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Abstract

In multivariate density deconvolution, the distribution of a random vector needs to be
estimated from replicates contaminated with measurement errors. This article presents a
novel approach to multivariate deconvolution by stochastically rotating the replicates to-
ward the corresponding true latent values. The method further accommodates conditionally
heteroscedastic measurement errors commonly observed in many real data applications. The
estimation and inference schemes are developed within a Bayesian framework implemented
via an efficient Markov chain Monte Carlo algorithm, appropriately accommodating uncer-
tainty in all aspects of the analysis. The method’s efficacy is demonstrated empirically
through simulation experiments and practically in estimating the long-term joint average
intakes of different dietary components from their measurement error-contaminated 24-hour
dietary recalls.
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1 Introduction

Many practical applications require the estimation of the unknown density of a vector-

valued random variable x. The variable x, however, may not be observed precisely, rather

surrogate replicates w contaminated with measurement errors u may only be available. The

replicates w are then generated from a convolution of the density of x and the density of

the measurement errors u, and the problem of estimating the density of x from available

contaminated measurements w becomes a problem of multivariate deconvolution of densities.

Such problems routinely arise in diverse application areas, including especially in nutritional

epidemiology (Bennett et al., 2017; Keogh et al., 2020; Shaw et al., 2020), where the problem

of estimating long-term average intakes of different dietary components from their error-

contaminated 24-hour recalls is of fundamental importance.

This article proposes a robust approach to multivariate density deconvolution in the

presence of conditionally heteroscedastic errors u from an unknown probability law, relying

on the idea of probabilistically rotating the replicates w toward the underlying latent x in a

statistically principled manner.

Throughout this article, for random vectors s and t, we denote the marginal density

of s, the joint density of (s, t), and the conditional density of s given t, by the generic

notation fs, fs,t and fs|t, respectively. Likewise, for univariate random variables s and t, the

corresponding densities are denoted by fs, fs,t and fs|t, respectively.

The literature on density deconvolution is really vast (Carroll et al., 2006; Buonaccorsi,

2010). The early literature focused primarily on univariate problems with a single con-

taminated measurement for each subject and the measurement errors independently and

identically distributed according to some known probability law fu, often normal. Deconvo-

luting kernel-based approaches have been studied by Stefanski and Carroll (1990); Devroye

(1989); Fan (1991a,b), among others. See also Madrid-Padilla et al. (2018); Newton (2002).

The distribution of measurement errors is, however, rarely known in practice. Robust decon-

volution methods with the unknown aspects of the error density estimated using replicated

proxies w for the unknown values of x have thus been considered (Li and Vuong, 1998; Diggle

and Hall, 1993; Delaigle et al., 2008, and others). A Bayesian likelihood-based approach with

an unknown but symmetric unimodal density fx has recently been developed in Su et al.

(2020).

The assumption of independence of u from x is also often highly impractical, especially in

nutritional epidemiology applications, where patterns of conditional heteroscedasticity can

be very prominently seen. Bayesian hierarchical frameworks and associated Markov chain

Monte Carlo (MCMC) based computational machinery have recently been shown to provide

powerful tools for solving complex deconvolution problems under more realistic scenarios,

including when the measurement error distribution can be asymmetric, heavy-tailed, condi-

tionally heteroscedastic, etc. (Staudenmayer et al., 2008; Sarkar et al., 2014, 2018, 2021).

In their seminal work, Staudenmayer et al. (2008) assumed the errors u to be normally

distributed but allowed the variability of u to depend on x, employing positive mixtures of
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B-splines to flexibly characterize both fx and the conditional variability var(u|x). Sarkar

et al. (2014) further relaxed the assumption of normality of u, employing flexible mixtures

of normals (Escobar and West, 1995; Frühwirth-Schnatter, 2006) to model both fx and fu|x.

In stark contrast to the univariate setting, the multivariate problem has garnered little

attention in the literature. Masry (1991); Youndjé and Wells (2008); Comte and Lacour

(2013); Hazelton and Turlach (2009, 2010); Eckle et al. (2017) considered scenarios with

errors u from a known probability law, independent from x. Bovy et al. (2011) obtained a

Bayesian maximum-a-posteriori estimate of fx modeled by flexible mixtures of multivariate

normal kernels, assuming fu to be multivariate normal, independent from x with subject-

specific but known covariance matrices. Utilizing the flexibility of Bayesian hierarchical

frameworks, Sarkar et al. (2018, 2021) developed robust multivariate deconvolution methods,

relaxing the restrictive assumptions of known error probability laws, homoscedasticity, and

independence from x, etc. Sarkar et al. (2018) modeled fx and fu|x using flexible mixtures

of multivariate normals whereas Sarkar et al. (2021) adopted a complementary approach,

modeling the marginals fx` and fu`|x` first and then building the joint distributions fx and

fu|x by modeling the dependence structures using Gaussian copulas.

The focus of this article is also on multivariate deconvolution with conditionally het-

eroscedastic measurement errors from an unknown distribution in the presence of replicated

proxies for each subject. To that end, we propose a novel approach to multivariate density

deconvolution that assumes the replicates w to be generated by first stochastically rotating

the underlying true x and then stochastically stretching or contracting their lengths. This

is achieved by multiplying each x first with an orthogonal rotation matrix Q and then with

a scalar length adjustment factor r. Going a significant step further, we also accommodate

conditional heteroscedasticity by allowing the distributions of both the rotation matrices

and the length-adjusting factors to flexibly depend on the latent true x’s. The conditional

distributions fu|x, and hence fw|x, are then obtained as novel functions of the Q’s. For the

main density of interest fx, we adopt a copula-based approach with the marginals mod-

eled by flexible mixtures of truncated normals with shared atoms as in Sarkar et al. (2021).

We take a Bayesian route to estimation and inference, implemented via an efficient MCMC

algorithm, appropriately accommodating uncertainty in all aspects of our analysis. We illus-

trate our method’s empirical efficacy through simulation experiments. Its practical utility

is demonstrated in nutritional epidemiology applications in estimating the long-term joint

average intakes of different dietary components from their measurement error-contaminated

24-hour dietary recalls.

Traditionally, the literature on deconvolution almost exclusively assumes the measure-

ment errors to be additive. In Section 3.2 of this paper, we show that our rotation-based

model can be reformulated as a classical additive model. What the rotation-based view

does still is to provide a new perspective on measurement errors leading to a new way of

constructing the likelihood function and resulting in new algorithms for inference.

Rotation-guided modeling of multivariate data is indeed getting increasing popularity in
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statistics (Hoff, 2009a,b; McCormick and Zheng, 2015; Mukhopadhyay et al., 2020; Song and

Dunson, 2022). In the deconvolution literature, stochastic rotations have been proposed for

directional data in Kim (1998), where the latent objects of primary interest, as well as the

observed replicates, were all orthogonal matrices, with additional theoretical insights into

this setup provided in Kim and Richards (2001). Our work, however, is focused on Euclidean

deconvolution problems in the presence of replicates contaminated with conditionally het-

eroscedastic measurement errors. The deconvolution problem we consider and the solution

we propose are thus very different from Kim (1998).

Overall, this article makes several important contributions to the literature on multivari-

ate density deconvolution - (a) we introduce a new framework for multivariate deconvolution

via stochastic rotation of the error-contaminated replicates toward their underlying true

values, (b) additionally, we also address the significantly challenging problem of accommo-

dating conditionally heteroscedastic errors in this newly introduced framework, and (c) we

introduce HMC-based advanced MCMC methods to the deconvolution problem, significantly

improving computational efficiency.

The rest of this article is organized as follows. Section 2 presents some important pre-

liminary results used in the construction of our likelihood function. Section 3 details our

proposed stochastic rotation-based approach to multivariate deconvolution, including like-

lihood construction, prior specification, and outline of posterior computation. Section 4

presents the results of some simulation experiments, illustrating the method’s empirical per-

formances. Section 5 presents the results produced by the proposed method applied to the

problem of estimating the true long-term average intakes of different dietary components

from their measurement error-contaminated 24-hour recalls. Section 6 contains concluding

remarks. Substantive additional details are presented in the supplementary materials.

2 Preliminaries

2.1 Geometry of Vector Rotations

To motivate our modeling framework, we first discuss some geometric properties of vector

rotations. For any two vectors a ∈ Rd and b ∈ Rd, there exists a d× d orthonormal rotation

matrix Qab such that a
‖a‖2 = Qab

b
‖b‖2 , where ‖ · ‖2 stands for the Euclidean norm. We can

thus establish that

a = sQabb, (1)

for the scalar s = ‖a‖2/‖b‖2. Geometrically speaking, the orthonormal matrix Qab rotates

the unit vector b
‖b‖2 towards the unit vector a

‖a‖2 and the scalar s takes care of the change in

magnitude due to this transformation from b to a. Let ã = a/‖a‖2 and b̃ = b/‖b‖2. Then,
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using the Householder reflection result (Householder, 1958) for total internal reflection under

Snell’s law, a solution for Qab is Id−2vvT/‖v‖2
2, where v = ã− b̃. However, since it is based

on a single Householder transformation, the solution is always symmetric, hence making it

difficult to impose any distributional assumption. We thus consider a different solution based

on a frequently used technique in numerical analysis to compute the orthogonal component

Q in the QR-decomposition of a matrix (Stewart, 1980). The exact expression of Qab is

established in the following theorem.

Theorem 1. For any i = 1, . . . , d, let ai = a + ‖a‖2ei and bi = b + ‖b‖2ei, where ei is

the unit vector with 1 at the ith place. Then, for H(a) = Id − 2aia
T
i /‖ai‖2

2 and H(b) =

Id − 2bib
T
i /‖bi‖2

2, Qab = G(a,b) = H(a)H(b) satisfies (1).

The result above is crucial in computing the likelihood function of our proposed model.

The proof is based on some results from Euclidean geometry. If the singular value decompo-

sition of abT is UΣVT with the singular values in Σ = diag(σ1,1, . . . , σd,d), then a solution

for Qab is the orthogonal matrix UVT. The matrix abT has only one non-zero singular value,

‖a‖2‖b‖2, which we can assume to be σi,i without any loss of generality. Based on a similar

reflection argument as before, we can then compute U and V as functions of a and b ex-

plicitly. Specifically, we take ai = a + ‖a‖2ei, the bisector of the angle between a and the ith

unit vector ei on the reflecting surface. Then the Householder transformation matrix based

on this bisector, Id− 2aia
T
i /‖ai‖2

2, is a possible solution for U as this Householder reflection

will transform a to −‖a‖2ei and thus Ua = −‖a‖2ei. It can be verified easily by noting that

aT
i a = ‖a‖2a

T
i ei. Similarly, we can compute V from b. With H(a) = Id − 2aia

T
i /‖ai‖2

2 and

H(b) = Id − 2bib
T
i /‖bi‖2

2, we then have Qab = G(a,b) = H(a)H(b) (Figure 1).

Remark 1. It is easy to check that H(a)H(b) = Id if and only if a/‖a‖2 = b/‖b‖2.

For the rest of the paper, without loss of generality, we use the result of Theorem 1

with the first unit vector ei = e1. Numerical experiments with other choices produced near-

identical results. In the next section, we use the result to compute the likelihood function of

the replicates in our multivariate density deconvolution model introduced in the next section.

2.2 von-Mises Fisher and Matrix von-Mises Fisher Dstributions

The von-Mises Fisher distribution (vMF) and the matrix von-Mises Fisher distribution

(MvMF) play important roles in our model construction and computation. We thus provide

a brief description of these distributions here, starting with the vMF first, for easy reference.

The vMF distribution for a d-dimensional vector w is defined as

f(w) = Cd(c) exp(cµTw), w ∈ {z : ‖z‖2 = 1}, (2)

where µ is a unit vector signifying the mean direction of w and c ≥ 0 stands for a scalar

concentration parameter. The normalizing constant Cd(c) = cd/2−1

(2π)d/2Id/2−1(c)
, where Iν denotes
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Figure 1: Rotation by total internal reflection via Householder transformations.

the modified Bessel function of the first kind at order ν. The maximum likelihood estimates

for µ and c are obtained in Jupp and Mardia (1979).

We next review the MvMF distribution for orthogonal matrices on the Stiefel manifold.

The distribution was first proposed in Downs (1972) and thoroughly studied in Khatri and

Mardia (1977). Since then, it has become a popular distributional choice for random matrices

supported in the space of orthogonal matrices.

The MvMF distribution for a q × d matrix Q = ((Q`1,`2)), with q ≤ d and QQT = Iq, is

defined as

f(Q) =
1

M(F)
etr(FQT), Q ∈ Oq,d, (3)

where etr(·) = exp{trace(·)}, F is q × d dimensional parameter matrix, Oq,d is the set of all

q × d orthogonal matrices (i.e., the q × d Stiefel manifold), and M(F) is the normalization

constant. To keep the description simple, we only consider the case directly relevant to

our deconvolution problem, namely q = d with a diagonal F, and review some key results

from Khatri and Mardia (1977). The MGF of Q is given by E{etr(TQT)} = M(F+T)
M(F)

. Let

T1 = diag(t1,1, . . . , t1,d) and T2 = diag(t2,1, . . . , t2,d) be matrices such that t1,ell = 1/t2,` for

all ` = 1, . . . , d. Thus, the distributions of Z = T1QT2 and Q are identical when F is

diagonal. Hence,

E(Q`1,`2) = E(z`1,`2) =⇒ (1− t1,`1t2,`)E(Q`1,`2) = 0 and

E(Q`1,`2Q`′1,`
′
2
) = E(z`1,`2z`′1,`′2) =⇒ (1− t1,`1t2,`2t1,`′1t2,`′2)E(Q`1,`2Q`′1,`

′
2
) = 0.

This implies E(Q`1,`2) = 0 for all k 6= ` and E(Q`1,`2Q`′1,`
′
2
) = 0 for either `1 6= `2 or `′1 6= `′2.

To compute the expectation of the diagonal entries, we can take the derivative of the MGF
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with respect to T. Hence, we get E(Q`1,`1) =
∂logM(F)

∂F`1,`1
and E(Q`1,`1Q`2,`2) =

∂logM(F)

∂F`1,`1∂F`2,`2
.

3 Deconvolution via Stochastic Rotation

Our main objective is to estimate the density of a d-dimensional vector x. However, we do

not have accurate measurements of x. For each unobserved xi, we instead have mi replicated

proxies wi,j’s contaminated with some error where i = 1, . . . , n and j = 1 . . . ,mi, and mi ≥ 3

for all i. Each observation wi,j may be viewed as a point in the Cartesian co-ordinate system.

A representation of wi,j can then be obtained in terms of its norm ‖wi,j‖2 and its direction

from the origin wi,j/‖wi,j‖2. In this paper, our characterization of wi,j takes inspiration from

the above representation and the relation in (1). Specifically, our model for the replicates

wi,j conditional on the underlying true xi is

wi,j = ri,jCiQi,jxi,

Qi,j ∼ MvMF(Fi) ∝ etr(FiQ
T
i,j), Fi = diag{κ1(x1,i), . . . , κd(xd,i)},

log(ri,j) ∼ Normal{−s2(‖xi‖2/d)/2, s2(‖xi‖2/d)},

κ`(x) =
∑Kκ

k=1 βκ,`,kBk(x), s2(‖xi‖2/d) =
∑Ks

k=1 βs,kBk(‖xi‖2/d).

(4)

Here ri,j’s are scalars with E(ri,j|xi) = 1 and var(ri,j|xi) = exp{s2(‖xi‖2/d)} − 1, Qi,j =

((Q`,`′,i,j))’s are d× d rotation matrices, and Bk(x) are B-spline bases spanning the interval

[A,B] (de Boor, 1978). The d× d dimensional scaling matrices Ci = ((C`,`′,i)) ensures that

the replicates wi,j’s are stochastically centered around the corresponding true xi. Specifically,

we set Ci = {E(Qi,j|xi)}−1, so that E(wi,j|xi) = E(ri,j|xi)E(CiQi,j|xi)xi = 1× Id×xi = xi.

As seen in Section 2, for a diagonal Fi, the Euclidean expectation of Qi,j is also diagonal.

Based on the results of Khatri and Mardia (1977), we specifically have E(Q`,`′,i,j|xi) =

C−1
`,`,i =

dlog{M(Fi)}
dκl

. The matrices Fi also determine how far the corresponding Qi,j’s are

allowed to vary around Id, larger values of κ`(·) inducing greater concentration of the Qi,j’s

around Id. Throughout the paper, we often keep the xi’s implicit in Fi = Fi(xi) and

Ci = Ci(Fi) = Ci(xi) to keep the notation simple.

Rewriting the model as C−1
i wi,j = ri,jQi.jxi and following Theorem 1 in Section 2,

the solutions for Qi,j and ri,j are G
(
C−1
i wi,j,xi

)
and ‖C−1

i wi,j‖2/‖xi‖2, respectively. The

conditional likelihood of the replicates is therefore given by

fw|x(wi,j|xi) =
etr{G(C−1

i wi,j ,xi)Fi}
M(Fi)

‖xi‖2√
2π‖C−1

i wi,j‖2s(‖xi‖2/d)
exp

[
−{log(‖C−1

i wi,j‖2/‖xi‖2)+s2(‖xi‖2/d)/2}2
2s2(‖xi‖2/d)

]
.

Although M(Fi) is computationally intractable, depending on the magnitudes of the
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Figure 2: In the classical view of measurement error models, an observation w for an un-
derlying latent x is obtained by contaminating x with additive measurement error u. In
the alternative view adopted in this article, w is generated by first rotating x to Qx and
then stretching (left panel) or contracting (right panel) it to w. The 3-dimensional case is
shown here, the shaded spheres representing the set of all vectors that can be generated by
orthogonal rotations of x.

elements in Fi, efficient approximations are available in Khatri and Mardia (1977). In most

practical applications, including ours, the replicates wi,j are expected to lie in the general

direction of the underlying xi, which implies that the Qi,j’s shouldn’t deviate too far from

the identity matrix Id. Throughout this article, the functions κi(·)’s are thus assumed to take

large values which result in a higher concentration of Qi,j around Id. Thus, it is reasonable

to consider the following approximation from Khatri and Mardia (1977) for large diagonal

entries in Fi

M(Fi) ≈

{
2−

1
4
d(d+5)+ 1

2
d2

π
d
2

}
etr(Fi)

d∏
j=1

Γ

(
d− j + 1

2

)[ d∏
`′=2

∏
`<`′

{κ`(x`,i) + κ`′(x`′,i)}
1
2

]−1

. (5)

In what follows, for brevity, sometimes we also use the notation Fi = diag(fi) where

fi = (f1,i, . . . , fd,i)
T = {κ1(x1,i), . . . , κd(xd,i)}T. Also, when we say Fi is large, we mean

its diagonal entries fi are all large.

Following Sarkar et al. (2021), we model the joint density fx of x using a Gaussian copula

with component-wise univariate marginals characterized by flexible mixtures of truncated

normals, truncated to their common support [A,B]. Specifically, we let

fx(x) = R−1
x exp

{
−yT

x (R−1
x − Id)yx

}∏d
`=1 fx,`(x`),

fx,`(x`) =
∑K

k=1 π`,kTN(x`|µk, σ2
k, [A,B]),
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where yx = (yx,1, . . . , yx,d)
T with Fx,`(x`) = Φ(yx,`) for each ` = 1, . . . , d, where Fx,` is the

cumulative distribution function (cdf) corresponding to fx,`. Our model for the correlation

matrix Rx considers the spherical coordinate representation of Cholesky factorization. In

this representation, the correlation matrix Rx is written as Rx = VVT, where the m-th row

of V is Vm,1 =
∏m−1

s=1 sin(ζm,s), Vm,k =
∏m−k−1

s=1 sin(ζm,s) cos(ζm,m−k−1) for k = 2, . . . ,m.

The rest of the entries are all zeros. Thus, V is a lower triangular matrix. The angles ζm,s
are supported on [0, π] for s < m− 1 and the ζm,m−1’s are supported on [0, 2π].

The truncated support [A,B] for the marginals is consistent with modeling conditional

heteroscedasticity later in Section 3.1 by mixtures of B-splines which by definition have

bounded local supports spanning a finite interval. Having a common unit free support

[A,B] for all components ` also greatly simplifies assigning priors on the parameters of the

mixture components as well as the choices of these prior hyper-parameters. This is often easy

to achieve in practice via simple linear transformations of the originally observed proxies.

See, e.g., Section S.5. in the supplementary material.

3.1 Conditional Heteroscedasticity Characterization

There are two different ways we accommodate conditional heteroscedasticity in the mea-

surement errors in our model - (a) by allowing the distribution of length adjustment fac-

tors ri,j to depend on the underlying latent xi via the function s2(‖xi‖2/d), and (b) by

allowing the κ` parameters to vary flexibly as functions of the corresponding latent x`,i.

The part s2(‖x‖2/d) accommodates our expectation that larger adjustments are needed

for larger true latent vectors x; whereas the functions κ`(x`,i)’s accommodate the expecta-

tion that larger deviations of w`,i,j should be allowed around larger values of x`,i. More

specifically, we have cov(wi,j|xi) = cov(ri,jCiQi,jxi|xi) = E{cov(ri,jCiQi,jxi|xi, ri,j)} +

cov{E(ri,jCiQi,jxi|xi, ri,j)} = exp{s2(‖xi‖2/d)}var(CiQi,jxi|xi)+[exp{s2(‖xi‖2/d)}−1]xix
T
i .

As seen in Section 2, for a diagonal Fi, E(Q`1,`2,i,jQ`′1,`
′
2,i,j

) = 0 except for `1 = `2 = `′1 = `′2.

Thus we have cov(CiQi,jxi|xi) = Cidiag(xi)Vidiag(xi)Ci, where Vi = ((V`,`′,i)) is the co-

variance matrix for the diagonal entries in Qi,j. From equation (2.11) of Khatri and Mardia

(1977), we have

V`,`′,i =
∂2

∂`∂`′
log[M{diag(fi)}].

For a large Fi, relying on the approximation of M(Fi), we can compute the entries V`,`′,i as

V`,`′,i ≈
1

2(f`,i + f`′,i)2
for ` 6= `′,

≈
∑
`′ 6=`

1

2(f`,i + f`′,i)2
for ` = `′.

8



To simplify notation, let us denote cov(wi,j|xi) also by Si = ((S`,`′,i)). The other approxi-

mations are then

C`,`,i ≈ 1

/{
1−

∑
`6=`′

1
2(f`,i+f`′,i)

}
,

S`,`′,i ≈
exp{s2(‖xi‖2/d)}x`,ix`′,i

2(f`,i+f`′,i)
2

/[{
1−

∑
`6=`′

1
2(f`,i+f`′,i)

}{
1−

∑
`6=`′

1
2(f`,i+f`′,i)

}]
+[exp{s2(‖xi‖2/d)} − 1]x`,ix`′,i,

S`,`,i ≈
∑
6̀=`′

exp{s2(‖xi‖2/d)}x2`,i
2(f`,i+f`′,i)

2

/{
1−

∑
`6=`′

1
2(f`,i+f`′,i)

}2

+ [exp{s2(‖xi‖2/d)} − 1]x2
`,i.

For a large Fi, the covariance matrix Vi is thus diagonally dominant. If f`,i is very large, then

C−1
`,`,i ≈ 1 and S`,`,i ≈ [exp{s2(‖xi‖2/d)}−1]x2

`,i. Due to the latter component, a large f`,i may

not always ensure low conditional variability in w`,i,j. If, however, smaller x`,i’s correspond

to larger values of f`,i, then we have smaller conditional variability in w`,i,j. As discussed in

detail in Sarkar et al. (2018), by the very nature of such problems, the conditional variability

of each component w`,i,j should depend primarily on the corresponding latent component x`,i.

Interestingly, however, unlike Sarkar et al. (2018), in our model the expected component-

specific conditional variances S`,`,i of w`,i,j involve contributions from all entries of xi. This is

not surprising as our characterization of the joint distribution of w rely on two conditionally

independent distributions, namely the distributions of its norm and its direction given the

unobserved x. And the norm and direction of a vector are functions of all of its entries.

Primary dependence of S`,`,i on x`,i is, however, still accommodated via the functions κ`(x`,i)

and the resulting diagonally dominant nature of Vi. Staudenmayer et al. (2008); Sarkar

et al. (2014, 2018, 2021) also showed that the variability in w`,i,j usually increases with x`,i,

especially in dietary recall data. It would have thus been ideal to have the functions κ`(x`,i)’s

be non-increasing in x`,i and the function s2(‖x‖2/d) increasing in ‖x‖. Although we have not

imposed such shape constraints explicitly in our model, the estimated functions do exhibit

such behaviour in all our simulated and real data applications. Even greater flexibility in the

conditional covariance structure may be obtained by taking mixtures of MvMF distributions

instead of one single MvMF. Such extensions will, however, be pursued elsewhere.

3.2 Connections with Classical Models

Our proposed model can be rewritten as a classical additive measurement error model as

wi,j = ri,jCiQi,jxi = xi + (ri,jCiQi,j − Id)xi = xi + ui,j with ui,j = (ri,jCiQi,j − Id)xi
satisfying E(ui,j|xi) = 0. The additive measurement error ui,j is thus the vector joining

the tips of xi and wi,j (Figure 2). However, unlike previous works on conditionally varying

measurement errors such as Sarkar et al. (2018, 2021), the entries of wi,j and hence those of

ui,j are allowed to depend on all components of xi.
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The proposed model also has a resemblance with classical multiplicative measurement

error models wi,j = xi ◦ ũi,j where ◦ denotes element-wise product and the errors ũi,j
are distributed independently of xi with E(ũi,j) = 1. In our model, however, we have

ũi,j = ri,jC
′
iQi,jxi, where C′i = diag(1/xi)Ci.

In both specifications, the scalar part ri,j is shared by all components of the measurement

errors ui,j and ũi,j. However, further interactions between the entries of xi and the entries of

ui,j or ũi,j may be observed depending on the concentration of Qi,j around Id. For example,

when Qi,j = Id for all j, there is only an element-wise effect of xi’s on the errors. However,

as Qi,j moves away from Id, there is more inter-component associations between the xi’s and

the associated errors ui,j or ũi,j.

In the following subsection, we show that a classical additive normal measurement error

model can be obtained as a meaningful limiting case of our rotation-based model.

3.2.1 Limiting Equivalence with a Normal Error Model

To reduce notation complexity, we initially fix ri,j = 1 for all i, j in this section. The

MGF of Qi,j is E{etr(Qi,jT)} = M(Fi+T)
M(Fi)

. We recall that Fi = diag(fi) and we have ar-

gued that in practice its entries are expected to be large. We now study the limiting

distribution of each coordinate of u′i,j = H
1/2
i (CiQi,j − Id)xi, where Hi = diag(hi) with

h`,i = x−2
`,i

{
1−

∑
k 6=`

1
2(f`,i+fk,i)

}2 {∑
k 6=`

1
2(f`,i+fk,i)2

}−1

. It is easy to see that h`,i →∞ as all

the entries in fi →∞.

Without any loss of generality, we set t = (t1, 0, . . . , 0). We have E{exp(tTH
1/2
i CiQi,jxi)} =

E{etr(Qi,jxit
TH

1/2
i Ci)} =

M(Fi+xit
TH

1/2
i Ci)

M(Fi)
. When Fi is large, Fi + xit

TH
1/2
i Ci will be di-

agonally dominant and its off-diagonal entries will be very small. Hence, the eigenvalues of

Fi + xit
TH

1/2
i Ci will be its diagonal entries. Applying the approximation from (5), we then

have

M(Fi + xit
TH

1/2
i Ci)

M(Fi)
≈ exp(h

1/2
1,i C1,1,ix1,it1)

{ ∏
k 6=1(f1,i + fk,i)∏

k 6=1(f1,i + fk,i + h
1/2
1,i C1,1,ix1,it1)

}1/2

= exp(h
1/2
1,i C1,1,ix1,it1) exp

{
−1

2

∑
k 6=1

log

(
1 +

h
1/2
1,i C1,1,ix1,it1

f1,i + fk,i

)}

≈ exp(h
1/2
1,i C1,1,ix1,it1) exp

−∑
k 6=1

1

2

h
1/2
1,i C1,1,ix1,it1

f1,i + fk,i
+
∑
k 6=1

1

4

(
h

1/2
1,i C1,1,ix1,it1

f1,i + fk,i

)2

+O

(
max
k

1

f
3/2
k,i

) ,

applying Taylor series expansion. Since C1,1,i ≈ 1

/{
1−

∑
k 6=1

1
2(f1,i+fk,i)

}
, we can simplify

the above expression further to exp(h
1/2
1,i x1,it1) exp

{
1
4

∑
k 6=1

(
h
1/2
1,i C1,1,ix1,it1

f1,i+fk,i

)2
}

which reduces
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to

exp(h
1/2
1,i x1,it1) exp

{
1

2
h1,iC

2
1,1,ix

2
1,it

2
1

∑
k 6=1

1

2(f1,i + fk,i)2

}
= exp(h

1/2
1,i x1,it1) exp(t21/2).

Hence, each coordinate of u′i,j marginally approaches to Normal(0, 1). Thus, in a limit-

ing sense, the `th coordinate of
wi,j
ri,j

marginally reduces to a normally distributed classical

measurement error model with mean x`,i and variance h−1
`,i .

3.3 Error Distribution Generating Function

To characterize the distribution of ui,j, we can compute the moment generating function

(MGF) of (ui,j|xi) using the MGF result in equation (2.7) of Khatri and Mardia (1977) as

E{exp(tTui,j)|xi} = exp(−tTxi)E[exp{trace(ri,jxit
TCiQi,j)}|xi]

= exp(−tTxi)E
{
M(Fi + ri,jxit

TCi)

M(Fi)
|xi
}

= exp(−tTxi)
1

M(Fi)
E
{
M(Fi + ri,jxit

TCi)|xi
}
,

where M(·) is the normalizing constant whose approximation is given in (5) for large Fi. To

study the tail properties of each component in ui,j, we can consider different choices of t.

Specifically, for studying the `th component, the choice is t` = (0, . . . , t`, . . . , 0)T. Assuming

Fi is large, the approximation in (5) gives us

exp(−tTxi)
1

M(Fi)
E
{
M(Fi + ri,jxit

TCi)|xi
}

≈ exp(−tTxi)E
[
exp(ri,jt

TCixi)
∏d

l=2

{
1 +

ri,jt
TCixi

κl(xl,i)+κ1(x1,i)

}− 1
2 |xi

]
.

Explicit characterization of the MGF beyond the above expression is difficult to obtain. We

see, however, that the MGF might be undefined for positive valued t for the heavy-tailed log-

normal distribution on the ri,j’s. Other light-tailed choices, such as a gamma distribution

with the rate parameter modeled as a function of ‖xi‖2, may also be considered. In this

article, however, we focus on the log-normal.

3.4 Bayesian Inference

While the main idea underlying our rotation-based approach to multivariate deconvolution is

clearly statistical paradigm generic, in this article, we adopt a Bayesian route to estimation

11



and inference. The rest of this section discusses prior specification, posterior computation

and posterior convergence in such settings.

3.4.1 Prior Specification

Since the functions s2(·) and κ`(·)’s are strictly positive, we put truncated normal pri-

ors, truncated to [0,∞), on the associated B-spline coefficients: βs,k ∼ TN[0,∞](µs,k, σ
2
s)

and βκ,`,k ∼ TN[0,∞](µκ,`,k, σ
2
κ,`). We assign Gamma priors on the inverse variances σ−2

s ∼
Ga(as, bs) and σ−2

κ,` ∼ Ga(aκ,`, bκ,`). For the component specific parameters (µk, σ
2
k) of the

truncated normal mixtures characterizing the marginals fx` , we assign semi-conjugate inde-

pendent priors µk ∼ Normal(µ0, σ
2
0) and σ−2

k ∼ Ga(a0, b0). We assign independent Dirichlet

priors on the mixture probabilities π` = (π`,1, . . . , π`,K)T ∼ Dir(α/K, . . . , α/K), and inde-

pendent uniform priors on the polar angles ζm,j ∼ Unif[0, π] and ζm,m−1 ∼ Unif[0, 2π]. The

choice for the hyper-parameters are as = bs = aκ,` = bκ,` = 0.1. The hyper-parameter choices

for µs,k and µκ,`,k are obtained based on the estimated xi’s from the univariate sampler. The

hyper-parameters µ0 and σ0 from the copula model of x are also set based on these uni-

variate estimates. The other two hyper-parameters a0 and b0 are set as a0 = b0 = 1. The

univariate sampler follows the additive model of Sarkar et al. (2021). Details are provided

in Section 3.4.2.

3.4.2 Posterior Computation

Our inference is based on samples drawn from the posterior using an MCMC algorithm. The

joint log posterior distribution of the model parameters is given by

∑
i,j

[
−log{M(Fi)}+

{
G
(
C−1
i wi,j,xi

)
Fi

}]
− 1

2

∑
i,j

log{‖C−1
i wi,j‖2

2/‖xi‖2
2s

2(‖xi‖2/d)}

− 1

2

∑
i,j

{log(‖C−1
i wi,j‖2/‖xi‖2) + s2(‖xi‖2/d)/2}2/s2(‖xi‖2/d)−

∑
i

logfx(xi)

− 1

2

∑
`,k

(βκ,`,k − µκ,`,k)21βκ,`∈[0,∞]/σ
2
κ,` −

1

2

∑
k

(βs,k − µs,k)21βs,k∈[0,∞]/σ
2
s

− 1

2

∑
k

(µk − µ0)2/σ2
0 −

∑
k

(a0 + 1)log(σ2
k)−

∑
k

b0/σ
2
k.

It is possible to efficiently calculate the derivatives of the above likelihood with respect

to βs, µ`,k, σ`,k, etc. These parameters may therefore be updated using HMC algorithms

(Neal, 2011; Betancourt and Girolami, 2015; Betancourt, 2017). HMC has been shown

to draw posterior samples much more efficiently than traditional random walk Metropolis-

Hastings in complex Bayesian hierarchical models (Betancourt and Girolami, 2015) by more

efficiently exploring the target distribution under local correlations among the parameters.
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A short review of HMC sampling is provided in Section S.2 in the supplementary materi-

als for easy reference. The xi’s, and the parameters specifying the Rx of fx(xi), can be

updated using random walk Metropolis-Hastings steps. The parameters βκ are updated us-

ing adaptive Metropolis-Hastings. Other parameters have closed-form full conditionals and

can be straightforwardly updated. Details are deferred to Section S.5 in the supplementary

materials.

4 Simulation Experiments

In this section, we evaluate the performance of our proposed method, referred to in the tab-

ular result summaries below as the DeStoR method, short for ‘Deconvolution via Stochastic

Rotation’. We compare with the method of Sarkar et al. (2021), referred to as the SPMC

method here following the first letters of the authors’ last names, which was shown to vastly

outperform the only two previously existing multivariate deconvolution methods accommo-

dating heteroscedastic measurement errors, namely the pseudo-Bayesian two-stage method

of Zhang et al. (2011) and the multivariate mixture normal based method of Sarkar et al.

(2018). We consider two different simulation scenarios - (a) a well-specified case; and (b) a

mis-specified case. For both scenarios, we consider the same fx to generate the true latent

xi’s but use different choices for fw|x to generate the replicates wi,j’s. Our choice for the

well-specified case conforms to our the proposed formulation for fw|x in (4) in Section 3.

The mis-specified case is designed to evaluate the robustness of the proposed method to de-

viations from model assumptions and considers additive measurement errors generated from

a Gaussian copula model with a mean restricted mixture of normals for the marginals from

Sarkar et al. (2021) to produce the replicates wi,j’s.

While our proposed method scales well to much higher dimensional problems, we con-

sider a relatively low d = 3 dimensional problem here as the computation of the joint

density on a 3 dimensional grid remains manageable and the results for
(

3
2

)
= 3 bi-

variate marginals can also be conveniently graphically summarized. We generate the

true x`,i’s for ` = 1, . . . , d as follows. We (a) first sample x4i ∼ MVNd(0,Rx), (b)

then, set x44i = Φ(x4i ), (c) finally, set x`,i = F−1
TN,mix(x

44
`,i |πx,`,µx,`,σ2

x,`, A,B), where

FTN,mix(X|π,µ,σ2, xL, xU) =
∑K

k=1 πkFTN(X|µk, σ2
k, xL, xU). This way, the marginal distri-

butions are mixtures of truncated normal distributions and hence can take widely varying

shapes while the correlation between different components is Rx. We set

Rx =


1 0.7 0.72

1 0.7

1

 ,πx,` =


0.25

0.50

0.25

 for all `, µx =


µ

T

x,1

µ
T

x,2

µ
T

x,3

 =


2 2 3

2 3 5

2 2 5

 ,
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and A = 0, B = 6, σ2
x,`,k = 0.752 for all `, k.

To generate wi,j for the well-specified case based on (4), we need to generate Qi,j and

ri,j given xi that are generated in the previous step. We use the R package rstiefel

(Hoff and Franks, 2019) to generate Qi,j with concentration parameters κ`(x`,i)’s where

κ`(x`,i) = 60/x`,i. The scalars ri,j’s are generated from log-normal distribution with mean =

s2(‖xi‖2/d)/2 and variance = s2(‖xi‖2/d), where s(‖xi‖2/d) = ‖xi‖2/150.

While generating wi,j for the mis-specified case based on Sarkar et al. (2021), we consider

the additive model wi,j = xi + s1(xi) ◦ εi,j, where s1(xi) = xi/4 and the εi,j’s are generated

from a standard multivariate normal distribution.

The integrated squared error (ISE) of estimation of fx by f̂x is defined as ISE =∫
{fx(x)− f̂x(x)}2dx. A Monte Carlo estimate of ISE is given by ISEest =

∑M
m=1{fx(xm)−

f̂x(xm)}2/p0(xm), where {xm}Mm=1 are random samples from the density p0. We used the true

densities fx for p0 and the true values of the xi’s for the xm’s. For the univariate marginals,

a Monte Carlo estimate of ISE is given by
∑N

i=1{fx(x∆
i )− f̂x(x∆

i )}2∆i, where {x∆
i }Ni=0 are a

set of grid points on the range of x and ∆i = (x∆
i − x∆

i−1) for all i.

Table 1: Median integrated squared errors (MISE) of estimating fx by our method (DeStoR)
and the method of Sarkar et al. (2021) when the replicates wi,j are generated from (a) our
model (well-specified case), and (b) the model of Sarkar et al. (2021) (mis-specified case).

MISE ×1000
Method Comp 1 Comp 2 Comp 3 3D-joint

Well Specified Case
DeStoR 0.10 0.39 2.12 0.96
SPMC 0.95 1.68 3.08 3.79

Mis-specified Case
DeStoR 1.77 1.62 0.68 2.95
SPMC 0.94 3.55 2.71 1.14

Table 1 reports the median ISEs (MISEs) for estimating the trivariate joint densities and

the univariate marginals obtained by our method and the method of Sarkar et al. (2021).

The reported MISEs are all based on 100 simulated data sets. In the well-specified case,

when the data-generating mechanism conforms to our proposed model, our method signif-

icantly outperformed Sarkar et al. (2021) in estimating the three-dimensional joint density

and as well as all univariate marginals. In the mis-specified case, when the data generat-

ing mechanism conforms to the model of Sarkar et al. (2021), our method still performed

competitively with Sarkar et al. (2021) for the three-dimensional joint density estimation

problem and actually outperformed Sarkar et al. (2021) for some of the univariate marginal

density estimation problems. We attribute this to our more efficient MCMC sampling of the

posterior via HMC samplers.

Figures 3 and 4 show the estimates of the univariate marginal and bivariate joint densi-

ties obtained by our method for the data set that produced the 25 percentile ISE and the
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Figure 3: Results for the simulated data with n = 1000 subjects and mi = 3 replicates
per subject when true data generating process follows the structure (4) proposed in this
article. The figures in the diagonal panels illustrate the true marginal densities fx,`(x`) in
red and the corresponding estimates produced by our method in blue. The figures in the
off-diagonal panels depict the contour plots of the true two-dimensional marginals (upper
triangular panels) and the corresponding estimates obtained by our method (lower triangular
panels).
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Figure 4: Results for the simulated data with n = 1000 subjects and mi = 3 replicates
per subject when true data generating process follows the additive model from Sarkar et al.
(2021). The figures in the diagonal panels illustrate the true marginal densities fx,`(x`) in
red and the corresponding estimates produced by our method in blue. The figures in the
off-diagonal panels depict the contour plots of the true two-dimensional marginals (upper
triangular panels) and the corresponding estimates obtained by our method (lower triangular
panels).
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corresponding truths for the well-specified and the mis-specified cases, respectively. The es-

timates clearly provide excellent fits to the truths. Additional plots comparing the estimates

of the univariate marginals produced by our method with those obtained by the method of

Sarkar et al. (2021) are presented in Figures S.3 and S.4 in Section S.9 of the supplementary

materials.

We also evaluate the numerical performance of the proposed method in some higher

dimensional cases, namely d = 5 and d = 10. We maintain a similar structure for Rx and

set σ2
x,`,k = 0.752 for all the univariate components as before. The mixture probabilities

are also kept the same, as the univariate distributions are again assumed to be mixtures

of three univariate normals. However, since it is difficult to set the mean parameter µx in

higher dimension explicitly, we set the components of µx using random numbers generated

from Unif(1, 10). We summarize the results in Table 2. For clarity of our presentation, here

we only present the MISEs for the d-dimensional joint densities. The results show patterns

similar to that previously observed for the d = 3 case.

Table 2: Median integrated squared errors (MISE) of estimating fx by our method (DeStoR)
and the method of Sarkar et al. (2021) when the replicates wi,j are generated from (a) our
model (well-specified case), and (b) the model of Sarkar et al. (2021) (mis-specified case).

Joint MISE ×1000
Method d = 5 d = 10

Well-specified Case
DeStoR 1.72 1.62
SPMC 2.58 2.79

Mis-specified Case
DeStoR 3.68 3.91
SPMC 2.71 2.54

5 Real Data Application

The estimation of the joint and marginal distributions of long-term average daily intakes of

different dietary components is a fundamentally important problem in nutritional epidemi-

ology. The long-term average daily intakes of the dietary components, x, can not, however,

be directly measured. Data are thus often collected via nutritional surveys in the form of

dietary recalls, the subjects participating in the study remembering and reporting the type

and amount of food they consumed in the past 24 hours. The problem of estimating the

joint consumption pattern of the dietary components from the contaminated 24-hour recalls

then becomes a problem of multivariate density deconvolution.

One such large-scale nutritional survey is the Eating at America’s Table (EATS) study

(Subar et al., 2001) conducted by the National Cancer Institute where n = 965 participants
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were interviewed mi = 4 times over the course of a year and their 24 hour dietary recalls wi,j

were recorded. The goal is to estimate the joint and marginal consumption patterns of the

underlying true daily intakes xi. In this article, we focus particularly on the average daily

intakes of three minerals, namely, iron, magnesium, and sodium.

Figure 5 presents the estimated univariate and bivariate marginals obtained by our pro-

posed method and the method of Sarkar et al. (2021). The estimates of the univariate

marginals produced by the two methods are quite similar. The estimated bivariate densities,

however, although share some commonalities across the two methods, are not exactly the

same. Specifically, the estimates produced by the method of Sarkar et al. (2021) are more

strongly correlated than ours.

We conducted a formal model comparison exercise to identify which model fits the EATS

data set better. Since the competing methods are both Bayesian, we compared them in

terms of the Bayes factor (Kass and Raftery, 1995). The Bayes factor comparing the two

methods is given by B = P (D(i)|DeStoR)

P (D(i)|SPMC)
. We calculated the numerator and denominator from

the posterior samples using the harmonic mean identity of Neton and Raftery (1994). Based

on the suggestions in Kass and Raftery (1995), the evidence in favor of our proposed DeStoR

is ‘decisive’ as we obtained B > 100.

6 Discussion

In this article, we developed a novel method for multivariate density deconvolution in the

presence of conditionally heteroscedastic measurement errors and the availability of repli-

cated proxies for the unknown values of the variable of interest. Our proposed method relies

on stochastically rotating the observed replicates toward the underlying true values and then

stochastically adjusting their lengths to match the lengths of the true values. We took a

Bayesian route to estimation and inference, implemented via an efficient MCMC algorithm.

In synthetic numerical experiments, the proposed method showed excellent performance in

recovering the true density of interest. The method’s practical utility was demonstrated

in a nutritional epidemiology application in estimating the joint distribution of the true

average long-term intakes of three different dietary components from their measurement

error-contaminated 24-hour recalls.

In Section S.6 of the supplementary materials, we show that the posterior of our model

convergences to the true unknown density of the observed data wi as the sample size grows to

infinity. There is substantial literature studying the convergence properties of the posteriors

in ordinary density estimation problems where fw is directly modeled. Our results are,

however, established under a conditionally heteroscedastic measurement error setting as

described in (4), where fw is obtained by a convolution of the models for fx and fu|x. To our

knowledge, our results are novel to the literature, especially under dependence between the

measurement error u and the unknown true vector of interest x. In the context of density
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Figure 5: Results for the EATS data with n = 965 subjects and mi = 4 recalls per subject
for three minerals, namely, x1 = iron, x2 = magnesium, and x3 = sodium. The figures in
the diagonal panels illustrate the estimated marginal densities fx,`(x`), obtained from our
method in blue and the method of Sarkar et al. (2021) in red. The figures in the off-diagonal
panels depict the contour plots of the estimated two-dimensional marginals obtained from our
method (upper triangular panels) and the method of Sarkar et al. (2021) (lower triangular
panels).

deconvolution, however, our results lack strong inferential merit as the notion of recovery is

in terms of fw but not fx. In the future, we hope to study posterior consistency with a more
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appropriate notion of recovery, that of the density of interest fx, under density deconvolution

with conditional heteroscedastic matrix vMF distributed measurement errors.

While this is our first work in this line of research, our proposed approach is already quite

general, not only allowing completely unknown measurement error distributions but also

accommodating unknown conditional heteroscedasticity patterns. We thus believe the work

contributes a novel and significant addition to the existing sparse literature on multivariate

density deconvolution.

Directions for methodological extensions and topics of our ongoing research include ex-

ploration of other distributions on the Stiefel manifold, including mixtures of MvMF, adap-

tations to regression problems with errors-in-covariates, etc.

Supplementary Material

The supplementary material presents brief reviews of copulas, and Hamiltonian Monte Carlo,

and also the explicit formula of cubic B-splines for easy reference; discusses model identi-

fiability; and details the choice of hyper-parameters, the MCMC algorithm used to sample

from the posterior, and some convergence results for the posterior and their proofs. The

supplementary material also presents some additional figures summarizing the results of the

simulation experiments. R programs implementing the deconvolution methods developed

in this article are included in the supplementary material. The EATS data analyzed in

Section 5 can be accessed from National Cancer Institute by arranging a Material Transfer

Agreement. A simulated data set, generated using the estimates produced by our method

for the EATS data set, and a ‘readme’ file providing additional details are also included in

the supplementary material.
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S.1 Gaussian Copula

The literature on copula models is enormous. See, for example, ??? and the references

therein. For easy reference, we provide a brief review of the basics here.

A function C(u) = C(u1, . . . , up) : [0, 1]p → [0, 1] is called a copula if C(u) is a continu-

ous cumulative distribution function (cdf) on [0, 1]p such that each marginal is a uniform cdf

on [0, 1]. That is, for any u ∈ [0, 1]p, C(u) = C(u1, . . . , up) = Pr(U1 ≤ u1, . . . , Up ≤ up)

with C(1, . . . , 1, ui, 1, . . . , 1) = Pr(Ui ≤ ui) = ui, i = 1, . . . , p. If {Xi}pi=1 are abso-

lutely continuous random variables having marginal cdf {Hi(xi)}pi=1 and marginal proba-

bility density functions (pdf) {hi(xi)}pi=1, joint cdf H(x1, . . . , xp) and joint pdf h(x1, . . . , xp),

then a copula C can be defined in terms of H as C(u1, . . . , up) = H (x1, . . . , xp) where

ui = Hi(xi), i = 1, . . . , p. It follows that h(x1, . . . , xp) = c(u1, . . . , up)
∏p

i=1 hi(xi), where

c(u1, . . . , up) = ∂pC(u1, . . . , up)/(∂u1 . . . ∂up). This defines a copula density c(u) in terms of

the joint and marginal pdfs of {Xi}pi=1 as

c(u1, . . . , up) = h(x1, . . . , xp)/
∏p

i=1 hi(xi). (S.1)

Conversely, if {Vi}pi=1 are continuous random variables having fixed marginal cdfs {Fi(vi)}pi=1,

then their joint cdf F (v1, . . . , vp), with a dependence structure introduced through a copula

C, can be defined as

F (v1, . . . , vp) = C{F1(v1), . . . , Fp(vp)} = C(u1, . . . , up), (S.2)

where ui = Fi(vi), i = 1, . . . , p. If {Vi}pi=1 have marginal densities {fi(vi)}pi=1, then from (S.2)

it follows that the joint density f(v1, v2, . . . , vp) is given by

f(v1, . . . , vp) = c(u1, . . . , up)
∏p

i=1 fi(vi). (S.3)

With Fi(vi) = ui = Hi(xi), i = 1, . . . , p, substitution of the copula density (S.1) into (S.3)

gives

f(v1, . . . , vp) = c(u1, . . . , up)

p∏
i=1

fi(vi) =

{
h(x1, . . . , xp)∏p

i=1 hi(xi)

} p∏
i=1

fi(vi). (S.4)

Equation (S.2) can be used to define flexible multivariate dependence structure using

standard known multivariate densities (?). Let MVNp(µ,Σ) denote a p-variate normal

distribution with mean vector µ and positive semi-definite covariance matrix Σ. An im-

portant case is X = (X1, . . . , Xp)
T ∼ MVNp(0,R), where R is a correlation matrix. In

this case, C(u1, . . . , up|R) = Φp{Φ−1(u1), . . . ,Φ−1(up)|R}, where Φ(x) = Pr{X ≤ x|X ∼
Normal(0, 1)} and Φp(x1, . . . , xp|R) = Pr{X1 ≤ x1, . . . , Xp ≤ xp|X ∼ MVNp(0,R)}. If

X ∼ Np(0,Σ), where Σ = ((σi,j)) is a covariance matrix with σii = σ2
i , then defining

Λ = diag(σ2
1, . . . , σ

2
p) and Y = Λ−

1
2 X and noting that Σ = Λ1/2RΛ1/2, we have
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c(u1, . . . , up) = MVNp(x|0,Σ)/MVNp(x|0,Λ) = |Λ|1/2|Σ|−1/2 exp
{
−xT(Σ−1 −Λ−1)x/2

}
= |R|−1/2 exp{−yT(R−1 − Ip)y/2} = MVNp(y|0,R)/MVNp(y|0, Ip).

Sticking to the standard normal case, a flexible dependence structure between random vari-

ables {Vi}pi=1 with given marginals {Fi(vi)}pi=1 may thus be obtained assuming a Gaussian

distribution on the latent random variables {Yi}pi=1 obtained through the transformations

Fi(vi) = ui = Φ(yi), i = 1, . . . , p. The joint density of V = (V1, . . . , Vp)
T is then given by

f(v1, . . . , vp) = c(u1, . . . , up)

p∏
i=1

fi(vi) =
MVNp(y|0,R)

MVNp(y|0, Ip)

p∏
i=1

fi(vi).

We have

Pr(V1 ≤ v1, . . . , Vp ≤ vp) = Pr[Y1 ≤ Φ−1{F1(v1)}, . . . , Yp ≤ Φ−1{Fp(vp)}|Y ∼ MVNp(0,R)].

For q ≤ p, with (Y1, . . . , Yq)
T ∼ MVNq(0,Rq), we then have

Pr(V1 ≤ v1, . . . , Vq ≤ vq) = Pr[Y1 ≤ Φ−1{F1(v1)}, . . . , Yq ≤ Φ−1{Fq(vq)}|Y ∼ MVNq(0,Rq)],

implying that the density of (V1, . . . , Vq) will be

f(v1, . . . , vq) = c(u1, . . . , uq)

q∏
i=1

fi(vi) =
MVNq(y|0,Rq)

MVNq(y|0, Iq)

q∏
i=1

fi(vi).
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S.2 Hamiltonian Monte Carlo

In this section, we present a brief review of the Hamiltonian Monte Carlo (HMC) sampling

algorithm for easy reference. Our presentation of HMC is inspired from Neal (2011) and

Betancourt and Girolami (2015). Let us assume that we want to draw samples of q from

π(q). The HMC algorithm adds an additional momentum variable p and considers following

joint density

π(p, q) = π(p|q)π(q).

The Hamiltonian H(p, q) of a system is defined as the sum total of the kinetic energies

and the potential energies of all the particles in the system. Liouville’s theorem on phase

space equation from statistical mechanics states that the probability density of phase space

is time-invariant along the trajectory. Based on that, it can be shown that for multivariate

normal initial distribution the joint density

π(p, q) ∝ exp{−H(p, q)}.

Thus we get

H(p, q) = −log{π(p, q)} = −log{π(p|q)} − log{π(q)} = K(p|q) + U(q),

where K(p|q) is the kinetic energy and U(q) is the potential energy. The first step of the

HMC algorithm is to draw the momentum variable p such that p ∼ π(p|q). The changes in

p and q over time are governed by the following Hamiltonian’s equations

dq
dt

= +∂H
∂p

= +∂K
∂p
,

dp
dt

= −∂H
∂q

= −∂K
∂q
− ∂U

∂q
.

Computational implementation of these equations requires discretization of time, with small

step size ε and evaluate the states at t = ε, 2ε, . . . , so on. Neal (2011) showed the superiority

of the leapfrog method in producing excellent solution to a system of differential equations.

In most applications, including our own, p is assumed to be independent of q and is generated

from a Normal(0, 1) density. The leapfrog method then proceeds as follows

p(t+ ε/2) = p(t)− (ε/2)∂U
∂q
,

q(t+ ε) = q(t) + ε(t+ ε/2),

p(t+ ε) = p(t+ ε/2)− (ε/2)∂U
∂q
.

We iteratively compute the states at t = ε, 2ε, 3ε, . . . , Lε, where L stands for the number

of leapfrog steps. Neal (2011) showed that if we take two choices of L and ε such that

L1ε1 = L2ε2, the solution due to larger L and smaller ε works better. In our application, we
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keep L fixed and tune ε within our MCMC implementation to achieve an acceptance rate

between 0.6 to 0.9 which exhibits good mixing and efficiency in posterior sampling. After

running the iteration from L-many steps, we obtain an updated q∗ and p∗. The acceptance

probability for the new q∗ is

exp{U(q)− U(q∗) +K(p)−K(p∗)},

where U(q) stands for the negative log-posterior and K(p) = 1
2
p2 is the Gaussian kinetic

energy term.
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S.3 Cubic B-splines

Consider knot-points t−2 = t−1 = t0 = t1 = A < t2 < · · · < B = tK = tK+1 = tK+2 = tK+3,

where t1:K are equidistant with δ = (t2 − t1). For j = 1, 2, . . . , (K + 3), cubic B-splines b3,j

are defined as

b3,j(x) =



1
6δ3
{(x− tj−2)}3 if tj−2 ≤ x < tj−1,

1
6δ3
{δ3 + 3(x− tj−1)δ2 + 3(x− tj−1)2δ − 3(x− tj−1)3} if tj−1 ≤ x < tj,

1
6δ3
{δ3 + 3(tj+1 − x)δ2 + 3(tj+1 − x)2δ − 3(tj+1 − x)3} if tj ≤ x < tj+1,

1
6δ3
{(tj+2 − x)}3 if tj+1 ≤ x < tj+2,

0 otherwise.

Figure S.1: Plot of 13 cubic B-splines on [0, 1] defined using 10 knot points that divide [0, 1]
into K = 10 equal sub-intervals.
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S.4 Model Identification

The additive zero mean error formulation of our model in Section 3.3 of the main paper

readily establishes the identifiability of fx when the joint and conditional distributions of

w,x are all bounded, the characteristic function of (x|w) is non-vanishing everywhere and

mi ≥ 3 replicates are available for each subject i (?). Broadly speaking, if the density fx|w
varies with x, its characteristic function does not vanish. With sufficient variability of the

density of x|w, the observations w have enough information to allow the recovery of the

density of x (Sarkar et al., 2018).

S.5 Posterior Computation

We now discuss our MCMC algorithm to draw posterior samples of the model parameters.

We shall provide full conditionals for all the parameters. In addition, we also provide explicit

expressions of the derivatives for the parameters that are updated using HMC.

Choice of Hyper-parameters and MCMC Initial Values

The starting values of some of the parameters for the multivariate problem are determined

by first fitting the univariate sub-model of Sarkar et al. (2021). We describe the hyper-

parameter choices and the initial values for the sampler for the marginal univariate models

first. Unless otherwise explicitly specified, the prior hyper-parameter choices for similar

model components for the multivariate model remain the same as that used for the univariate

models. We only detail the sampling steps for the multivariate method. To make the recalls

for all the components to be unit free and have shared support, we transformed the recalls

as w`,i,j = 20× w`,i,j
max{w`,i,j}

. The latent x`,i’s can then be safely assumed to lie in [0, 10], greatly

simplifying model specification and hyper-parameter selection.

For the univariate samplers, we then used the subject-specific sample means w`,1:n as

the starting values for x`,1:n. The appropriate number of mixture components in a mixture

model depends on the flexibility of the component mixture kernels as well as on the specific

demands of the particular application at hand. With appropriately chosen mixture kernels,

univariate mixture models with 5-10 components have often been found to be sufficiently

flexible. Similar observations have also been made for penalized mixtures of splines (?).

Detailed guidelines on selecting the number of mixture components for the specific con-

text of deconvolution problems can be found in Sections S.1 and S.6 in the supplementary

material of Sarkar et al. (2018). Based on these guidelines and extensive numerical exper-

iments, we used 10 equidistant knot points for the B-splines supported on [A,B] = [0, 10]

for modeling the functions s2(‖x‖ /d) and κ`(x`). Thus there are Ks = Kκ = 13 many

basis functions. We used K = 10 mixture components for the truncated normal mixtures

modeling their densities. For the Dirichlet prior hyper-parameter, we set α = 1/K. The

hyper-parameters for the smoothness-inducing parameters are set to be mildly informative
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as aξ = aβ = aϑ = 10, bϑ = bβ = bξ = 1. Introducing latent mixture component allocation

variables cx,1:d,1:n, cε,1:d,1:N and c2ε,1:d,1:N , we can write the univariate sub-model of Sarkar

et al. (2021) as

(x`,i|cx,`,i = k, µx,`,k, σ
2
x,`,k) ∼ TN(x`,i|µx,`,k, σ2

x,`,k, [A,B]), ` = 1, . . . , d, and

(ε`,i,j|cε,`,i,j = k, c2ε,`,i,j = t, µε,`,k,t, σ
2
ε,`,k,t) ∼ Normal(ε`,i,j|µε,`,k,t, σ2

ε,`,k,t),

` = 1, . . . , d.

The mixture labels cx,`,i’s, and the component-specific parameters µx,`,k’s and σx,`,k’s are

initialized by fitting a k-means algorithm with k = K. The parameters of the distribution

of scaled errors are initialized at values that correspond to the special standard normal case.

The initial values of the smoothness-inducing parameters are set at σ2
ϑ,` = σ2

ξ,` = σ2
ξ,` = 0.1.

The associated mixture labels cε,`,i,j’s are thus all initialized at cε,`,i,j = 1. The initial values

of ϑ`’s are obtained by maximizing

`(ϑ`|σ2
ϑ,`,w`,1:n) = −ϑ

T
` P`ϑ`
2σ2

ϑ,`

−
n∑
i=1

1

2s2
`(w`,i,ϑ`)

mi∑
j=1

(w`,i,j − w`,i)2

with respect to ϑ`.

We now discuss how we set the initial values of the sampler for the multivariate method.

The starting values of the x`,i’s were all set at the corresponding estimates returned by the

univariate samplers. The initialization of the B-spline coefficients of κ`(·)’s and s2(·) were

done based on the estimated x`,i’s from the univariate sampler as described below. We first

normalize wi,j as w̃i,j = wi,j/‖wi,j‖2. Similarly, we also obtained x̃i’s. Then, for each indi-

vidual i, we assume w̃i,j ∼ vMF(fi), where vMF stands for the von Mises-Fisher distribution

(Jupp and Mardia, 1979) and obtain maximum likelihood estimates f̂i = (f̂1,i, . . . , f̂d,i)
T us-

ing the R package movMF (?). Based on these estimates we set κ`,i(x`,i) = f̂`,i/x̃`,i. Similarly

for each individual, we calculate the variance of vi =
{

log
(
‖wi,j‖2
‖xi‖2

)
, j = 1, . . . ,mi

}
and set

s2(‖xi‖2/d) = vi. Using the R package nnls (?), we then fit the non-negative least squares

to obtain the B-spline coefficients βκ,` and βs for cubic splines with 10 knots. For βκ,`, the

first input in nnls is the matrix M` of dimension n × 13, where M`,i,i′ = Bi′(x`,i) and the

second input is {κ`,i′(x`,i) : i = 1, . . . , n}. Similarly, to estimate βs, the corresponding first

matrix input Ms is of dimension n × 13, where Ms,i,i′ = Bi′(‖xi‖2/d) and the vector input

is {s2(‖xi‖2/d) : i = 1, . . . , n}.
We set the number of shared atoms of the mixture models for the densities fx,` at K = 10.

The shared atoms of the mixtures of truncated normals for the marginal densities fx,` are

initialized by iteratively sampling them from their posterior full conditionals 500 times,

keeping the x`,i’s fixed at their estimated initial values.

Finally, the parameters specifying Rx were set at values that correspond to the special

case Rx = Ip. In our sampler for the multivariate problem, we first update the parameters

specifying the different marginal densities using a pseudo-likelihood that ignores the con-

tribution of the copula. The parameters characterizing the copula and the latent xi’s are
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then updated using the exact likelihood function conditionally on the parameters obtained

in the first step. The results of ? suggest that such two-stage approach performs just as

good as joint estimation procedures, validating their use for computational simplicity. We

then update the parameters of the marginal densities again and so forth. Lastly, we update

the B-spline coefficients involved in our measurement error model using an HMC sampler.

MCMC Iterations

Our sampler for the multivariate model iterates between the following steps.

1. Updating the parameters specifying fx,`, ` = 1, . . . , d: We modelled the marginal

densities of the components ` = 1, . . . , d using mixtures of truncated normals with shared

atoms. We update the mean and variance of the mixture normal components using HMC.

The mixing probabilities and mixture indicators are updated using the full conditional con-

jugate posterior distributions.

Specifically, the full conditional of πx,`,k is given by

p(πx,`|ζ) = Dir{αx,` + nx,`(1), . . . , αx,` + nx,`(K)}.

where nx,`(k) =
∑n

i=1 1(cx,`,i = k) as before. The full conditional of cx,`,i is given by

p(cx,`,i = k|ζ) ∝ πx,`,k × TN(x`,i|µx,k, σ2
x,k, [A,B]),

a standard multinomial. The full conditional of µx,k is given by

p(µx,k|ζ) ∝ p0(µx,k)×
∏d

`=1

∏
{i:cx,`,i=k}TN(x`,i|µx,k, σ2

x,k, [A,B]),

which gives the following negative log-likelihood

1
2

(µx,k−µX0)2

σ2
x0

+ 1
2

∑d
`=1

∑
{i:cx,`,i=k}

(x`,i−µx,k)2

σ2
x,k

+|{i : cx,`,i = k}|log
{

Φ
(
B−µx,k
σx,k

)
− Φ

(
A−µx,k
σx,k

)}
,

where Φ(·) stands for the standard normal cdf and the derivative is given by

(µx,k−µx0)

σ2
x0

−
∑d

`=1

∑
{i:cx,`,i=k}

(x`,i−µx,k)

σ2
x,k

−
|{i:cx,`,i=k}|

{
φ

(
B−µx,k
σx,k

)
−φ
(
A−µx,k
σx,k

)}
σx,k

{
Φ

(
B−µx,k
σx,k

)
−Φ

(
A−µx,k
σx,k

)} .

Similarly, the full conditional of σ2
x,k is given by

p(σ2
x,k|ζ) ∝ p0(σ2

x,k)×
∏d

`=1

∏
{i:cx,`,i=k}TN(x`,i|µx,k, σ2

x,k, [A,B]).

which gives the following negative log-likelihood

2log(σ2
x,k) + σ−2

x,k + 1
2

∑d
`=1

∑
{i:cx,`,i=k}

(x`,i−µx,k)2

σ2
x,k

+|{i : cx,`,i = k}|log
{

Φ
(
B−µx,k
σx,k

)
− Φ

(
A−µx,k
σx,k

)}
,
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and the derivative with respect to σ2
x,k is given by

2/σ2
x,k − σ−4

x,k − 1
2

∑d
`=1

∑
{i:cx,`,i=k}

(x`,i−µx,k)2

σ4
x,k

+ |{i : cx,`,i = k}|/(2σ2
x,k)

−
|{i:cx,`,i=k}|

{
φ

(
B−µx,k
σx,k

)
(B−µx,k)−φ

(
A−µx,k
σx,k

)
(A−µx,k)

}
2σ3
x,k

{
Φ

(
B−µx,k
σx,k

)
−Φ

(
A−µx,k
σx,k

)} .

These parameters are updated by HMC with Gaussian kinetic energy as described in Sec-

tion S.2 in the supplementary materials.

2. Updating the B-spline coefficients specifying s2 and κ` for ` = 1, . . . , d: These

parameters are also updated using HMC sampler. We provide below the associated negative

log-likelihood functions and the corresponding derivatives.

(a) The negative log-likelihood to update the B-spline coefficients βs is

Lneg,1 =
n∑
i=1

mi

2
log{s2(‖xi‖2/d)}+

1

2

n∑
i=1

mi∑
j=1

{log(‖C−1
i wi,j‖2/‖xi‖2) + s2(‖xi‖2/d)/2}2

s2(‖xi‖2/d)

+
1

2

Ks∑
k=1

(βs,k − µs,k)2

σ2
s

1βs,k∈[0,∞].

And the derivative is

∂Lneg,1
∂βs,k

=
∑n

i=1Bk(‖xi‖2/d)
∑mi

j=1

[
1

2s2(‖xi‖2/d)
+

log(‖C−1
i wi,j‖2/‖xi‖2)+s2(‖xi‖2/d)/2

2s2(‖xi‖2/d)

−
{

log(‖C−1
i wi,j‖2/‖xi‖2)+s2(‖xi‖2/d)/2

}2

2s4(‖xi‖2/d)

]
+

(βs,k−µs,k)

σ2
s

1βs,k∈[0,∞].

(b) The negative log-likelihood to update the B-spline coefficients βκ,` is

Lneg,2 =
n∑
i=1

mi∑
j=1

[
log{M(Fi)} − trace

{
G
(
C−1
i wi,j,xi

)
Fi

}]
+

n∑
i=1

mi∑
j=1

log(‖C−1
i wi,j‖2)

+
1

2

n∑
i=1

mi∑
j=1

{log(‖C−1
i wi,j‖2/‖xi‖2) + s2(‖xi‖2/d)/2}2

s2(‖xi‖2/d)
+

1

2

Kκ∑
k=1

(βκ,`,k − µκ,`,k)2

σ2
κ,`

1βκ,`,k∈[0,∞].

We consider adaptive random-walk MH sampling for βκ,` using a multivariate normal

proposal with a covariance matrix being set based on the generated posterior samples

adaptively.

3. Updating the values of x: The full conditionals for xi are given by

(xi|ζ) ∝ fx(xi|ζ)×
∏mi

j=1 fw|x(wi,j|xi, ζ)

∝ |Rx|−1/2 exp
{
−1

2
yT
x,i(R

−1
x − Id)yx,i

}∏d
`=1 fx,`(x`,i|ζ)×∏

j

1

M(Fi)
etr
{
G
(
C−1
i wi,j,xi

)
Fi

} ‖xi‖2

‖C−1
i wi,j‖2s(‖xi‖2/d)

exp

[
−
{

log(‖C−1
i wi,j‖2/‖xi‖2) + s2(‖xi‖2/d)/2

}2

2s2(‖xi‖2/d)

]
,
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where Fx,`(x`,i|ζ) = Φ(yx,`,i). These full conditionals do not have closed forms. Metropolis-

Hastings (M-H) steps with independent truncated normal proposals for each component are

used within the Gibbs sampler.

4. Updating the parameters specifying the copula: We have Fx,`(x`,i|ζ) = Φ(yx,`,i)

for all i = 1, . . . , n and ` = 1, . . . , d. Conditionally on the parameters specifying the

marginals, yx,1:d,1:n are thus known quantities. We plug-in these values and use that

(yx,i|Rx) ∼ MVNd(0,Rx) to update Rx. The full conditionals of the parameters speci-

fying Rx do not have closed forms. We use random walk M-H steps to update the d(d−1)/2

set of polar angles. Since polar angles have bounded support, they are proposals generated

from truncated normals, supported according to the respective polar angles. The angles

{ζm,m−1 : m = 1, . . . , d} are supported in [0, 2π], whereas other angles are supported in

[0, π]. We discretized the set of possible values of each ζm,s with M = 41 equidistant grid

points covering its support. A new value ζs,new is proposed at random from the set com-

prising the current value and its two neighbors. Their proposed values are accepted with

probabilities min{1, a(ζm,s,new)/a(ζm,s)}, where

a(ζm,s) = det(Σx(ζm,s))
−d/2 exp

{
−(1/2)

∑n
i=1

∑mi
j=1 yT

x,i,j{Σx(ζx,s)}−1yx,i,j

}
.

With carefully chosen initial values and proposal densities for the M-H steps, we were able

to achieve quick convergence for the MCMC samplers. We also automatically tune the step

lengths for all the Metropolis proposals to achieve acceptance rates within a pre-specified

range, namely, 0.4-0.5 for the M-H steps and 0.6-0.9 for HMC. For our proposed method,

5, 000 MCMC iterations were run in each case with the initial 3, 000 iterations discarded

as burn-in. The remaining samples were further thinned by a thinning interval of 5. We

programmed in R. With n = 1000 subjects and mi = 3 proxies for each subject, on an

ordinary laptop, 5, 000 MCMC iterations required approximately 4 hours to run.

S.6 Computational Cost and Complexity

We also determine the time complexity of the proposed method in the increasing d regime

via simulations. Specifically, we run the proposed method for three choices of d, namely

d = 3, 5, 10, and 30 simulation replications. We repeat the same steps for SPMC as well.

For a fair comparison, we run both of the two methods for 2000 MCMC iterations. Our

final computation times are averaged over all 30 replications. Subsequently, we fit the model

log(t) on log(d) to compute a such that t = O(da), where t is the computation time when

the data is d-dimensional. The results are shown in Figure S.2. The solution of a turns out

to be 1.49 for our method. For SPMC, the order of computation turns out to be 1.51 which

is almost the same as our proposed method. However, our proposed method converges faster

and requires fewer MCMC steps, likely due to the use of more efficient gradient-based MH

proposals for some of the parameters.
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Figure S.2: Computation time with increasing dimension d.
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S.7 Posterior Consistency

We study the posterior consistency of the proposed model as the sample size increases to

infinity. We make following assumption for true distribution of f0,x

f0,x(x) = R−1
0,x exp

{
−yT

x (R−1
0,x − Id)yx

}∏d
`=1 f0,x,`(x`),

with F0,x,`(x`) = Φ(yx,`), where F0,x,` is the cdf corresponding to f0,x,`, and the univariate

densities f0,x,`(·)’s are supported in [A,B] such that f0,x,`(·) ∈ F where F is the class of

square-integrable functions. Convex combinations of Gaussians are dense in L2 meaning

they can approximate any square-integrable function with arbitrarily small approximation

error (Kostantinos, 2000). One may vary the support of f0,x,` with `, for example, the support

for x` may be [A`, B`]. However, choosing A = min`A` and B = max`B`, the proofs will

remain the same with minor technical modifications. We present here the main results. To

save space, detailed proofs are deferred to Section S.8 of the supplementary materials. Let

θ = {κ`(·) : ` = 1, . . . , d, s2(·), Kκ, Ks}
⋃
{K,Rx, fx,` : ` = 1, . . . , d} = (θ′,θ′′) denote the

complete set of parameters. The marginal density for w is fw(w) =
∫
X fw|x(w|x)fx(x)dx.

We have x ∈ X = [A,B]d. Also, let the replicates w ∈ W ⊆ Rd. We have F0,x(X ) = 1

and Fx(X ) = 1. Let θ0 = (θ′0,θ
′′
0) be the true value of θ. We make the following set of

assumptions.

Assumptions 1.
∫
f0,w(w)log

∫
f0,w|x(w|x)f0,x(x)dx

infx f0,w|x(w|x)
dw <∞.

Assumptions 2. For any compact set w0 ⊂ W, e := infw∈W0

∫
f0,w|x(w|x)f0,x(x)dx > 0.

Assumptions 3. The coefficient functions κ0,`(·)’s are Hölder smooth with regularity ι and

the function s2
0(·) is also Hölder smooth with regularity ι′. We further assume 0 < mκ <

κ0,`(·) < Mκ <∞ for all ` and 0 < ms < s2
0(·) < Ms <∞.

Assumption 1 and Assumption 2 are in line with other existing posterior consistency

results for mixture models (??). Assumption 3 ensures that for some 0 < M < ∞,

sup{f0,w|x(w|x) : (w,x) ∈ W0 ×X} < eM .

For the sake of generality, we also put priors on Kκ, Ks and K with probability mass

functions given by

Π(Kκ = k) = bκ1 exp{−bκ2k(logk)bκ3}, Π(Ks = k) = bs1 exp{−bs2k(logk)bs3},
and Π(K = k) = b1 exp{−b2k(logk)b3},

where bκ1, bκ2, bs1, bs2, b1, b2 > 0 and 0 ≤ bκ3, bs3, b3 ≤ 1 for i = 1, 2. As special cases of the

above, we can obtain the Poisson and geometric probability mass functions respectively for

bκ3, bs3, b3 = 1 or 0. However, for computational simplicity, we do not consider these priors

while fitting the model but propose to tune Kκ, Ks and K based on the sample size.
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Posterior consistency theory studies recovery of the ‘true’ parameter θ0 with increasing

sample size when the data is sampled from the distribution characterized by θ0. Our notion

of recovery is based on following L1-distance metric

d(θ1,θ2) = ‖f1,w − f2,w‖ =

∫
|f1,w − f2,w|dw.

Theorem 2. Under Assumptions 1-4, Πn{θ : d(θ,θ0) > ε|w1:n} → 0 as n → ∞ almost

surely in Pf0,w for every ε > 0.

The proof is based on Theorem 2 of ?. In the context of density deconvolution, a slightly

more appealing notion of recovery could be in terms of a distance metric involving θ′′0 alone.

To show posterior consistency in terms of a distance metric involving θ′′0 alone such as the

Wasserstein metric as in ?Su et al. (2020), we need to establish an inversion inequality.

However, such inversion inequality is difficult to formulate unless θ′ is known. Since, our

proposed model does not assume θ′ to be known, establishing such consistency result in our

setting is beyond the scope of this paper. Our notion of recovery thus involves the complete

set of parameters that focuses on the estimation of all parameters simultaneously.
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S.8 Proofs of Theoretical Results

We first establish that, under the assumptions described in Section S.7, the truth belongs to

the Kullback-Leibler (KL) support of the prior. We rewrite the KL as

KL{f0,w(w), fw(w)} =

∫
log

{∫
X f0,w|x(w|x)f0,x(x)dx∫
X fw|x(w|x)fx(x)dx

}
f0,w(w)dw

=

∫
log

{∫
X f0,w|x(w|x)f0,x(x)dx∫
X f0,w|x(w|x)fx(x)dx

}
f0,w(w)dw +

∫
log

{∫
X f0,w|x(w|x)fx(x)dx∫
X fw|x(w|x)fx(x)dx

}
f0,w(w)dw

= I1 + I2.

We can further rewrite the first term as

I1 =
∫
W0

log
{∫
X f0,w|x(w|x)f0,x(x)dx∫
X f0,w|x(w|x)fx(x)dx

}
f0,w(w)dw +

∫
Wc

0
log
{∫
X f0,w|x(w|x)f0,x(x)dx∫
X f0,w|x(w|x)fx(x)dx

}
f0,w(w)dw.

We can then choose a compact set W0 such that∫
Wc

0
log
{∫
X f0,w|x(w|x)f0,x(x)dx∫
X f0,w|x(w|x)fx(x)dx

}
f0,w(w)dw

≤
∫
Wc

0
log
{∫
X f0,w|x(w|x)f0,x(x)dx

infx f0,w|x(w|x)

}
f0,w(w)dw ≤ ε/4. (S.5)

Existence of such an W0 follows from Assumption 1.

Under Assumption 3, for U = {fx : ‖fx − f0,x‖ < ε/(8M)}, we have∣∣∫ f0,w|x(w|x)fx(x)dx−
∫
f0,w|x(w|x)f0,x(x)dx

∣∣
≤ eM

∫
|fx(x)− f0,x(x)| dx = eM‖fx − f0,x‖ ≤ eε/8. (S.6)

When ε < 4, we have∣∣∣∣
∫
f0,w|x(w|x)f0,x(x)dx∫
f0,w|x(w|x)fx(x)dx

− 1

∣∣∣∣ ≤ ε/8

1− ε/8
≤ ε/4. (S.7)

Combining (S.5) and (S.7), we have I1 < ε/2 for fx ∈ U . For the second term I2, we first

note that∫
X f0,w|x(w|x)fx(x)dx∫
X fw|x(w|x)fx(x)dx

=

∫
X
f0,w|x(w|x)

fw|x(w|x)
fw|x(w|x)fx(x)dx∫

X fw|x(w|x)fx(x)dx
≤ sup

x

f0,w|x(w|x)

fw|x(w|x)
.

Since x is in a compact compact support, we have E(w) = E{E(w|x)} = E(x) <∞. Given

this bounded expectation and the monotonicity of the logarithm function, an application of

the dominated convergence theorem gives us I2 → 0 as θ′ → θ′0. Choose a neighborhood

N1 = {θ′ : ‖θ′−θ′0‖∞ < δ1} of θ01 such that for θ′ ∈ N1, I2 < ε/2. Combining the results for

I1 and I2, we have KL{f0,w(w), fw(w)} < ε when θ′ ∈ N1 and fθ′′,x ∈ U , where θ = θ′
⋃
θ′′.
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Let us define

f0,K,x(x) = det(R0,x)−d/2 exp
{
−yT

x (R−1
0,x − Id)yx

}∏d
`=1 f0,K,x,`(x`)

with f0,K,x,`(x`) =
∑K

k=1 π`,kTN(x`|µk, σk, [A,B]) and F0,K,x,`(x`) = Φ(yx,`), ` = 1, . . . , d.

By universal approximation theorem, there exists Kε such that for all K > Kε, we can

bound the approximation error due to a mixture f0,K,x,` by ε/(16Mξd) for each `, where

ξ =
∫
X

MVN(y|0,R0,x)

MVN(y|0,Id)
dx. By Cauchy-Squartz inequality, we have for positive valued func-

tions a(t) and b(t) of t,
∫
a(t)b(t)dt ≤ (

∫ √
a(t)b(t)dt)2 ≤

∫
a(t)dt

∫
b(t)dt. Using that we

have the following,

‖f0,K,x − f0,x‖ ≤ dmax
`
‖f0,K,x,` − f0,x,`‖

∫
X

MVN(y | 0,R0,x)

MVN(y | 0, Id)
dx ≤ (ε/16Mξ)ξ ≤ ε/(16M).

We thus have

‖fx − f0,x‖ ≤ ‖f0,K,x − f0,x‖+ ‖fx − f0,K,x‖ ≤ ε/(16M) + ‖fx − f0,K,x‖.

Here we consider the same set of locations and scales for all the components. In the worst

case, the mixture approximation of each component is equivalent to an approximation with

K/d many truncated normal distributions. Due to continuity, there exists δ1, δ2, δ3, δ4 such

for ‖µ − µ0‖∞ < δ1, ‖σ − σ0‖∞ < δ2, ‖π − π0‖∞ < δ3, ‖Rx − R0,x‖∞ < δ4, we have

‖fx − f0,K,x‖ < ε/(16M) and take K > Kε. Therefore,

Π(U) > Π(‖µ− µ0‖∞ < δ1)Π(‖σ − σ0‖∞ < δ2)Π(‖π − π0‖∞ < δ3)Π(‖Rx −R0,x‖∞ < δ4)Π(K > Kε).

The approximation error for a Hölder smooth true function with regularity ι using K many

B-spline bases is bounded by K−ι. Thus we have ‖κ0,l − κl‖∞ ≤ K−ικ + ‖β0,κ,` − βκ,`‖∞.

Similarly ‖s2
0 − s2‖∞ ≤ K−ι

′
s + ‖β0,s − βs‖∞. Take Kκ > (δ1/4)−ι, Ks > (δ1/4)−ι. Hence

Π(N1) > {Π(Kκ > (δ1/4)−ι)}d
d∏
l=1

Π(‖β0,κ,l − βκ,l‖∞ < δ1/4)Π(Ks > (δ1/4)−ι
′
)Π(‖β0,s − βs‖∞ < δ1/4).

Hence, the KL-support condition is satisfied noting that Π(N1) > 0 and Π(U) > 0.

The KL-support condition ensures weak consistency of the posterior distribution (?). To

establish strong consistency for the posterior distribution of fw, we apply Theorem 2 of ?,

stated below for easy reference.

Theorem 3 (?). Let Π be a prior on F. Suppose f0 ∈ F is in the KL support of Π and let

U = {f : ‖f − f0‖ < ε}. If there is a δ < ε/4, c1, c2 > 0, β < ε2/8 and Fn ⊂ F such that, for

all n large:

(i) Π(Fcn) < c1 exp(−nc2), and

(ii) J(δ,Fn) < nβ,

then Π(U |X1, . . . , Xn)→ 1 a.s. Pf0.
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The constants δ, c1, c2, β and the subset Fn may depend on ε. In the above theorem, the

strong consistency is handled based on conditions in terms of L1−metric entropy J(δ,Fn).

We are showing strong consistency for fw here. Thus our U = {fw : ‖fw − f0,w‖ < ε}.
Consider the sieve in the parameter space

Hn = {θ : ‖βκ‖∞ < M1n,βs ∈ [m2n,M2n]Ks , ‖µ‖∞ < M3n,m4n < ‖σ‖∞ < M4n,

Kκ ≤ N1n, Ks ≤ N2n, K ≤ N3n} and Fn = {fθ,w : θ ∈ Hn}.

Let us also define

H1n = {θ′ : ‖βκ‖∞ < M1n, ‖βs‖∞ < M2n, Kκ ≤ N1n, Ks ≤ N2n},
and F1n = {fθ1,w|x : θ1 ∈ H1n},

H2n = {θ′′ : ‖µ‖∞ < M3n,m4n < ‖σ‖∞ < M4n, K ≤ N3n},
and F2n = {fθ2,x

: θ2 ∈ H2n}.

We have

‖f1,w − f2,w‖ ≤
∫ ∫

f1,w|x|f1,x − f2,x|dwdx +
∫ ∫

f2,x|f1,w|x − f2,w|x|dwdx
≤
∫ ∫

f1,w|x|f1,x − f2,x|dwdx +
∫
f2,x

∫
|f1,w|x − f2,w|x|dwdx

≤ ‖f1,x − f2,x‖+ supx ‖f1,w|x − f2,w|x‖
≤ 2dH(f1,x, f2,x) + supx ‖f1,w|x − f2,w|x‖. (S.8)

Here dH(f1, f2) stands for the Hellinger distance between two densities f1 and f2. The L1 dis-

tance between two normal densities can be bounded as ‖Normal(µ1, σ1)−Normal(µ2, σ2)‖ ≤
C1
|µ1−µ2|
σ1∧σ2 for some constant C1. To bound the L1 distance between two MvMF densities, we

first apply Pinsker’s inequality. We have from the results of MvMF that E(Q`,`) =
∂log(M(F))

∂`
,

where Q ∼ MvMF(F) with F = diag(f). Since E(Q`,`) ≤ 1, we have
∂log(M(F))

∂f`
≤ 1. Thus,

in light of the mean value theorem, we have |log(M(F1)) − log(M(F2))| ≤ ‖F1 − F2‖∞.

Hence, we have

‖MvMF(F1),MvMF(F2)‖2 ≤ 2KL(MvMF(F1),MvMF(F2))

≤ 2|log(M(F1))− log(M(F2))|+ 2‖F1 − F2‖∞ ≤ 4‖F1 − F2‖∞.

As fw|x is product of two densities MvMF and log-normal, combining the above bounds, we

have

sup
x
‖f1,w|x − f2,w|x‖2 ≤ C2

1
‖s21−s22‖2∞

m2
2n

+ 4‖F1 − F2‖∞ (S.9)

≤ C2
1
‖β1s−β2s‖

2
∞

m2
2n

+ 4‖β1κ − β2κ‖∞. (S.10)

Using Theorem 1 of ?, we have following bound for the bracketing number with some con-

stant c as exp(J1(δ1,F2n, dH)) ≤
∑N3n

k=1 cM
k
3n

(
M4n

m4n

)2k
1

δ3k−1
1

, where J1 stands for logarithm

of minimum number of brackets of size δ1 required to cover F2n. For sufficiently large
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n, we have M3n > 1 and M4n

m4n
> 1. Thus for δ1 < 1, we have exp(J1(δ1,F2n, dH)) ≤

N3nM
N3n
3n

(
M4n

m4n

)2N3n
1

δ
3N3n−1
1

. It is easy to see that J(δ/4,F2n, dH) ≤ J1(δ/2,F2n, dH) as balls

of radius of δ/4 can be covered by brackets of length δ/2. To calculate the covering number,

we first note that from (S.8) we have

J(δ,Fn, d) ≤ J(δ/2,F1n, d) + J(δ/4,F2n, dH) ≤ J(δ/2,F1n, d) + J1(δ/2,F2n, dH), (S.11)

J(δ/2,F1n, d) ≤ J(m2nδ/C1, {βs, Ks : βs ∈ [m2n,M2n]Ks , Ks ≤ N2n}, ‖ · ‖∞)

+J(δ/16, {βκ, Kκ : ‖βκ‖∞ < M1n, Kκ ≤ N1n}, ‖ · ‖∞)

≤ N2nlog{3C1N2nM2n/(m2nδ)}+N1nlog(48N1nM1n/δ), (S.12)

J1(δ/2,F2n, dH) ≤ log(N3n) +N3nlog(M3n) + 2N3nlog(M4n/m4n) + (3N3n − 1)log(2/δ). (S.13)

The prior probability of the sieve-complement can be bounded as, Π(Hc
n) < Π(βκ /∈

[0,M1n]N1n)+Π(βs /∈ [m2n,M2n]N2n)+Π(µ /∈ [−M3n,M3n]N)+Π(σ /∈ [m4n,M4n]N)+Π(Kκ >

N1n) + Π(Ks > N2n) + Π(K > N3n). Combining all of these prior probabilities, we get

Π(Hc
n) < N1n exp(−R1M

t1
1n) +N2n exp(−R2M

t2
2n) +N3n{exp(−R3M

t3
3n) + exp(−R4M

t3
4n)}

+ exp{−N1n(logN1n)bκ3}+ exp{−N2n(logN2n)bs3}+ exp{−N3n(logN3n)b3},

for some constants R1, t1, R2, t2, R3, t3. As per the requirements in Theorem 3, for δ < ε/4

and β < ε2/8 we need

N2nlog{3C1N2nM2n/(m2nδ)}+N1nlog(48N1nM1n/δ) + log(N3n) +N3nlog(M3n)

+2N3nlog(M4n/m4n) + (3N3n − 1)log(2/δ) < nβ, and

N1n exp(−R1M
t1
1n) +N2n exp(−R2M

t2
2n) +N3n{exp(−R3M

t3
3n) + exp(−R4M

t3
4n)}

+ exp{−N1n(logN1n)bκ3}+ exp{−N2n(logN2n)bs3}+ exp{−N3n(logN3n)b3} < c1 exp(−nc2).

If we choose N1n,M1n, N2n,M2n, N3n,M3n, and M4n as positive polynomial of n depending

on the constants in above equations and choose m2n and m4n as negative polynomials of n,

we are done.



SUPPLEMENTARY MATERIAL S.19

S.9 Additional Figures

Figure S.3: Estimated densities for simulated data with n = 1000 subjects and mi = 3
replicates per subject when the true data generating process follows the proposed structure
from model (4) in the main paper. We present the estimates from our proposed method (in
black) and the method of Sarkar et al. (2021) (in green) along with the truth (in red).

Figure S.4: Estimated densities for simulated data with n = 1000 subjects and mi = 3
replicates per subject when the true data generating process follows the additive model from
Sarkar et al. (2021). We present the estimates from our proposed method (in black) and the
method of Sarkar et al. (2021) (in green) along with the truth (in red).
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