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Abstract

Determining the number of clusters in a dataset is a fundamental issue in
data clustering. Many methods have been proposed to solve the problem
of selecting the number of clusters, considering it to be a problem with re-
gard to model selection. This paper proposes an efficient algorithm that
automatically selects a suitable number of clusters based on a probability
distribution model framework. The algorithm includes the following two
components. First, a generalization of Kohonen’s self-organizing map (SOM)
is introduced. In Kohonen’s SOM, clusters are modeled as mean vectors. In
the generalized SOM, each cluster is modeled as a probabilistic distribution
and constructed by samples classified based on the likelihood. Second, the
dynamically updating method of the SOM structure is introduced. In Koho-
nen’s SOM, each cluster is tied to a node of a fixed two-dimensional lattice
space and learned using neighborhood relations between nodes based on Eu-
clidean distance. The extended SOM defines a graph with clusters as vertices
and neighborhood relations as links and updates the graph structure by cut-
ting weakly-connection and unnecessary vertex deletions. The weakness of a
link is measured using the Kullback–Leibler divergence, and the redundancy
of a vertex is measured using the minimum description length. Those ex-
tensions make it efficient to determine the appropriate number of clusters.
Compared with existing methods, the proposed method is computationally
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efficient and can accurately select the number of clusters.

Keywords: self-organizing map, model-based clustering, model selection,
minimum description length.

1. Introduction

Clustering is a fundamental method for the analysis of univariate and
multivariate data. Its applications include data mining, vector quantization,
and pattern recognition [1][2][3]. In the implementation of clustering, the
selection of the number of clusters M can be difficult. In most situations in
which an application needs to perform clustering, the true number of clusters
M∗ is usually unknown. The selection of M as M � M∗ or M � M∗

could cause misleading results. In many methods that have been proposed to
solve the problem of selecting M , it is considered to be a problem of model
selection [4]. Several approaches for model selection have been proposed,
including likelihood methods with a penalized term for the model order, and
Markov chain Monte Carlo (MCMC) simulation.

In the penalized likelihood method, an optimal M̂∗ is selected among
candidate models that are obtained by performing clustering with different
values of M , using a predetermined form of the penalized likelihood. Sev-
eral penalized likelihood forms have been proposed from various perspectives.
The Akaike information criterion (AIC) [5] is derived by minimization of the
Kullback–Leibler (KL) divergence [6] between the true and estimated mod-
els. The Bayesian information criterion (BIC) [7] is derived using Bayesian
methodology, and is widely used. In addition, the minimum description
length (MDL) [8] and minimum message length (MML) [9][10], which are
derived in terms of coding theory, are also popular. Another form, inte-
grated classification likelihood (ICL) [11], is an improvement of BIC for the
clustering task.

On the other hand, Bayesian inference methods have also been proposed
for model selection. The method of Richardson and Green [12] estimates the
posterior probability distribution of M using reversible-jump Markov chain
Monte Carlo (RJMCMC) [13], which is mainly used for density estimation
using a Gaussian mixture model (GMM).

The technique of using a model selection criterion to select an optimal
model among candidate models is simple; however, it is necessary to care-
fully determine the initial values of the model parameters. For example,
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an expectation–maximization (EM) algorithm [14] requires the initial value
dependence to be considered. Although the method based on Bayesian in-
ference can provide abundant information regarding M∗, the MCMC-based
method is computationally expensive.

In terms of methods with low initial value dependency and computa-
tional efficiency for selecting M , approaches using a greedy algorithm have
been proposed. Many of these algorithms search for M∗ by splitting each
cluster. The decision as to whether to split a cluster is made using a pre-
determined split decision criterion. X-means [15], which is a representative
method of this approach, uses a K-means algorithm and BIC to apply the
split decision criterion. Some studies on improving X-means have been re-
ported [16][17][18].

G-means [16] uses a statistical hypothesis test as a split decision criterion,
which tests the hypothesis to determine whether the data in a cluster exhibit
a Gaussian distribution. If the cluster does not seem to be a single Gaussian,
it is split into two clusters. G-means projects the samples within a cluster
into one dimension for statistical testing. The projection is the direction of
the first principal component of the cluster to be considered splitting.

PG-means [17] does not adopt the splitting method, but it is also an ex-
tension of G-means and related to X-means. PG-means assumes the dataset
has been generated from a GMM and uses the EM algorithm to estimate the
model. PG-means projects the dataset and model (means and covariances)
into multiple one-dimensional spaces and tests model fitness in each space.
The projections are generated randomly. If any test rejects, the number of
clusters is increased by one.

Dip-means [18] is another approach that uses a hypothesis test as a split
decision method. The unimodality of the cluster is tested using Hartigan’s
dip test [19], and the cluster is split into two until the distribution within a
cluster becomes unimodal. It tests the unimodality of a distance distribution
of each sample within a cluster and splits the cluster with the large proportion
of rejected samples.

In contrast to a cluster-splitting method such as X-means, methods that
remove a cluster that is no longer a good representation of the data distri-
bution also exist. The method of Figueiredo and Jain [20], called MML-EM,
determines the value of M by fitting a GMM to the data distribution with
MML as the objective function. In their method using the EM algorithm,
learning starts from a sufficiently large number of clusters, which are gradu-
ally annihilated during the learning process. Clusters that are not supported
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by most samples during the learning process (i.e., clusters whose mixing prob-
ability is close to 0) are removed. The objective function is minimized by
the EM algorithm, and cluster annihilation and optimization are performed
until no further improvement in the MML occurs. The method has displayed
a lower initial value dependence than the standard EM algorithm in artificial
and real data experiments.

The above greedy methods use either K-means or the EM algorithm as
the learning method. However, K-means is known to be strongly dependent
on the initial positions of centroids and to easily converge to a local solution.
One of the drawbacks of the EM algorithm is its slow convergence. Although
MML-EM can reduce the computational time compared to the standard EM,
it remains computationally inefficient compared with methods such as X-
means.

Examples of methods with little dependence on the initial positions, yet
offering fast convergence, are Kohonen’s self-organizing maps (SOMs) [21]
and neural gas (NG) [22], which are classical vector quantization methods.
These methods have advantages and disadvantages. NG is less likely to
converge to a local solution than SOM, but requires more computational
time for learning than SOM.

Our objective is to construct a fast algorithm with a low initial depen-
dence for selecting a suitable number of clusters. As with MML-EM, the
algorithm starts with a sufficiently large M and searches for a suitable num-
ber of clusters while decreasing M . Although SOM and NG are popular
for clustering tasks, the O(M logM) computations of NG learning compared
with the O(M) of SOM are unacceptable for our purpose. Therefore, we
select SOM as the learning method and propose a greedy method for auto-
matically selecting M∗ based on the SOM learning rule.

The proposed method is the decreasing approach similar to MML-EM.
The method repeats learning by SOM and removing an unnecessary cluster
based on the MDL criterion. Each cluster is modeled as a probabilistic distri-
bution and constructed by samples based on maximum likelihood classifica-
tion. So we call the method the shrinking maximum likelihood self-organizing
map (SMLSOM).

The following two extensions to Kohonen’s SOM are made for our ap-
proach. First, in Kohonen’s SOM, clusters are constructed as sample av-
erages, but our method constructs each cluster as a probabilistic model.
Therefore, we extended the SOM learning to a probabilistic setting. Second,
in Kohonen’s SOM, each cluster is tied to a node of a two-dimensional lat-
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tice map, and the map structure is fixed. However, our method removes an
unnecessary cluster in the learning; the map structure should vary. There-
fore, we introduced a dynamically update method of the map structure to
decrease the number of clusters. This update method is made possible by
using a graph structure as the map in combination with two procedures:
weakly-connected link cutting and unnecessary node deletion.

The remainder of this paper is organized as follows. In Section 2, we
present the work related to the proposed method. In Section 3, we discuss
the SMLSOM algorithm, which comprises the SOM based on the maximum
likelihood method and the updated map structure. Section 4 reports the ex-
perimental results obtained using artificial and real data. Section 5 discusses
the strengths and weaknesses of the proposed method. Section 6 concludes
the paper.

2. Background

2.1. Self-organizing map

An SOM [21][23] is a learning model based on the concept of the struc-
ture of the human visual cortex, and offers a method for projecting high-
dimensional data onto a low-dimensional lattice space. The lattice space of
the SOM represents the topological structure of the input space discretized
with M reference vectors, and it is referred to as a map. A two-dimensional
lattice, such as a square or hexagonal lattice, is typically used for the struc-
ture of the map. SOMs are widely used for vector quantization [24], cluster-
ing [25] and data visualization.

The learning algorithm of the SOM is divided into two stages. First,
the Euclidean distance between the input sample x ∈ Rp and the reference
vector of each node µm ∈ Rp, which is associated with the input space, is
calculated, and the winner node c with the smallest distance is determined.
Second, the reference vector of each node is updated such that it closely
approximates the input.

1. Find the winner

c = arg min
m

‖x− µm‖, m = 1, 2, . . . , M. (1)

2. Update nodes at iteration τ

µm = µm + hcm(τ)∆τµm
where ∆τµm = α(τ)[x− µm],

(2)
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where α(τ) is the learning rate (0 < α(τ) < 1) that controls the degree of
learning, and hcm(τ) is the neighborhood function that adjusts the degree of
learning according to the distance on the map between nodes c and m. These
are monotonically decreasing scalar functions with respect to the number of
learning iterations τ . The learning iterates until the maximum iterations
τmax.

Note that the Gaussian kernel function is often used for the neighborhood
function as follows:

hcm(τ) = exp

[
−d(c, m)

2σ2(τ)

]
, (3)

where d(c, m) is the Euclidean distance on the map between nodes c and m,
and σ(τ) is a monotonically decreasing scalar function with respect to τ and
controls the degree of “nearness.” Also, the following simple functions are
often used:

hcm(τ) =

{
1 d(c, m) ≤ r(τ)
0 d(c, m) > r(τ)

, (4)

where r(τ) is a monotonically decreasing scalar function with respect to τ
and called in “neighborhood radius.”

Unlike K-means, the learning process of an SOM entails “soft-to-hard”
learning. In the K-means algorithm, the input x only updates its nearest
node. Therefore, the input and node have a one-to-one correspondence.
In contrast, in the SOM, the input and the nodes are in a one-to-many
relationship, as defined by the neighbor function hcm in the earlier stage
of learning. They eventually converge to attain one-to-one correspondence,
increasingly resembling the K-means algorithm as learning progresses. By
controlling the learning process in this way, in the “soft” learning phase, the
nodes gather around the center of the region where the density is high. Then
in the “hard” learning phase, each node moves to the centroid of the area it
represents. The “soft-to-hard” learning used by the SOM means that it is
expected to be less likely to converge to local minima than K-means.

2.2. Minimum description length criterion

The MDL [8][26] is a model selection criterion according to which the
best model is the one that can encode the given data in the most concise
manner.
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Assume that each sample of a dataset X = (x1 x2 · · · xn)t follows the
probability distribution f independently.

f(x | ΨM) =
M∑
m=1

πmf(x | θm), (5)

where π1, π2, . . . , πM are the mixing probabilities that satisfy πm ≥ 0 and∑M
m=1 πm = 1, θm are the parameters of the mth component, and ΨM =
{θ1, . . . , θM , π1, . . . , πM} are the parameters necessary to specify the mix-
ture.

The likelihood of the model is denoted as follows.

L(ΨM) =
n∏
i=1

M∑
m=1

πmf(xi | θm). (6)

According to the information theory, the code length of X encoded by
f is proportion to the log-likelihood. Let Ψ̂ be the maximum likelihood
estimator; the MDL criterion selects the model that minimizes the following
code length:

− logL(Ψ̂M) +
df(Ψ̂M)

2
log n, (7)

where df(Ψ̂M) is the degree of freedom of the model. In Eq. (7), the first
term is the code length of X, and the second term is the code length of the
model itself.

When Eq. (7) is multiplied by 2, it coincides with the BIC.

3. Proposed Method

Our method uses a map that comprises nodes and the links between
nodes. The node represents the parameters of the probability distribution
model θm, and the link represents the two linked nodes as neighbors. This
neighborhood relationship is important for SOM learning rules.

The algorithm has two components. The first is a “soft-to-hard” learning
step that takes M probability distribution models and the map as input,
and learns the model parameters based on the SOM learning rule, where the
winner node is determined by the maximum likelihood method. The second
is a step in which the map structure adapts to the given data by determining
which models are no longer neighbors, and which models are unnecessary
using the MDL criterion.
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3.1. SOM based on the ML method

Let xi = (xi1, xi2, . . . , xip)
t be p-dimensional data, andX = (x1 x2 · · · xn)t

be a dataset containing n samples. Let M = {1, 2, . . . , M} be a set of M
probability distribution models, and let θm (m ∈M) be the model parame-
ter of the mth model. Assume that each sample follows one of the M models
independently. Let mi ∈M be the model number to which xi belongs, and
let Θ = {θ1, θ2, . . . , θM} be the collection of model parameters. Then, the
likelihood considered in this study is described by

LC(Θ) =
n∏
i=1

f(xi | θmi
). (8)

This is sometimes known as the classification likelihood in a classification
context, or as the complete-data likelihood within the EM framework [27][28].
In this study, we estimate not only Θ, but also mi, which is the classification
of sample i. Note that an estimated value of mi, represented by m̂i, is a
discrete value, namely, let m̂i ∈M .

Next, we describe an extension of Kohonen’s SOM that assigns input
samples to clusters using the maximum likelihood method. In this extension,
a node represents one of the models M , in which each sample of the dataset
X belongs to only one of these models M . Therefore, xi is given, and the
likelihood of each model of M can be calculated. Hence, the winner node is
determined as the node with the maximum likelihood for a given sample xi
among the nodes as follows:

m̂i = arg max
m∈M

f(xi | θm), (9)

after which the winner node and its neighbor are adapted for xi based on
the SOM learning rule.

The adaptation is performed as follows. In this version of the SOM, we
approximate the kth-order moments of x,

E

 p∏
j=1

x
rj
j

 where
p∑
j=1

rj = k, rj = 0, 1, . . . , k (10)

using a stochastic approximation method [29]. Let µr1 r2 ··· rp be a kth sample
moment, where rj is a non-negative integer that satisfies

∑p
j=1 rj = k. Under
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the mean squared error criterion between µr1 r2 ··· rp and (10), the update rule
is given by

∆τµr1 r2 ··· rp = α(τ)

 p∏
j=1

x
rj
j − µr1 r2 ··· rp

 (11)

where α(τ) is the learning rate at time step τ , and 0 < α(τ) < 1 and decreases
monotonically.

This moment approximation rule provides a simple parameter update rule
for some probability distributions, where the parameters can be estimated
using the method of moments.

We call this extension of the SOM the maximum likelihood SOM (ML-
SOM) to distinguish it from Kohonen’s SOM. We present MLSOM for con-
tinuous and count data using the Gaussian and the multinomial model, re-
spectively, in this paper.

3.1.1. Gaussian model

Consider, for instance, the p-dimensional normal distribution

f(x | µ, Σ) =
1

(2π)p/2|Σ|1/2
exp

{
−1

2
(x− µ)tΣ−1(x− µ)

}
(12)

where µ is a mean vector, and Σ is the covariance matrix. Based on the
approximation rule (11) and using the method of moments, a sample xi
assigned the parameters of the mth node is updated as follows:

∆τµm = α(τ)(xi − µm) (13)

∆τΣm = α(τ)[(1− α(τ))(xi − µm)(xi − µm)t −Σm] (14)

where µm is a p-dimensional real vector, and Σm is a real symmetric matrix
of size p× p. The derivation is presented in Appendix B.

The MLSOM is a generalization of Kohonen’s SOM. Consider a p-dimensional
normal distribution in which the covariance matrix is the identity matrix,
then the log-likelihood is proportional to −1

2
(x − µ)t(x − µ). Hence, the

rule for finding the winner node (9) is to minimize the Euclidean distance
between xi and µm. In this case, it is no longer necessary to update Σ, and
only the parameters must be updated (13). Therefore, the MLSOM coincides
with Kohonen’s SOM, as described in Section 2.
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3.1.2. Multinomial model

Suppose x = (x1, x2, . . . , xp)
t follows a multinomial distribution. The

probability function is given by

f(x | θ) =
(
∑p
j=1 xj)!

x1!x2! · · ·xp!

p∏
j=1

θ
xj
j , (15)

where θj ≥ 0,
∑p
j=1 θj = 1. The 1st moment of the multinomial distribution

is given by

E(x) =

 p∑
j=1

xj

θ. (16)

The procedure for updating the parameters of the multinomial model in
MLSOM, based on Eq. (11), is expressed as follows:

∆τθm = α(τ)

(
xi∑p
j=1 xij

− θm
)
. (17)

Note that if
∑p
j=1 xij = 0, then let ∆τθm = 0.

3.2. Map structure update

The method described in this section to update the map structure is
comprised of two components: disconnecting weak links, and deleting un-
necessary nodes. We introduce some notation to explain this method. Let
B ⊆ {{i, j} | i, j ∈M} be a set of undirected edges that are two-element
subsets of a set of nodes M , and a map is represented by a graph (M , B).
The elements of B represent links that represent the neighborhood relation-
ships between nodes.

3.2.1. Link cutting

Consider the problem of determining whether an edge {m, l} ∈ B is
removed. Here, we measure the weakness of a node connection by using
the KL divergence [6]. Let DKL(fθ‖fθ′) be the KL divergence for the two
probability distribution models fθ = f(· | θ), fθ′ = f(· | θ′), defined as
follows:

DKL(fθ‖fθ′) = Efθ

[
log

f(x | θ)

f(x | θ′)

]

=
∫
x
f(x | θ) log

f(x | θ)

f(x | θ′)
dx, (18)
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Let D̂(m, l) be the weakness of the connection {m, l} as defined by

D̂(m, l) =
1

2
D̂KL(fθm‖fθl) +

1

2
D̂KL(fθl‖fθm), (19)

where D̂KL(fθm‖fθl), which is an estimator of the KL divergence, is defined
as follows:

D̂KL(fθm‖fθl) =
1

|Sm|
∑
i∈Sm

log
f(xi | θm)

f(xi | θl)
, (20)

where Sm = {i | mi = m, ∀ i = 1, 2, . . . , n}. Eq. (20) represents the quan-
tity of likelihood deterioration for each sample when all samples belonging
to node m move to node l; D̂KL(fθl‖fθm) is defined similarly.

The threshold for D̂(m, l) is used to calculate the average likelihood for
each node.

D̂m =
1

|Sm|
∑
i∈Sm

log f(xi | θm), (21)

The following rule is then used to determine whether to remove the edge
{m, l}:

D̂(m, l) > βh, where h = max
m∈M

(−D̂m), (22)

where the parameter β ≥ 0 controls the hardness to remove edges. The
threshold h, which represents the worst likelihood among the nodes, makes
it difficult to cut the edges. If many isolated nodes without edges to others
exist, the SOM learning rule reduces to the simple competitive learning rule,
in which case the learning process may converge to a poor local optimum.
Therefore, it is preferable to retain edges as much as possible to avoid a poor
local optimum.

3.2.2. Node deletion

The node deletion procedure determines whether to remove a node. An
unnecessary node is determined based on the MDL criterion to remove it from
the graph. In our setting, we cannot encode all the samples without specify-
ing the model with which each sample is encoded [30]. Therefore, we need to
encode samples and models on a one-to-one basis m1, m2, . . . , mn to ensure
that they correspond. Because the probability distribution of mi cannot be
known in advance, assuming the probability of mi = m is 1/|M |, m ∈M ,
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the codelength of {m1, m2, . . . , mn} is n log |M |. Note that it is also possi-
ble to include {mi}ni=1 in the model itself and consider its degrees of freedom
(see [31] for K-means), but we do not treat them as such here for simplicity.

All samples are then classified into |M | groups using the information
of {mi}ni=1, and each sample group is encoded based on the corresponding
model.

Therefore, we consider the following MDL form:

MDL(M , S, Θ̂)

=
∑
m∈M

− ∑
i∈Sm

log f(xi | θ̂m)

+
df(Θ̂)

2
log n+ n log |M |

= − logLC(Θ̂) +
df(Θ̂)

2
log n+ n log |M |, (23)

where S = {Sm}m∈M , which specifies the partition of samples Sm = {i |
mi = m, ∀ i = 1, 2, . . . , n}. Minimizing Eq. (23) over every S enables the
optimal classification Ŝ to be obtained. Consequently, the MDL of Eq. (23)
also includes an assessment for the classification of samples, namely, the
clustering result, unlike the standard MDL.

Using this MDL evaluation, for each m ∈ M , an unnecessary node is
determined as follows:

1. Evaluate the current map (M ,B) using the MDL (23).

2. Classify each sample of Sm to a node of M − {m} by the maximum
likelihood method.

3. Using the above-classified samples, estimate the parameters of nodes
M − {m} by the method of moments.

4. Let the map of nodes M − {m} with new parameters be a candidate
map, and evaluate the map using the MDL.

5. Execute 2–4 for all nodes, and select the map with the best MDL among
the candidates.

6. Compare the MDL of the selected candidate map with the current map,
and select the one that is more appropriate.

If the node is deleted, the edges are removed to the deleted node. In
addition, for each node that was adjacent to the deleted node, new edges
are inserted between all these nodes to prevent isolated nodes from being
generated for the abovementioned reason.
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Algorithm 1 SMLSOM (dataset X, edge hardness β, map (M ,B))

1: Let (M (0),B(0))← (M ,B). Initialize the node with parameter θm (m ∈
M (0)).

2: Let t← 0
3: repeat
4: Run MLSOM on (M (t),B(t)).
5: Identify weak connections using (22) with edge hardness β and remove

those from B(t) if they exist.
6: Determine which nodes are unnecessary based on the MDL (23) and

remove it from M (t) if it exists. Upon deletion of a node, the neighbors
of the deleted node are restored, as described in Section 3.2.2.

7: Let (M (t+1),B(t+1))← (M (t),B(t)).
8: Let t← t+ 1.
9: until map structure not changed

10: Return (M (t),B(t)).

3.3. Complete algorithm

The SMLSOM algorithm is shown in Algorithm 1. The initial map struc-
ture was selected as a rectangular or hexagonal lattice graph. The map can
be initialized in two ways. The first approach is to initialize all the parame-
ters randomly. Second, only the first moments, namely, the mean vectors, are
initialized based on the principal component of datasetX (see Appendix A),
and higher moments are initialized uniformly or randomly. We recommend
the second approach because this form of initialization is likely to produce
similar maps, even if the order of inputs is different.

Note that we chose a simple function of Eq. (4) as the neighborhood
function hcm for simplicity. In SMLSOM, the map is represented as a graph of
nodes and links, so the distance between nodes is not the Euclidean distance.
d(c,m) is the length of the shortest path between node c and node m, and
the neighborhood radius r(τ) is the threshold for how distant nodes are
considered a neighbor1. The α(τ) is usually set to linearly decay from 0.05

1The Kohonen package, which is a SOM library for R, uses the scheduling scheme
r(τ) = r1 − (r1 − r2) τ/τmax. Note that r(τ) = 0.5 is set when r(τ) < 1 (i.e., only itself is
updated). The τmax is the total number of iterations of the algorithm to be set in advance,
r1 > 0 is the initial value of the neighborhood radius, and r2 = −r1. Depending on the
value of r1, r(τ) = 0.5 (no neighborhood) is obtained at about 1/3 of τmax.
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to 0.01.
In the MLSOM, clusters are constructed using the maximum likelihood

method with soft-to-hard learning, which is the SOM learning rule that uses
the neighborhood relationship between nodes defined by a graph, (M , B).
The link-cutting procedure removes the edges between dissimilar nodes. Con-
sequently, in the updated version of the SOM, the nodes connected by the
remaining links are updated efficiently to similar ones. In the node deletion
procedure, when two similar nodes exist, one of the nodes is deleted such
that it is merged with the other. New edges are then added between nodes
that are adjacent to the deleted node. This procedure prevents the neigh-
borhood relationship between nodes from excessively changing when a node
is removed from a map. Thus, when the mended map is input into the ML-
SOM, the nodes that are adjacent to the deleted node are organized. Hence,
the learning process of the SMLSOM to reduce the number of clusters can
proceed.

3.4. Computational complexity

The SMLSOM algorithm has three components: MLSOM, link cutting,
and node deletion. MLSOM requires M comparisons to make a sample be-
long to one of the M clusters. For all the samples, nM calculations are
required. In link cutting, at most n additions are required to calculate the
weight of one link. If we consider an undirected graph with M nodes, the
number of links is at most M(M − 1)/2, so that the amount of computation
required is at most nM(M − 1)/2. In node deletion, assigning the samples
belonging to the target node to other nodes requires at most n(M − 1) com-
putations. After executing this reassigning for each M node, the required
computation is at most nM(M − 1). Therefore, the amount of calculation
for a given M is at most 3nM(M − 1)/2 + nM . If this calculation is per-
formed while decreasing M one-by-one with β = ∞, the overall result will
be O(nM3) from the formula of the sum of series.

4. Experiment

In this section, we clarify the effectiveness of the proposed method com-
pared with other methods. The remainder of this paper is organized as
follows.
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First, we demonstrate that the learning process of SMLSOM can be used
to determine a suitable number of clusters, and we compare its characteristics
with those of other methods using small real datasets.

Second, we evaluate the selection of M , the accuracy of the clustering,
and the computational time with SMLSOM in comparison with the other
selected methods. We use X-means [15], G-means [16], PG-means [17], Dip-
means [18], MML-EM [20], and Mclust [32][33]. The artificial dataset used
in the simulation is generated using the MixSim package2 [34] in R, which
can vary the overlap between clusters. The experimental results show that
SMLSOM delivers high performance within a short computational time.

Finally, to demonstrate the applicability of the proposed method, we
apply SMLSOM to continuous and count data. In the former, we deal with
applying high-dimensional data using an image dataset. The latter type
of count data is more advantageous for the introduction of a probabilistic
model. In actual count data, phenomena such as overdispersion (see [35] for
details) are observed, and appropriate handling is required. For example, a
probability model, such as a negative binomial distribution or a zero-inflated
Poisson model, can deal with these phenomena.

It is not helpful for applications if a method selects M correctly, but an
uninterpretable result is obtained. Therefore, we also analyze the clusters
produced with SMLSOM and discuss whether they can be interpreted and
contain the appropriate data.

4.1. Demonstration of the algorithm using real data

In this section, we present a demonstration of the proposed method using
a real dataset and compare it with existing methods regarding the selection
of a model for clustering.

We consider the Old Faithful dataset to fit bivariate Gaussians with full
covariance matrices. For comparison, we run SMLSOM and Mclust using this
dataset as input. We then compare the results obtained with those reported
previously by other studies. For SMLSOM, we start with a 3× 3 hexagonal
lattice (i.e., M = 9) using principal component analysis (PCA) initialization,
the initial covariance matrix of each node was set to the identity matrix, and
β = 15. For Mclust, we use M = 1 to M = 9 and evaluate the results using

2MixSim: Simulating Data to Study Performance of Clustering Algorithms. Available
at https://cran.r-project.org/web/packages/MixSim/index.html
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Figure 1: Fitting the Old Faithful dataset using SMLSOM: (a) original data, (b)–(i)
estimates obtained after each iterative cycle of the algorithm. The algorithm starts with
|M | = 9 and terminates at |M | = 2. Each sample is colored corresponding to the cluster
to which it belongs. The solid ellipses represent the level curve of each node estimate. The
solid lines represent the links between the nodes. The numbers in the center of an ellipse
are the numbers of nodes that have not been deleted in the particular iterative cycle.

BIC/ICL. The default initialization method of the EM algorithm in Mclust
is based on model-based hierarchical agglomerative clustering (see [32], [27]).
Fig. 1 shows the intermediate estimates and the final estimate (M̂∗ = 2)
produced by SMLSOM. The figure shows the “shrinking” process of the map
as the map structure is updated by deleting a node and cutting links. With
SMLSOM, M̂∗ = 2 is selected 99 times with 100 runs; hence, the two clusters
are strongly supported. With Mclust, similar to the results of SMLSOM, two
components are selected with both BIC and ICL. The top three BIC results
are −2322.2(M = 2), −2333.9(M = 3), and −2359.2(M = 4). Similarly, the
ICL results are −2322.7(M = 2), −2361.9(M = 3), and −2464.4(M = 4).
Therefore, the results of Mclust support two clusters for the dataset. On
the other hand, the results obtained with the Bayesian inference method [12]
contrast with the abovementioned results, which support two clusters. That
is, [36] reported that the posterior probability of the three components is
the highest (0.5845) and two components are the 2nd highest (0.3035), while
another study [37] found that three and two components have almost the
same posterior probabilities.

Thus, the appropriate number of clusters varies depending on the algo-
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rithm used, even with the same data. The “true” number of clusters does
not exist in actual data, and the choice of a reasonable number of clusters
depends on the task. Therefore, the consistency of selection is more impor-
tant for the algorithm than for assuming and estimating the “true” number
of clusters.

4.2. Simulation with artificial data

In this artificial data experiment, we will validate which algorithm per-
forms better for various “difficulty level” cases in estimating the number of
clusters.

We use the Gaussian mixture model as the data generation model. The
parameters of the experiment are the following six parameters; data size n,
number of dimensions p, the true number of clusters M∗, the shape of the
covariance matrix (e.g., diagonal or full covariance), mixing probabilities πm,
and degree of overlap between the clusters.

The difficulty of estimating the number of clusters is mainly determined
by the cluster overlap. In this case, the number of dimensions p does not
determine the difficulty of estimating the number of clusters. It is not a
hard task to separate data if the data are linearly separable, even in high
dimensionality. Also, changing M∗ is not essential. Since a Gaussian mixture
model generates the samples, all clusters are Gaussians; there is no need to
identify them by name. Unless the data generation model differs fundamen-
tally from cluster to cluster (e.g., cluster A is a Gaussian distribution and
cluster B is a multinomial distribution), the distribution of the estimated
cluster number is determined by the cluster overlap under a given M∗ rather
than by M∗. This fact can be imagined from, for example, the case that if
the clusters overlap entirely, the best estimate will be smaller than M∗ since
there is no way to distinguish between them.

Although we think it also would be interesting to investigate the scenarios
when varying the data size n, the shape of the covariance matrix, and the
mixing probabilities πm, the number of trials would be too large, so we use
a simple setup in here.

4.2.1. Cluster overlap

We generate an artificial dataset using MixSim, which considers the fol-
lowing:

ωl|m = Pr[πmf(x | µm, Σm) < πlf(x | µl, Σl)],
where x ∼ N (µm, Σm),

(24)
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where ωl|m is the misclassification probability that sample x generated from
the mth component was classified mistakenly to the lth component, and ωm|l
is defined similarly. The overlap between two components is defined by

ωml = ωm|l + ωl|m. (25)

We can specify ω̄, the average of ωml, and generate datasets using MixSim.
The procedure MixSim uses to generate the data corresponding with the
overlap ω̄ is as follows [34]:

1. Mean vector µm is sampled from a p-dimensional uniform distribution
and covariance matrix Σm is obtained from the standard Wishart dis-
tribution with parameter p and p + 1 degrees of freedom. Note that,
the user can specify the structure of covariance matrices as being either
spherical or non-spherical, and heterogeneous or homogeneous. If the
spherical structure is specified, Σm = σmI, and σm is taken from the
standard uniform distribution. If the homogeneous structure is speci-
fied, set Σ1 = Σ2 = · · · = ΣM = Σ, where Σ is generated by either of
the aforementioned two methods (spherical or non-spherical).

2. The covariance matrices are multiplied by a positive constant c, after
which the value of c that minimizes the difference between the user-
specified ω̄ and ˆ̄ω is determined by the current multiplier c.

4.2.2. Evaluation

For the artificial data in this section and image data in the next section,
the adjusted Rand index (ARI) [38] and the normalized mutual information
(NMI) [39] were used as evaluation indices. For the artificial and image data,
the samples are pre-labeled as to which class they belong to.

In the evaluation with ARI and NMI, we evaluated the pair of a given
label and the clustering obtained by the algorithm. ARI looks at the rate
of agreement between both classifications by label and clustering. A value is
high when a pair of samples belong to the same cluster if they belong to the
same label and to different clusters if they belong to different labels. Thus,
it is a lower value in cases where the number of groups in both labels and
clustering does not match. On the other hand, NMI looks at the amount
of mutual information between labels and clusterings. This metric evaluates
the extent to which knowing the clustering result reduces uncertainty in
given labels. Therefore, even if the number of groups in both the labels and
clustering does not match, the NMI will take a high value when each cluster
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Table 1: Parameters of each algorithm.

Algorithm Parameters
X-means Mmax = 100, Mmin = 1
G-means Mmax = 100, Mmin = 1, α = 10−4

Dip-means Mmax = 100, Mmin = 1, α = 10−16, vthd = 0.01
PG-means Mmax = 100, Mmin = 1, α = 10−3, Nprj = 12, ε = 10−4

MML-EM Mmax, Mmin = 1, ε = 10−4

Mclust Mmax, Mmin = 1
SMLSOM Mmax, Mmin = 1, β = 15, α(τ), r(τ), τmax

Mmax: maximum number of estimated clusters

Mmin: minimum number of estimated clusters

α: significance level

vthd: split viewer ratio (see text)

Nprj: number of projections

ε: relative convergence tolerance for the EM algorithm

collects samples of one specific label. See Appendix C and Appendix D for
detailed calculations.

In both experiments, we evaluated the results using the two indices. How-
ever, we adopted the index for the final decision, which is consistent with the
experiment’s objective.

4.2.3. Comparison methods and its parameters settings

We used existing methods for the experiment. Mclust3 is a Fortran im-
plementation of the EM algorithm for Gaussian mixtures. The MATLAB
code of MML-EM4 is published by the author of this method was referred
to in our experiment. In general, MATLAB is inferior to C and Fortran
in terms of the computational time to complete a loop procedure; thus, we
converted the MATLAB code into C to enable us to compare the computa-
tional time with other Fortran and C implementations of the methods. We
implemented other methods, X-means [15], G-means [16], PG-means [17],
and Dip-means [18] in C based on those papers. We published codes of the
methods at: https://github.com/lipryou/searchClustK

3mclust: Gaussian Mixture Modelling for Model-Based Clustering, Classification, and
Density Estimation https://cran.r-project.org/web/packages/mclust/index.html

4The MATLAB code is available at http://www.lx.it.pt/~mtf/, accessed 2022/9
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The parameters of each algorithm are shown in Table 1. Note that Mmax

and Mmin are the range of the cluster number search. In X-means, G-means,
PG-means, and Dip-means, its search start from Mmin. Unless otherwise
noted, Mmin = 1 and Mmax = 100 were set in these methods. Because
Mmax of those methods does not affect the computation time if Mmax is
sufficiently large. On the other hand, in MML-EM, Mclust, and SMLSOM,
Mmax should be set according to the situation. α is the significance level of
each statistical test. vthd is a threshold related to cluster splitting. Dip-means
executes the unimodality test for each sample in a cluster and calculates
the proportion of significant samples within the cluster (called split viewer
ratio). The cluster will be divided if the split viewer ratio is larger than
vthd. Nprj is the number of projections in PG-means. We adopted the values
of α, vthd and Nprj recommended in proposed papers. ε is a threshold of
the EM algorithm convergence determination. ε = 10−4 was adopted from
the MML-EM MATLAB code. In SMLSOM, the learning rate α(τ) and the
neighborhood radius r(τ) were set according to the defaults in the Kohonen
package5 in R. τmax was set the data size n unless otherwise specified. β is
discussed at the end of this section.

4.2.4. Result

We generated samples from the GMM with spherical and heterogeneous
covariance matrices using MixSim. The sample was p = 2, and the number
of samples was n = 3, 000. The number of components was M∗ = 6, and
the mixing probability of each component was πm = 1/M∗. We set ω̄ to
15 different values and created 100 sets of samples with the abovementioned
conditions for each ω̄. Each method was run 10 times for each sample set.
Thus, 1000 values of M̂∗ were produced by each method for each ω̄.

The settings of each algorithm are as follows. The initial parameters
were randomly initialized. The covariance matrices estimated by PG-means,
MML-EM, Mclust, and SMLSOM were of the full covariance type. MML-EM
started with Mmax = 9 and SMLSOM also started with a 3 × 3 hexagonal
lattice (i.e., Mmax = 9). Mclust was applied to each of Mmin = 1 to Mmax = 9,
and selected the best result evaluated by the BIC and ICL.

We evaluated the results of the methods from three points of view: the

5Kohonen: supervised and unsupervised SOMs. Available at: https://cran.

r-project.org/web/packages/kohonen/index.html
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(a) Average (b) SD

Figure 2: Evaluation for the number of clusters selected over 1000 simulations: (a) Aver-
ages (black dash line indicates reference value M∗), (b) Standard deviations.

behavior of the estimation M̂ , the accuracy and stability of clustering, and
the computational time. Clustering accuracy was measured by the average of
ARI or NMI. Stability was evaluated by determining the standard deviation
of ARIs (NMIs). Note that the computational time of Mclust was measured
as the total execution time required to determine M̂∗.

We ran all methods on a computer running Ubuntu 22.04, with two Xeon
SC 4208 8C 2.1GHz, and 128-GB memory. Fig. 2 shows the bias and variance
of the selection by each method. Fig. 2(a) shows that when the reference
value is the number of distributions (M∗ = 6), SMLSOM can estimate with
the least bias, on average. On the other hand, Fig. 2(b) shows that the
SMLSOM estimate M∗ with the lowest variance when ω̄ is low, but the
variance increases as ω̄ increases. When ω̄ is high, the distributions overlap
significantly and may not be distinguishable as clusters. In this case, the
algorithm also considers M = 5 and M = 4 as candidates for selection. As
shown in Fig. 2(a), estimated values move away from the reference value to
the lower side as ω̄ increases for each method, except G-means.

Fig. 3(a) shows the accuracy and stability of clustering by each method.
Note that only ARI results are shown, as NMI had similar results. The
result shows that Mclust(BIC), MML-EM, and SMLSOM show the highest
accuracy among all methods. In particular, SMLSOM was superior where ω
is small, and MML-EM was superior where ω is large. In addition, Fig. 3(b)
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(a) Average (b) SD

Figure 3: Accuracy and stability of clustering by each method. Calculated scores over
1000 simulations for each ω̄: (a) Average of ARIs, (b) Standard deviation of ARIs.

shows that SMLSOM is the most stable of the eight methods when ω is small,
but lacks stability when ω is large as in Fig. 2(b). MML-EM was stable on
average.

G-means did not estimate M∗ reasonably, as shown in Fig. 2(a). On
the other hand, Fig. 3(a) shows that the evaluation was not that worse.
This gap means that although the number of clusters was overestimated, the
individual clusters collected samples with specific labels. Thus, the splitting
rule for bisecting a cluster is problematic. As pointed out in [17], when ω is
large, k-means is hard-assignment, and the within-cluster sample distribution
becomes like a truncated distribution, which is not consistent with a Gaussian
distribution. It causes an overestimation of the number of clusters. On the
other hand, projecting clusters only in the direction of maximum variance will
be worked if the actual clusters are far enough from each other. Otherwise,
it is not necessarily a good separation axis to discover two groups.

Although PG-means does not have the same testing problem as G-means
above because the test is performed on the entire data, the problem of choos-
ing the projection axis also exists. PG-means recommends generating the
projection randomly, but the possibility of finding the appropriate projec-
tion axis is low when actual clusters overlap. Since Gaussian distributions
with significant overlap look like a single Gaussian distribution, the null hy-
pothesis is often not rejected in the sample after projection, even if M̂ is

22



Figure 4: Computational time of each method. The average of elapsed time (sec) over
1000 simulations for each ω̄ are shown on a logarithmic scale.

smaller than the true number of clusters. Therefore, the author’s recommen-
dation of Nprj = 12 may be insufficient in some cases. Dip-means performs
a unimodality test on the distance distribution of each point to the other
points within a cluster. If the true clusters are well-separated, the distribu-
tion of distances is bimodal, and Dip-means can work well. However, if the
true clusters are close, the distances from any point do not show bimodality.

The difficulty with these statistical testing methods lies in setting appro-
priate hypotheses, which vary from situation to situation, and in the fact
that the sample used for those statistical testings must be one-dimensional.

Unlike the statistical test-based methods described above, X-means, Mclust,
MML-EM, and SMLSOM estimate the number of clusters based on the model
selection using information criterion. The question is which information cri-
terion to use and what model to use. Fig. 2(a) and Fig. 3(a) shows X-means
and Mclust(ICL) did not work well. X-means uses BIC as a decision criterion
like Mclust(BIC). However, the Gaussian model X-means uses is too simple
and might not represent the sample distribution adequately. Mclust(ICL)
was much less accurate than Mclust(BIC). In this case, ICL may not be suit-
able as a selection criterion. Mclust(BIC), MML-EM, and SMLSOM answer
the above questions to some extent. MML-EM and SMLSOM use selection
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criteria that consider the selection of the number of clusters, and each pro-
duces good estimation results. Mclust uses the widely used standard BIC
and works well in this case, although some literature reports a tendency of
the BIC to select an excessive number of clusters [11].

Fig. 4 shows the computational time required by each method. The re-
sults reveal that the EM algorithm (Mclust) and Dip-means were the slowest
among the methods. Compared with the EM, MML-EM is approximately 15
times faster, SMLSOM is approximately 80 ∼ 100 times faster, and X-means
is, roughly speaking, approximately 700 times faster, and this is the fastest
method among all methods.

X-means and G-means are high-speed methods; however, they almost fail
to estimate M∗ when the cluster overlap is significant. MML-EM succeeded
in avoiding the drawbacks of EM, that is, initial parameter dependence and
slow convergence. However, the computational time remains large compared
to that of SMLSOM. SMLSOM achieved high performance with a lower
computational time compared with the EM-based method. Of course, the
selection of M by SMLSOM may vary significantly when the distribution
overlap is significant. When the overlap is considerable, there is not always
one valid M , as mentioned earlier. As shown in Fig. 3(a), the variation in the
choice of M does not compromise the consistency of the clustering content.

The stability of the SMLSOM estimation seems to be due to the “soft-to-
hard” learning rule of SOM. It is known that the effect of the initial position of
centroids for final positions approaches zero as the learning progresses of SOM
when the learning parameters follow the conditions [40]. This property is also
verified using Monte Carlo simulations, which show that SOM is insensitive
to the choice of initial positions [41]. SMLSOM inherits this advantage of
SOM. By learning in a “soft” manner, the nodes first gather in the center of
a dense region, regardless of their initial positions. This property is expected
to stabilize the SMLSOM estimation.

4.2.5. The determination of β in SMLSOM

Finally, the change in SMLSOM estimation results due to β is shown in
Fig. 5. For β we tried 0, 0.5, 1, 5, 15, and 30. We generated 20 datasets for
each ω with the same settings as in the previous clause of the experiment. The
larger value of β, the more difficult the link is to cut. The black horizontal
line in the figure is M∗. In this experiment, the smaller β is, i.e., the easier it
is to cut the link, the more accurate and stable the estimation is regardless
of ω.
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Figure 5: Estimation of the number of clusters by SMLSOM with β varying.

This result shows that if ω is not considerable, the results do not depend
much on the β setting. However, if the overlap is significant, it could affect
the results.

It is not easy to give a general β setting method. Here, we only give
practical guidelines based on the author’s experience.

The algorithm may terminate without reducing the number of clusters
from Mmax. In this case, increasing Mmax, increasing β, or decreasing τmax

may resolve the problem. The reason for increasing Mmax is that the number
of reasonable clusters may be larger than that. Increasing β makes the links
harder to cut and the nodes more similar. Almost identical nodes will be
removed based on the MDL. The reason why decreasing τmax is that it may
be too adapted to local solutions. Such a solution may have a good likelihood
at first glance but yield an unjustified model with too small a variance.
Conversely, the algorithm may terminate with an estimation result that seems
too small, such as M = 1. In this case, the user can try the reverse of the
above, but in such cases, the probability distribution model is often not
appropriate for the data in the first place. It is necessary to prepare an
appropriate model.

We recommend trying several of the above when clustering without pre-
knowledge about the data, excluding the extreme results, and then adopting
the best MDL result.
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4.3. Continuous data

We used the MNIST [42] datasets for the image clustering experiment.
The dataset is a standard handwritten digit dataset containing 28 × 28
grayscale images, divided into 60,000 training samples and 10,000 test sam-
ples.

In MNIST data, each sample is pre-assigned a label from 0 to 9. This ex-
periment aims to understand the latent diversity that labels cannot capture
only by searching for the number of clusters without providing information
about the labels. Therefore, the purpose of this experiment is not to predict
labels. For this reason, we emphasized NMI rather than ARI in this experi-
ment due to the evaluation indexes’ natures described in 4.2.2. However, for
fairness, the ARI reportings will also be included.

The original data contains the brightness values of each pixel, and the
sample dimension is 28 × 28 = 784, which is a high dimension. To obtain
practical features for classification, we performed feature extraction using
the HOG descriptor [43]. A 324-dimensional feature vector was obtained by
adopting nine orientation bins using a 6×6 = 36 block division. Furthermore,
we performed PCA for the HOG feature vectors to reduce the number of fea-
tures. This dimensionality reduction is called in the HOG-PCA method [44].
We adopted 48 components with a cumulative contribution rate of approxi-
mately 80%.

For comparison, we applied the same methods as in the previous section.
The experimental procedure was as follows: X-means, G-means, and PG-
means started withMmin = 2; Mclust ran fromMmin = 2 toMmax = 100 each;
MML-EM and SMLSOM started with Mmax = 64; The map of SMLSOM was
8 × 8, which was initialized by the method of Appendix A. Note that Dip-
means when Mmin = 2, 3 did not increase from the initial values, so we set
Mmin = 4. SMLSOM when τmax = n did not decrease from Mmax, so we
set τmax = 10000. Other parameters were the same setting as 4.2.3. Each
method was run 20 times with training samples.

Fig. 6 shows evaluations of each method in training samples. The fig-
ure shows that SMLSOM was superior to other methods in both evaluation

Table 2: Averages of M̂ with 20 trials. Standard deviation in the parenthesis.
SMLSOM Xmeans Gmeans Dipmeans PGmeans MMLEM Mclust(BIC) Mclust(ICL)
36.4 100 100 8.1 100 60.4 93.1 93.1
(2.58) (0.00) (0.00) (1.17) (0.00) (1.61) (4.96) (4.96)
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(a) ARI evaluations for 20 trials (b) NMI evaluations for 20 trials

Figure 6: Evaluations for 20 trials in training samples: (a) ARI, (b) NMI.

Table 3: Averages of elapsed time (sec) with 20 trials. Standard deviation in the paren-
thesis.

SMLSOM Xmeans Gmeans Dipmeans PGmeans MMLEM Mclust
309.7 1.0 1.5 798.6 7900.6 659.7 3034.4

(28.50) (0.27) (0.21) (143.71) (56.79) (46.91) (476.58)

indices. Note that X-means, G-means, Dip-means, and PG-means were eval-
uated differently depending on the index. This difference is due to their
estimated number of clusters and their clustering purity. Table 2 shows the
average and standard deviation of M̂ with 20 trials. The table shows that
X-means, G-means, and PG-means always estimate M̂ = 100, which is equal
to Mmax. However, Dip-means estimated the lowest M̂ among all methods.
ARI highly evaluates the clustering closer to the actual number of labels.
On the other hand, a higher NMI with the same number of clusters means
that each cluster collects more of a particular label. Table 2 also shows that
Mclust(BIC) and Mclust(ICL) selected the same number of clusters. In this
case, the results of both methods were not different.

Table 3 shows the average elapsed time in training samples. The table
shows that although the proposed method is slower than X-means and G-
means, the computation time is practical.

Among X-means, G-means, Dip-means, and PG-means, Dip-means stands
out in the ARI evaluation because it estimated the most conservative num-
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Table 4: Evaluation of best results
ARI select NMI select

M̂∗ Training ARI Test ARI M̂∗ Training NMI Test NMI
SMLSOM 34 0.333 0.350 34 0.511 0.524
X-means 100 0.124 0.038 100 0.347 0.117
G-means 100 0.150 0.037 100 0.375 0.109
Dip-means 7 0.317 0.061 9 0.436 0.056
PG-means 100 0.154 0.158 100 0.444 0.450
MML-EM 56 0.246 0.257 60 0.459 0.465
Mclust(BIC) 84 0.197 0.211 84 0.459 0.469
Mclust(ICL) 84 0.197 0.211 84 0.459 0.469

ber of clusters. However, PG-means, which estimates M̂ = 100, has a higher
evaluation in NMI. It is difficult to judge the superiority of the methods
based on the results of the training sample only since these may be over- or
underestimates. Therefore, we evaluated the test samples using the cluster-
ing results with the best ARI and NMI of the 20 trials in the training sample,
respectively. The classification of the test sample into clusters followed the
method of each algorithm: X-means, G-means, and Dip-means were using
Euclidean distance; PG-means, MML-EM, and Mclust classified samples into
clusters with the maximum posterior probability; SMLSOM classified with
the maximum likelihood.

The results are in Table 4. The table lists the estimated number of
clusters, training evaluation, and test evaluation for the ARI and NMI best
clustering results, respectively. From the table, it can be seen that the SML-
SOM results are the best for all indicators. On the other hand, for X-means,
G-means, and Dip-means, the test accuracy was lower than the training
accuracy for all indicators. In particular, Dip-means had a large drop in
evaluation. Contrarily, PG-means, MML-EM, Mclust, and SMLSOM did
not deteriorate the test evaluation.

Finally, the most highly evaluated SMLSOM clustering result was exam-
ined to see what samples each cluster collected. The best NMI result was
used here, although both were similar.

Fig. 7 shows the median image of images belonging to each cluster in
the NMI best result of SMLSOM trials. For some clusters, multiple digits
are mixed, but in the other many clusters, digits are well separated. The
clustering result shows that the characteristics differ significantly, even if the
numbers are the same. The result also indicates that digits are classified by
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Figure 7: Median images from each of the 34 clusters.

the character shape difference, such as inclination, width, and a loop of the
number 2.

This experiment shows that SMLSOM can classify different characteris-
tics, even with the same number of handwritten characters. However, in some
clusters, SMLSOM cannot organize the images well. For example, Cluster
14 mixes digits 2, 4, and 7. To separate such characters, it is necessary to
explore more expressive features or models.

As described above, the proposed method achieved higher performance
in lower computation time than other methods. We also showed that the
proposed method could provide a reasonable number of clusters, roughly
corresponding to each digit. Note that for high-dimensional data such as
MNIST data, feature extraction to reduce dimensionality will be necessary
so that algorithms can work well.
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Figure 8: Number of uses per day for all share cycle stations in Chiba city from April 2018
to March 2020.

4.4. Count data

In this experiment, we used the open data of the share-cycle system in
Chiba City, Japan, from 2018 to 20206. Chiba City has set up bicycle sta-
tions throughout the city. Users can rent bicycles using IC cards or online
reservations, and return them where they want to go. Chiba City published
data from April 2018 to March 2020. The data specify the number of uses
(rentals and returns) by location per hour. Fig. 8 shows the daily usage
numbers from April 2018 to March 2020.

The number of bicycles at each station fluctuates depending on the status
of the rentals and returns. Therefore, excessive lending will cause a shortage
of inventory, and excessive returns will result in a lack of space for park
bicycles. Consequently, it is necessary to coordinate operations to bring
bikes from other stations or to move stocks to others. For this operation, we
focused on lending and returning at each station and analyzed the situations
under which the number of bicycles lent and returned would be uneven.

We used the last one-year data from April 2019 to March 2020 because
the number of uses was still low in 2018 when they launched the service.
For pre-processing the data, we selected the usage time and target stations.

6Chiba City Share Cycle Open Data. Available at: https://www.city.chiba.jp/

sogoseisaku/miraitoshi/tokku/share-cycle_opendata.html, accessed 2021/11.
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Figure 9: Evaluation of the results by EM (multinomial): (a) BIC evaluation, and (b) ICL
evaluation.

Usage time is the time from borrowing to return. We excluded more extended
periods of use because return timing varied greatly. Approximately 7% of
the total usages were more than 60 min, and approximately 5% of the total
usages were more than 90 min; thus, we selected a target usage time of 60
min or less.

Because some stations were newly established during the data period,
they have not been used much. We excluded stations with less than 100
days of usage. The number of usages at stations that met this condition
was approximately 1% of the total used for 60 min or less. In addition, we
excluded days when users did not use the station.

After pre-processing, we formatted the data to have location × date as a
row, and the number of uses per hour for each return and lending as a column.
The number of target stations was 240. The sample size was 73,342, and the
number of columns was 24×2 = 48. By clustering the data, we created daily
patterns of the usage frequency time series.

A representative model for multivariate count data is a multinomial distri-
bution. We ran SMLSOM and EM for data with multinomial distributions.
SMLSOM was run 10 times using β = 15 and a 5× 4 hexagonal lattice with
random initial values. EM was run 10 times for each component number
from 2 to 20, and the initial value for each component number was randomly
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(a) (b)

Figure 10: Total frequency and deviation between two models: (a) Deviation between EM
and SMLSOM. (b) Deviation between EM and SMLSOM+EM. The blue line represents
a smoothing curve using cubic splines.

changed. SMLSOM selected five clusters, and EM also selected the same
number, as shown in Fig. 9(b).

To compare the two clustering results with the same likelihood criterion,
we evaluated the EM result using the MDL criterion in Eq. (23). Note that
when calculating − logLC(Θ̂), m̂i is assumed to be the cluster with the
largest posterior probability. The MDL evaluation of the SMLSOM result
was 1,695,888, while the MDL evaluation of the EM result was 1,678,087,
indicating that the EM result was slightly better. To investigate the fit of
the two estimated models to the data, we defined the deviance of the two
models for each sample as follows:

log f(xi | θ̂′m̂′
i
)− log f(xi | θ̂m̂i

),

where θ̂′m̂′
i

and θ̂m̂i
are the estimation results of EM and SMLSOM, respec-

tively. Therefore, the deviation is negative if the likelihood is higher for
SMLSOM and, conversely, it is positive if the likelihood is higher for EM.

The relationship between this quantity and the total frequency of each
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Figure 11: The estimated parameters of the multinomial distribution: (a) EM result, (b)
SMLSOM result, (c) SMLSOM+EM result.

sample, ni =
∑p
j=1 xij, is shown in Fig. 10(a). The figure shows that SML-

SOM fits well in terms of likelihood, where the total frequency is small, and
EM fits well where the total frequency is large. This tendency can be at-
tributed to the following reasons.

In the EM algorithm, the average of xij/ni weighted by the posterior
probability is calculated as an estimate of the parameter θmj of the multi-
nomial distribution. Because the ni term is canceled in the numerator and
denominator of the posterior probability calculation, ni of xij/ni directly af-
fects the estimated value. Therefore, the estimation of θmj by EM can be
strongly affected by the samples with large ni. On the other hand, because
SMLSOM updates θmj using only the relative frequencies of randomly sam-
pled xi, as described in 3.1.2, both large and small ni samples are treated
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Figure 12: Clustering results on a map using SMLSOM+EM result. As a representative
cluster for each station, the cluster with the largest size at that location is chosen.

equally. The good fit of the EM estimation results at large total frequencies
and the relatively poor fit at small frequencies can be due to the difference
in the estimation methods described above.

Therefore, we attempted to improve the poor fit of SMLSOM in samples
with a large total frequency by applying the EM step several times with the
SMLSOM estimation results as initial values. The number of EM iterations
was evaluated in several trials with the MDL, and we found that approxi-
mately 10 iterations were sufficient for this data. Note that the computation
time for additional learning by EM has little effect on the overall search
time because it is performed only once on the best results of SMLSOM. The
resulting MDL of 1,671,663 was slightly better than that of the single EM
result (1,678,087). Fig. 10(b) shows the deviation between this estimation
result and the single EM result. It can be seen that the deviation at high fre-
quencies is significantly improved. However, the fitting in the low-frequency
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part is approximately the same as, or only slightly better than, the single
EM result.

Fig. 11 shows the estimated values of θmj by each method. The two results
from single EM and single SMLSOM estimate generally similar patterns, but
differ in “Cluster 5.” This difference seems to be due to the difference in the
estimation methods mentioned above. In fact, in “Cluster 5” of Fig. 11(a)
the median of ni is 14, the highest value among the single EM clusters,
and in “Cluster 5” of Fig. 11(b) the median value is 5, which is the lowest
average among the single SMLSOM clusters. In contrast, SMLSOM+EM in
Fig. 11(c) takes over the patterns found in the single SMLSOM result, but
modifies the time of day where usage increases/decreases and the height of
peaks.

Next, the clusters of points are displayed on the map using the results of
SMLSOM+EM with the best MDL. Fig. 12 shows the representative cluster
of each station, which is the cluster with the largest size for the location.
Major train stations, such as Kaihin-Makuhari Station and Chiba Station,
have “Cluster 4” stations with peak usage in the mornings and evenings,
but slightly shifting lending and return times. However, a little further away
from the train stations, there are “Cluster 1” stations, where most returns
are in the morning and most rentals are in the evening. This tendency may
be due to commuting to work and school.

On the other hand, in residential areas far from the train station, “Cluster
2” points are distributed with more returns in the evening and more rentals
in the morning. This pattern may be due to commuting, shopping, or leisure
activities during the day, and returning home in the evening. However, in
some places in the same residential area, there also are “Cluster 5” stations
where returns continue into the late hours.

As for “Cluster 3,” the map does not show a clear rule of distribution;
however, from our investigation, it seems that many of the stations are lo-
cated near public facilities such as universities, libraries, community centers,
and parks.

In the actual operation to coordinate bicycle numbers, it is necessary to
predict the gap between returns and rentals in advance at the time of day.
Because there is a significant time difference between the peaks of returns
and rentals in “Clusters 1 and 2,” it is easy to predict when the gap is
likely to occur. In “Cluster 3,” returns and rentals are generally balanced,
so that there is little need for adjustment. On the other hand, in “Cluster
4,” the pattern of returns and rentals is similar, but the phase is slightly
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different, so that the gap may appear and disappear in a short period. Thus,
a more accurate prediction is required. As with “Cluster 1” and “Cluster 2,”
there is a significant time difference between the return and lending peaks
in “Cluster 5,” so that predicting the gap itself is easy, but there may be
operational issues such as whether there are coordinators who can handle
excessive late-night returns. In such a case, it is necessary to forecast the
gap by considering the operational constraints.

As described above, the proposed method gave the same number of clus-
ters as EM, but the computation time to find M̂ was approximately eight
times faster for the proposed method than for EM. We also showed that al-
though the proposed method gave a rougher estimation than EM, additional
learning can give more reasonable clusters in the sense of MDL, although it
is only slightly better than the EM result.

5. Disccusion

As seen in the example of the count data experiment, the SMLSOM
may provide rough estimates. This roughness is because this method aims
to find appropriate patterns, and the accuracy of the parameter estimates is
sufficient to contribute to pattern discovery, and not to make exact estimates.

Our method determines the sample classification using maximum like-
lihood, but the parameters themselves are estimated using the method of
moments instead of the maximum likelihood estimation method, unlike EM
and other methods. This is because there are some distributions for which
it is difficult to estimate the parameters using maximum likelihood estima-
tion. For example, the negative binomial distribution has two parameters:
the number of trials until the experiment succeeds (r), and the probability
of success (p); however, the maximum likelihood estimator of r cannot be
obtained in closed form. On the other hand, according to the method of
moments, the estimation of r can be obtained by a simple calculation.

Our method allows data analysts to find a rough idea of the potential
patterns in the data without taking too much time. We believe that this
will contribute to an understanding of the data in the early stages of data
analysis. However, it may be necessary to improve the accuracy of parameter
estimation. For example, as in the instance of share cycle data, it may
be helpful to use the parameters obtained by SMLSOM as initial values to
improve the estimation accuracy by using a more rigorous method such as
the EM algorithm.
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In this study, we treated all input variables as valuable for clustering.
Therefore, this study does not consider high-dimensional data. There may
be many unnecessary variables for clustering in high-dimensional data, and
clustering may not be successful if such variables become noisy. For exam-
ple, the MNIST data used in Section 4 are also grayscale data with 784
dimensions. In this experiment, we used feature extraction and dimension
reduction to reduce the number of dimensions. When applying the proposed
method to high-dimensional data, as in the MNIST dataset, it is necessary
to perform appropriate feature extraction in advance.

6. Conclusion

In this paper, we proposed a greedy algorithm called SMLSOM to select
the number of clusters M . In SMLSOM, clusters are constructed using the
SOM learning rule. The algorithm then updates the graph structure that
connects the probability distribution model to a node. We showed that the
dependence on the initial value can be reduced, and that a model appro-
priately chosen can be compared to the existing method as long as valuable
features are given. In addition, the proposed method is applicable to any
probability distribution model as long as the distribution function can be
calculated by the method of moments. For data where introducing a proba-
bility distribution is beneficial, such as count data, we also showed that the
proposed method has a lower computational cost than applicable methods
such as the EM algorithm.
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Appendix A. Initialization

Let M = P ×Q; the initial reference vector of node m, µinit
m , is calculated

as
µinit
m = X̄ + A1(m)

√
λ1z1 + A2(m)

√
λ2z2, (A.1)

where X̄ = 1
n

∑n
i=1 xi, and λ1, λ2, z1, z2 are the first and second largest

eigenvalues and corresponding eigenvectors of X tX, respectively. Further,
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A1(m), A2(m) constitute a sequence of numbers from −2 to 2 with a common
difference; they are given by

A1(m) = −2 + {(m− 1) mod P} 4

P − 1
, (A.2)

A2(m) = −2 + {b(m− 1)/P c} 4

Q− 1
. (A.3)

Appendix B. Gaussian model

Suppose x = (x1, x2, . . . , xp)
t follows a multivariate Gaussian distribu-

tion. The probability density function is given by

f(x | µ, Σ) =
1

(2π)p/2|Σ|1/2
exp

{
−1

2
(x− µ)tΣ−1(x− µ)

}
(B.1)

where µ is the mean vector and Σ is the covariance matrix.
Let z be the empirical first-order moments, Z be the empirical second-

order moments, updated using the rule in (11) follows:

∆z = α(τ)(x− z), (B.2)

∆Z = α(τ)(xxt −Z). (B.3)

First-order moments are given by

E(x) = µ, (B.4)

and second-order moments are given by

E(xxt) = µµt + E[(x− µ)(x− µ)t],

= µµt + Σ. (B.5)

The covariance matrix is estimated by Σ = Z − zzt using the method of
moments; thus, the update rule is as follows:

Σ + ∆Σ = (Z + ∆Z)− (z + ∆z)(z + ∆z)t,

= (Z − zzt) + ∆Z −∆z∆zt − z∆zt −∆zzt.

We then obtain

∆Σ = ∆Z −∆z∆zt − z∆zt −∆zzt. (B.6)
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(B.2) and (B.3) yield

∆z∆zt = α2(x− z)(x− z)t, (B.7)

z∆zt = α(zxt − zzt), (B.8)

∆zzt = α(xzt − zzt). (B.9)

Substituting (B.3), (B.7), (B.8), and (B.9) for (B.6), we obtain the fol-
lowing:

∆Σ = α(xxt −Z)− α2(x− z)(x− z)t − α(zxt − zzt)− α(xzt − zzt)
= α(1− α)(x− z)(x− z)t − α(Z − zzt)
= α[(1− α)(x− z)(x− z)t −Σ] (B.10)

Therefore, by replacing z with µ in (B.2) and (B.10), we obtain (13) and
(14), respectively.

Appendix C. Adjusted Rand index

Let S = {1, 2, . . . , n} be the set of indices of n. samples. Let U =
{uu}Uu=1 and V = {vv}Vv=1 be two different partitions of S, where uu and
vv are subsets of S and satisfy the following: S =

⋃U
u=1 uu =

⋃V
v=1 vv.

u 6= u′ ⇒ uu ∩ uu′ = ∅ and v 6= v′ ⇒ vv ∩ vv′ = ∅.
Considering a sample pair {i, j} ⊆ S and the following calculation,

TP = #{{i, j} | {i, j} ⊆ uu ∧ {i, j} ⊆ vv}, (C.1)

FP = #{{i, j} | {i, j} 6⊆ uu ∧ {i, j} ⊆ vv}, (C.2)

FN = #{{i, j} | {i, j} ⊆ uu ∧ {i, j} 6⊆ vv}, (C.3)

TN = #{{i, j} | {i, j} 6⊆ uu ∧ {i, j} 6⊆ vv}, (C.4)

then the Rand index (RI) is given by

RI =
TP + TN

TP + FP + FN + TN
=

TP + TN(
n
2

) . (C.5)

The ARI is then defined as

ARI =
RI− E[ RI ]

1− E[ RI]
, (C.6)
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where E[ RI ] is the expected value of the RI when the two partitions U and
V are independent, given by

E[ RI ] = 1 + 2
U∑
u=1

(
|uu|

2

)
V∑
v=1

(
|vv|
2

)/(
n

2

)2

−
[
U∑
u=1

(
|uu|

2

)
+

V∑
v=1

(
|vv|
2

)]/(
n

2

)
. (C.7)

Appendix D. Normalized mutual information

Let S = {1, 2, . . . , n} be the set of indices of n samples. Let U = {uu}Uu=1

and V = {vv}Vv=1 be two different partitions of S, where uu and vv are subsets
of S and satisfy the following: S =

⋃U
u=1 uu =

⋃V
v=1 vv. u 6= u′ ⇒ uu ∩uu′ =

∅ and v 6= v′ ⇒ vv ∩ vv′ = ∅.
According to information theory, the mutual information between U and

V is calculated as follows:

I(U ,V) =
U∑
u=1

V∑
v=1

P (u, v) log

(
P (u, v)

P (u)P (v)

)
, (D.1)

where P (u) = |uu|/n, P (v) = |vv|/n, and P (u, v) = |uu ∩ vv|/n.
The NMI is defined as follows:

NMI(U ,V) =
I(U ,V)

max{H(U), H(V)}
, (D.2)

where H(U) and H(V)) are the entropies of U and V , respectively, defined
as follows:

H(U) = −
U∑
u=1

P (u) log(P (u)) (D.3)

H(V) = −
V∑
v=1

P (v) log(P (v)) (D.4)
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