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Abstract

A general and relatively simple method for construction of multivariate goodness–of–fit tests is introduced. The

proposed test is applied to elliptical distributions. The method is based on a characterization of probability

distributions via their characteristic function. The consistency and other limit properties of the new test

statistics are studied. Also in a simulation study the proposed tests are compared with earlier as well as more

recent competitors.
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1. Introduction

Let X ∈ Rp, p ≥ 1, be an arbitrary random vector with distribution function (DF) FX(x) = P(X ≤
x). We consider the problem of goodness–of–fit testing with null hypothesis FX = F0 where F0 may be

either a fixed distribution (simple hypothesis) or a family of distributions indexed by a parameter (composite

hypothesis). While goodness–of–fit has a long history dating back to Pearson’s chi–squared test (see the volume

edited by Huber-Carol et al., 2002 for a review of goodness–of–fit including historical accounts), the approach

followed herein is relatively recent. Specifically we employ the characteristic function (CF) of X under the

null hypothesis and measure its distance from the empirical CF computed from the sample in order to decide

whether our data are compatible with the null hypothesis. In this connection, there is a line of research with

CF–based testing methods that are developed by adapting the original idea of Pearson’s chi–squared test to the
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context of CFs; see for instance Koutrouvelis and Kellermeier (1981), Epps and Singleton (1986), Fan (1997)

and Koutrouvelis and Meintanis (1999). However the by far most favoured approach is that of continuous-type

procedures, starting with the contribution of Epps and Pulley (1983) for testing univariate normality, that was

followed by a series of papers by N. Henze and coauthors addressing the problem of multivariate normality;

see Baringhaus and Henze (1988), Henze and Zirkler (1990), and Henze and Wagner (1997). The reader is also

referred to the review articles of Henze (2002) and Ebner and Henze (2020) that give an up to date picture

of the wide range of procedures available for this particular problem of testing for normality. Outside the

multivariate Gaussian context, the range of goodness–of–fit procedures available is certainly much more limited;

see Fragiadakis and Meintanis (2011), Meintanis and Hlávka (2010) and Meintanis et al. (2015) for testing for

the Laplace, the skew–normal and the stable, distribution, respectively; see also Jiménez-Gamero et al. (2009)

for a general approach.

Compared to the aforementioned procedures the approach followed herein is different in that it frames any

such test as a two–sample test, whereby the test statistic measures distance between the empirical CF of the

data at hand and an empirical CF computed from a Monte Carlo sample generated under the null hypothesis.

In doing so, and borrowing from earlier CF–based methodology we are able to express this test statistic in a

convenient analytical form that facilitates computations, its asymptotics are derived under the null hypothesis

as well as under alternatives, while its actual implementation is carried out by using well established resampling

procedures.

The remainder of this work unfolds as follows. In Section 2 we provide a characterization that provides the

background for our tests. In Section 3 we introduce our method for goodness–of–fit testing as applied to simple

null hypotheses under test, without estimated parameters. Section 4 extends the new tests to the case of a

composite null hypothesis with unknown parameters within the family of elliptical distributions. Asymptotic

properties of the tests are provided in Section 5. Section 6 specifies the actual implementation of the new test

procedure. In Section 7 a simulation study is presented whereby the suggested method is applied on several

popular null hypotheses under test, including comparisons with alternative methods. A real–data example is

also included. The paper concludes in Section 8 with a discussion and outlook. Technical proofs are deferred

to the Appendix in Section 9. An online Supplement contains the R code and some extra simulation results.

2. Background

In this section we prove, and discuss related aspects regarding, a characterization that motivates our test

statistic. To this end, consider the characteristic function (CF) ϕX (t) = E(eit
⊤X), t ∈ Rp, of X, where

i =
√
−1 and the superscript ⊤ means transposition of column vectors and matrices. Consider the population
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Fourier–type discrepancy measure

Tw =

∫
|ϕX(t)− ϕ0(t)|2w(t)dt (1)

between the CF of X and the CF ϕ0(·) of an independent random vector X0 with fixed DF F0(·), where an

unspecified integral denotes integration over Rp. In (1), w(·) denotes a non-negative weight function which will

be further specified below and | · | stands for the modulus of a complex number.

Recall that for z1, z2 ∈ C, the set of complex numbers, with Cartesian coordinates zm = Re(zm) +

i Im(zm), m = 1, 2, we have |z1 − z2|2 = |z1|2 + |z2|2 − 2(Re(z1)Re(z2) + Im(z1)Im(z2)). Thus for fixed t,

and since |ϕX(t)|2 = ϕX(t)ϕ−Y (t) = ϕX−Y (t) (and likewise for |ϕ0(t)|2) the CF point discrepancy in (1) may

be written as

|ϕX(t)− ϕ0(t)|2 = ϕX−Y (t) + ϕX0−Y 0
(t)− 2Re(ϕX−X0

(t))

= E
(
cos(t⊤(X − Y )) + cos(t⊤(X0 − Y 0))− 2 cos(t⊤(X −X0))

)
, (2)

where Y and Y 0 is a pair of independent vectors which represent independent copies of X and X0, respectively,

and the equality in (2) following by the fact that X − Y and X0 − Y 0 are symmetric around zero. From (2)

and using Fubini’s theorem we have

Tw = E

(∫ (
cos(t⊤(X − Y )) + cos(t⊤(X0 − Y 0))− 2 cos(t⊤(X −X0))

)
w(t)dt

)
. (3)

Now suppose that w(t) is the density of a spherical distribution in Rp. Then it is well known that the

CF corresponding to w(·) can be written as Ψ(‖x‖2) where Ψ(·) is called the “kernel” of the specific family of

spherical distributions and ‖ · ‖ stands for the Euclidean norm; see Fang et al. (1990).

Thus if we apply Ψ(·) on (3) we have Tw = EΨ(F, F0) with

EΨ(FX , F0) = E
(
Ψ(‖X − Y ‖2) + Ψ(‖X0 − Y 0‖2)− 2Ψ(‖X −X0‖2)

)
, (4)

and by invoking the uniqueness property of CFs we have the following characterization:

Proposition 1. For any given kernel Ψ and fixed DF F0, the quantity defined by (4) satisfies EΨ(FX , F0) ≥ 0

for every DF FX(·), while EΨ(FX , F0) = 0 if and only if FX ≡ F0.

In this paper we propose goodness–of–fit tests that make use of Proposition 1. Understandably we favor

simple kernels Ψ(·) that lead to test statistics that are straightforward to compute. In this connection, the most

well known subfamily of multivariate distributions in Rp that possess simple kernels is the family of spherical

and elliptical distributions. Here we will consider kernels from this subfamily, and since as already mentioned
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all considered distributions under test will also be specific members of the spherical/elliptical subfamily in what

follows we briefly define this subfamily.

As already implicit, a random variable X ∈ Rp is said to follow a spherical distribution if its CF satisfies

ϕX(t) = Ψ(‖t‖2) for some function Ψ(ξ) of a scalar variable ξ. Popular members of the spherical subfamily are

the standard normal distribution corresponding to Ψ(ξ) = e−ξ/2, the stable family of distributions (see Nolan,

2013) with Ψ(ξ) = e−ξb/2 , b ∈ (0, 2], and the generalized Laplace distribution (see Kozubowski et al., 2013)

with Ψ(ξ) = (1 + ξ)−b, b > 0. The multivariate Student–t as well as the family of Kotz–type distributions are

also members of the spherical subfamily of multivariate distributions in the standard Euclidean space, but these

are more convenient to define via their densities rather than their CFs; see Kotz and Nadarajah (2004) and

Nadarajah (2003), respectively. Each spherical distribution gives rise to a corresponding elliptical distribution

by means of the transformation X 7→ δ +V 1/2X, with CF given by eit
⊤δΨ(t⊤V t), where δ ∈ Rp is a location

parameter and the (p×p) positive definite matrix V represents scatter. Further properties of spherical/elliptical

distributions that are necessary for our procedure will be provided below. For more information we refer Kelker

(1970) and Fang et al. (1990).

Remark 1. The quantity figuring in the right–hand side of equation (4) is a special case of the squared maxi-

mum mean discrepancy defined in Lemma 6 of Gretton et al. (2012). Thus Proposition 1 refers to Theorem 5 in

Gretton et al. (2012) (proved in the general setting of reproducing kernel Hilbert spaces), in effect putting empha-

sis on the fact that CFs of spherical distributions lead to, in the terminology of Gretton et al. (2012), universal

kernels, i.e. kernels that safeguard test consistency. In fact Micchelli et al. (2006) already mention the normal

and (generalized) Laplace as universal kernels. The underlying idea can be traced back to Baringhaus and Franz

(2004) and Székely and Rizzo (2005), that state certain related characterizations, but these are stated in terms

of quantities other than the CF. Later Székely and Rizzo (2013) revisited these characterizations and defined

the so–called energy distance statistics thereof, which relate to equation (1) in that energy statistics also use

CFs. The difference is that the latter statistics, even in their generalized versions, use a very specific non–

integrable weight function, rather than a density, and thus impose certain moment conditions on the underlying

random variable that restricts application to light–tailed distributions. In this connection, the reader is referred

to Sejdinovic et al. (2013) for an equivalence result connecting energy–based statistics and maximum mean dis-

crepancy statistics.
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3. Preamble: Goodness–of–fit tests for simple hypothesis

In this section we consider the simple hypothesis of testing goodness–of–fit for a fixed, but otherwise arbitrary,

distribution in Rp without estimated parameters, starting with the standard Gaussian law which is by far the

most popular special case. To this end, let Xn := (X1, . . . ,Xn) be independent and identically distributed

(i.i.d.) copies of X, and suppose that under the null hypothesis

H0 : ϕX (t) = ϕ0(t), ∀t ∈ R
p, (5)

the law of X is fully specified. For instance, in the case of the standard Gaussian law we have ϕ0(t) = e−‖t‖2/2.

Moreover certain simplifications occur if we use the standard Gaussian density as weight function. An unbiased

estimator of nEΨ(FX , F0), defined in (4), can be built as follows: replace the first expectation in (4) by the

corresponding U–statistic, the second expectation by its analytical expression, while for the third expectation,

we first calculate the expectation with respect to X0, and then replace that expectation, with respect to X, by

the corresponding U–statistic. This gives rise to the test statistic

T (G)
n =

2

n− 1

∑

j<k

e−‖Xj−Xk‖
2/2 +

n

3p/2
− 21−(p/2)

n∑

j=1

e−‖Xj‖
2/4,

which is in all essential aspects equivalent to the Baringhaus–Henze–Epps–Pulley (BHEP) test for the Gaussian

distribution in the case of specified parameters; see Ebner and Henze (2020) for a review of the BHEP test.

This approach of setting the weight function equal to the corresponding density when a spherical distribution

is under test, as appealing as it may be, it is nevertheless ad hoc and only convenient for a selective class

of testing problems. Otherwise it is generally difficult to pinpoint a specific weight function for which the

expectations occurring in (4) can be explicitly computed for each testing problem. A partial solution is proposed

in Meintanis et al. (2014), which is based on certain data transformation. Nevertheless, such transformation

cannot be easily applied in many cases. For this reason, here we advocate an entirely Monte Carlo–based

automatic approach that can be used for any testing problem at hand, be it for a univariate or multivariate

distribution, discrete or continuous, and not only for the simple hypothesis H0 but also for the composite

hypothesis with estimated parameters. The only requirement is that we should be able to draw Monte Carlo

samples from the distribution under test.

Specifically given an arbitrary testing problem such as that figuring in (5), i.e. given any goodness–of–fit

problem with a fixed distribution under test, we suggest to implement a test via a given kernel Ψ(·), and by

estimating nEΨ(FX , F0) by

T (Ψ)
n =

2

n− 1

∑

j<k

[
Ψ(‖Xj −Xk‖2) + Ψ(‖X0,j −X0,k‖2)

]
− 2

n− 1

n∑

j,k=1

Ψ(‖Xj −X0,k‖2), (6)
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where X0,n := (X0,1, . . . ,X0,n) denote independent copies of X0, i.e. X0,n are artificial data generated under

the null hypothesis H0. From Proposition 1, a reasonable test should reject the null hypothesis H0 in (5) for

large values of T
(Ψ)
n . Note that if the kernel Ψ(·) is simple enough, then the test statistic figuring in (6) may be

computed in a straightforward manner.

We close this section by noting that Proposition 1 and the corresponding statistic figuring in (6) are quite

general imposing minimal restrictions on the family being tested. All that is needed is that we should be able

to draw Monte Carlo samples from the distribution under test and, in the case of composite hypotheses that

follows in the next section, possess a reasonable estimation method for the unknown distributional parameter.

Thus the proposed method applies to arbitrary continuous distributions in Rp (symmetric or not symmetric) as

well as discrete distributions, and could in principle even be extended to more general manifolds. Nevertheless

we will herein restrict our attention to tests for certain popular cases within the family of spherical/elliptical

distributions, a multivariate family which is clearly one of the the most important in both theory and applica-

tions.

4. Goodness–of–fit tests for composite hypothesis

We now turn to the problem of composite goodness–of–fit testing. In doing so we focus on the case of

elliptical distributions under test and the null hypothesis

Hϑ : ϕ(t) = ϕϑ(t), ∀t ∈ R
p, for some ϑ ∈ Θ, (7)

where ϕϑ(·) denotes the CF of a specific parametric family of elliptical distributions, say Fϑ, admitting a

parameterization in terms of the parameter ϑ := (δ,V ). In what follows ϕ0(t) = Ψ0(‖t‖2) stands for the CF

under the null hypothesis Hϑ in (7) corresponding to ϑ = ϑ0 := (0, Ip), where Ip denotes the identity matrix

of order p and all 0s appearing in the manuscript are vectors or matrices with the appropriate dimension and

all elements equal to 0. We note that the family Fϑ = {Fϑ, ϑ ∈ Θ, } may involve extra parameters which here

are considered as fixed (known).

In this connection it is well-known that if FX = Fϑ, for some ϑ = (δ,V ), then FAX+b = Fϑb,A
, with

ϑb,A = (Aδ + b,AV A⊤), for any (p × p) non-singular matrix A and b ∈ Rp. This implies that the family

of elliptical distributions Fϑ is closed under affine transformations of the type X 7→ AX + b. Consequently

it is good statistical practice to require that any test statistic, say Tn(Xn), also be invariant in the sense that

Tn(Xn) = Tn(AXn+b), for each (b,A); see Henze (2002) for a detailed discussion of the notion of affine invariant

tests in the context of testing for normality. One compromise to affine invariance is to impose the condition

that Tn(Xn), although not affine invariant, it has a distribution that is asymptotically affine invariant, i.e. the

6



limit distribution of the test statistic is independent of (δ,V ). We will refer to such tests as asymptotically

invariant–in–law tests.

With these considerations in mind, we suggest to test the null hypothesis Hϑ figuring in (7) by means of

the test statistic

T̂ (Ψ)
n =

2

n− 1

∑

j<k

[
Ψ(‖X̂j − X̂k‖2) + Ψ(‖X0,j −X0,k‖2)

]
− 2

n− 1

n∑

j,k=1

Ψ(‖X̂j −X0,k‖2), (8)

on the basis of standardized observations

X̂j = V̂
−1/2

n (Xj − δ̂n), j = 1, . . . , n, (9)

where ϑ̂n := (δ̂n, V̂ n) denotes an estimator of the parameter ϑ = (δ,V ) computed from the data vector Xn,

X0,n := (X0,1, . . . ,X0,n) denotes a random sample from X0, that has distribution function Fϑ0
, and V̂

−1/2

n

stands for the unique symmetric square root of V̂
−1

n , which is tacitly assumed to exist. Under Hϑ in (7), the

behaviour of X̂1, . . . , X̂n should imitate that of X0,1, . . . ,X0,n, at least for large samples. Thus, in view of

Proposition 1, it is sensible to reject the null hypothesis Hϑ for large values of T̂
(Ψ)
n . Next section gives a sound

justification for this critical region and Section 6 gives a procedure to approximate critical points.

We now discuss the estimation of ϑ always keeping in mind the aforementioned invariance property of a test

statistic. In this connection we assume that the estimator ϑ̂n := ϑ̂n(Xn) of ϑ satisfies,

δ̂n(AXn + b) = Aδ̂n(Xn) + b, (10)

and

V̂ n(AXn + b) = AV̂ n(Xn)A
⊤. (11)

Maximum likelihood estimators (MLEs) satisfy (10)–(11). However the MLEs are often hard to compute

and ensuring their uniqueness is also an issue; see Bilodeau and Brenner (1999). On the other hand moment

estimators (MEs) are more straightforward and typically also satisfy (10)–(11). Specifically and assuming

E‖X‖2 < ∞, we make use of the fact that if X has distribution function Fϑ, with ϑ = (δ,V ), then E(X) = δ

and V(X) = −2Ψ′
0(0)V , where Ψ0(·) stands for the kernel under the null hypothesis and the symbol V denotes

the covariance matrix of random vectors. (Recall that ifX follows a spherical distribution then ϕX(t) = Ψ(‖t‖2),
for some kernel Ψ(·)). Thus the MEs may be obtained from the equations

δ̂n = Xn, V̂ n = − Sn

2Ψ′
0(0)

,

where Xn = n−1
∑n

j=1 Xj and Sn = n−1
∑n

j=1(Xj −Xn)(Xj −Xn)
⊤ are the sample mean and the sample

covariance matrix, respectively, and Ψ′
0(ξ) = dΨ0(ξ)/dξ.

7



Our last assumption concerning the estimator ϑ̂n = (δ̂n, V̂ n) is the so-called asymptotic Bahadur represen-

tation around the true value ϑ = (δ,V ),

√
n
(
δ̂n − δ

)
= n−1/2

n∑

j=1

ℓϑ(Xj) + oP(1), E{ℓϑ(X1)} = 0, V{‖ℓϑ(X1)‖} < ∞, (12)

√
n
(
V̂ n − V

)
= n−1/2

n∑

j=1

Lϑ(Xj) + oP(1), E{Lϑ(X1)} = 0, V{‖Lϑ(X1)‖} < ∞. (13)

If ϑ = ϑ0, then we simply write ℓ0 and L0 for ℓϑ and Lϑ, respectively.

When we jointly assume that (10) and (12) (resp. (11) and (13)) hold, it is tacitly assumed that the function

ℓϑ(·) (resp. Lϑ(·)) fulfills ℓϑ(AX + b) = Aℓϑ(X) + b (resp. Lϑ(AX + b) = ALϑ(X)A⊤).

In the next section we derive some asymptotic properties of the test statistic T̂
(Ψ)
n under the null hypothesis

as well as under alternatives. In this connection we show that the limit null distribution of the test statistic is

independent of the true value of ϑ, which entails that T̂
(Ψ)
n is asymptotically invariant–in–law.

5. Asymptotics

This section studies some asymptotic properties of the test statistic T̂
(Ψ)
n defined in (8). Specifically, Sub-

section 5.1 studies the limit behaviour of T̂
(Ψ)
n /n showing that it converges to a non-negative quantity, which is

equal to 0 if and only if the null hypothesis is true, thus giving a sound justification for the critical region intu-

itively given in the previous section. Subsection 5.2 derives the asymptotic null distribution of the test statistic

and shows that, for certain common choices of δ̂n and V̂ n, the asymptotic null distribution does not depend on

ϑ. This result justifies the procedure proposed in Section 6 to approximate the critical points. From the results

in Subsections 5.1 and 5.2, it follows that the proposed test is consistent against any fixed alternative. Finally,

Subsection 5.3 derives the asymptotic distribution of the test statistic under alternatives, which is useful for

approximating the power and to compare the behaviour of the proposal with the “ideal” (but unfeasible, from a

practical point of view) test whose test statistic calculates the expectations (with respect to X0) in (4). Before

deriving those results, we first introduce some useful notation.

Notice that T̂
(Ψ)
n is invariant under translation of the sample Xn, i.e. it holds T̂

(Ψ)
n (Xn + b) = T̂

(Ψ)
n (Xn), for

each b ∈ Rp, and therefore the distribution of T̂
(Ψ)
n does not depends on δ. Observe also that T̂

(Ψ)
n (UXn,UX0,n) =

T̂
(Ψ)
n (Xn,X0,n), for each U ∈ Op, where Op is the set of (p × p) orthogonal matrices. As a consequence, there

is no loss of generality in assuming that δ = 0 and that V is a diagonal matrix.

For asymptotics it is convenient, by application of Lemma 1 in Alba-Fernández et al. (2008), to express the

test statistic as

T̂ (Ψ)
n =

n

n− 1

(
T̂

(Ψ)
2,n − 2

)
, (14)

8



where

T̂
(Ψ)
2,n = n

∫
|ϕn(t)− ϕ0,n(t)|2w(t)dt,

with w(t) being the density of a continuous spherically symmetric distribution with CF Ψ(‖x‖2), and

ϕn(t) =
1

n

n∑

j=1

eit
⊤X̂j , ϕ0,n(t) =

1

n

n∑

j=1

eit
⊤X0,j (15)

being the empirical CFs corresponding to (X̂1, . . . , X̂n) and (X0,1, . . . ,X0,n), respectively.

Our study of asymptotics, will make use of equation (14). To this end, let L2
w stand for the space of all

L2 functions defined on the measure space (Rp,Bp, ν) taking values in C, the set of complex numbers, where

Bp denotes the σ-field of Borel subsets of Rp, and the measure ν has density w: dν(u) = w(u)du, that is,

L2
w = {f : Rp 7→ C : ‖f‖2w =

∫
|f(u)|2w(u)du < ∞}. Let 〈·, ·〉w denote the scalar product in the (separable)

Hilbert space L2
w. With this notation and taking into account that

w(t) = w(−t), ∀t ∈ R
p, (16)

we have

T̂
(Ψ)
2,n = n‖Gn‖2w, (17)

where

Gn(t) = Re(ϕn(t)) + Im(ϕn(t))− Re(ϕ0,n(t))− Im(ϕ0,n(t)), (18)

Recall that z = Re(z) + i Im(z) is the Cartesian representation of z ∈ C.

5.1. Stochastic limit of the test statistic

The following theorem studies the limit of T̂
(Ψ)
n /n without assuming any parametric form for the law of

X. In Theorem 1 as well as in subsequent results, a convergence in probability assertion may be replaced by a

corresponding almost sure assertion, provided that in the associated assumptions, convergence in probability is

replaced by almost sure convergence. The following notation will be used: diag(a1, . . . , ap) denotes a diagonal

matrix of order p;
P→ denotes convergence in probability; all limits in this paper are taken when n → ∞, n

denoting the sample size.

Theorem 1. Let X1, . . . ,Xn be i.i.d. copies of the random variable X ∈ Rp, and assume that the estimator

ϑ̂n = (δ̂n, V̂ n) satisfies

δ̂n
P→ δ = 0,

V̂ n
P→ V = diag(λ1, . . . , λp),

9



for some 0 < λj < ∞, j = 1, . . . , p. Then provided that
∫
‖t‖2w(t)dt < ∞,

T̂
(Ψ)
n

n

P→ ‖ϕY − ϕ0‖2w := κ,

where Y = V −1/2X.

In view of Theorem 1 and since κ ≥ 0, and clearly satisfies κ = 0 only if Hϑ is true, it is reasonable to reject

the null hypothesis for large values of the test statistic T̂
(Ψ)
n , as intuitively stated in the previous section.

5.2. Weak limit of the test statistic

In the next theorem we study the asymptotic distribution of the test statistic T̂
(Ψ)
n under the null hypothesis

Hϑ. In what follows,
D→ denotes convergence in distribution and ◦ denotes the Hadamard product.

Theorem 2. Let X1, . . . ,Xn be i.i.d. copies of the random variable X ∈ Rp. Then under the conditions

(10)–(13), and provided that
∫
‖t‖4w(t)dt < ∞, we have under the null hypothesis Hϑ figuring in (7) that,

T̂ (Ψ)
n

D→ ‖Z1 + Z2‖2w − 2,

where Z1 and Z2 are two independent centered Gaussian random elements of L2
w having covariance kernels

K1(t, s) = E

[
W1(X0,V ,Ψ0; t)W1(X0,V ,Ψ0; s)

]
,

K2(t, s) = E

[
W2(X0,Ψ0; t)W2(X0,Ψ0; s)

]
,

respectively, where

W1(X,V ,Ψ0; t) = −2Ψ′
0(‖t‖2)t⊤L0(X) ◦ V −1/2Λt−Ψ0(‖t‖2)t⊤ℓ0(X) +W2(X,Ψ0; t),

W2(X,Ψ0; t) = cos(t⊤X)−Ψ0(‖t‖2) + sin(t⊤X),

and the matrix Λ is defined in the statement of Lemma 1 in the Appendix.

As an immediate consequence of Theorem 1 and Theorem 2, it follows that the test which rejects the null

hypothesis Hϑ for large values of T̂
(Ψ)
n is consistent against each fixed alternative distribution.

Clearly the covariance kernel K2 does not depend on the scatter matrix V . The next results shows that,

under some mild assumptions, K1 also does not involve V . Recall that L0(·) = (L0(·)rs)1≤r,s≤p stands for

Lϑ(·) when ϑ = ϑ0.
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Proposition 2. Suppose that the assumptions in Theorem 2 hold and that for some scalar functions α(·) and

β(·) such that α(t) = α(‖t‖) and β(t) = β(‖t‖) we can write

E

[
cos(t⊤X0)L0(X0)

]
= α(t)Ip + β(t)tt⊤. (19)

Then, the covariance kernels K1 and K2 may be written as

K1(t, s) = Ψ0(‖t‖2)Ψ0(‖s‖2)t⊤V{ℓ0(X0)}s

−Ψ0(‖t‖2)t⊤E{ℓ0(X0) sin(s
⊤X0)} −Ψ0(‖s‖2)s⊤E{ℓ0(X0) sin(t

⊤X0)}

−Ψ′
0(‖t‖2)

{
α(s)‖t‖2 + β(s)(t⊤s)2

}
−Ψ′

0(‖t‖2)
{
α(t)‖s‖2 + β(t)(t⊤s)2

}

+Ψ′
0(‖t‖2)Ψ′

0(‖s‖2)
{
2σ1(t

⊤s)2 + σ2‖t‖2‖s‖2
}
+K2(t, s),

K2(t, s) = Ψ0(‖t− s‖2)−Ψ0(‖t‖2)Ψ0(‖s‖2),

where σ1 = E
{
L0(X0)

2
12

}
and σ2 = E {L0(X0)11L0(X0)22}.

Proposition 2 implies that the limit null distribution of the test statistic T̂
(Ψ)
n depends on Ψ0(·) and the type

of estimator used in estimating ϑ, but does not involve neither the location δ nor the scatter matrix V . Thus

the test based on T̂
(Ψ)
n is asymptotically invariant–in–law.

We note that (19) is fulfilled when V is estimated with the ME. To see this recall that the ME of V is given

by V̂ n = {−2Ψ′
0(0)}−1Sn. Thereby and ignoring the factor {−2Ψ′

0(0)}−1, we have that L0(X) = XX⊤ − Ip,

and thus the specification of the functions figuring in (19) under ME is α(t) = −
{
2Ψ′

0(‖t‖2) + Ψ0(‖t‖2)
}
and

β(t) = −4Ψ′′
0(‖t‖2). It can be checked that (19) is also fulfilled when V is estimated by the MLE (see Chapter

13 of Bilodeau and Brenner, 1999).

Remark 2. Despite the fact that the test statistic T̂
(Ψ)
n is asymptotically invariant–in–law, T̂

(Ψ)
n is not affine

invariant. To see this, write T̂
(Ψ)
n (Xn;X0,n) for the test statistic based on Xn = (X1, . . . ,Xn) and X0,n =

(X0,1, . . . ,X0,n), and let A be a full–rank matrix of dimension (p× p). Then, it can be easily checked that

T̂ (Ψ)
n (AXn;X0,n) = T̂ (Ψ)

n (Xn;UX0,n), (20)

where U ∈ Op is an orthogonal matrix defined by U = A⊤V̂
1/2

n (AV̂ nA
⊤)−1/2. This shows that, in general,

T̂
(Ψ)
n (AXn;X0,n) 6= T̂

(Ψ)
n (Xn,X0,n). Specifically, equation (20) shows that the transformation Xj 7→ AXj , j =

1, . . . , n, entails a rotation of the sample from X0, to a sample from OX0, where the rotation depends on the

data Xn as well as on the matrix A. Since however X0,n is a random sample from a spherical distribution and

since U is an orthogonal matrix it follows that UX0,n is also a sample from the same distribution.
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5.3. Asymptotic power of the test

This subsection is devoted to derive the asymptotic distribution of the test statistic T̂
(Ψ)
n under fixed alter-

natives. To this end we refer to the quantity κ figuring in Theorem 1 and analogously to (17) and (18), and

write κ = ‖G‖2w > 0, where

G(t) = Re(ϕY (t)) + Im(ϕY (t))− Re(ϕ0(t))− Im(ϕ0(t)),

with Y = V −1/2X.

Theorem 3. Let X1, . . . ,Xn be i.i.d. copies of the random variable X ∈ Rp, such that E(‖X‖2) < ∞ and

κ > 0, write V = diag(λ1, . . . , λp), and assume that min
1≤j≤p

λj > 0. Then under conditions (10)–(13), and

provided that
∫
‖t‖4w(t)dt < ∞, we have

√
n

(
T̂

(Ψ)
n

n
− κ

)
D→ N (0, σ2

1 + σ2
2),

where

σ2
1 =

∫ ∫
K

(a)
1 (t, s)G(t)G(s)w(t)w(s)dtds,

σ2
2 =

∫ ∫
K2(t, s)G(t)G(s)w(t)w(s)dtds,

K
(a)
1 (t, s) = E

[
W

(a)
1 (Y ; t)W

(a)
1 (Y ; s)

]
,

W
(a)
1 (Y ; t) = CY (t) + cos(t⊤Y )− Re(ϕY (t)) + SY (t) + sin(t⊤Y )− Im(ϕY (t)),

CY (·) and SY (·) are as defined in Lemma 3 in the Appendix and Y = V −1/2X.

Theorem 3 allows to approximate the power of the test based on T̂
(Ψ)
n . To see this, let cn,α denote the upper

α-percentile of the null distribution of T̂
(Ψ)
n . Then from Theorem 2 and Theorem 3 we have,

P(T̂ (Ψ)
n > cn,α) = P

{
√
n

(
T̂

(Ψ)
n

n
− κ

)
>

√
n
(cn,α

n
− κ
)}

≈ Φ

( √
nκ√

σ2
1 + σ2

2

)
(21)

where Φ(·) is the distribution function of the standard normal law.
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Remark 3. The most popular CF–based statistic for goodness–of–fit is the BHEP test for testing the composite

null hypothesis of multivariate normality; see Epps and Pulley (1983) and Henze and Wagner (1997). This

test, analogously to (17), may be written as

T̂ (G)
n = n‖ϕn − ϕ0‖2w,

with ϕ0(t) = e−‖t‖2/2 and w(·) being the density of the p–variate normal law N (0, (1/β2)Ip), β > 0. In the

BHEP test, the empirical CF ϕn(·) is computed as in (15) using the standardized observations in (9) with

δ̂n = Xn and V̂ n = Sn. Under the null hypothesis, T̂
(G)
n converges in law to ‖Z1‖2w, where Z1 is as in Theorem

2. The expression of K1(t, s) in Proposition 2 coincides with that given in Henze and Wagner (1997). The

behaviour of this statistic under alternatives has been studied by Baringhaus et al. (2017). It specifically follows,

in analogy to (21), that if c
(G)
n,α denotes the upper α–percentile of the null distribution of T̂

(G)
n , then

P(T̂ (G)
n > c(G)

n,α) ≈ Φ

(√
nκ

σ1

)
. (22)

From (21) and (22) it follows that the corresponding tests, are both consistent against alternatives with κ > 0.

However for moderate sample sizes the BHEP test is expected to be more powerful than the test based on T̂
(Ψ)
n ,

since the latter also involves the extra factor σ2 corresponding to the randomness introduced by X0,n, although

the difference in their powers should decrease as the sample size n increases. This fact is corroborated by the

simulation results of Section 7. The drawback with the BHEP test is that the formulation of this test, although

in principle it does carry over to alternative families of distributions (besides the Gaussian distributions), it

does not produce a test statistic that can be straightforwardly computed as that corresponding to the new test

figuring in (8).

6. Computational procedure for test implementation

This section addresses two issues related to the practical application of the proposed test of Hϑ in (7),

namely, the randomness of the test due to X0,1, . . . ,X0,n and the calculation of the critical point.

6.1. Dealing with randomness

By construction of the test statistic T̂
(Ψ)
n in (8), for fixed data Xn = (X1, . . . ,Xn), the decision of rejecting

or not rejecting the null hypothesis Hϑ depends on the sample X0,n = (X0,1, . . . ,X0,n) generated from X0.

This drawback is encountered by other procedures such as the random projection procedure; see, for example,

Cuesta-Albertos et al. (2006). The following suggestion for resolving this randomness, inherent in the proposed

13



test statistic, borrows from analogous resolutions in the case of random projection methods. Specifically, we

generate m samples from X0, say X r
0,n, r = 1, . . . ,m, and compute corresponding test statistics T̂

(Ψ),r
n =

T̂
(Ψ)
n (Xn;X r

0,n), r = 1, . . . ,m. Then we suggest to take as “final” test statistic the maximum or the sample

mean of the test statistics T̂
(Ψ)
n (Xn;X r

0,n), r = 1, . . . ,m, so computed. The choice of m will be numerically

studied in Section 7 by means of a battery of simulation experiments.

6.2. Approximating critical points

As mentioned in Section 5, when the unknown parameter ϑ is estimated by ME or MLE, the asymptotic

null distribution of the proposed test statistic T̂
(Ψ)
n in (8) does not depend on ϑ. As a consequence, the null

distribution can be consistently estimated acting as if ϑ = ϑ0, where ϑ0 = (0, Ip). Specifically, the test based

on the sample mean (and analogously for the test based on the maximum) is carried out as follows:

Step 1. (Original statistic) Generate m samples X r
0,n, r = 1, . . . ,m, under the null hypothesis Hϑ0

, and for

each sample compute the corresponding value T̂
(Ψ),r
n = T̂

(Ψ)
n (Xn;X r

0,n) according to (8), and then set

as test statistic the quantity

T̂
(Ψ)

n,m =
1

m

m∑

r=1

T̂ (Ψ),r
n . (23)

Step 2. (Re–sample statistic) Generate m+1 re–samples X r∗
0,1, r = 1, . . . ,m+1, under the null hypothesis Hϑ0

,

and compute T̂
(Ψ),∗

n,m = m−1
∑m

r=1 T̂
(Ψ)
n (Xm+1∗

0,n ;X r∗
0,n).

Step 3. (Critical point) Repeat Step 2 a number of times, say M , and thereby compute the (1 − α)% quantile

cn,α of the empirical distribution of the set
{
T̂

(Ψ),∗

n,m,j

}M

j=1
.

Step 4. (Decision) Reject the null hypothesis Hϑ figuring in (7) if T̂
(Ψ)

n,m > cn,α, where T̂
(Ψ)

n,m is the original test

statistic computed in Step 1.

Remark 4. Since, roughly speaking, the proposed approach consists in transforming the goodness–of–fit problem

into a two-sample problem, other approaches commonly used to approximate the null distribution of statis-

tics for the latter problem could be used. Specifically, nonparametric bootstrap, permutation and weighted

bootstrap approximations are studied in Meintanis (2005), Henze et al. (2005), Alba-Fernández et al. (2008),

Alba-Fernández et al. (2017), Jiménez-Gamero et al. (2017) and Chen et al. (2019) in order to approximate

the null distribution of statistics, which are similar to the one proposed in this paper, for the two-sample prob-

lem. Although those procedures, could potentially also be used to estimate cn,α, we feel that the above proposed

approximation, which is a version of the parametric bootstrap, is more natural to apply in the current setting of

goodness–of–fit testing for parametric distributions.
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7. Numerical studies

In Subsection 7.1 we include the results of a fairly extensive simulation study of the behavior of the new test

as compared to alternative procedures in a number of sampling situations. A real–data application illustrates

the use of the new test with actual data in Subsection 7.2. The R code for all the numerical studies is provided

as Electric Supplementary Material.

7.1. Simulations

In this subsection, a series of simulation experiments is carried out in order to assess the finite–sample

performance of the proposed test statistic T̂
(Ψ)
n in (8). Specifically, goodness–of–fit tests for four well-known

elliptical distributions, the multivariate normal distribution, the multivariate Laplace distribution, the multi-

variate Student–t distribution, and the Kotz–type distribution, are studied.

In the following, we employ the multivariate standard normal density as the weight function, which means

that the kernel Ψ(ξ) = e−ξ/2 (a slight variation of the spherical stable kernel e−ξb/2 for b = 2) is applied on

T̂
(Ψ)
n in (8), and denote by T̂

(N )

n,m the test corresponding to (23) and by
˜̂
T

(N )

n,m, the analogous test where in (23)

instead of the mean we employ the maximum of T̂
(Ψ),r
n , r = 1, . . . ,m. Furthermore, all tests are performed at

the 5% significance level using 1000 trails with M = 1000 in Step 3 above. The dimensions of X considered are

p ∈ {2, 3, 5}, and the sample sizes are n ∈ {20, 50, 100}.
For comparison purposes, we consider the tests in Ducharme and Lafaye de Micheaux (2020) and Hallin et al.

(2021) as benchmarks, both of which are applicable for elliptical distributions. Hallin et al. (2021)’s test is based

on the Wasserstein distance between a discrete empirical distribution and a continuous distribution specified

by the null hypothesis. Sophisticated numerical techniques are involved in computing this test statistic. On

the other hand, Ducharme and Lafaye de Micheaux (2020)’s smooth test is relatively easier to apply, but the

global consistency of this test can only be obtained when the value of the hyperparameter increases. In the

following, we represent the test statistic in Ducharme and Lafaye de Micheaux (2020) with DM and choose

the hyperparameter K = 7 as suggested in the R package ECGofTestDx (Ducharme and Lafaye de Micheaux,

2019), which is available on the CRAN and for the implementation of DM . The test statistics based on the

1- and 2-Wasserstein distance in Hallin et al. (2021) are denoted by HMS1 and HMS2, respectively. For the

implementation of HMS1 and HMS2 we refer to https://github.com/gmordant/WassersteinGoF. Moreover

and since in the case of testing for normality the new test statistic is essentially equivalent to the BHEP test

with β = 1 (BHEP1), we compare the performance of the proposed tests T̂
(N )

n,m and
˜̂
T

(N )

n,m with that of BHEP1

in order to evaluate the effect of the artificial data. In the case of testing for the multivariate Laplace distri-

bution we compare our test with the test of Fragiadakis and Meintanis (2011) which is specifically tailored for
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goodness–of–fit test for this distribution and is also based on CFs. For the numerical implementations of these

alternative methods, critical points of the DM test can be computed via an asymptotic chi-square approxima-

tion as shown in the R package ECGofTestDx. For other tests, critical points are approximated via a Monte

Carlo algorithm. Specifically, we draw a large number of independent random samples, say B, according to the

null hypothesis, calculate the test statistic for each such sample, and calculate the empirical quantile of the B

simulated test statistics as the critical point. In contrast to Section 6.2, this algorithm does not require the m

repeat resamples needed by the proposed tests due to the inherent randomness. The number of resamples was

set to B = 1000, analogously to the resample size M = 1000 employed for the new test.

Choice of the Monte Carlo sample size: First, we investigate numerically the impact of the Monte

Carlo size m in Step 1, on both the test statistic T̂
(Ψ)

n,m in (23), as well as on the test based on
˜̂
T

(Ψ)

n,m (always with

Ψ(ξ) = e−ξ/2). With this aim, we calculate the percentage of rejection of the null hypothesis among the 1000

replicates with m ∈ {1, 5, 10, 15, 20, 25, 30}. We consider the goodness–of–fit test for multivariate normality

as an example and take four cases of the distributions considered by Ebner and Henze (2020). Specifically,

these distributions are Np(ep,Σ0.5), NMp(3), Up(0, 1), and MARp(Exp), Case 1–4 respectively, whereby

Np(µ,Σ) stands for a p-dimensional Gaussian distribution with mean vector µ and covariance matrix Σ,

ep = (1, 2, . . . , p)⊤, and Σ0.5 represents a positive definite (p × p) matrix with diagonal elements equal to 1

and off-diagonal elements equal to 0.5. In this connection, Case 1 is considered in order to show that the new

tests are asymptotically invariant–in–law, i.e. that indeed their Type–I error is equal to the nominal level of

5%. As for alternatives, in Case 2, NMp(θ) denotes a balanced mixture of the standard Gaussian distribution

and Np(θ1p, Ip), where 1p = (1, 1, . . . , 1)⊤, in Case 3, Up(0, 1) denotes a p-dimensional random vector whose

coordinates are i.i.d. copies of univariate uniform distribution in the interval (0, 1), and finally MARp(Exp)

denotes a p-dimensional standard Gaussian distribution whose pth component is independently replaced by an

observation from a unit exponential distribution (Case 4). As for the unknown parameters figuring in Hϑ when

testing for normality, we estimate the mean vector and covariance matrix by the sample mean Xn and sample

covariance matrix Sn, respectively.

Figure 1 displays the empirical rejection rates corresponding to T̂
(N )

n,m and
˜̂
T

(N )

n,m against different values of

m at the 5% significance level for each case of distribution. It can be seen that the Type–I error rates (Case 1)

can be controlled well for all the choices of m. As for the empirical power (Cases 2–4), generally, it increases at

first as m increases, while as m continues to grow, the empirical power tends to be stable. Thus in the following

we set m = 10, in order to strike a balance between higher empirical power and lower computation time.

Example 1: Tests for the multivariate Normal distribution

We generate observations from MT p(0, Ip, ν) with ν ∈ {1, 3, 5, 10, 15, 25, inf}. Here, MT p(µ,Σ, ν) denotes
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(b): Case 1, p = 3, N3(e3, Σ0.5)
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(c): Case 1, p = 5, N5(e5, Σ0.5)
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(d): Case 2, p = 2, NM2(3)
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(e): Case 2, p = 3, NM3(3)
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(f): Case 2, p = 5, NM5(3)
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(j): Case 4, p = 2, MAR2(Exp)
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(k): Case 4, p = 3, MAR3(Exp)
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(l): Case 4, p = 5, MAR5(Exp)

Figure 1: Empirical rejection rates of T̂
(N )

n,m (MEAN) and
˜̂
T

(N )

n,m (MAX) against different values of m for Cases 1-4. The horizontal

line corresponds to the 5% significance level.

the multivariate Student–t distribution (Kotz and Nadarajah, 2004) with location parameter µ, scale matrix Σ

and degrees of freedom ν, so that MT p(0, Ip, inf) coincides with the normal distribution.

Now we calculate the empirical sizes and powers of T̂
(N )

n,10,
˜̂
T

(N )

n,10, BHEP1, DM , HMS1, and HMS2, and

plot the rejection frequencies against the degrees of freedom ν in Figure 2. We can observe that for the null
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hypothesis (ν = inf), the Type–I error rates can be controlled well for all scenarios except for the DM test. It

can also be observed that with sample size n increasing and/or the degrees of freedom ν decreasing, the empirical

powers of all the tests increase, which verifies the consistency of these methods. In general, the performance

of T̂
(N )

n,10, BHEP1, HMS1, and HMS2 are comparable in this example, with the test based on
˜̂
T

(N )

n,10 being

less competitive. As for the test DM , though it is the most powerful when n = 50 and n = 100, its empirical

rejection rates are the lowest for sample size n = 20. Furthermore, the empirical powers of the proposed test

T̂
(N )

n,10 is slightly lower than that of BHEP1 for all scenarios. Hence, it appears that the tests with artificial

data are less powerful than tests where expectations can be explicitly calculated rather than simulated. This

finding corroborates the theoretical results in Section 5 which imply that the randomness due to the artificial

data increases the variance of the Gaussian process involved in the limit distribution.

Example 2: Tests for the multivariate Laplace distribution

In this example, we apply the proposed tests to testing goodness–of–fit for the multivariate Laplace distribu-

tion MLp(δ,V ) (Fang et al. 1990), where δ and V denote the mean vector and covariance matrix, respectively.

Then we estimate the parameters δ and V by the MEs δ̂n = Xn and V̂ n = Sn, respectively. The multivariate

Laplace distribution is an attractive alternative to the multivariate Gaussian distribution due to its heavier tails,

and can be generated with the function rmvl from the R package LaplacesDemon (Statisticat and LLC., 2021).

For the Gaussian weight function e−a‖·‖2

, a > 0, FMa, stands for the test of Fragiadakis and Meintanis (2011)

which may be rendered in a simple closed formula. In this example FM1, HMS1, and HMS2 are employed as

competitor tests.

Observations are generated from a mixture of a standard Laplace with a standard Gaussian distribution

(1− θ) MLp(0, Ip)+ θ Np(0, Ip), where θ denotes the mixture parameter. We choose θ ∈ {0, 0.2, 0.4, 0.6, 0.8, 1},
with θ = 0 corresponding to the null hypothesis, while θ > 0 corresponds to alternatives.

The rejection rates for T̂
(N )

n,10,
˜̂
T

(N )

n,10, FM1, HMS1, and HMS2, are plotted against the mixture parameter θ

in Figure 3. It can be observed that for the null hypothesis (θ = 0), the Type–I error rates can be controlled well

for all scenarios. For the alternatives (θ > 0), we can observe that the empirical powers of all tests except HMS2

increase with increasing sample size n and/or mixture parameter θ, which again is in line with the consistency

results. However, the empirical powers of HMS2 are lower than the nominal level for smaller sample sizes

(n = 20, 50) or mixture parameters (θ ≤ 0.4), which means that this test fails to detect the alternatives. Figure

3 also indicates that FM1 and the proposed tests generally outperform HMS1 and HMS2. Now FM1 performs

slightly better than the proposed tests T̂
(N )

n,10 and
˜̂
T

(N )

n,10 in most cases. Recall however that the test based on

FMa is tailored for the multivariate Laplace distribution, and can be explicitly calculated. In other words we

encounter here the same kind of behaviour as in the case of testing for the normal distribution and the BHEP
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(b) : n =  20 , p =  3
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(c) : n =  20 , p =  5
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Figure 2: Simulation results for Example 1. Empirical rejection rates of T̂
(N )

n,10 (MEAN),
˜̂
T

(N )

n,10 (MAX), BHEP1, DM , HMS1,

and HMS2 against the degrees of freedom ν. The horizontal line corresponds to the 5% significance level.

test.

Example 3: Tests for the multivariate Student–t distribution

In this example, we apply the proposed tests to testing goodness–of–fit for the multivariate Student–t dis-

tribution MT p(δ,V , ν) with known degrees of freedom ν. In this connection recall that if X ∼ MT p(δ,V , ν),

then E(X) = δ for ν > 1 and V(X) = (ν/(ν − 2))V for ν > 2. Thus we focus on the case where ν > 2 and

estimate the parameters δ and V by the MEs δ̂n = Xn and V̂ n = ((ν − 2)/ν)Sn, respectively.

Specifically, and similar to Section 5.2.2 in Hallin et al. (2021), we apply the test for the multivariate

Student–t distribution MT p(0, Ip, ν) with ν = 12, against multivariate skew–t distributions ST p(µ,Σ, ξ, ν),

with (µ,Σ, ν) = (0, Ip, 12), and ξ = θ1p, with θ ∈ {0, 1, 2, 3, 4, 5, 6}. In this parameterization, θ = 0 corresponds
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Figure 3: Simulation results for Example 2. Empirical rejection rates of T̂
(N )

n,10 (MEAN),
˜̂
T

(N )

n,10 (MAX), FM1, HMS1, and HMS2

against the mixture parameter θ. The horizontal line corresponds to the 5% significance level.

to the null hypothesis and we are in the alternatives when θ > 0 (see the monograph Azzalini, 2014 and the R

package sn in Azzalini, 2022 for details).

The resulting empirical rejection rates for T̂
(N )

n,10,
˜̂
T

(N )

n,10, HMS1, and HMS2, are plotted against the skewness

parameter θ in Figure 4. It can be seen clearly that the Type–I error rates (θ = 0) are controlled well for all

scenarios, and the empirical rejection rates under alternatives (θ > 0) are in line with the fact that all the tests are

consistent. In terms of comparative power, the proposed test T̂
(N )

n,10 (corresponding to the mean of the artificial

test statistics) is clearly the most powerful for all scenarios. Moreover the other test
˜̂
T

(N )

n,10 corresponding to the

maximum of the artificial test statistics also has higher empirical powers than the Wasserstein distance–based

tests HMS1 and HMS2 when n = 100.
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Figure 4: Simulation results for Example 3. Empirical rejection rates of T̂
(N )

n,10 (MEAN),
˜̂
T

(N )

n,10 (MAX), HMS1, and HMS2 against

the skewness parameter θ. The horizontal line corresponds to the 5% significance level.

Example 4: Tests for the Kotz–type distribution

In this example, we apply the proposed tests to testing goodness–of–fit for the Kotz-type distribution

Kp(δ,V , N, s, r) with known parameters N , s, and r. Here δ and V denote the location vector and dispersion

matrix respectively, and N , s, and r are three scalar parameters that give model flexibility. The Kotz–type

distribution was introduced by Kotz (1975) as a generalization of the multivariate normal distribution. When

N = 1, s = 1 and r = 1/2, the distribution reduces to a multivariate normal distribution. More detailed

presentations can be found in Fang et al. (1990) and the review paper Nadarajah (2003). We denote X ∼
Kp(δ,V , N) for short if the p-dimensional random vector X follows the Kotz–type distribution with s = 1 and

r = 1/2. From Section 3.2.3 in Fang et al. (1990) we know that in this case E(X) = δ and V(X) = ((2N + p−
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2)/p)V . Then the parameters δ and V can be estimated by the MEs δ̂n = Xn and V̂ n = (p/(2N + p− 2))Sn,

respectively.

Now we apply the proposed tests to the goodness–of–fit test for Kp(0, Ip, 2) and generate observations from

Kp(0, Ip, N) with N ∈ {1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}. Then N = 2 corresponds to the null hypothesis, and we

are in the alternatives for other values of N . To simulate random observations from Kp(0, Ip, N), we use the

stochastic representation given by Fang et al. (1990) in Section 3.2.2. That is, X
d
= RU when X ∼ Kp(0, Ip, N),

where
d
= stands for equality in distribution, R2 follows the gamma distribution Ga(N + p/2− 1, 1/2), and U is

uniformly distributed on the unit sphere and is independent of R.

The empirical rejection rates corresponding to the tests T̂
(N )

n,10,
˜̂
T

(N )

n,10, HMS1, and HMS2, are plotted against

the parameter N in Figure 5. As we can see, the Type–I error rates for the null hypothesis (N = 2) can be

controlled well for all tests. Meanwhile, as sample size n increases and/or parameter N goes away from 2, the

empirical powers of the proposed tests T̂
(N )

n,10 and
˜̂
T

(N )

n,10 increase with only an exception appearing when p = 5

and n = 20 (the highest dimension and smallest sample size). However, the Wasserstein distance–based tests

HMS1 and HMS2 perform quite differently from the proposed tests in view of the empirical power. It can be

seen clearly from Figure 5 that HMS1 and HMS2 only have non–trivial power against alternatives with N = 1

and N = 1.5 (lighter tail alternatives), while at the same time they either fail to detect and/or are clearly less

powerful than the T̂
(N )

n,10 test for heavier tailed alternatives (N > 2) in the great majority of cases. On the other

hand the latter test, T̂
(N )

n,10, although having low power for n = 20, its performance is enhanced with higher

sample size, showing significant performance, particularly in lower dimensions, certainly when N > 2 but also

when N < 2. We thus conclude that the proposed test T̂
(N )

n,10 is more robust and therefore it should be preferred

over the HMS1 and HMS2 tests, particularly in the absence of any information regarding the type of departure

from the null hypothesis (corresponding to varying values of the tail–parameter N).

Remark 5. We also tried different weight functions leading to the test statistic in (8) with Ψ(·) other than the

standard Gaussian CF. Specifically additional simulation experiments with spherical stable and Laplace weight

functions were obtained. These results corroborate earlier findings, see Meintanis (2005), Hušková and Meintanis

(2008) and Jiang et al. (2019), suggesting that the functional form of w(t) is not all that crucial for test per-

formance. These results are included in an accompanying online Supplement. For more information related to

the weight function we refer to the conclusions in Section 8.

7.2. A real–data set application

In this subsection, we apply the proposed tests to an “Open-book Closed-book” data set (see Mardia et al.,

1979, p. 3–4). The data set contains 88 students’ examination marks in Mechanics, Vectors, Algebra, Analysis,
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Figure 5: Simulation results for Example 4. Empirical rejection rates of T̂
(N )

n,10 (MEAN),
˜̂
T

(N )

n,10 (MAX), HMS1, and HMS2 against

the parameter N . The horizontal line corresponds to the 5% significance level.

and Statistics. Ducharme and Lafaye de Micheaux (2020) recently performed a trivariate normality test on

marks in Vectors, Algebra, and Statistics and concluded that the null hypothesis should be rejected due to the

small p-value. Here we test for 5-dimensional normality of all five marks. As in the simulations, we consider

the BHEP test and tests in Ducharme and Lafaye de Micheaux (2020) and Hallin et al. (2021) for comparison.

Furthermore, to investigate the impact of randomness due to the artificial data in real–data analysis, we choose

m ∈ {1, 5, 10, 15, 20, 25, 30} as in the simulations too. The empirical p-values based on 20000 resamples of

T̂
(N )

n,m,
˜̂
T

(N )

n,m, BHEP1, DM , HMS1, and HMS2 are presented in Table 1, and clearly suggest to reject the null

hypothesis of normality at 5% significance level. In this connection, it appears that the method suggested in

order to deal with the randomness of artificial data in the new test and the approximation of critical points is
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feasible for real–data analysis.

Table 1: The p-values of T̂
(N )

n,m (MEAN),
˜̂
T

(N )

n,m (MAX), BHEP1, DM , HMS1, and HMS2 for the analyses of “Open-book

Closed-book” data set.

T̂
(N )

n,m (MEAN)

Test m = 1 m = 5 m = 10 m = 15 m = 20 m = 25 m = 30 BHEP1 DM

p-value 0.0015 0.00005 0 0 0 0 0 0 0.0031

˜̂
T

(N )

n,m (MAX)

Test m = 1 m = 5 m = 10 m = 15 m = 20 m = 25 m = 30 HMS1 HMS2

p-value 0.0005 0.0049 0.0095 0.00315 0.01075 0.00395 0.00185 0.0172 0.00385

8. Conclusion

We propose goodness–of–fit tests that make use of the empirical characteristic function of the data at hand

and its distance from its counterpart computed from data generated under the null hypothesis. This Monte

Carlo sampling from the hypothesis under test allows for convenient explicit expression of the test statistic

regardless of whether the null characteristic function is unknown or known but too complicated. The tests

enjoy certain invariance properties, they are shown to be consistent and their limit distribution is investigated.

Our asymptotic results show that compared to tests without resampling, the new tests involved extra variability

resulting from this Monte Carlo sampling under the null. Thus in our simulation study the new tests are found

somewhat less powerful than those tests. Nevertheless our tests exhibit a competitive performance against these

standard tests, whenever such tests are available, and at the same time outperform other general–purpose but

more complicated competitor tests in many sampling situations.

In this connection and as already mentioned the weight function w(t) figuring in equation (1) may in principle

take arbitrary functional forms. Trivial conditions are that w(t) should be non-negative and symmetric around

zero. A further requirement, already mentioned in Section 2 is computational convenience, meaning that it

should render the test statistic in a closed–formula free of numerical integration. The most popular weight

function, by far, has been the zero–mean normal density (or some variant thereof) and within this restricted

context there is some work on how to choose an extra scale parameter that is related to the variance of this
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normal distribution. For this issue we refer to Henze (1997), Henze et al. (2019), Tenreiro (2009, 2019), and

Allison and Santana (2015). Now the more general issue of the proper choice of the specific functional form of

the weight function has been investigated to some degree by Lindsay et al. (2014) and Albert et al. (2022), but

the results are somewhat far from having an immediate impact on actual test implementation. We close on the

note that although the emphasis herein is for elliptical families, the new tests may be applied to alternative

testing situations (say with discrete distributions), and in more general settings, such as for instance in families

of distributions over manifolds.

9. Appendix

We provide proofs of the asymptotic results stated in Section 5. In doing so, the following notation will be

used: oP(1) and
D
= denote negligibility in probability and equality of distribution of random vectors, respectively;

Xn = OP(1) means that the sequence of random variables {Xn} is bounded in probability; if A is a matrix,

then ‖A‖ is the Frobenious norm (the Euclidean norm of the vector obtained by stacking the columns of A).

9.1. Preliminary results

Lemma 1. Let X1, . . . ,Xn, be i.i.d. copies of X ∈ Rp. Assume that (i) V = diag(λ1, . . . , λp) with min
1≤j≤p

λj >

0, (ii) V̂ n satisfies (13), and that (iii) V̂
−1

n exists. Then,

√
n

(
V̂

−1/2

n − V −1/2

)
= − 1√

n

n∑

j=1

V −1Lϑ(Xj)V
−1 ◦Λ+ oP(1), (24)

where Λ = (Λrv) with Λrv =
√
λr

√
λv/(

√
λr +

√
λv), 1 ≤ r, v ≤ p. Moreover, if (11) holds, then

√
n

(
V̂

−1/2

n − V −1/2

)
= − 1√

n

n∑

j=1

V −1/2L0(Zj)V
−1/2 ◦Λ+ oP(1), (25)

where Zj = V −1/2(Xj − δ), 1 ≤ j ≤ n.

Proof By a Taylor expansion,

√
n
(
V̂

−1

n − V −1
)
=

−1√
n

n∑

j=1

V −1Lϑ(Xj)V
−1 + oP(1), (26)

and applying Theorem 1.1 in Del Moral and Niclas (2018) we have,

√
n

(
V̂

−1/2

n − V −1/2

)
=

√
n

∫ ∞

0

e−tV −1/2
(
V̂

−1

n − V −1
)
e−tV −1/2

dt+R,
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where ‖R‖ ≤ √
pmin

j
λ
−3/2
j

√
n‖V̂ −1

n − V −1‖2. Now invoking (26), it follows that ‖R‖ = oP(1) and that

√
n

∫ ∞

0

e−tV −1/2
(
V̂

−1

n − V −1
)
e−tV −1/2

dt = − 1√
n

n∑

j=1

V −1Lϑ(Xj)V
−1 ◦Λ+ oP(1),

which proves (24). To prove (25), we take into account that V̂
−1

n − V −1 = V −1/2(V̂
−1

n,Z − Ip)V
−1/2, where

V̂ n,Z = V̂ n(Z1, . . . ,Zn), and then follow similar steps. �

Lemma 2. Let X1, . . . ,Xn be i.i.d. copies of X ∈ Rp. Under the conditions

δ̂n = δ̂n(X1, . . . ,Xn)
P→ δ = 0,

V̂n = V̂n(X1, . . . ,Xn)
P→ V ,

and that V̂
−1

n exists, and letting ∆n,j = X̂j − V −1/2Xj, 1 ≤ j ≤ n, we have,

(a) If E(‖X‖) < ∞, then n−1
∑n

j=1 ‖∆n,j‖ P→ 0.

(b) If E(‖X‖2) < ∞, then n−1
∑n

j=1 ‖∆n,j‖2 P→ 0.

Moreover if E(‖X‖2) < ∞ and the conditions in Lemma 1 hold, then

(c) n−1/2
∑n

j=1 ‖∆n,j‖2 P→ 0.

Proof First of all we write

∆n,j =

(
V̂

−1/2

n − V −1/2

)
Xj − V̂

−1/2

n δ̂n, 1 ≤ j ≤ n. (27)

(a) We have that

1

n

n∑

j=1

‖∆n,j‖ ≤ 1

n

n∑

j=1

∥∥∥∥
(
V̂

−1/2

n − V −1/2

)
Xj

∥∥∥∥+
∥∥∥∥V̂

−1/2

n δ̂n

∥∥∥∥ .

Since V̂ n
P→ V and δ̂n

P→ 0, it follows that ‖V̂ −1/2

n δ̂n‖ P→ 0. Also since ‖V̂ −1/2

n − V −1/2‖ P→ 0 and

n−1
∑n

j=1 ‖Xj‖ P→ E(‖X‖) < ∞, it follows that

1

n

n∑

j=1

∥∥∥∥
(
V̂

−1/2

n − V −1/2

)
Xj

∥∥∥∥ ≤
∥∥∥∥V̂

−1/2

n − V −1/2

∥∥∥∥
1

n

n∑

j=1

‖Xj‖ P→ 0,

which proves part (a).

(b) The proof is similar to that of part (a), so we omit it.
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(c) Notice that

‖∆n,j‖2 ≤ 3

∥∥∥∥
(
V̂

−1/2

n − V −1/2

)
Xj

∥∥∥∥
2

+ 3

∥∥∥∥V̂
−1/2

n δ̂n

∥∥∥∥
2

.

Also from Lemma 1, ‖√n(V̂
−1/2

n − V −1/2)‖ = OP(1), and by taking into account the WLLN which entails

n−1
∑n

j=1 ‖Xj‖2 P→ E(‖X‖2) < ∞, we have

1√
n

n∑

j=1

∥∥∥∥
(
V̂

−1/2

n − V −1/2

)
Xj

∥∥∥∥
2

≤ 1√
n

∥∥∥∥
√
n

(
V̂

−1/2

n − V −1/2

)∥∥∥∥
2
1

n

n∑

j=1

‖Xj‖2 = oP(1).

Moreover the continuous mapping theorem implies that ‖V̂ −1/2

n ‖ P→ ‖V −1/2‖ < ∞, and by taking into account

the CLT and the continuous mapping theorem, we obtain ‖√nδ̂n‖ = OP(1). Consequently we have

√
n

∥∥∥∥V̂
−1/2

n δ̂n

∥∥∥∥
2

≤ 1√
n

∥∥∥∥V̂
−1/2

n

∥∥∥∥
2 ∥∥∥

√
nδ̂n

∥∥∥
2

= oP(1),

which together with the previous two equations proves part (c). �

Proposition 3 of Dörr et al. (2021) (see also Proposition 1 in Ebner and Henze, 2020) is a special case of

Lemma 2 for the case where δ̂n and V̂ n are replaced by the sample mean Xn and the sample variance Sn,

respectively, and E(XX⊤) = Ip.

Lemma 3. Let X1, . . . ,Xn, be i.i.d. copies of X ∈ Rp. Assume that the assumptions in Lemma 2 (c) hold,

and that (10), (11), (13), and
∫
‖t‖4w(t)dt < ∞ also hold. Let Y j = V −1/2Xj, 1 ≤ j ≤ n, and Y = V −1/2X.

Let Λ be as defined in the statement of Lemma 1. Then,

(a)
1√
n

n∑

j=1

{
cos(t⊤X̂j)− cos(t⊤Y j)

}
= t⊤

1√
n

n∑

j=1

CY j
(t) + rc,n(t), with

CY (t) = Im(ϕY (t))ℓ0(Y )−L0(Y ) ◦ V −1/2Λ
∂

∂t
Re(ϕY (t)),

and ‖rc,n‖w = oP(1).

(b)
1√
n

n∑

j=1

{
sin(t⊤X̂j)− sin(t⊤Y j)

}
= t⊤

1√
n

n∑

j=1

SY j (t) + rs,n(t), with

SY (t) = −Re(ϕY (t))ℓ0(Y )−L0(Y ) ◦ V −1/2Λ
∂

∂t
Im(ϕY (t)),

and ‖rs,n‖w = oP(1).

Proof (a) By Taylor expansion

1√
n

n∑

j=1

{
cos(t⊤X̂j)− cos(t⊤Y j)

}
= t⊤

−1√
n

n∑

j=1

sin(t⊤Y j)∆n,j + r1,n(t),
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with

‖r1,n‖w ≤
(∫

‖t‖4w(t)dt
)1/2

1√
n

n∑

j=1

‖∆n,j‖2.

From Lemma 2 (c), it follows that ‖r1,n‖w = oP(1). Recall expression (27). Since n−1
∑n

j=1 sin(t
⊤Y j)

P→
Im(ϕY (t)), V̂

−1/2

n
P→ V −1/2, (10) and (12), we get that

t⊤
1√
n

n∑

j=1

sin(t⊤Y j)V̂
−1/2

n δ̂n = Im(ϕY (t))t⊤
1√
n

n∑

j=1

ℓ0(Y j) + r2,n(t),

with ‖r2,n‖w = oP(1). Using (11), Lemma 1 and taking into account that −n−1
∑n

j=1 sin(t
⊤Y j)Xj

P→
V 1/2∂Re(ϕY (t))/∂t, we get that

t⊤
1√
n

n∑

j=1

sin(t⊤Y j)(V̂
−1/2

n − V −1/2)Xj = t⊤
1√
n

n∑

j=1

V −1/2L0(Y j)V
−1/2 ◦ΛV 1/2 ∂

∂t
Re(ϕY (t)) + r3,n(t)

with ‖r3,n‖w = oP(1). Now, taking into account that V −1/2L0(Y )V −1/2 ◦ΛV 1/2 = L0(Y ) ◦V −1/2Λ, part (a)

has been proven.

The proof of part (b) is parallel, so we omit it. �

Remark 6. In the context of Lemma 3, if Y = V −1/2X has a spherically symmetric distribution with CF

ϕ0(t) = Ψ0(‖t‖2), for some function Ψ0(·) of a scalar variable, then the expressions of CY (t) and SY (t) may

be written as

CY (t) = −2Ψ′
0(‖t‖2)L0(Y ) ◦ V −1/2Λt,

SY (t) = −Ψ0(‖t‖2)ℓ0(Y ),

where Ψ′
0(x) = dΨ0(x)/dx.

9.2. Proofs of main results

Proof of Theorem 1 From (16), it follows that

κ = ‖Re(ϕY ) + Im(ϕY )− Re(ϕ0)− Im(ϕ0)‖2w.

Let ϕ1,n denote the empirical CF of V −1/2X1, . . . ,V
−1/2Xn. First, we will see that

‖Re(ϕn) + Im(ϕn)− Re(ϕ1,n)− Im(ϕ1,n)‖w P→ 0. (28)
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Since | cos(x) − cos(y)| ≤ |x− y| and | sin(x) − sin(y)| ≤ |x− y|, ∀x, y ∈ R, it follows that

|Re(ϕn(t))− Re(ϕ1,n(t))| ≤ ‖t‖ 1
n

n∑

j=1

‖∆n,j‖, |Im(ϕn(t))− Im(ϕ1,n(t))| ≤ ‖t‖ 1
n

n∑

j=1

‖∆n,j‖,

with ∆n,j as defined in the statement of Lemma 2. Applying Lemma 2 (a), it follows that (28) holds. Now,

the WLLN in Hilbert spaces and the continuous mapping theorem imply that

‖Re(ϕ1,n) + Im(ϕ1,n)− Re(ϕ0)− Im(ϕ0)‖w P→ κ. (29)

Then the result follows from (28), (29) and (14). �

Proof of Theorem 2 Recall that T̂
(Ψ)
2,n can be expressed as in (17). Now, using Lemma 3 and Remark 6, we

can write

Gn(t)
D
=

1√
n

n∑

j=1

{W1(Y 0,j, V,Ψ0; t)−W2(X0,j ,Ψ0; t)}+ rn(t),

where ‖rn‖w = oP(1) and {Y 0,1, . . . ,Y 0,n,X0,1, . . . ,X0,n} is a set of i.i.d. observations on X0. Now the result

follows from the CLT in separable Hilbert spaces, the continuous mapping theorem and (14). �

Proof of Proposition 2 Standard calculations show that

E

[ {
cos(t⊤X0)− ϕ0(t

⊤t) + sin(t⊤X0)
} {

cos(s⊤X0)− ϕ0(s
⊤s) + sin(s⊤X0)

} ]

= ϕ0(t− s)− ϕ0(t)ϕ0(s).
(30)

Since L0(X0) = L0(−X0), it follows that E
{
L0(X0) sin(s

⊤X0)
}
= 0, and thus

E

{
L0(X0) ◦ V −1/2Λ sin(s⊤X0)

}
= 0, (31)

where Λ is as defined in the statement of Lemma 1. Likewise, since ℓ0(−X0) = −ℓ0(X0) and E {ℓ0(X0)} = 0,

we have that

E
[
ℓ0(Y )

{
cos(t⊤X)− ϕ0(t

⊤t)
}]

= 0. (32)

Also the conditions L0(X0) = L0(−X0) and ℓ0(−X0) = −ℓ0(X0), entail

E

{
L0(Y ) ◦ V −1/2Λts⊤ℓ0(Y )

}
= 0. (33)

From (19) and taking into account that E{L0(X0)} = 0, we get

E

[
t⊤L0(X0) ◦ V −1/2Λt

{
cos(s⊤X0)− ϕ0(s

⊤s)
}]

= t⊤
{
α(s)Ip + β(s)ss⊤

}
◦ V −1/2Λt. (34)
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Let t⊤ = (t1, . . . , tp), s
⊤ = (s1, . . . , sp), and A = V −1/2Λ = (ajk). By noticing that ajj = 1/2 and ajk =

√
λj/(

√
λj +

√
λk), 1 ≤ j 6= k ≤ p, it follows that

t⊤Ip ◦ V −1/2Λt =
1

2
t⊤t, (35)

t⊤ss⊤ ◦ V −1/2Λt =

p∑

j,k=1

tjtksjskajk =

p∑

j,k=1

t2js
2
jajj +

∑

j<k

tjtksjsk {ajk + akj}

=
1

2
(t⊤s)2. (36)

From the assumptions made, L0(X0) is a rotationally invariant matrix, that is, L0(X0)
D
= UL0(X0)U

⊤,

∀U ∈ Op. Then, from Proposition 13.2 in Bilodeau and Brenner (1999), all off-diagonal elements of L0(X0)

are uncorrelated with each other and uncorrelated with the diagonal elements, i.e.

E
{
L0(X0)

2
jj

}
= 2σ1 + σ2,

E {L0(X0)jjL0(X0)kk} = σ2,

E
{
L0(X0)

2
jk

}
= σ1,

1 ≤ j 6= k ≤ p. Therefore,

E

[
t⊤L0(X0) ◦ V −1/2Λts⊤L0(X0) ◦ V −1/2Λs

]

=
∑p

j,k=1

∑p
u,v=1 tjtksusvajkauvE {L0(X0)jkL0(X0)uv}

= (2σ1 + σ2)
∑p

j=1 t
2
js

2
ja

2
jj + σ1

∑
j 6=k tjtksjsk(a

2
jk + ajkakj) + σ2

∑
j 6=k t

2
js

2
kajjakk

= σ1

2 (t⊤s)2 + σ2

4 t⊤ts⊤s.

(37)

The result follows from (30)–(37). �

Proof of Theorem 3 The result follows from (14), Lemma 3 and Theorem 1 in Baringhaus et al. (2017). �
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30



References

Alba-Fernández, M. V., Batsidis, A., Jiménez-Gamero, M. D., Jodrá, P., 2017. A class of tests for the two-sample
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In this document, random generation for distributions involved and additional simulation results

of weight functions different from the main paper are reported.

S1. Generation of random numbers

In the numerical study section, the generation of random numbers for some multivariate

distributions is needed. We now list the R packages or algorithms involved for readers’ conve-

nience.

• The multivariate normal distribution can be generated with the function mvrnorm from

the R package MASS (Venables and Ripley, 2002).

S.0



• The multivariate Laplace distribution can be generated with the function rmvl from the

R package LaplacesDemon (Statisticat and LLC., 2021).

• The multivariate Student–t distribution can be generated with the function rmvt from the

R package LaplacesDemon (Statisticat and LLC., 2021).

• The multivariate skew–t distributions can be generated with the function rmst from the

R package sn (Azzalini, 2022).

• We did not find one in the existing R packages that can generate the Kotz–type dis-

tribution. To simulate random observations from Kp(0, Ip, N), we use the stochastic

representation given by Fang et al. (1990) in Section 3.2.2. That is, X
d
= RU when

X ∼ Kp(0, Ip, N), where
d
= stands for equality in distribution, R2 follows the gamma dis-

tribution Ga(N + p/2− 1, 1/2), and U is uniformly distributed on the unit sphere and is

independent of R. In particular, the above algorithm can be implemented with the func-

tion my.rmkt in the R script Tools.R, which is also provided as Electric Supplementary

Material.

S2. Additional simulation studies

Recall that when we investigating numerically the impact of the resample size m, we con-

sider the goodness–of–fit test for multivariate normality and generate data using four differ-

ent distributions. To be specific, these distributions are Np(ep,Σ0.5), NMp(3), Up(0, 1), and

S.1



MARp(Exp), Case 1–4 respectively. Please refer to “Choice of the resample size” in Section

7.1 in the main paper for details.

Now we consider the densities of spherical stable family with Ψ(ξ) = e−ξb/2 , b ∈ (0, 2], and of

the generalized Laplace family with Ψ(ξ) = (1+ξ)−b, b > 0, as weight functions. For the tuning

parameter b, we choose b ∈ {0.5, 1.0, 1.5, 2.0} for the stable density and b ∈ {0.1, 0.25, 1.0, 4.0}

for the Laplace density. The empirical rejection rates corresponding to spherical stable weight

and Laplace weight against different values of m for Cases 1–4 are displayed in Figures S.1 and

S.2, respectively.
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(a): Case 1, p = 2, N2(e2, Σ0.5)
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(b): Case 1, p = 3, N3(e3, Σ0.5)
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(c): Case 1, p = 5, N5(e5, Σ0.5)
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(d): Case 2, p = 2, NM2(3)
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(e): Case 2, p = 3, NM3(3)
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(f): Case 2, p = 5, NM5(3)
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(g): Case 3, p = 2, U
2
(0,1)
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(h): Case 3, p = 3, U
3
(0,1)
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(i): Case 3, p = 5, U
5
(0,1)

m

R
e
je

c
ti
o
n
 r

a
te

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1 5 10 15 20

(j): Case 4, p = 2, MAR2(Exp)
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(k): Case 4, p = 3, MAR3(Exp)
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(l): Case 4, p = 5, MAR5(Exp)

Figure S.1: Empirical rejection rates of T̂
(Ψ)

n,m (MEAN) and
˜̂
T

(Ψ)

n,m (MAX) corresponding to the spherical stable weight with Ψ(ξ) =

e−ξb/2 , b ∈ (0, 2], against different values of m for Cases 1–4. The superscripts 1–4 in the legend correspond to b = 0.5, 1.0, 1.5, 2.0,

respectively. The horizontal line corresponds to the 5% significance level.
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(a): Case 1, p = 2, N2(e2, Σ0.5)
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(b): Case 1, p = 3, N3(e3, Σ0.5)
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(c): Case 1, p = 5, N5(e5, Σ0.5)
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(d): Case 2, p = 2, NM2(3)
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(e): Case 2, p = 3, NM3(3)
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(f): Case 2, p = 5, NM5(3)
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(g): Case 3, p = 2, U
2
(0,1)
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(h): Case 3, p = 3, U
3
(0,1)
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(i): Case 3, p = 5, U
5
(0,1)
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(j): Case 4, p = 2, MAR2(Exp)
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(k): Case 4, p = 3, MAR3(Exp)

m

R
e
je

c
ti
o
n
 r

a
te

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1 5 10 15 20

(l): Case 4, p = 5, MAR5(Exp)

Figure S.2: Empirical rejection rates of T̂
(Ψ)

n,m (MEAN) and
˜̂
T

(Ψ)

n,m (MAX) corresponding to the Laplace weight with Ψ(ξ) =

(1+ ξ)−b, b > 0, against different values of m for Cases 1–4. The superscripts 1–4 in the legend correspond to b = 0.1, 0.25, 1.0, 4.0,

respectively. The horizontal line corresponds to the 5% significance level.
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