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Abstract

In this paper we introduce a new sampling algorithm which has the potential to be adopted
as a universal replacement to the Metropolis–Hastings algorithm. It is related to the slice
sampler, and motivated by an algorithm which is applicable to discrete probability distri-
butions which obviates the need for a proposal distribution, in that is has no accept/reject
component. This paper looks at the continuous counterpart. A latent variable combined
with a slice sampler and a shrinkage procedure applied to uniform density functions creates
a highly efficient sampler which can generate random variables from very high dimensional
distributions as a single block.

Keywords: High dimensional density; Markov chain Monte Carlo; Shrinkage procedure; Uniform
random variables.

1 Introduction

The original, and still one of the most popular sampling methods is the Metropolis–Hastings
algorithm (Metropolis et al, 1953; Hastings, 1970). It generates a Markov sample which has a
target density as the stationary density. One well known drawback of the algorithm is that the
sampler can get stuck if the proposal density is not well set. In this case the Markov chain can
linger at a particular value before, if ever, moving. Hence, if the density of interest can be sampled
directly, via a rejection algorithm, or a Gibbs sampler, if appropriate, then these would be the
methods of choice.

The question discussed in this paper is whether we can always avoid a Metropolis–Hastings al-
gorithm without compromising efficiency. When the sample space is discrete, say Ω = {0, 1, 2, . . .},
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the sampler presented in Walker (2014) is one such possibility. One of the key ideas behind the
Metropolis–Hastings algorithm is the transition density p(y | x), defined for all x, y ∈ Ω, satisfying

p(y | x)π(x) = p(x | y) π(y) (1)

where π is the target density. The Metropolis–Hastings algorithm has transition density p(y |
x) = α(x, y) q(y | x) + (1− r(x))1(y = x), where q(y | x) is a proposal density, to be chosen,

α(x, y) = min

{
1,
π(y) q(x | y)

π(x) q(y | x)

}
,

and r(x) =
∫
α(x, y) q(y | x) dy. It is easily seen that this p(· | ·) satisfies equation (1).

An alternative p(· | ·) satisfying equation (1) and proposed in Walker (2014) is given by

p(y | x) =
π(y)

k

min(y+k−1, x+k−1)∑
l=max(y, x)

1∑l
z=max(0, l−k+1) π(z)

, (2)

where |y − x| < k, and k is to be chosen. However, the choice of k is easy to set; as large
as possible while computations required to sample p(y | x) remain time feasible. So note that
with this transition density there is no possibility for the sampler to get stuck and neither is
there an accept/reject component. Note also that π only needs to be known up to a normalizing
constant, a strong requirement in any sampler, as often, in many applications, the target density is
only specified up to an unknown normalizing constant. Finally, note that (2) is easy to sample. A
multivariate version of (2) is easy to establish and has been applied to a certain class of optimization
problem in Ekin et al. (2020).

The aim in the present paper is to find a continuous counterpart to (2). In fact a suitable
transition density is not difficult to write down as a direct analog of (2);

p(y | x) =
π(y)

k

∫ min(y+k, x+k)

l=max(y, x)

dl∫ l
z=l−k π(z)dz

, (3)

where here we have Ω = (−∞,∞) and |y − x| ≤ k. Just as (2) can be seen as a Gibbs sampler,
so can (3). To see this, consider the joint density function

p(y, l) = π(y)
1(y < l < y + k)

k
, (4)

so clearly π(y) is the required marginal density. Then (3) is given by p(y | x) =
∫
p(y | l) p(l | x) dl,

where p(l | x) is uniform on the interval (x, x + k). Further, (3) also satisfies equation (1). The
only outstanding question is how to sample (3), which is the main focus of the paper. Indeed,
we show that sampling (3) can be done efficiently using only uniform random variables and only
requires the implementation of an adaptive rejection algorithm, which works extremely fast.

In section 2 the aim is to show how to sample from p(y | x) given by (3) but with necessary
extensions involving making k random. This also requires some further latent variable; specifically
a “slice” variable, similar in spirit to Besag and Green (1993), Damien et al (1999) and Neal
(2003). Slice sampling, as it has become known, is a popular approach to sampling complex
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densities usually within a Gibbs sampling framework. In fact slice samplers have good convergence
properties; Robert and Rosenthal (1999) show that slice samplers are nearly always geometrically
ergodic while Mira and Tierney (2002) provide sufficient conditions for a slice sampler to be
uniformly ergodic. Recent uses of Neal’s approach include the elliptical slice sampler, see Murray
et al (2010), and the generalized elliptical slice sampler, see Nishihara et al (2014), and factor
slice sampling, see Tibbits et al (2014). Once the slice variable has been incorporated within (3),
it is then possible to compare the new sampler with Neal’s slice sampler. Indeed, as it stands
with k fixed, it is precisely a version of Neal’s algorithm. Both us and Neal extend from this fixed
k, but in different directions. Neal adopts the reversible framework while we adopt a random k
approach and use the framework established by the joint density (3). This allows us to maintain a
Gibbs sampling framework while avoiding a tricky detailed balance constraint. We make a direct
comparison with Neal’s slice sampler in section 3. Numerous illustrations are presented in section
4 and section 5 concludes with a brief description and a full layout of the algorithm for arbitrary
multivariate distribution.

2 Latent slice sampler

We first describe the algorithm in one dimension and later detail the extension to multi–dimensions.
To develop the joint density (4), we make it more flexible by allowing k to be a random variable,
which we will now refer to as s, and assign s to have density p(s), to be chosen, and allow for l to
be in the interval (y − s/2, y + s/2). Hence, the joint density of interest becomes

p(y, s, l) = π(y) p(s)
1
(
y − s/2 < l < y + s/2

)
s

. (5)

A key aspect of the innovation in the sampler is on dispaly here; we have introduced a y term
outside of π(y) term without altering the correct marginal. So the marginal density of y is π(y)
and the marginal density of s is p(s). A Gibbs sampler based directly on (5) would be difficult
to implement as it is not possible to sample from π(y); or rather it is assumed not to be able to
do so. In such cases, a slice sampler can be utilized. By introducing a slice variable w, the joint
density then becomes

p(y, w, s, l) = 1
(
π(y) > w

)
p(s)

1
(
y − s/2 < l < y + s/2

)
s

. (6)

While this is more than used by Neal (2003), the extra component, i.e.

p(s)
1
(
y − s/2 < l < y + s/2

)
s

is effectively providing the stochastic search engine for the set of y for which π(y) > w. Such
a procedure was also required by Neal (2003) who used a search strategy while needing also to
maintain a detailed balance criterion. On the other hand, we are free from some such constraints.
For us, this is greatly simplified, yet just as effective, by incorporating the search component into
the joint density. This means we do not have to implement a stepping out or a doubling procedure
which is a part of Neal’s algorithm.
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We implement a Gibbs sampler based on (6). So p(w, l | y, s) is easy to sample; being two
conditionally independent uniform random variables. Further

p(s | y, w, l) ∝ p(s)

s
1
(
s > 2|l − y|

)
. (7)

This conditional density is also straightforward to sample; and throughout we take p(s) ∝ s e−λs

for some λ, typically in order to provide a large variance. Finally,

p(y | w, s, l) ∝ 1
(
π(y) > w

)
1(l − s/2 < y < l + s/2).

We sample this using an adaptive rejection sampler; it is also a shrinkage procedure as described
in Neal (2003). Before describing the adaptive rejection sampler we present a simple illustration
of the key aspects of the one step algorithm, starting with the current value y0.

Figure 1: Illustration of latent slice sampler

An illustration is provided in Fig. 1. The current values of y0, w and l are indicated. The
illustration for this case gives a value of s for which the relevant values of l − s/2 and l + s/2 are
indicated. The proposed value of y1 is sampled uniformly from (l− s/2, l+ s/2) and is accepted if
π(y1) > w, as shown in the graph. Rejected y give information about the location of the interval
π(y) > w and this can be used to improve the proposal with the shrinkage procedure. To generalize
the setting we consider the adaptive rejection sampling of

p(y) ∝ 1(y ∈ C)1(a < y < b),

where C ∩ (a, b) 6= ∅ and y0 ∈ C ∩ (a, b). Let a1 = a and b1 = b; at iteration m, starting at m = 1,

1. Sample y∗ uniformly from (am, bm).

2. While y∗ /∈ C: if y∗ < y0 then am+1 ← max{am, y∗} else bm+1 ← min{bm, y∗} and m→ m+1.

3. Repeat steps 1. and 2. until y∗ ∈ C; then y = y∗.
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This works for reasons outlined in Neal (2003), and see also the discussion by Walker in Neal’s
paper. The basic idea is that the sampling strategy resulting in y = y∗ conditional on y0, and
write this density as p(y | y0), satisfies detailed balance with respect to p(y); i.e.

p(y | y0) p(y) = p(y0 | y) p(y).

The obvious points here are that as p(y) is uniform, one only need establish that p(y | y0) = p(y0 |
y) which is straightforward to understand.

Example 1. To see how efficient this sampling strategy is, we take the target for y as a mixture
of two normal densities with variances 1 and means -10 and +10, and with equal weights. That
is,

π(y) = 1
2

N(y | −10, 1) + 1
2

N(y | 10, 1).

Figure 2: Samples from latent slice algorithm from mixture of two normals

We take p(s) to be a gamma distribution with parameters shape equal to 2 and scale equal to
100, i.e., p(s) ∝ s exp(−0.01s), and generate 2,000 samples from the algorithm. The subsequent
plot of the sampled y is given in Fig. 2. As can be seen, the mixing and accuracy of the samples is
excellent. It should be noted that there are very few, if any, alternative algorithms using Markov
chains, which could achieve this.

2.1 Multivariate case

From the univariate case there is an easy way to set up a multivariate latent slice sampler when
y is a d–dimensional variable. We have the relevant joint density now as

p(y, w, s, l) = 1
(
π(y) > w

)
p(s)

d∏
j=1

1(lj − sj/2 < yj < lj + sj/2)

sj
.

So w remains a one dimensional variable, but the other two; i.e. s and l, are both d–dimensional.

5



The sampling strategy using a Gibbs sampler is an obvious extension to the one dimensional
case. The conditional for y is given by

p(y | w, s, l) ∝ 1
(
π(y) > w

) d∏
j=1

1(lj − sj/2 < yj < lj + sj/2).

This can also be sampled using the shrinkage procedure; writing aj = lj − sj/2, bj = lj + sj/2,
y0 = (y01, . . . , y0d) as the current y, and {y : π(y) > w} = C, we sample proposal y∗ = (y∗1, . . . , y

∗
d)

from
∏d

j=1 1(aj < yj < bj) and accept y = y∗ if y∗ ∈ C. Otherwise, do for all j = 1, . . . , d:

if y∗j < y0j then aj ← max{aj, y∗j} else bj ← min{bj, y∗j}.

Example 2. As an illustration we take π(y) to be a bivariate normal density with a very high
correlation; i.e. we take a mean of (0, 0) and a covariance matrix with unit variances and correlation
ρ = 0.95. It is known that slice sampling algorithms can perform poorly when the variables are
highly correlated; indeed, as stated in Tibbits et al (2014), “It is particularly difficult to create
an efficient sampler when there is strong dependence among the variables”. We take p(s) to be
independent gamma distributions with shape equal to 2 and scale equal to 10. The bivariate plot
and contour of the (y1, y2) from the output of the sampling algorithm is presented in Fig. 3. As
can be seen this has worked extremely well.

Figure 3: Samples from latent slice algorithm from bivariate normal

Example 3. Here we do a d = 50 dimensional example with the target density

π(y) ∝ exp

{
−1

2

d∑
j=1

y2j

}
.

The code was written in R and 5000 samples of y were collected. The time for execution was
two seconds. We take the same p(s) as that of Example 2. The samples of y1 are presented as a
histogram in Fig. 4 along with the standard normal density function for comparison.
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Figure 4: Samples of y1 from latent slice algorithm with 50 dimensional multivariate normal target density

3 Comparison with slice sampling

The algorithm of Neal (2003) is concerned with the sampling of p(y | w) ∝ 1(π(y) > w) which is
uniform, and let S = {y : π(y) > w}. The aim is to find an interval I = (L,R) which contains the
whole, or a part, of S, and to sample a proposal y∗ uniformly from I and accept it as y if y∗ ∈ S.
Now the interval I will be constructed stochastically from x = yc and hence, as we are dealing
with uniform densities; it is required that

p(y | x,w) = p(x | y, w).

Effectively, this boils down to the probability of getting I from x being the same as the probability
of getting I from y. Neal (2003) has two key ideas for constructing I and we will focus on the
“stepping out” procedure.

The idea here is to select a positive value k and an integer m ≥ 1 and start with

L = x− k (1− U) and R = x+ k U

where U is a uniform random variable from (0, 1). It is already interesting to note that with m = 1
this approach would coincide exactly with our own by choosing s−1p(s) to be a point mass of 1
at s = k. This can be seen by noting that our algorithm selects l uniformly from the interval
(x− k/2, x+ k/2); i.e. l = x− k/2 +Uk and then takes y∗ uniformly from (l− k/2, l+ k/2) which
can be written as (x− k(1− U), x+ kU).

To move on from this rather inflexible strategy, whereas with our algorithm we take k = s as
a random variable, Neal accounts for the rigidity of k by allowing the interval to broaden out by
extending L → L − k and R → R + k until π(L) < w and π(R) < w, respectively, or J = 0 and
K = 0, respectively, where J is a random number in [0, . . . ,m− 1] and K = m− 1− J and J and
K go down by 1 every time an extension is made, respectively. The exact details are presented in
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Fig. 3 of Neal’s paper where a proof is provided that this stochastic construction of I does indeed
satisfy detailed balance.

An alternative idea described in Neal (2003) is the “doubling” procedure and is described in
Fig. 4 of his paper. The starting point is as with the stepping out procedure but now the intervals
double in size when the interval is allowed to grow. In short, the additional latent variables l and s
we introduce at the outset obviate the need for a doubling or stepping out procedure. So while we
are able to treat k = s as random within our framework, and hence deal with any issue arising as
a consequence of it being fixed, it has recently been pointed out that some problems are sensitive
to the choice of k within Neal’s slice sampler; see Karamanis and Beutler (2020).

3.1 Numerical comparison

We compared the latent slice sampler with the slice sampling algorithm by using the illustrations
in section 8 of Neal’s paper. It is a ten-dimensional funnel-like distribution of ten real-valued
variables v and x1 to x9. The marginal distribution of v is Gaussian with mean zero and standard
deviation 3. Conditional on a given value of v, the variables x1 to x9 are independent, with the
conditional distribution for each being Gaussian with mean zero and variance ev, which can be
formulated as v ∼ N(v | 0, 32) with [xi | v] ∼ N(xi | 0, ev) for i = 1, . . . , 9. The joint distribution
is obviously given by

p(v, x1, . . . , x9) = N(v | 0, 32)
9∏
i=1

N(xi | 0, ev).

Such a distribution is typical of priors for components of Bayesian hierarchical models; x1 to x9
might, for example, be random effects for nine subjects, with v being the log of the variance of
these random effects. If the data is largely informative, the problem of sampling from the posterior
will be similar to that of sampling from the prior. From the above framework, we know the correct
marginal distribution for v, which is the focus of the illustration, and we can sample for each of
x1 to x9 given the value for v.

In Neal’s paper, the single variable slice sampling method is used to sample from a multivariate
distribution by sampling repeated for each variable in turn. Each update uses the step-out and
shrinkage procedure. Fig. 5 compared the result of trying to sample from the funnel distribution
using latent slice sampling and single-variable slice sampling. The upper plot shows 2000 iterations
of a run, which is the subsampling of 4,000,000 samples with a spacing of m = 200 to reduces the
autocorrelation of successive samples. If every 200 th iteration is used and the rest thrown away,
this produces another reversible Markov chain with asymptotic variance. The selection of spacing
m = 200 can yield better estimates of the true posterior and yet smooth out autocorrelation. We
use a gamma distribution with shape 2 and scale 5 to randomize the “slice”, i.e p(s) ∝ se−s/5 so
that the sampler is able to explore the distribution efficiently. The lower plot of Fig. 5 shows the
results of trying to sample from the funnel distribution using single-variable slice sampling. To
avoid the high autocorrelation, the same spacing of m = 200 is used to “thin” the simulations.

The resulting 2000 updates are shown in the scatterplot. Both the latent slice sampler and the
single-variable slice sampling perform fairly well with small and large values of v sampled quite
good, compared with single-variable Metropolis updates and multivariate Metropolis updates, as
discussed in Neal’s paper. However, slice sampling method takes much greater cost in wasted
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Figure 5: Sampling the funnel distribution using latent slice sampling (dark dots) and single-variable
slice sampling (blue dots)

computation. The average time for 10000 iterations are at least three times of that for latent slice
sampling algorithm. The simplicity of the latent slice sampling makes it favorable for sampling
distribution without selecting proposal distribution. By using stochastic search we accelerate the
convergence to the stationary distribution.

4 Illustrations

In this section we present a number of illustrations. We start with two examples for discrete spaces,
which include the allocation variables in a mixture of Dirichlet process model and the number of
components in a mixture model. We then consider some continuous examples, including a model
in which Neal’s slice sampler has been used, elliptical sampling, and then a state space model and
a variable selection model where the vectors of unknowns are typically sampled componentwise
using a Gibbs sampler. In these latter two examples we use the multivariate latent slice sampler
to sample the entire vector as a single block.
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4.1 Mixture of Dirichlet process model

Here we consider the well–known and widely used mixture of Dirichlet process (MDP) model,
introduced in Lo (1984). The MDP model with Gaussian kernel is given by

f(x) =

∫
N(x | µ, σ2) dP (θ)

where θ = (µ, σ2) and where µ represents the mean and σ2 the variance of the normal kernel. Let
DP(α, P0) denote a Dirichlet process prior (Ferguson, 1973) with scale parameter α > 0 and a
prior probability P0, so E(P ) = P0 and Var(P (A)) = P0(A) (1−P0(A)/(1 +α) for all appropriate
sets A. The model has been one of the most popular in Bayesian nonparametrics, and for a recent
review on estimation techniques, see Hjort et al (2010).

A number of recent ideas maintain the P as part of a Markov chain sampling approach and
find ways to obviate the need for sampling an infinite dimensional object. The more traditional
approaches marginalize it out of the model. Here we adopt the former approach and the key idea
here is to introduce the latent indicator variable which tells us which component each observation
came from. Following Sethuraman (1994) we can write

P =
∞∑
j=1

wj δθj

where w1 = v1 and wj = vj
∏

l<j(1− vl) with the (vj) i.i.d. beta(1, α), and the (θj) are i.i.d. P0. If
we now let di ∈ {1, 2, . . .} indicate the component number of xi, the complete likelihood function
is given by

l(x, d | w, θ) =
n∏
i=1

wdiN(xi | θdi)

To complete the prior set up we determine P0. The prior for the (µj) is independent N(0, 1/s) and
the prior for the (λj) = 1/σ2

j will be independent gamma(τ, τ). The full conditional distributions
for the parameters (µ, λ, v) are standard, being independent normal, gamma, and beta respectively,
given the data and the (di). We omit the details as they are well documented in the literature.
See, for example, Walker (2007).

On the other hand, the conditionals for the (di) are difficult due to the fact that the normalizing
constant is not available. So

P (di = j | · · · ) = π(j) ∝ wj N(xi | µj, σ2
j ).

Rather than attempting to sample this directly, which is impossible, we use the transition density
(2) with a choice of finite k; so, with di denoting the current value and d′i the new to be sampled
value,

P (d′i = j | di, · · · ) =
π(j)

k

min(j+k−1, di+k−1)∑
l=max(j, di)

1∑l
z=max(1, l−k+1) π(z)

,

with |j − di| < k.
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The infinite dimensional problem automatically converts to a finite one but which retains a
valid Markov chain with the correct stationary distribution. On the other hand, Ishwaran and
James (2010) truncated π(j) to some large value which obviously introduces errors.

Our aim here is not to undertake an extensive simulation exercise or wide ranging comparison,
but rather to demonstrate the simplicity and accuracy of using this density for sampling the (di).
The point is that the stationary distribution is correct while no extra latent variables are being
introduced to sample the (di). On the other hand, a number of extra latent variables were required
in Kalli et al (2011). The simulation for the MDP model is a normal example of 400 random
variables sampled independently from the density f(x) = 1

3
N(x | −4, 1)+ 1

3
N(x | 0, 1)+ 1

3
N(x | 8, 1).

For illustrative purposes, we took τ = 0.5, s = 1, and α = 2. The Gibbs sampler was run for
20,000 iterations and at each iteration from 15,000 onwards a predictive sample xn+1 was taken.

Figure 6: Histogram of the data and predictive densities from chain using new transition density (red)
and slice–efficient sampler (blue dotted) and the true density (black)

A histogram of the 400 data points with the density estimators (blue: using our new transition
density approach; red: using slice sampling as described in Kalli et al (2011)) based on 5000
samples of xn+1, and with the true density (black), are provided in Fig. 6. The density estimators
were obtained using the R density routine from the predictive samples. The advantage of using
our new transition density is that we do not need any truncation of the distribution of the (di).
After picking an appropriate k, there are no other parameters to be tuned and the algorithm itself
is straightforward. It avoids the accept/reject component of a Metropolis–Hastings algorithm,
the errors introduced by truncating the correct density of the (di), and avoids introducing further
latent variables to sample the (di).

4.2 Mixture model: unknown number of components

Here we consider another mixture model but now we use a version which works with a random
number of components. For illustrative purposes we select a case where the components are fully
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specified, exponential densities with the integers as parameter. A more complete version of the
model with unknown normal components was considered in Richardson and Green (1997).

The model, given M , the number of components, is given by

f(x | wM ,M) =
M∑
j=1

wjMje
−jx

with M ∈ {1, . . .∞} and wM = (w1M , . . . , wMM) are the weights which sum to 1. Using the
indicator variables (di), as in the previous section, though now given M their values will be from
a finite set, the complete likelihood function is given by

l(w,M | x, d) = π(w |M) π(M)
n∏
i=1

wdidie
−di xi .

Here w represents all weights for all possible M ; i.e. w = (w1, w2, . . .). We adopt the framework
of Godsill (2001) and provide a prior for each wj given M , in the form

π(w |M) = π(w2 | w3) . . . π(wM−1 | wM)π(wM |M)π(wM+1 | wM)π(wM+2 | wM+1) . . . .

The prior for M is π(M) = λM−1e−λ/(M−1)! for M = 1, 2 . . ., so is a Poisson shifted to {1, 2, . . . }.
The prior for wM given M is Dirichlet with common parameter α. To complete the prior setting,
we need to specify π(wj+1 | wj) and π(wj−1 | wj), the latter avoiding j = 1. The former is obtained
by selecting a weight from (wjl)l=1:j and splitting it into two, uwj and (1− u)wj, with u uniform
on (0, 1). Hence π(wj+1 | wj) = 1/j. Likewise, for π(wj−1 | wj) we take wjj and combine it with
wjl, for l 6= j. Hence, π(wj−1 | wj) = 1/(j − 1).

For the ensuing Gibbs sampler Markov chain, all the full conditionals are easy to sample, in-
cluding wM given M and the (di) given M . However, sampling M is the difficulty. The benchmark
procedure here is a reversible jump Markov chain, see Green (1995), where a detailed balance con-
dition is required. While this may not be difficult for the present mixture of known exponential
components, it is far from trivial for unknown normal components; see Richardson and Green
(1997). Now

π(M | · · · ) ∝ π(M)π(wM |M)
n∏
i=1

M∑
j=1

wjMje
−jxi ×

M−1∏
j=2

π(wj | wj+1)
∞∏

j=M+1

π(wj | wj−1).

It is important to note that for any M ′ 6= M ,

π(M ′ | · · · )
π(M | · · · )

=
π(M ′) π(wM ′ |M ′)

∏n
i=1

∑M ′

j=1wjM ′je−jxi

π(M) π(wM |M)
∏n

i=1

∑M
j=1wjMje

−jxi
;

i.e. because of how we set the conditional priors for the weights, they cancel from the ratio of
posteriors for different number of component values. So we now sample the new M ′ given the
current M , with a chosen k, via the transition density

P (M ′ |M) =
π(M ′)

k

min(M ′+k−1,M+k−1)∑
l=max(M ′,M)

1∑l
z=max(1, l−k+1) π(z)

,
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with |M ′ −M | < k.
A reversible jump Markov chain from a current M would typically propose a move to either

M − 1 or M + 1 and up front sample a set of weights which the chain would move to if the
proposed move was accepted. As with all such algorithms, it has an accept/reject component
which, to reiterate, our transition density does not have.

Figure 7: Predictive densities using new transition density and reversible jump algorithms, with histogram
of data.

For the demonstration we generated 400 i.i.d. data points from a single exponential density
with parameter 3, i.e. f(x) = 3e−3x. Fig. 7 shows the histogram of the data along with the
predictive density estimates using the new transition density and show alongside the estimate
from the reversible jump algorithm. Both are clearly working well.

4.3 Elliptical sampling

In this example we consider a continuous space, and here we label the algorithm with the new
transition density as the latent slice sampler. Specifically, here, we compare with elliptical slice
sampling, which is used in a number of models which have a multivariate Gaussian distribution
as the prior. See Murray et al (2010). The objective is to sample from a posterior distribution
over latent variables that is proportional to the product of a multivariate Gaussian prior and a
likelihood function that ties the latent variables to the observed data.

Suppose f is the vector of the latent variables that we wish to sample and has a zero–mean
multivariate Gaussian prior with covariance matrix Σ; i.e. f ∼ N(0,Σ) and, for completeness, the
density function is given by

N(f | 0,Σ) ≡ |2πΣ|−1/2exp
(
−1

2
fT Σ−1 f

)
.

The data are assume to have likelihood function L(f) = p(data | f) so that the target posterior
distribution is

π∗(f) ∝ N(f | 0,Σ) L(f).

13



Table 1: Modified elliptical slice sampling with latent slice algorithm.

Input: current state f , log-likelihood function logL
Output: new state f ′.
1. Sample ν ∼ N(0,Σ).
2. Sample u ∼ U(0, 1) and set logw ← logL(f) + log u.
3. Sample θ using latent slice sampler.
4. f ′ ← f cos θ + ν sin θ: if logL(f ′) > logw, accept f ′; else GoTo step 3.

Given a current state f , a new state can be proposed via

f ′ =
√

1− ε2 f + εν with ν ∼ N(0,Σ),

where ε ∈ [−1, 1] is a step-size parameter, and the proposal is accepted or rejected using a
Metropolis–Hastings step. However, apparently the choice of ε becomes crucial. A more flexible
approach would allow for a richer class of proposal. An alternative and more natural parameteri-
zation for the proposal is

f ′ = ν sin θ + f cos θ,

defining a full ellipse as θ ranges over [0, 2π]. The original strategy in Murray et al (2010) is to
take θ as random and sample θ using Neal’s slice sampler; here we replace this part with our latent
slice sampler. The resulting algorithm is given in Table 1.

For our illustration we consider a Gaussian data model; i.e.

yi = f(xi) + εi with εi ∼ N(0, σ2),

assuming σ is known. The Gaussian process prior has covariance matrix given by elements

Σi,j = τ 2 exp

(
−
∑

(xi − xj)2

2ψ2

)
,

where ψ is the “lengthscale” parameter and τ the “signal variance”. So we take

L(f) ∝ exp

{
−1

2

n∑
i=1

(yi − f(xi))
2

}
.

In the experiment, we generate a sequence of n = 100 evenly spaced values (x1:n) over the
interval [0, 1] as the input data and take the true function f(xi) = sin(4π xi) + sin(7π xi). We take
the noise standard deviation as σ = 0.2 to generate the data (y1:n). For the covariance matrix of
the Gaussian process prior, we use lengthscale ψ = 0.1 and unit signal variance, τ = 1.

Fig. 8 shows the estimated function using our own latent slice sampler and also Neal’s slice
sampler. Both, obviously, perform well with fast convergence, indicating that the latent slice
sampler can be applied in a vast range of Gaussian based models that are currently using Gibbs,
Metropolis–Hastings, or slice sampling.
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Figure 8: Comparison of estimated latent function from latent slice sampling(blue) and elliptical slice
sampling(red dash). The black solid curve is the observed latent function.

4.4 State space model

In this subsection we sample a 500 dimensional space which is the unknown states of a state space,
also known as a hidden Markov, model. We consider

[yi | xi] ∼ Poisson (θ exp(xi)) and xi = ρ xi−1 + σ zi

for i = 1, . . . , n with n = 500 and x0 = 0 and the (zi) independent standard normal. To generate
the data set we take ρ = 0.8, σ = 1 and θ = 1.

The joint density of the x = (x1:n) given θ is

π(x | θ) ∝ exp

{
n∑
i=1

[
xi yi − θ exi − 1

2
(xi − ρ xi−1)2

]}
;

for simplicity we assume ρ and σ to be known, without any loss to the illustration about to be
presented. Typically, the π(x | θ) is sampled component by component, i.e. by sampling p(xi |
x−i, θ) for i = 1, . . . , n within a Gibbs sampling framework. In some special cases, conditionally
normal dynamic linear models, it can be sampled as a block by backward sampling. The most
common approaches nowadays are based on particle filters; see Andrieu et al. (2010).

Using the multivariate latent slice sampling algorithm we sample the entire vector of state
spaces in one block. We only assume θ is unknown and the conditional density of θ with a gamma
prior with shape and rate parameters both equal to 0.5 is given by a gamma distribution with
shape parameter 0.5 +

∑
i=1:n yi and rate parameter 0.5 +

∑
i=1:n e

xi .
The chain was run for 2000 iterations and the time taken was 20 secs. A plot of the posterior

θ samples is presented in Fig. 9. The mean value is 0.97.
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Figure 9: Posterior density of θ for state space model

4.5 Spike and slab model

In this subsection we consider a popular approach to variable selection within the Bayesian frame-
work; namely the spike and slab prior (George and McCulloch, 1993). The model is given by

Y = Xβ + ε, ε ∼ N(0, σ2In)

where Y ∈ Rn is a vector of responses, X = [X1, . . . , Xp] ∈ Rn×p is a regression matrix of p
predictors, β = (β1, . . . , βp)

T ∈ Rp is a vector of unknown regression coefficients, and ε ∈ Rn is the
noise vector of independent normal random variables with σ2 as their unknown common variance.
The spike and slab prior for β is given by

π(β) ∝
p∏
j=1

[
σ−11 exp(−1

2
β2
j /σ

2
1) + σ−12 exp(−1

2
β2
j /σ

2
2)
]
,

where σ1 ≈ 0 yields the spike and σ2 ≈ ∞ yields the slab. Markov chain Monte Carlo methods for
this model require the Gibbs sampling of βj conditional on the β−j, i.e. the vector of β without
the βj. See, for example, Narisetty and Xe (2014). Here we use the latent slice sampler to sample
β as one block.

We assume σ = 1 is known and generate data for n = 100 with p = 90. We take β1 = 1,
β2:5 = 5 and β6:90 = 0. All the elements in the design matrix X are generated as independent
standard normal random variables. We take σ1 = 0.1 and σ2 = 10; writing down the posterior for
β is quite straightforward and is in particular easy to compute for any given value of β. We ran
the latent slice sampler for 10,000 iterations; taking a few seconds to complete the task.

For illustration we present the posterior samples for β1 and β2 and β6; the true values being
1, 5 and 0, respectively. As is visible from Fig. 10 the samples are accumulating at the correct
locations.
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Figure 10: Posterior samples of β1, β2 and β6 from spike and slab model

5 Discussion

In this paper we have presented a generic sampling algorithm which has the ability to sample
efficiently very high dimensional distribution functions at great speed. The key is the latent
model combined with the shrinkage procedure based on uniform distributions and an automatic
reversible condition. Given the simplicity of the algorithm we present it here, in the general d–
dimensional case, with target density π(y) and y = (y1, . . . , yd). Let λ = 0.1, for example; we
describe a single loop with current values y0 = (y01, . . . , y0d) and s0 = (s01, . . . , s0d).

1. Sample w ∼ U(0, π(y0)) and, for j = 1, . . . , d, sample

lj ∼ U
(
y0j − s0j/2, y0j + s0j/2

)
and sample sj from the density proportional to

exp(−λsj)1(sj > 2|lj − y0j|).

2. Set aj = lj − sj/2 and bj = lj + sj/2.

3. For j = 1, . . . , d, sample
y∗j ∼ U(aj, bj).

if π(y∗) > w, accept y = y∗; else, for j = 1, . . . , d,

if y∗j < y0j then aj ← max{aj, y∗j} else bj ← min{bj, y∗j}.

4. Repeat step 3 until π(y∗) > w and set y = y∗.

As we have demonstrated, such an algorithm can work with a nonlinear state space model with
dimension 500 and return output in short time. Future work will consider sampling of constrained
spaces, such as uniform sampling on polytopes and truncated distributions, such as the multivari-
ate normal (Robert, 1995; Damien and Walker, 2001).
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