρzi2)/(1− ρ2)1/2

]
− Φ

[
(zi1l − ρzi2)/(1− ρ2)1/2

]}
+
∑
i:δi=0

log

∫ zi1u

zi1l

∫ ∞
zi2

φ2(u, v; ρ)dudv.
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4.2 Univariate Models

Before a vine copula is �tted for the dependence of (X, Y ), suitable univariate families should
be chosen for each variable. For continuous variables, there are many 2-parameter to 4-parameter
families that can be considered, and maximum likelihood estimates can be obtained. For a discrete
or ordinal variable, the empirical distribution could be used (perhaps after combining categories
with low counts). Candidate models can be compared via the Akaike information criterion (AIC)
or Bayesian information criterion (BIC), and assessed for adequacy of �ts (especially the tails) via
quantile-quantile (Q-Q) plots.

When �tting a univariate model f(·;θ), let θ̂ be the maximum likelihood estimate. For a
continuous variable z, When there is no censoring, let z{i} be the ith order value. The Q-Q plot
consists of points (F−1( i−0.5

n
; θ̂), z{i}) for i = 1, . . . , n.

For a continuous variable y that can be right-censored, let y(1) ≤ · · · ≤ y(k) be the observed
uncensored values, and let pi = [F̂Y (y+(i)) + F̂Y (y−(i))]/2 where F̂Y is the Kaplan-Meier estimate
of FY . The Q-Q plot consists of points (F−1(pi; θ̂), y(i)) for i = 1, . . . , k; see Sections (3.3.1) and
(3.3.4) of Lawless (2011).

4.3 Bivariate Copula Selection

After �tting the univariate marginal distributions and �nding the vine structure Ad×d, para-
metric bivariate copulas need to be selected and �tted for each edge in the vine from T1 to Td−1.
This can be done in a two-step manner. In the �rst step, a vine copula model is �tted and bivariate
copulas are selected for all the explanatory variables according to A(d−1)×(d−1). These bivariate
copulas are only associated with the fully observed explanatory variables and can be selected fol-
lowing standard procedures edge by edge sequentially. In the second step, the parameters of the
bivariate copulas selected in the �rst step are �xed. However, due to censoring, bivariate copu-
las associated with the censored response variable cannot be estimated edge by edge using the
standard method. We propose an algorithm to evaluate the log-likelihood of a vine copula model
containing mixed discrete-continuous explanatory variables and a censored continuous response
variable. Using this algorithm, these bivariate copulas can be selected in a stepwise procedure.

4.3.1 Bivariate Copula Selection for Explanatory Variables

For all the fully observed explanatory variables, a vine copula model can be �tted based on
the vine structure A(d−1)×(d−1). This is possible since the response variable is only contained in a
leaf node in all the trees. As a result, d is not contained in A(d−1)×(d−1).

Depending on whether the two variables are discrete or continuous, the copula density func-
tion has di�erent expressions. We de�ne u+j = uj = Fj(xj) and u−j = lim

t→x−j
Fj(t) = Fj(x

−
j ). For
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continuous variables, u+j = u−j . We further de�ne a function c̃jk|S(F j|S,F k|S;θ) to represent the
copula density for a pair of CDFs F j|S = (F+

j|S, F
−
j|S) and F k|S = (F+

k|S, F
−
k|S). The conditioning

set S can be either empty or non-empty.

• If both Xj and Xk are continuous, then

c̃jk|S(F j|S,F k|S;θ) = cjk|S(Fj|S, Fk|S;θ).

• If Xj is discrete and Xk is continuous, then

c̃jk|S(F j|S,F k|S;θ) =
Cj|k;S

(
F+
j|S

∣∣Fk|S;θ
)
− Cj|k;S

(
F−j|S

∣∣Fk|S;θ
)

F+
j|S − F

−
j|S

.

• If Xj is continuous and Xk is discrete, then

c̃jk|S(F j|S,F k|S;θ) =
Ck|j;S

(
F+
k|S

∣∣Fj|S;θ
)
− Ck|j;S

(
F−k|S

∣∣Fj|S;θ
)

F+
k|S − F

−
k|S

.

• If both Xj and Xk are discrete, then

c̃jk|S(F j|S,F k|S;θ) =
[
Cjk;S

(
F+
j|S, F

+
k|S;θ

)
− Cjk;S

(
F−j|S, F

+
k|S;θ

)
− Cjk;S

(
F+
j|S, F

−
k|S;θ

)
+ Cjk;S

(
F−j|S, F

−
k|S;θ

) ]/[(
F+
j|S − F

−
j|S

)(
F+
k|S − F

−
k|S

) ]
.

Suppose there are M bivariate copula candidate families for each edge in the vine. In the �rst
tree, consider the edge [a1j, ajj]. The log-likelihood of the bivariate copula model (m) on this
edge is

La1j ,ajj
(
θ(m)

)
=

n∑
i=1

log c̃(m)
a1j ,ajj

[
ui,a1j ,ui,ajj ;θ

(m)
]
, (6)

where uij represents (u+ij, u
−
ij). Commonly used model selection criteria include AIC and BIC. For

each candidate parametric bivariate copula model on an edge, the maximum likelihood parameter
estimator θ̂

(m)
is obtained. The parametric copula model with the lowest AIC or BIC is selected

for that edge.

In tree ` ∈ {2, . . . , d − 2}, consider the edge [a`j, ajj;S`j]. Based on the �tted copulas
at the previous levels, the pseudo observations Ca`j |S`j

(
ui,a`j |ui,S`j

)
=
(
C+
a`j |S`j , C

−
a`j |S`j

)
and

Cajj |S`j
(
ui,ajj |ui,S`j

)
=
(
C+
ajj |S`j , C

−
ajj |S`j

)
can be obtained. The log-likelihood of the bivariate

copula model (m) on this edge is

La`j ,ajj ;S`j
(
θ(m)

)
=

n∑
i=1

log c̃
(m)
a`j ,ajj ;S`j

[
Ca`j |S`j

(
ui,a`j |ui,S`j

)
,Cajj |S`j

(
ui,ajj |ui,S`j

)
;θ(m)

]
,

(7)
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where ui,S`j = {(u+ik, u
−
ik) : k ∈ S`j}. AIC and BIC can again be used as the selection criteria.

This approach to selecting bivariate copulas is an extension of a method implemented in the
VineCopula R package (Schepsmeier et al. (2019)), to accommodate a mix of continuous and
discrete variables. Following this approach, bivariate copula models can be selected and �tted for
the explanatory variables.

4.3.2 Log-Likelihood Evaluation for Vine Copulas with Censored Response

In the vine, let π` be the index of the x-variable linked to the response variable y in tree ` for
` = 1, . . . , p. For the vine array A, π` is in row ` and column d = p+ 1.

For yi that is uncensored, the contribution to the vine copula log-likelihood involves the cop-
ula density cXπ` ,Y ;Xπ1 ,...,Xπ`−1

(ai, bi) where ai, bi are univariate CDF values for ` = 1 and are
conditional CDF values (recursively computed based on earlier trees) for ` > 1. For yi that is
right-censored (δi = 0), the contribution of the log-likelihood is more complicated as it involves
that conditional distribution CY |X1,...,Xp and this involves the copulas

CXπ` ,Y ;Xπ1 ,...,Xπ`−1
(8)

altogether for ` = 1, . . . , p.

This means that with parametric families for bivariate copulas, the parameters in Equation (8)
cannot be estimated separately and sequentially as in Chang and Joe (2019). In this section, we in-
dicate the algorithm for evaluating the log-likelihood of an R-vine copula model containing mixed
discrete-continuous explanatory variables and a right-censored continuous response variable by
modifying Algorithm 4 in Chapter 6 of Joe (2014) and Algorithm 3.1 in Chang and Joe (2019).

Assume variables have permuted indices so that the vine array has 1, . . . , d on the diagonal.
The inputs to the algorithm are the vine array Ad×d = (akj) with ajj = j for j = 1, . . . , d
on the diagonal, the bivariate copula family matrix Fd×d for all the edges in the vine, as well as
two sets of u-score vectors u+

i = (u+i1, . . . , u
+
id) and u−i = (u−i1, . . . , u

−
id) for i = 1, . . . , n, where

u+ij = Fj(xij) and u−ij = Fj(x
−
ij) for 1 ≤ j ≤ d− 1. Note that for the censored response variable,

we only need to consider u+id and C+
d|S`j

(
u+id|ui,S`j

)
for the two terms uid and Cd|S`j

(
uid|ui,S`j

)
in Equations (6) and (7), since the response variable is continuous. Note that the parameter vector
θ for each bivariate copula model is omitted in the algorithm for simplicity.

When all the bivariate families are �xed, Algorithm 1 returns the value of the log-likelihood
function of an R-vine involving a censored response variable.

4.3.3 Bivariate Copula Selection for the Response Variable

With the algorithm proposed in the previous section, standard maximum likelihood estimation
techniques can be applied to estimate the copula parameters once the bivariate copula families are
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Algorithm 1 Log-likelihood evaluation for the R-vine density with continuous or discrete pre-
dictors as variables 1, . . . , d− 1 and a censored response as variable d.
1: ComputeM = (mkj) in the upper triangle, wheremkj = max{a1j , . . . , akj} for k = 1, . . . , j−1, j = 2, . . . , d.
2: Compute the I = (Ikj) indicator array as in Algorithm 5 in Joe (2014).
3: Set s+ij ← u+i,a1j , s−ij ← u−i,a1j , w+

ij ← u+ij , w
−
ij ← u−ij , for j = 1, . . . , d.

4: Set loglik ←
∑
i:δi=1

∑d
j=2 log c̃a1j ,j(sij ,wij) +

∑
i:δi=0

∑d−1
j=2 log c̃a1j ,j(sij ,wij), where sij = (s+ij , s

−
ij),

wij = (w+
ij , w

−
ij), and the function c̃ is de�ned earlier. This is the log-likelihood function at the �rst level.

5: for l = 2, . . . , d− 1 do
6: for j = l, . . . , d do
7: if Il−1,j = 1 then
8: if isDiscrete(variable j) then
9: Set v′+ij ← [Cal−1,j ,j;a1j ,...,al−2,j

(
s+ij , w

+
ij

)
− Cal−1,j ,j;a1j ,...,al−2,j

(
s+ij , w

−
ij

)
]/(w+

ij − w
−
ij).

10: Set v′−ij ← [Cal−1,j ,j;a1j ,...,al−2,j

(
s−ij , w

+
ij

)
− Cal−1,j ,j;a1j ,...,al−2,j

(
s−ij , w

−
ij

)
]/(w+

ij − w
−
ij).

11: else
12: Set v′+ij ← Cal−1,j |j;a1j ,...,al−2,j

(
s+ij
∣∣w+
ij

)
and v′−ij ← Cal−1,j |j;a1j ,...,al−2,j

(
s−ij
∣∣w+
ij

)
.

13: end if
14: end if
15: if isDiscrete(variable al−1,j ) then
16: Set v+ij ← [Cal−1,j ,j;a1j ,...,al−2,j

(
s+ij , w

+
ij

)
− Cal−1,j ,j;a1j ,...,al−2,j

(
s−ij , w

+
ij

)
]/(s+ij − s

−
ij).

17: Set v−ij ← [Cal−1,j ,j;a1j ,...,al−2,j

(
s+ij , w

−
ij

)
− Cal−1,j ,j;a1j ,...,al−2,j

(
s−ij , w

−
ij

)
]/(s+ij − s

−
ij).

18: else
19: Set v+ij ← Cj|al−1,j ;a1j ,...,al−2,j

(
w+
ij

∣∣s+ij) and v−ij ← Cj|al−1,j ;a1j ,...,al−2,j

(
w−ij
∣∣s+ij).

20: end if
21: end for
22: for j = l + 1, . . . , d do
23: if alj = mlj then
24: Set s+ij ← v+i,mlj

and s−ij ← v−i,mlj
.

25: else
26: Set s+ij ← v′+i,mlj

and s−ij ← v′−i,mlj
.

27: end if
28: Set w+

ij ← v+ij and w−ij ← v−ij .
29: end for
30: if l < d− 1 then
31: Update loglik ← loglik +

∑
i:δi=1

∑d
j=l+1 log c̃alj ,j;a1j ,...,al−1,j

(sij ,wij) +∑
i:δi=0

∑d−1
j=l+1 log c̃alj ,j;a1j ,...,al−1,j

(sij ,wij).
32: else
33: if isDiscrete(variable ad−1,d) then
34: Update

loglik←loglik +
∑
i:δi=1

log c̃ad−1,d,d;a1d,...,ad−2,d
(sid,wid)

+
∑
i:δi=0

log

[
1−

Cad−1,d,d;a1d,...,al−2,d

(
s+id, w

+
id

)
− Cad−1,d,d;a1d,...,al−2,j

(
s−id, w

+
id

)
s+id − s

−
id

]
.

35: else
36: Update loglik ← loglik +

∑
i:δi=1 log c̃ad−1,d,d;a1d,...,ad−2,d

(sid,wid) +∑
i:δi=0 log

[
1− Cd|ad−1,d;a1d,...,ad−2,d

(w+
id|s

+
id)
]
.

37: end if
38: end if
39: end for
40: Return loglik.
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determined. In order to select the bivariate copula families associated with the censored response
variable, we proposed a stepwise method in this section. The detailed steps are as follows.

1. The bivariate copula families that are only associated with the explanatory variables are
selected using the procedure in Section 4.3.1. The parameter estimates of these copulas are
�xed when selecting the bivariate copulas associated with the censored response variable.

2. Copulas for the edges associated with the response variable, i.e., edge [a1d, add] on the �rst
level and edges [a`d, add;S`d] on the remaining levels for ` = 2, . . . , d − 1, are all set to
bivariate Gaussian copula as a starting point.

3. Starting from the �rst level, the bivariate copula for the edge [a1d, add] is changed to one of
theM bivariate copula candidate families. The copula family that minimizes criteria such as
AIC or BIC of the entire vine copula model with all the bivariate copulas associated with the
response variable at higher levels set to Gaussian is chosen for the �rst level. This bivariate
copula family is �xed but the corresponding parameters are re-estimated every time when
choosing bivariate copulas at higher levels.

4. For levels ` = 2, . . . , d − 1, repeat Step 3 to select the bivariate copula family for the edge
[a`d, add;S`d] with all the bivariate copulas associated with the response at higher levels set
to Gaussian.

5. At the last level, when the last bivariate copula family for the edge [ad−1,d, add;Sd−1,d] is
chosen, parameters of all the bivariate copulas associated with the censored response are
re-estimated to maximize the log-likelihood.

4.4 Time to Event Prediction

Using the proposed algorithm and procedures in Section 4.3, a vine copula model can be �tted
and estimated for the mixed discrete-continuous explanatory variables and the censored response
variable. With the �tted vine copula model, it is possible to apply Algorithm 3.1 in Chang and Joe
(2019) to compute the conditional CDF of the response variable given the explanatory variables
evaluated at u, i.e.,

π(u|x1, . . . , xd−1) = P (FY (Y ) ≤ u|x1, . . . , xd−1) = Cd|1,...,d−1(u|F1(x1), . . . , Fd−1(xd−1)).

Given a quantile q, the solution to the equation π(u|x1, . . . , xd−1) = q, i.e., u = π−1(q|x1, . . . , xd−1),
is the desired quantile. We can further apply the inverse probability integral transform to obtain
the predicted event times based on the corresponding univariate model.

5 Prediction Performance Evaluation

In this section, we discuss model comparisons and evaluations for predicting a censored re-
sponse variable. First, we propose a multiple imputed version of the performance metrics to adapt
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them for a censored response. We then give an example where a vine copula model cannot be
well approximated by the Cox or AFT model.

5.1 Performance Evaluation

5.1.1 Performance Metrics for Uncensored Response

For an uncensored numeric response variable, prediction methods are usually compared based
on mean absolute error of prediction, root mean squared error of prediction, and interval score of
prediction intervals. A reference for interval score (IS) is Gneiting and Raftery (2007).

Assume a training set is used to �t the models and a test set of size ntest is used to compare the
models. The de�nitions of these three measures are given below.

• The mean absolute error (MAE) and root mean squared error (RMSE) measure a model’s
performance on point estimations:

MAE(M) =
1

ntest

ntest∑
i=1

∣∣∣ỹi − ̂̃yMi ∣∣∣ , RMSE(M) =

√√√√ 1

ntest

ntest∑
i=1

(
ỹi − ̂̃yMi )2 , (9)

where ỹi is true value of the response variable of the ith sample in the test set and ̂̃yMi is
the predicted conditional expectation or conditional median based on a �tted modelM.

• The interval score (IS) is a scoring rule for quantile and interval predictions. In the case of
the central 100(1 − α)% prediction interval, let l̂Mi and ûMi be the predicted quantiles at
levels α/2 and 1 − α/2 by a �tted modelM for the response variable of the ith sample in
the test set. The interval score is de�ned as

IS(M) =
1

ntest

ntest∑
i=1

[(
ûMi − l̂Mi

)
+

2

α

(
l̂Mi − ỹi

)
I{ỹi < l̂Mi }+

2

α

(
ỹi− ûMi

)
I{ỹi > ûMi }

]
. (10)

Smaller interval scores imply superior prediction performance that has prediction intervals
that are not too long and do not miss the “true value” by much when the prediction interval
does not contain the true value in the test set.

These metrics can be applied to evaluate and compare the performance of di�erent predic-
tion methods in simulation studies when the true values of the unobserved response variable
are known for the censored cases. Nonetheless, for time-to-event datasets collected from real-
life observational studies, the true values remain unknown when there is censoring. Therefore,
alternative metrics are needed to evaluate the prediction performance for time-to-event data.
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5.1.2 Performance Metrics for Censored Response

In time-to-event analysis, a common metric to evaluate the prediction performance of a model
is the concordance index (C-index) introduced in Harrell et al. (1982); see also Wang et al. (2019).
C-index compares the ordering of the predicted relative risks or survival probabilities of di�erent
subjects instead of event times. For each pair of subjects, it can be considered as a concordant pair,
a discordant pair, or an indeterminable pair. C-index is de�ned as the number of concordant pairs
divided by the total number of concordant and discordant pairs. Nevertheless, larger C-index
values do not necessarily imply more accurate prediction results.

In this section, we adapt the performance metrics to right censoring by applying multiple im-
putation. In statistics, imputation is the process of replacing missing data with substituted values
and the censored responses in time-to-event analysis can be considered as a form of missing data.
Proposed by Rubin (2004), multiple imputation averages the outcomes across multiple imputed
datasets to account for the increased noise due to single imputation. Given a measure for an un-
censored response variable, its multiple imputed version for the censored response variable can
be computed by the following steps:

1. Imputation: Imputed values are drawn from a �tted conditional distribution of FY |X satis-
fying the condition that the imputed values should be greater than the censored response
y∗i . This can be done by �rst drawing a random sampleU from the Uniform [FY |X(y∗i |xi), 1]
distribution and then applying the inverse of the probability integral transform to obtain
the imputed value ymi = F−1Y |X(U |xi). Repeat this procedure m times. At the end of this
step, there should be m imputed values.

2. Computation: Each of the m imputed values is considered as the true value of the response
variable ỹi. For each subject, if it is censored, the evaluation metrics are computed based on
the predicted and imputed values. If it is fully observed, the evaluation metrics are computed
based on the predicted and true values. At the end of this step, there should be m sets of
evaluation metrics.

3. Pooling: The m sets of evaluation metrics are consolidated into one by taking the mean.

The multiple imputed version of the evaluation metrics can be computed as an average of the
two components: the raw metrics when the response variable is fully observed and the multiple
imputed metrics when the response variable is censored. For example, the multiple imputed MAE
can be de�ned as

MAEmi(M) =
1

ntest

ntest∑
i=1

{
I(δi = 1)

∣∣∣ỹi − ̂̃yMi ∣∣∣+ I(δi = 0)
1

m

m∑
k=1

∣∣∣ymi
ik − ̂̃yMi ∣∣∣

}
.

The multiple imputed RMSE and IS can be de�ned in a similar manner.

When the number of imputations m is large and the �tted conditional distribution FY |X is
close to the true distribution, the multiple imputed version of an evaluation metric is a good
approximation of the true metric.
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5.2 Comparing Copula-based Prediction to Other Models

Copulas are often used to model high-dimensional dependence structures with tail properties
that cannot be accommodated by other models. Conditional quantile functions for the response
variable given other observed variables can have a variety of shapes including monotonically
increasing or asymptotically �at in the tails. In this section, we provide some examples where
conditional distributions from copula-based models can or cannot be approximated by the Cox
proportional hazards ratio or AFT assumptions.

Based on the hazard function for the Cox proportional hazards model in Equation (1), we
know that when the explanatory variables X1, . . . , Xj−1, Xj+1, . . . , Xp are �xed, at any value
of Y = y, the hazard function h(y|X = x) is either monotonically increasing or decreasing
with respect to the xj depending on the signs of βj . Therefore, the cumulative hazard function
H(y|x) =

∫ y
0
h(t|x) dt should also be either monotonically increasing or decreasing with respect

to xj at any value of y for any j under the proportional hazards assumption.

Similarly, the AFT model assumes the survival function in the form of Equation (3). Hence,
the cumulative hazard function is

H(y|x) = − logS(y|x) =
[
y exp(−γ0 − xTγ)

]1/σ
.

Again, depending on γj and σ, when x1, . . . , xj−1, xj+1, . . . , xp are �xed, at any value of Y = y,
H(y|x) is either monotonically increasing or decreasing with respect to xj for any j.

To compare copula models with the Cox and AFT models, we �rst consider the case where
the explanatory variables X1, . . . , Xp and the response variable Y marginally follow univariate
Gaussian distributions and the joint distribution of their u-scores is characterized by a Gaus-
sian copula. This is equivalent to the case where the explanatory variables and the response
variable follow a multivariate Gaussian distribution. Without loss of generality, assume that
(X1, . . . , Xp, Y ) ∼ N(0,Σ). Consider partitioning Σ into

Σ =

[
ΣXX ΣXY

ΣY X ΣY Y

]
,

where ΣXX is the p × p covariance matrix of the explanatory variables X1, . . . , Xp and ΣY Y is
the variance of the response variable Y . The conditional distribution of the response variable
given the explanatory variables is Y |(X = x) ∼ N(ΣXY Σ−1Y Y x,ΣXX − ΣXY Σ−1Y Y ΣY X). The
covariance matrix of this conditional Gaussian distribution is a constant while the mean of this
conditional Gaussian distribution is a linear function of the explanatory variables. As a result,
when x1, . . . , xj−1, xj+1, . . . , xp are �xed, at any value of Y = y, the mean of this conditional
Gaussian distribution is either monotonically increasing or decreasing with respect to the xj for
any j. Therefore, the survival probability S(y|x) at any value of Y = y is also monotonically
increasing or decreasing with respect to the xj since the mean of the Gaussian distribution is
monotonically changing while the variance is a constant. It further implies that H(y|X = x)
is also monotonically changing with respect to xj . This shows that the Cox proportional haz-
ards or AFT assumptions can be approximated by Gaussian copula models. When the simplifying
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assumption for conditional copulas is satis�ed, a vine copula model with bivariate Gaussian cop-
ulas on all the edges is a good approximation of a multivariate Gaussian copula model, thus can
approximate the Cox proportional hazards or AFT assumptions well.

In contrast, when a vine copula model has non-Gaussian bivariate copulas on the edges, it can
be easily shown by simulation studies that the Cox proportional hazards or AFT assumptions are
violated. For example, we consider the vine copula model (A) as follows:

Model (A). 5 dimensional C-vine copula model:

Variables 1–4 are continuous explanatory variables and variable 5 is the response variable.
Each explanatory variable follows a univariate normal (0, 1) distribution. The response variable
follows an Exponential (1) distribution. The vine array, bivariate copula family array, and bivariate
copula parameter array of this vine copula model are as follows:

A =


1 1 1 1 1

2 2 2 2
3 3 3

4 4
5

 , F =


− G G G G
− t t t
− F F
− N
−

 , P =


− 4.67 2.67 5.32 3.09

− 0.75(6) 0.61(6) 0.7(6)
− 3.14 3.86

− 0.25
−

 ,
where N, t, F, and G in the copula family matrix stands for bivariate Gaussian (normal), t, Frank,
and Gumbel copulas, respectively. The t copula family has two parameters while all the other
copula families have one parameter.

With a randomly generated set of explanatory variables X2, X3, and X4, the plot of the cu-
mulative hazard function H(y|x1, x2, x3, x4) against y at di�erent values of x1 from Φ−1(0.05) to
Φ−1(0.95) is shown in Figure 1. If the proportional hazards or AFT assumption holds, the cumu-
lative hazard function should be monotonically increasing with X1 given any value of y. In other
words, these lines should be ordered from Φ−1(0.05) at the bottom to Φ−1(0.95) at the top for all
the y values. However, it can be seen from Figure 1 that these lines are not ordered in such way
and several lines cross each other. Hence, vine copula model (A) cannot be approximated by the
Cox or AFT model.

Other examples in the next section show how copula-based models can accommodate a wider
variety of shapes of conditional quantile functions.

6 Simulation Studies

In this section, the e�ectiveness of the proposed prediction method for a censored response
variable based on vine copulas is demonstrated on simulated datasets. We consider data generated
from the AFT and vine copula models, apply these two methods to predict the censored response
variable, and compare their performances. In time-to-event datasets collected from observational
studies, there is often weak or moderate dependence among the explanatory variables. Since
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Figure 1: Plot of the cumulative hazard function H(y|x1, x2, x3, x4) against y at di�erent values
of x1 from Φ−1(0.05) to Φ−1(0.95) with a randomly generated set of explanatory variables X2,
X3, and X4.

vine copulas are �exible models for multivariate dependence modeling, we assume the correlation
among the explanatory variables can be captured by copula models when data are generated from
the AFT model. The algorithm to simulate data from a vine copula model with continuous and
discrete random variables has not been elaborated in any previous literature. The details of this
algorithm are provided in the appendix. In all data generation scenarios, the sizes of the training
and test sets are both 1000. The AFT and vine copula models are �tted on the training set. The
evaluation metrics are computed based on the test set for each simulated dataset.

6.1 Data Simulated from the AFT Model

In this section, we consider scenarios where the time-to-event datasets are generated from the
AFT model. Generalized Gamma distribution is �tted as the univariate distribution of Y before
�tting vine copulas. When computing the multiple imputed metrics, the estimated AFT model is
used for conditional imputation.

Model (B). 5 dimensional AFT model with two discrete/ordinal explanatory variables:

Explanatory variables 1 and 3 are continuous while explanatory variables 2 and 4 are discrete.
The continuous univariate distributions are N(0, 1) and the discrete/ordinal variables are from
discretized N(0, 1) random variables with categories (−∞,−1], (−1, 0], (0, 1], (1,∞). The re-
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sponse variable is generated according to log yi = 0.08xi1 + 0.06xi2 + 0.09xi3 + 0.07xi4 + 0.2Wi.
Correlations of the u-scores of the explanatory variables are speci�ed by a 4 dimensional vine
copula model. The vine array, bivariate copula family array, and bivariate copula parameter array
of this vine copula model are in the appendix.

Model (C). 10 dimensional AFT model with four discrete/ordinal explanatory variables:

Explanatory variables 1, 3, 5, 6, and 7 are continuous while explanatory variables 2 and 4
are discrete. The continuous univariate distributions are N(0, 1) and the discrete/ordinal vari-
ables are from discretized N(0, 1) random variables with cutpoints with categories (−∞,−1],
(−1, 0], (0, 1], (1,∞). The response variable is generated according to log yi = 0.04xi1+0.05xi2+
0.04xi3 + 0.03xi4 + 0.04xi5 + 0.05xi6 + 0.03xi7 + 0.1Wi. Correlations of the u-scores of the ex-
planatory variables are speci�ed by a 7 dimensional vine copula model. The vine array, bivariate
copula family array, and bivariate copula parameter array of this vine copula model are in the
appendix.

The MAE, RMSE and 50% IS assuming that the true values of the censored responses are
known as well as the multiple imputed MAE, RMSE and 50% IS assuming that the true values of
the censored responses are unknown at di�erent censoring rates are summarized in Table 1. It
can be seen the AFT model performs slightly better since data are simulated from the AFT model.

6.2 Data Simulated from the Vine Copula Model

In this section, we consider scenarios where the time-to-event datasets are generated from vine
copula models. Based on theory in Chang and Joe (2019), tail properties of the linking copulas
to the response a�ect the form of conditional quantile functions at the extremes of the predictor
space. We consider many di�erent scenarios of vine copulas to con�rm that the simulation per-
formance matches what we expect from theory. From this, we summarize results only for speci�c
scenarios of linking copulas where we expect the AFT model to perform badly for predictions,
as this su�ces to show that the vine copula approach has more �exibility. When computing the
multiple imputed metrics, the estimated vine copula model is used for conditional imputation.

Model (D). 5 dimensional vine copula model with two discrete/ordinal explanatory variables:

Explanatory variables 2 and 3 are continuous while explanatory variables 1 and 4 are dis-
crete. The univariate distributions are Exp(1) for the continuous explanatory variables and the
discrete/ordinal variables are from discretized Exp(1) random variables with categories (0, 0.35],
(0.35, 0.7], (0.7, 1.25], (1.25,∞). The discrete values are set to 0.2, 0.5, 0.9, and 1.6 for the four
categories. The response variable follows log-normal distribution. Correlations of the u-scores of
the explanatory variables and the response variable are speci�ed by a 5 dimensional vine copula
model. The vine array, bivariate copula family array, and bivariate copula parameter array of this
vine copula model are in the appendix.

Model (E). 8 dimensional vine copula model with four discrete/ordinal explanatory variables:
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Model (B)

Censoring rate Prediction method MAE RMSE 50% IS MAE-MI RMSE-MI 50% IS-MI

0.2 AFT 0.165 0.206 0.519 0.164 0.205 0.518
Vine copula 0.173 0.216 0.545 0.172 0.215 0.542

0.5 AFT 0.165 0.206 0.520 0.165 0.206 0.520
Vine copula 0.173 0.218 0.549 0.172 0.216 0.545

0.8 AFT 0.166 0.210 0.528 0.166 0.208 0.526
Vine copula 0.176 0.224 0.561 0.172 0.216 0.546

Model (C)

Censoring rate Prediction method MAE RMSE 50% IS MAE-MI RMSE-MI 50% IS-MI

0.2 AFT 0.097 0.124 0.308 0.096 0.123 0.305
Vine copula 0.101 0.125 0.320 0.100 0.124 0.317

0.5 AFT 0.096 0.124 0.307 0.095 0.122 0.303
Vine copula 0.103 0.128 0.325 0.101 0.126 0.321

0.8 AFT 0.096 0.124 0.320 0.095 0.122 0.319
Vine copula 0.103 0.128 0.333 0.101 0.126 0.332

Table 1: The absolute error (MAE), root mean squared error (RMSE), and interval score (IS) as-
suming that the true values of the censored responses are known as well as the multiple imputed
MAE, RMSE and 50% IS assuming that the true values of the censored responses are unknown
comparing di�erent methods in predicting the time-to-event response variable when at data are
generated from the AFT models (B) and (C) at di�erent censoring rates.

Explanatory variables 1, 2, 3, 4, and 5 are continuous while explanatory variables 6 and 7 are
discrete. The univariate distributions are Exp(1) for the continuous explanatory variables and the
discrete/ordinal variables are from discretized Exp(1) random variables with categories (0, 0.35],
(0.35, 0.7], (0.7, 1.25], (1.25,∞). The discrete values are set to 0.2, 0.5, 0.9, and 1.6 for the four
categories. The response variable follows log-normal distribution. Correlations of the u-scores of
the explanatory variables and the response variable are speci�ed by an 8 dimensional vine copula
model. The vine array, bivariate copula family array, and bivariate copula parameter array of this
vine copula model are in the appendix.

In these two simulation cases, the bivariate copula models associated with the censored re-
sponse are all set to the Frank copula which has tail quadrant independence. The use of such
linking copulas implies that conditional quantile functions are �attening at the extremes of the
predictor space. When some of linking copulas have stronger dependence in the joint tails, the
conditional quantile functions can be increasing at di�erent rates as one explanatory variable
increases with others held �xed.

We apply our proposed algorithms in Section 4 to estimate the vine copula structure and
make predictions for the response based on the �tted vine copula model. The MAE, RMSE and
50% IS assuming that the true values of the censored responses are known as well as the multiple
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imputed MAE, RMSE and 50% IS assuming that the true values of the censored responses are
unknown at di�erent censoring rates are summarized in Table 2. It can be seen that the vine copula
model performs much better than the AFT model at all censoring rates. In these two cases, the
univariate distributions for the explanatory variables and the response variable are exponential
and log-normal. Therefore, the explanatory variables and the response variable are skewed to the
right and may take extreme values. It can also be easily veri�ed that the proportional hazards
or AFT assumptions do not hold in these two cases. Table 2 shows that as the censoring rate
increases, the MAE, RMSE, and 50% IS of the AFT model become larger and larger, indicating that
the AFT model fails to �t the data well with extreme observations at high censoring rates. As the
censoring rate increases, the absolute values of the estimates of the intercept and slopes of the
AFT model become larger, leading to over-predicted medians and quantiles across all data points.

Model (D)

Censoring rate Prediction method MAE RMSE 50% IS MAE-MI RMSE-MI 50% IS-MI

0.2 AFT 1.302 3.284 4.209 1.265 3.243 4.118
Vine copula 0.892 1.770 2.915 0.826 1.957 2.800

0.5 AFT 2.368 8.624 7.545 2.363 8.502 7.462
Vine copula 0.865 1.957 2.781 0.723 1.669 2.573

0.8 AFT 3.747 13.69 10.01 3.834 13.73 10.11
Vine copula 0.729 1.372 2.365 0.820 1.516 2.674

Model (E)

Censoring rate Prediction method MAE RMSE 50% IS MAE-MI RMSE-MI 50% IS-MI

0.2 AFT 0.994 1.771 3.312 1.025 2.064 3.417
Vine copula 0.892 1.770 2.972 0.899 2.089 3.012

0.5 AFT 1.295 3.048 4.161 1.348 3.156 4.310
Vine copula 0.897 1.785 2.978 0.893 2.064 3.015

0.8 AFT 19.52 286.4 65.09 19.55 286.3 65.24
Vine copula 0.908 1.802 3.012 0.712 1.683 2.402

Table 2: The absolute error (MAE), root mean squared error (RMSE), and interval score (IS) as-
suming that the true values of the censored responses are known as well as the multiple imputed
MAE, RMSE and 50% IS assuming that the true values of the censored responses are unknown
comparing di�erent methods in predicting the time-to-event response variable when at data are
generated from the vine copula models (D) and (E) at di�erent censoring rates.

To further compare the predictions given by the AFT and vine copula models, we change one
explanatory variable and �x the rest and examine how predictions of the two models vary. We
take Model (D) with censoring rate 0.2 as an example. We make variable 3 a varying predictor and
set the values of the other predictors to one randomly chosen observation in the training set. The
median responses predicted by the AFT and vine copula models with varying variable 3 from 0.01
to 0.99 quantiles for three randomly selected observations are plotted in Figure 2. The true values
for the uncensored response variable are 0.375, 0.841, and 0.724, respectively. Even with a varying
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predictor, the predicted medians should not deviate too much from the true values. However,
from Figure 2, it can be seen that the AFT model tends to make extreme predictions given large
predictors while predictions from the vine copula model tend to �atten out as a single predictor
increases. This shows that the vine copula approach is more �exible when the AFT assumptions
are violated as the response does not have a log-linear relationship with the explanatory variables.
Also note that there is no general approach in the proportional hazards model to replace xTγ by
g(x,θ) to have more non-linear shapes as the predictor space expands beyond a local region.
In other simulation scenarios (not shown here), the prediction performance of AFT relative to
copula-based is a little worse when the linking copulas to the response have stronger dependence
in the tails, leading to conditional quantile functions that continue to increase for large values of
explanatory variables.

0 1 2 3 4

0
1

2
3

4
5

variable 3

P
re

di
ct

ed
 r

es
po

ns
e

Vine Copula
Weibull AFT

0 1 2 3 4

0
2

4
6

8
10

variable 3

P
re

di
ct

ed
 r

es
po

ns
e

Vine Copula
Weibull AFT

0 1 2 3 4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

variable 3

P
re

di
ct

ed
 r

es
po

ns
e

Vine Copula
Weibull AFT

Figure 2: Plots of the median response predicted by the AFT and vine copula models with varying
variable 3 from 0.01 to 0.99 quantiles for three randomly selected observations in the training set
for Model (D) with censoring rate 0.2. All the other predictors are set to those of the selected
observations.

Im summary, the vine copula modeling approach can provide a decent approximation to other
time-to-event models. When data are generated from the AFT model, the vine copula method
works reasonably well in predicting the censored response. In contrast, many conditional quantile
functions from vine copula models cannot be well approximated by the Cox or AFT models with
a linear function of explanatory variables. When data are generated from vine copula models, the
vine copula method can perform much better (depending on the shape of conditional quantiles)
than the AFT model in predicting the censored response variable. Therefore, our proposed method
of predicting event times with vine copulas is a practical alternative to traditional time-to-event
models when the predictor space can be considered as unbounded.

7 Application to a Survival Dataset

In this section, we compare the prediction performance of our proposed vine copula approach
with traditional survival analysis models on the primary biliary cirrhosis (PBC) dataset intro-
duced in Fleming and Harrington (2011). This dataset is available in the survival R package
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(Therneau and Lumley (2015)).

Primary sclerosing cholangitis is an autoimmune disease leading to destruction of the small
bile ducts in the liver. Progression is slow but inexhortable, eventually leading to cirrhosis and
liver decompensation. This dataset was collected from the Mayo Clinic trial conducted between
1974 and 1984. There are 312 patients participated in the randomized trial. We select seven ex-
planatory variables, age, edema, bili (serum bilirunbin), albumin (serum albumin), platelet (platelet
count), protime (standardized blood clotting time), and stage (histologic stage of disease), which
are largely complete, as the explanatory variables to predict the survival times (in days) of the
participants. Among all explanatory variables, edema and stage are discrete; all the others are
continuous. We replace the four missing explanatory variables in the dataset by the sum of the
median value and a small Gaussian random noise. The status of each participant at the endpoint
of the trial can fall into one of the three categories: censored, transplant, or dead. In this analysis,
we treat participants from the �rst two categories as right-censored and participants from the last
category as fully observed. We randomly select 240 cases as the training set and the remaining 72
cases are used as the test set. We tried multiple random splits of the training/test sets. The results
of di�erent splits are similar to those reported in the remainder of this section.

The �rst step of applying the vine copula approach is to �t the univariate distributions for
each variable and then transform them to u-scores. For the continuous explanatory variables, we
�t the normal distribution for age, the Weibull distribution for bili, platelet, and protime, and the
skewed normal distribution for albumin based on the training data. Diagnostic plots suggest that
these models �t the variables adequately. For the discrete explanatory variables, we apply the rank
transform based on the training set to obtain the u-scores. For the response variable, we �t a left-
truncated normal distribution with minimum value 0 and optimize the parameters based on the
log-likelihood of both censored and uncensored response in the training set. The Q-Q plots show
that the left-truncated normal distribution �ts the response variable better than other candidates.
The parameter estimates of the univariate distributions for the continuous explanatory variables
and the response variable as well as the estimated van der Waerden correlations with the response
are displayed in Table 3. For the u-scores of age, edema, bili, protime, and stage, we further take a
u′ = 1−u transform to make sure that they have positive van der Waerden correlations with the
response variable. Details of the �tted vine array and bivariate copula family array can be found
in the appendix.

Variable Distribution Parameter Estimates vW cor

age Normal µ: 49.9, σ: 10.5 -0.34
bili Weibull k (shape): 0.895, λ (scale): 3.04 -0.63
albumin Skewed normal ξ (location): 3.51, ω (scale): 0.426, α (shape): 0.00702 0.45
platelet Weibull k (shape): 3.01, λ (scale): 295 0.24
protime Weibull k (shape): 9.71, λ (scale): 11.2 -0.52
time (response) Truncated normal µ: 554, σ: 4609, a (lower limit): 0, b (upper limit):∞ N/A

Table 3: The �tted univariate distributions and the corresponding parameter estimates for the con-
tinuous explanatory variables and the response variable as well as the estimated van der Waerden
correlations with the response based on the training set.
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For the AFT model, we take the log-transformation of two explanatory variables bili and pro-
time to make them less skewed. We then rescale all the explanatory variables and the response
variable using min-max normalization to normalize their ranges. The coe�cient estimates from
the AFT model for the seven min-max and/or log transformed explanatory variables are -0.144
for age, -0.082 for edema, -0.431 for bili, 0.117 for albumin, 0.004 for platelet, -0.087 for protime,
and -0.110 for stage, respectively, indicating that most predictors are negatively correlated with
the survival time.

For comparison purposes, we also consider Cox partial likelihood estimation with Weibull
baseline hazard function, as mentioned in Section 2.2. This results in similar estimates to maxi-
mum likelihood with the AFT model. We take the same preprocessing steps as the AFT model.
The coe�cient estimates from the Cox model for the seven min-max and/or log transformed ex-
planatory variables are 0.357 for age, 0.207 for edema, 0.993 for bili, -0.294 for albumin, -0.010 for
platelet, 0.230 for protime, and 0.247 for stage, respectively. Note that the estimates from the Cox
model have di�erent signs but are approximately proportional to those from the AFT model.

To compare the prediction performances on the censored data, a conditional distribution FY |X
is needed to generate multiple sets of imputed values to evaluate our proposed metrics in Sec-
tion 5.1.2. One of the features of the PBC dataset is that many censored values of the response
variable are close to or greater than the largest observed value. This makes it unreliable to make
predictions for these large censored values since the upper tail is completely unobserved. Under
this circumstance, a model with light upper tail for the response variable should be preferred to
make more conservative predictions for the censored cases. If we use FY |X derived from the �tted
AFT or Cox model as the conditional distribution, the imputed values tend to have very heavy
upper tails, leading to the prediction intervals generated by all the three models having exception-
ally low coverage rates. In contrast, the prediction intervals generated by the three methods have
desired coverage rates when they are evaluated on the imputed values simulated from the �tted
vine copula model; the upper tails of the �tted conditional distribution are also lighter. There-
fore, we conclude that the vine copula model is a more suitable model for the PBC dataset and
is thus used for multiple imputation. The MAE, RMSE and 50% IS for the uncensored data in the
test set as well as the multiple imputed MAE, RMSE and 50% IS combining the uncensored and
imputed data in the test set for the AFT, Cox, and vine copula models using all the explanatory
variables are summarized in Table 4. It can be seen the vine copula prediction approach has su-
perior performances compared with the AFT and Cox models on both uncensored and imputed
data. This shows the e�ectiveness of our proposed vine copula survival prediction method. Since
the prediction results generated by the Cox model are very similar to the AFT model and they
have similar parametric forms, we only compare the vine copula approach with the AFT model
in the remainder of this section.

To further compare the predictions given by the AFT and vine copula models, we change one
explanatory variable and �x the rest and examine how predictions of the two models vary. We
take the continuous variable bili as an example of varying predictor and set the values of the
other predictors to one randomly chosen observation in the training set. The median survival
times predicted by the AFT and vine copula models with varying bili from 0.005 to 0.995 quan-
tiles (plotted as 1/bili on the x-axis since it is negatively correlated with the response) for three
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Prediction method MAE RMSE 50% IS MAE-MI RMSE-MI 50% IS-MI

AFT 1158 1694 3539 1500 2057 4851
Cox 1136 1650 3470 1477 2034 4810

Vine copula 994 1495 3311 1407 1990 4623

Table 4: The absolute error (MAE), root mean squared error (RMSE), and interval score (IS) for
the uncensored data only in the test set as well as the multiple imputed MAE, RMSE and 50%
IS combining the uncensored and imputed data in the test set for the AFT, Cox, and vine copula
models using all the explanatory variables.

randomly selected observations are plotted in Figure 3. It can be seen that when bili takes more
extreme values (i.e., small values close to 0), the vine copula model tends to generate more con-
servative predictions since bili is linked to the response variable by a Frank copula. Since the
upper tail behaviors of the survival time are only partially observed in the dataset, conservative
predictions should be preferred even with extreme predictors.
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Figure 3: Plots of the median survival times predicted by the AFT and vine copula models with
varying bili from 0.005 to 0.995 quantiles for three randomly selected observations in the training
set. All the other predictors are set to those of the selected observations.

Moreover, as a sensitivity analysis, we also compare the prediction performances of the two
methods when di�erent sets of explanatory variables are used. The results are summarized in Ta-
ble 5. For the case of no predictors, the baseline method always predicts the median of the �tted
truncated normal distribution. For the one explanatory variable case, bili, which has the largest
absolute van der Waerden correlation with the response, is used as the single predictor. Bivari-
ate Frank copula is used as the copula model for this case since it �ts the data better than other
bivariate copula families. For the �ve explanatory variable case, all the continuous variables, i.e.,
age, bili, albumin, platelet, and protime, are used as the predictors. It can be seen that in both
one and �ve variable cases, the AFT and vine copula methods have signi�cantly superior predic-
tion performances compared with the baseline method in terms of point and interval predictions.
Moreover, the copula model consistently outperforms the AFT model, showing the �exibility of
the copula approach.
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Variable Prediction method MAE RMSE 50% IS MAE-MI RMSE-MI 50% IS-MI

None Median 1980 2209 6278 2290 2912 7170

1 (bili) AFT 1377 1759 4204 1681 2260 5490
Bivariate Frank copula 1275 1591 3922 1668 2256 5336

5 (all continuous) AFT 1215 1687 3678 1507 2033 4892
Vine copula 1097 1550 3537 1494 2069 4782

Table 5: The absolute error (MAE), root mean squared error (RMSE), and interval score (IS) for
the uncensored data only in the test set as well as the multiple imputed MAE, RMSE and 50% IS
combining the uncensored and imputed data in the test set for the AFT and vine copula models
using di�erent sets of explanatory variables.

8 Conclusion

In conclusion, we propose a vine copula based approach to predict a right-censored response
variable given a set of mixed discrete-continuous explanatory variables. Compared with other
traditional time-to-event analysis methods such as Cox proportional hazards or AFT models, our
proposed method provides conditional quantile functions that lead to more accurate point predic-
tions and more informative interval predictions, and can often approximate other models well. In
contrast, conditional quantile functions of vine copulas usually cannot be approximated by other
time-to-event analysis models. When the proportional hazards or AFT assumptions are not satis-
�ed, predictions based on vine copulas can signi�cantly outperform other models depending on
the shapes of conditional quantile functions. We also adapt common metrics to evaluate the pre-
diction performances on censored datasets by applying multiple imputation. Simulation studies
demonstrate the e�ectiveness of our proposed prediction methods and evaluation metrics. Finally,
we apply our proposed method to the PBC dataset and achieve superior prediction performances
compared with other methods.

In this paper, the proposed vine copula prediction method speci�cally works for right-censored
data. With minor modi�cations to the likelihood function, our proposed method can be extended
to predictions of other types of censored response, such as left and interval-censored data.
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Appendix

A Algorithm for Simulating Data from Vine Copulas with
Continuous and Discrete Variables

In this section, we state the algorithm for simulating data from a vine copula model with con-
tinuous and discrete random variables in Algorithm 2. The inputs to the algorithm are the vine
array Ad×d = (akj) with ajj = j for j = 1, . . . , d on the diagonal, the bivariate copula family
matrix Fd×d for all the edges in the vine. For variable j, if it is discrete, we assume it is discretized
by cutpoints ∞, cutPoints1, cutPoints2, . . . , cutPointsm−1,∞ with categories (−∞, cutPoints1],
(cutPoints1, cutPoints2], . . . , (cutPointsm−1,∞]. In each of these categories, we assume the dis-
crete variable takes value discValj,1, discValj,2, . . . ,, and discValj,m, respectively. The discrete val-
ues can be set to the middle points of these categories. The output of the algorithm is an n by d
matrix of the simulated values from the speci�ed vine copula model.

B Details of the Simulation Models

The vine array, bivariate copula family array, and bivariate copula parameter array for model
(B) in Section 6.1 are as follows:

A =


1 1 1 1

2 2 2
3 3

4

 , F =


− t t t
− N N
− N
−

 , P =


− 0.49(6) 0.46(6) 0.50(6)

− 0.22 0.34
− 0.05

−

 ,
where N, t, F, and G in the copula family matrix stands for bivariate Gaussian (normal), t, Frank,
and Gumbel copulas, respectively.

The vine array, bivariate copula family array, and bivariate copula parameter array for model
(C) in Section 6.1 are as follows:

A =



1 1 1 1 1 1 1
2 2 2 2 2 2

3 3 3 3 3
4 4 4 4

5 5 5
6 6

7


, F =



− t t t t t t
− t t t t t
− N N N N
− N N N
− N N
− N
−


,
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Algorithm 2 Simulating n sets of observations from an R-vine with continuous or discrete ex-
planatory variables as variables 1, . . . , d. Inputs are the univariate CDFs FXj for j = 1, . . . , d
as well as the cutpoints cutPointsj,1:(m+1) and discrete values discValj,1:m for variable j if it is
discrete.
1: Initialize X = (xij) as an empty matrix, i = 1, . . . , n, j = 1, . . . , d.
2: Simulate U = (uij) where uij

i.i.d.∼ U(0, 1) for i = 1, . . . , n, j = 1, . . . , d.
3: if isDiscrete(variable a11) then
4: Compute FXa11

(cutPointsa11,1), . . . , FXa11
(cutPointsa11,m+1).

5: for i = 1, . . . , n do
6: Set xi,a11 ← discVala11,k if FXa11

(cutPointsa11,k) ≤ ui,a11 < FXa11
(cutPointsa11,k+1).

7: end for
8: else
9: for i = 1, . . . , n do

10: Set xi,a11 ← F−1Xa11
(ui,a11).

11: end for
12: end if
13: for j = 2, . . . , d do
14: if isDiscrete(variable ajj ) then
15: for i = 1, . . . , n do
16: Compute FXajj

|Xa11,...,aj−1,j−1

(
cutPointsajj ,k|xi,a11 , . . . , xi,aj−1,j−1

)
for k = 1, . . . ,m+ 1.

17: Set xi,ajj ← discValajj ,k if FXajj
|Xa11,...,aj−1,j−1

(
cutPointsajj ,k|xi,a11 , . . . , xi,aj−1,j−1

)
≤ ui,a11 <

FXajj
|Xa11,...,aj−1,j−1

(
cutPointsajj ,k+1|xi,a11 , . . . , xi,aj−1,j−1

)
.

18: end for
19: else
20: for i = 1, . . . , n do
21: Set xi,ajj ← F−1Xajj

|a11,...,aj−1,j−1

(
ui,ajj |xi,a11,...,xi,aj−1,j−1

)
by solving

FXajj
|a11,...,aj−1,j−1

(
·|xi,a11,...,xi,aj−1,j−1

)
= ui,ajj using Algorithm 3.1 in Chang and Joe (2019).

22: end for
23: end if
24: end for
25: Return X .
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P =



− 0.64(6) 0.60(6) 0.65(6) 0.57(6) 0.65(6) 0.54(6)
− 0.40(8) 0.45(8) 0.45(8) 0.38(8) 0.30(8)

− 0.12 0.25 0.23 0.29
− 0.01 0.07 0.09

− 0.03 0.09
− 0.03

−


.

The vine array, bivariate copula family array, and bivariate copula parameter array for model
(D) in Section 6.2 are as follows:

A =


1 1 3 3 4

3 1 2 3
2 1 2

4 1
5

 , F =


− G G G F
− N N F
− F F
− F
−

 , P =


− 2.34 1.74 2.46 5.85

− 0.48 0.44 2.89
− 1.47 1.29

− 0.24
−

 .

The vine array, bivariate copula family array, and bivariate copula parameter array for model
(E) in Section 6.2 are as follows:

A =



5 5 3 3 3 3 2 5
3 5 5 5 5 3 3

7 7 7 2 5 2
2 2 7 7 1

6 6 6 7
1 1 6

4 4
8


, F =



− G G G G G G F
− G G G G G F
− N N N N F
− N N N F
− F F F
− F F
− F
−


,

P =



− 1.67 1.84 1.76 1.76 1.52 1.62 4.82
− 1.45 1.26 1.26 1.42 1.47 2.19

− 0.25 0.14 0.30 0.26 1.08
− 0.13 0.18 0.18 0.92

− 0.29 0.41 0.47
− 0.13 0.23

− 0.45
−


.
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C Fitted Vine Copula Model for the PBC Dataset

The �tted vine array and bivariate copula family array selected based on our proposed method
in Section 4.3 for the training data of the PBC dataset are as follows:

A =



1 1 2 7 2 7 2 2
0 2 1 2 7 4 7 3
0 0 7 1 4 2 3 7
0 0 0 4 1 1 4 6
0 0 0 0 3 3 1 4
0 0 0 0 0 5 5 1
0 0 0 0 0 0 6 5
0 0 0 0 0 0 0 8


, F =



− G.s N G.s G.s G.s BB1 G.s
− G.s G.s F G.s G.s F

− N t N G.s F
− N F N N

− N N N
− G.s G

− N
−


.

The variables are (1) age, (2) edema, (3) bili, (4) albumin, (5) platelet, (6) protime, (7) stage, and (8)
the response variable (survival time). N, t, F, G, G.s, and BB1 in the copula family matrix stand for
bivariate Gaussian (normal), t, Frank, Gumbel, survival Gumbel, and BB1 copulas, respectively.
Due to censoring, the upper tail behaviors of the response variable can only be partially observed.
As a result, copulas with light upper tail are mostly chosen as the bivariate copula models associ-
ated with the survival time.

D Examples ofComparingDi�erent PredictionMethodsBased
on the PBC Dataset

We randomly choose �ve samples from the test set of the PBC data and list the true observed
or censored responses as well as the point and interval prediction results from the AFT and vine
copula models for these samples in Table 6. It can be seen that the vine copula model in general
outputs smaller median predictions compared with the AFT model, which are often closer to the
true survival times and lead to improved metrics.

Survival time Censored Copula prediction Copula 50% PI AFT prediction AFT 50% PI

1702 Yes 5140 [3845, 6613] 5911 [4007, 7974]
4256 Yes 5885 [4382, 7342] 7134 [4862, 9596]
2400 No 2527 [1612, 3564] 2745 [1795, 3774]
51 No 129 [50, 306] 179 [1, 371]

1349 Yes 3784 [2539, 5397] 3863 [2576, 5257]

Table 6: The true observed or censored survival times, censoring status, median predictions and
the corresponding 50% prediction intervals generated by the AFT and vine copula models for �ve
randomly selected samples from the test set.
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