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Abstract

This paper proposes a new model-based approach to small area estimation of general
finite-population parameters based on grouped data or frequency data, which is often avail-
able from sample surveys. Grouped data contains information on frequencies of some pre-
specified groups in each area, for example the numbers of households in the income classes,
and thus provides more detailed insight about small areas than area-level aggregated data. A
direct application of the widely used small area methods, such as the Fay–Herriot model for
area-level data and nested error regression model for unit-level data, is not appropriate since
they are not designed for grouped data. The newly proposed method adopts the multinomial
likelihood function for the grouped data. In order to connect the group probabilities of the
multinomial likelihood and the auxiliary variables within the framework of small area esti-
mation, we introduce the unobserved unit-level quantities of interest which follows the linear
mixed model with the random intercepts and dispersions after some transformation. Then
the probabilities that a unit belongs to the groups can be derived and are used to construct
the likelihood function for the grouped data given the random effects. The unknown model
parameters (hyperparameters) are estimated by a newly developed Monte Carlo EM algo-
rithm using an efficient importance sampling. The empirical best predicts (empirical Bayes
estimates) of small area parameters can be calculated by a simple Gibbs sampling algorithm.
The numerical performance of the proposed method is illustrated based on the model-based
and design-based simulations. In the application to the city level grouped income data of
Japan, we complete the patchy maps of the Gini coefficient as well as mean income across
the country.

Keywords: Grouped data; Latent variables; Mixed effects model; Monte Carlo; Small
area estimation.

1 Introduction

Sample surveys are generally designed to estimate finite population parameters, such as total,
mean, variance and quantiles. On the other hand, decision makers of both public and private
agencies have become interested in such parameters for smaller subpopulation (small area) as
well, created by cross classifying geographical and demographical variables, such as age, sex
and race. However, direct survey estimators of small area parameters, sample mean, sample
variance, sample quantiles and others, are often unstable and unreliable because the sample size
for each area is too small mainly due to the budget constraint. In order to obtain more reliable
estimators of small area parameters, the model-based approach which uses mixed effects models
is becoming popular. The empirical best predictor or empirical Bayes estimator derived from
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mixed effects models, which is often called model based estimator, is more stable than the direct
survey estimator because the model-based estimator borrows strength from other areas through
the statistical model which connects across the areas with auxiliary variables from other data
sources such as large-scale sample surveys and population census. Alternatively, the hierarchical
Bayes approach to the model-based method has been also discussed in the literature. For the
detail about small area estimation (SAE), see Datta and Ghosh (2012), Pfeffermann (2013),
Rao and Molina (2015) and others. There are two fundamental models for model-based SAE:
the Fay–Herriot model for area-level aggregated data, which was first proposed to estimate the
per capita income for small areas by Fay and Herriot (1979), and the nested error regression
model for unit-level data (Battese et al., 1988). While only one population parameter, such as
an areal mean, can be estimated at a time by using Fay–Herriot model, general finite population
parameters can be estimated by using the nested error regression model and its extensions,
proposed by Molina and Rao (2010), Guadarrama et al. (2018), Diallo and Rao (2018), Sugasawa
and Kubokawa (2019) and others provided that a unit-level data is available. However, the Fay–
Herriot model is more widely used in practice as the accessibility of unit-level data is limited in
many cases.

Along with area-level aggregated measures of quantities of interest, as sample mean, sample
surveys frequently report grouped data. Grouped data contains information on frequency dis-
tributions based on some predefined groups in each area and thus provides more insight about
areas than an aggregated areal measure. The need to model for and to analyze a grouped data
arises in many fields of statistical analysis and there exist theoretical developments regarding
the grouped data analysis, see Heitjan (1989) and references therein. Especially in the analysis
of income data, the individual households often are grouped into some predefined income classes
(Chotikapanich, 2008). For example, Housing and Land Survey (HLS) conducted by Statistics
Bureau of Japan in 2013 reports the numbers of households that fall into the five and nine in-
come classes over 1265 municipalities. The grouped data literature, mainly from the view point
of the income data analysis, predominantly focused on developing a more flexible underlying
parametric or semiparametric form for a single nation, region or period. However, when we face
the grouped data over multiple local areas as in the HLS data, the existing grouped data meth-
ods do not suffice. This is because the reported frequency distributions are based on the survey
sampling, they are not reliable for areas with small sample sizes and thus call for a correction
through an SAE method. It must be noted that none of the existing SAE methods can be used
to reduce uncertainty in grouped data, because grouped data do not contain unit-level informa-
tion that is required in the nested error regression model and an appropriate direct estimator
that can be used in the Fay–Herriot model is difficult to define for many small area parameters.
Therefore a new SAE method specifically designed for grouped data is required.

In this paper, we develop a new model-based SAE method which explicitly takes frequency
distributions observed in grouped data into account and can estimate general finite population
parameters including areal means. Since the frequency distribution in the grouped data counts
the number of units that fall into each group, the multinomial likelihood function is adopted.
We introduce the latent unit-level variables that represent the unit-level quantities of interest
and that are supported within the range of each group. Then in order to connect the frequency
distribution to the auxiliary variables within the SAE framework, these latent unit-level vari-
ables are assumed to follow a linear mixed model after some transformation. The linear mixed
model adopts the random dispersion as well as random intercept, because the frequency distri-
bution of each area provides the information on the scale of the distribution. While Jiang and
Nguyen (2012) and Kubokawa et al. (2016) considered the heteroskedasticity in SAE, they did
not consider the grouped data setting. Given the random effects, the probabilities that a unit
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belongs to the groups can be derived and are used to construct the multinomial likelihood func-
tion for the grouped data. The unknown model parameters (hyperparameters) are estimated by
maximizing the marginal likelihood which integrates out the random effects. Since the marginal
likelihood cannot be evaluated analytically, we develop an EM algorithm (Dempster et al., 1977),
where the E-step is carried out by Monte Carlo integration based on the sampling importance
resampling (SIR) using an efficient importance sampling technique. After obtaining the esti-
mates of hyperparameters, the empirical Bayes (EB) or equivalently empirical best predicts, of
small area parameters, such as areal means and Gini coefficients, are easily calculated using the
output from a simple Gibbs sampler, where the unobserved unit-level quantities are augmented
as latent variables to simulate the finite population.

The rest of the paper is organized as follows. Section 2 describes the proposed model and
methods for hyperparameter estimation and calculation of EB estimates. Section 3 presents the
application of the proposed method to Japanese income dataset from HLS. The patchy maps
of the areal mean income and Gini coefficient are completed using our method. In Section 4,
the performance of the proposed model is examined through the model-based and design-based
simulation studies. Finally, Section 5 concludes the paper with some discussion.

2 Proposed method

2.1 Model description

In each of m areas, we observe the grouped data that provides the frequency distribution over
the mutually exclusive G groups divided by the known thresholds 0 = c0 < c1 < · · · < cG−1 <
cG = +∞. Let us denote the observed frequencies and sample size in the ith area by yi =
(yi1, . . . , yiG)> for i = 1, . . . ,m and ni =

∑G
g=1 yig, respectively, and thus yig counts the number

of units that fall into the gth group in the ith area. Therefore, it can be regarded that yi follows
the multinomial distribution. In order to model the group probabilities of the multinomial
distribution that links the grouped data with the auxiliary variables and then to facilitate the
small area parameter estimation (see Section 2.3), we introduce the positive latent variable
zij > 0 for the jth unit in the ith area (i = 1, . . . ,m; j = 1, . . . , Ni) that constitutes the
population of the ith area and from which the units are sampled to construct the grouped data.
We also let zi = (zi1, . . . , ziNi)

>. Note that Ni is not the sample size but the population size
and thus a finite population setting is considered. Without loss of generality, it is assumed that
the first ni values of zij ’s are sampled. Then yig can be expressed as

yig =

ni∑
j=1

I(cg−1 ≤ zij < cg), (g = 1, . . . , G), (1)

where I(·) is the indicator function. We take into account the variability of the frequency
distribution by incorporating the sample size into our model.

In order to devise small area estimation for the grouped data, we assume that the latent zij
after some transformation follows the linear mixed model:

hκ(zij) = x>i β + bi + εij , bi ∼ N(0, τ2),

εij | σ2i ∼ N(0, σ2i ), σ2i ∼ IG

(
λ

2
+ 1,

λϕi
2

)
, ϕi = exp(x>i γ),

(2)
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or equivalently the following Bayesian model:

hκ(zij) | µi, σ2i ∼ N(µi, σ
2
i )

µi ∼ N(x>i β, τ
2)

σ2i ∼ IG

(
λ

2
+ 1,

λϕi
2

)
, ϕi = exp(x>i γ),

(3)

where hκ(·) is an arbitrary parametric transformation with the parameter κ, xi is the area
specific p-dimensional auxiliary variable vector, β is the unknown parameter vector of regression
coefficients, bi is the random area effect with the unknown variance parameter τ2 and εij is the
error term with the area specific random variance σ2i . It is further assumed that bi’s and σ2i ’s are
mutually independent or equivalently µi’s and σ2i ’s are mutually independent and that zij ’s are
conditionally independent given b = (b1, . . . , bm)> and σ = (σ21, . . . , σ

2
m)>. The mean of σ2i is ϕi

which is further modeled as ϕi = exp(x>i γ) using the auxiliary variables. While the model looks
like a version of unit-level nested error regression model proposed in the small area estimation
literature (Battese et al., 1988), there is a crucial difference that in the present setting we do
not observe the unit-level zi’s but yi’s only. Also, the auxiliary variables xi are available only
at the area-level.

Based on the statistical model (2) or (3), the conditional probability that zij falls in the gth
group given bi (or µi) and σ2i is given by

Pr(cg−1 ≤ zij < cg | bi, σ2i ) = Φ

{
hκ(cg)− µi

σi

}
− Φ

{
hκ(cg−1)− µi

σi

}
, (4)

where µi = x>i β + bi and Φ(·) denotes the cumulative distribution function of the standard
normal distribution.

Note that we model the unit-level variable zij , not the area-level variable like the Fay–Herriot
model. However, the auxiliary variables are available only on the area-level. Hence, if the log
transformation is used, the superpopulation of zij is the log-normal distribution with the same
mean and variance within the same small area i, which is too restrictive. In this paper, a more
flexible parametric transformation hκ(·) is adopted to relax the restriction. Specifically, we use
the Box–Cox transformation given by

hκ(z) =


zκ − 1

κ
, κ 6= 0,

log(z), κ = 0,
z > 0,

and −1/κ < hκ(z) < +∞ if κ > 0 and −∞ < hκ(z) < −1/κ if κ < 0.
Our goal is to estimate (predict) some characteristics of each area, such as the areal mean

zi = N−1i
∑Ni

j=1 zij and Gini coefficient defined as

GINI(zi) =
1

Ni

{
Ni + 1−

2
∑Ni

j=1(Ni + 1− j)zi(j)
Nizi

}
, (5)

where {zi(1), . . . , zi(Ni)} are sorted values of {zi1, . . . , zi,Ni} in non-decreasing order. To this end,
we develop the empirical Bayes (EB) estimators of zi and GINI(zi).
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2.2 Hyperparameter estimation

The unknown model parameter vector is denoted by ψ = (β>, τ2, λ, κ,γ>)>. If our model is
seen as a Bayesian model (3), ψ is referred to as hyperparameters. Hereafter, ψ is referred to
as the hyperparmeters for the sake of clarity of terminology.

The hyperparameter ψ is estimated by maximizing the marginal likelihood:

L(ψ;y) =

m∏
i=1

∫
f(yi | ui)π(ui)dui, (6)

where π(ui) is the pdf of ui = (bi, σ
2
i )
> ∼ N(0, τ2) × IG(λ/2 + 1, λϕi/2), and f(yi | ui) is the

conditional probability mass function (pmf) of yi given ui, which is given by the pmf of the
multinomial distribution with ni trials and the probabilities given by (4):

f(yi | ui) =
ni!

yi1!yi2! · · · yiG!
×

G∏
g=1

[
Φ

{
hκ(cg)− µi

σi

}
− Φ

{
hκ(cg−1)− µi

σ

}]yig
, (7)

for i = 1, . . . ,m. It is difficult to evaluate the marginal likelihood (6) analytically because of the
integration with respect to ui. Thus we introduce the EM algorithm (Dempster et al., 1977)
where the vector of random effects u = (u>1 , . . . ,u

>
m)> is regarded as the missing variable. The

complete log-likelihood is given by

log{Lc(ψ;y,u)} =

m∑
i=1

[log{f(yi | ui)}+ log{π(ui)}] .

In the kth iteration of the algorithm, the E-step calculates

Q(ψ | ψ(k−1)) = E[log{Lc(ψ;y,u)} | y,ψ(k−1)],

where the expectation is taken with respect to the conditional distribution of u given y with the
parameter value ψ(k−1) from the (k− 1)th iteration. The M-step maximizes Q(ψ | ψ(k−1)) with
respect to ψ. The maximizer, denoted by ψ(k) = ((β(k))>, τ2(k), λ(k), κ(k), (γ(k))>)>, is obtained
as

τ2(k) =
1

m
E[b>b | y,ψ(k−1)],

((β(k))>, κ(k))> = argmax
(β>,κ)>

E

[
m∑
i=1

log{f(yi | ui)}
∣∣ y,ψ(k−1)

]
,

((γ(k))>, λ(k))> = argmax
(γ>,λ)>

E

[
m∑
i=1

log{π(σ2i )}
∣∣ y,ψ(k−1)

]
.

Since it is difficult to evaluate the conditional expectation analytically in the E-step, we use
the Monte Carlo integration based on the sampling importance resampling (SIR). Note that the
conditional pdf of u given y is the product of the conditional pdfs of ui given yi:

π(u | y) =

m∏
i=1

π(ui | yi) ∝
m∏
i=1

f(yi | ui)π(ui),

where π(u | y) is the conditional pdf of u given y and π(ui | yi) is the conditional pdf of ui
given yi. Therefore, we apply the following SIR method independently for i = 1, . . . ,m. Let
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q(ui | ai) denote the proposal density for ui where ai ∈ Rq is the parameter vector of the

proposal distribution. In the SIR method, first a set of random numbers {ũ(1)
i , . . . , ũ

(S1)
i } from

q(ui | ai) is generated. Then for each ũ
(s)
i , the weight

w̃is =
f(yi | ũ

(s)
i )π(ũ

(s)
i )

q(ũ
(s)
i | ai)

, s = 1, . . . , S1,

is calculated. Finally, a set of samples of size S2, {u(1)
i , . . . ,u

(S2)
i }, is drawn with replacement

from {ũ(1)
i , . . . , ũ

(S1)
i } based on the probability

Pr(u
(r)
i = ũ

(s)
i ) =

w̃is∑S1
s′=1 w̃is′

, s = 1, . . . , S1, r = 1, . . . , S2.

For large S1/S2, {u(1)
i , . . . ,u

(S2)
i } is approximately a set of independent random samples from

π(ui | yi). The expectations in the M-step are replaced with the Monte-Carlo estimates based
on the SIR samples.

The performance of the SIR depends on the choice of the proposal distribution. It is ideal
to employ a proposal distribution that well approximates the target distribution and we aim to
achieve this by updating the value of ai through an iterative procedure proposed by Richard and
Zhang (2007). Their efficient importance sampling (EIS) method determines the value âi such
that it minimizes the Monte Carlo sampling variance of the importance weights with respect to
the proposal distribution. In the current context, as shown by Richard and Zhang (2007), âi is
determined through the following minimization problem

(ĉi, â
>
i )> = argmin

(ci,a>i )>

∫
{log f(yi | ui) + log π(ui)− ci − log g(ui | ai)}2wi(ui | ai)q(ui | ai)dui,

(8)
where g(ui | ai) is the kernel of the proposal density q(ui | ai) such that q(ui | ai) = g(ui |
ai)/

∫
g(ui | ai)dui, ci is a scalar that adjusts for the normalizing constants and wi(ui | ai) =

f(yi | ui)π(ui)/q(ui | ai). The EIS method replaces (8) with a Monte Carlo approximation and
proceeds by iteratively solving

(ĉ
(t)
i , â

(t)>
i )> = argmin

(ci,a>i )>

1

S0

S0∑
s=1

{
log f(yi | ǔ

(s)
i ) + log π(ǔ

(s)
i )− ci − log g(ǔ

(s)
i | ai)

}2
wi(ǔ

(s)
i | a

(t−1)
i ),

(9)

where (â
(t)>
i , ĉ

(t)
i )> denotes the value of (â>i , ĉi)

> at the tth iteration of the EIS minimization

and {ǔ(1)
i , . . . , ǔ

(S0)
i } is the set of samples generated from q(ui | â(t−1)i ) for ǔ

(s)
i = (b̌

(s)
i , σ̌

2(s)
i )>.

Richard and Zhang (2007) noted that S0 does not have to be very large. In this paper, we
employ N(θi1(ai), θi2(ai)) × IG(θi3(ai), θi4(ai)) for q(ui | ai) where ai = (ai1, ai2, ai3, ai4)

> is
the vector of natural parameters. Because the proposal distribution belongs to the exponential
family where

log g(u
(s)
i | ai) = ai1bi + ai2b

2
i + ai3 log(σ2i ) + ai4

1

σ2i
,

for ai1 = θi1/θi2, ai2 = −1/(2θi2), ai3 = −(θi3 + 1) and ai4 = −θi4, the solution for the EIS
minimization (9) is given by the following generalized least squares (GLS) estimator

(ĉ
(t)
i , â

(t)>
i )> = (Z>i DiZi)

−1Z>i Dif i (10)
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where Zi = (1S0 , b̌i, b̌
2
i , logσ̌

2
i , σ̌

−2
i ), b̌i, b̌

2
i , logσ̌2

i , σ̌
−2
i and f i are S0 × 1 vectors with the

sth elements given by b̌
(s)
i , (b̌

(s)
i )2, log(σ̌

2(s)
i ), 1/σ̌

2(s)
i and log f(yi | ǔ

(s)
i ) + log π(ǔ

(s)
i ), re-

spectively, and Di is the S0 dimensional diagonal matrix with wi(ǔ
(s)
i | â(t−1)i ) on the sth

diagonal position. In this paper, the EIS iteration is terminated when the relative change

in (θi1(a
(t)
i ), θi2(a

(t)
i ), θi3(a

(t)
i ), θi4(a

(t)
i ))> is below 10−3. After the termination of the EIS it-

erations, the optimal parameters for the proposal distribution are obtained through θ̂i1 =
−â1i/(2â2i), θ̂i2 = −1/(2â2i), θ̂i3 = −â3i − 1 and θ̂i4 = −â4i. See Richard and Zhang (2007) for
more detailed implementation of the EIS method.

The initial values for the MCEM algorithm are determined as follows. Let us define Vi =
n−1i

∑G
g=1 log(cg)× yig where cg = (cg−1 + cg)/2 for g = 1, . . . , G− 1 and cG = cG−1 + (cG−1 −

cG−2)/2, V = (V1, . . . , Vm)> and X = (x1, . . . ,xm)>. Then, the initial value of β and τ2 are
determined as

β(0) = (X>X)−1X>V , τ2(0) = m−1‖V −Xβ(0)‖2.
The initial values of λ, κ and γ are determined by using the estimates based on the local model
which modifies the model (2) as follows:

hκi(zij) = βi + εij , εij ∼ N(0, σ2i ), (11)

where βi,, κi and σ2i are the unknown parameters. Let β̂i, κ̂i and σ̂2i denote the maximum
likelihood estimates which independently maximizes the likelihood function for i = 1, . . . ,m:

(β̂i, κ̂i, σ
2
i )
> = argmax

(βi,κi,σ2
i )
>

ni!

yi1!yi2! · · · yiG!
×

G∏
g=1

[
Φ

{
hκ(cg)− βi

σi

}
− Φ

{
hκ(cg−1)− βi

σ

}]yig
.

Then, the initial value of λ and κ are determined as

λ(0) = 2× {(σ̂2)2/V̂ (σ̂2) + 1}, κ(0) = κ̂,

where σ̂2 and V̂ (σ̂2) are sample mean and variance of σ̂2i ’s over the areas and κ̂ is the sample
mean of κ̂i’s. Furthermore, the initial value of γ is

γ(0) = (X>X)−1X>σ,

where σ = (σ̂21, . . . , σ̂
2
m)>. This method generally provides reasonable initial values for the

MCEM algorithm leading to a fast convergence. Although other initial values are also tried, the
similar results are obtained with longer computing times.

To monitor the convergence of the MCEM algorithm, the criterion considered by Shi and
Copas (2002) is used. In order to prevent premature termination of the algorithm due to the
difference in the scale of the parameter values, the quantities ek,(β), ek,(τ2), ek,(κ), ek,(λ) and
ek,(γ) is evaluated respectively for β, τ2, κ, λ and γ. In the case of β, for example,

ek,(β) =
‖β̃

(k)

1 − β̃
(k)

2 ‖

‖β̃
(k)

2 ‖+ δ
, (12)

where β̃
(k)

1 = H−1
∑H−1

h=0 β
(k−h), β̃

(k)

2 = H−1
∑H−1

h=0 β̃
(k−h−d)

, and δ, H, and d are specified by
the user. Then the EM algorithm is terminated in the kth iteration if

max{ek,(β), ek,(τ2), ek,(κ), ek,(λ), ek,(γ)} < ε,

for some small value ε > 0, and use ψ̃
(k)
1 = (β̃

(k)>
, τ̃2(k), λ̃(k), κ̃(k), γ̃(k)>)> as the estimate of ψ,

which is denoted by ψ̂ = (β̂
>
, τ̂2, λ̂, κ̂, γ̂>)> hereafter.
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2.3 Calculation of empirical Bayes estimates

Here we propose the method to calculate EB estimates of some function of zi, which is denoted as
ζi(zi) in general. The examples of ζi(zi) include the areal mean zi and Gini coefficients GINI(zi)
in (5). Under the quadratic loss, the Bayes estimator of ζi(zi) is its conditional expectation given
the data, E[ζi(zi) | y]. Because of the independence over the areas, E[ζi(zi) | y] is reduced to
E[ζi(zi) | yi], which is denoted by

ξi(ψ;yi) = E[ζi(zi) | yi].

Because ξi(ψ;yi) is a function of the unknown parameter ψ, we obtain the empirical Bayes
(EB) estimator ξi(ψ̂;yi) by substituting ψ̂ for ψ in the Bayes estimator. However, since it is
impossible to evaluate the conditional expectation of ζi(zi) analytically, we calculate the EB
estimates from the output of the following Gibbs sampler.

Let the random vector ṽi = (vi1, . . . , vini)
> denote the sorted values of {hκ̂(zi1), . . . , hκ̂(zini)}

in increasing order with size yi1, . . . , yiG and then the following relationship holds:

vij ≤ vik, for all j, k such that j ≤ ỹig < k, for all g = 1, . . . , G,

where ỹig =
∑g

g′=1 yig′ for g = 1, . . . , G and ni = ỹiG. For out-of-sample units, let v̌i =

(vi,ni+1, . . . , viNi)
> = (hκ̂(zi,ni+1), . . . , hκ̂(ziNi))

>. Let vi = (ṽ>i , v̌
>
i )> = (vi1, . . . , viNi)

>. To
evaluate the conditional expectation of vi given yi, the sample from the joint conditional dis-
tribution of {ṽi, v̌i, µi, σ2i } given yi is obtained by using the Gibbs sampling algorithm with the
following full conditional distributions:

µi | ṽi, v̌i, σ2i ,yi ∼ N

(
σ2i x

>
i β̂ +Niτ̂

2vi
σ2i +Niτ̂2

,
τ̂2σ2i

σ2i +Niτ̂2

)
,

vij | µi, v̌i, σ2i ,yi
indep∼


TN[hκ̂(c0),hκ̂(c1))(µi, σ

2
i ), j = 1, . . . , ỹi1,

TN[hκ̂(c1),hκ̂(c2))(µi, σ
2
i ), j = ỹi1 + 1, . . . , ỹi2

...

TN[hκ̂(cG−1),hκ̂(cG))(µi, σ
2
i ), j = ỹi,G−1 + 1, . . . , ni,

v̌i | µi, ṽi, σ2i ,yi ∼ NNi−ni(µi1Ni−ni , σ
2
i 1Ni−ni),

σ2i | µi, ṽi, v̌i,yi ∼ IG

(
Ni + λ̂

2
+ 1,

1

2

{
λ̂ϕ̂i +

Ni∑
j=1

(vij − µi)2
})

,

(13)

where vi = N−1i
∑Ni

j=1 vij and TN[a,b)(µ, σ
2) denotes the truncated normal distribution with the

mean µ and variance σ2 truncated to the interval [a, b). The derivation of the full conditional
distributions is given in Appendix A.1.

Let v
(s)
i = (v

(s)
i1 , . . . , v

(s)
iNi

)> be the sth output of vi from the Gibbs sampler (s = 1, . . . , S3).

Then the EB estimates ξi(ψ̂;yi) can be calculated as

̂
ξi(ψ̂;yi) =

1

S3

S3∑
s=1

ζi(h
−1
κ̂ (v

(s)
i )),

where h−1κ̂ (·) is the inverse Box–Cox transformation with parameter value κ̂.
If the auxiliary variables xi’s are available for out-of-sample areas, ζi(zi) can be also predicted

for an out-of-sample area i = m + 1 by ξm+1(ψ̂) where ξm+1(ψ) = E[ζm+1(zm+1)], since y
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and zm+1 are mutually independent. This expectation can be calculated by the Monte Carlo
integration that generates random numbers from the model (2) with the hyperparameters are
fixed to their estimates.

3 Application to grouped income data of Japan

The proposed method is demonstrated by using the grouped income data obtained from Hous-
ing and Land Survey (HLS) of Japan in 2013. The data contains the number of households
that fall in G = 5 and 9 income classes.1 The income classes are defined in million Japanese
Yen (M JPY) and the thresholds are given by (c1, c2, c3, c4) = (3, 5, 7, 10) for G = 5 and
(c1, c2, c3, c4, c5, c6, c7, c8) = (1, 2, 3, 4, 5, 7, 10, 15) for G = 9. In this survey in 2013, 1265 out of
1899 municipalities in Japan were sampled. As a summary of the data, Figure 1 presents the
proportions of the households in the in-sample-municipalities for each income class in the case of
G = 9. The maps look incomplete because of the presence of the out-of-sample municipalities.

Using the proposed method, the EB estimates of the areal mean incomes and Gini coefficients
are obtained. For the auxiliary variables, we use the total population denoted by Pi and working-
age population denoted by WAi obtained from Population Census (PC) of Japan in 2010 and set
xi = (1, log Pi, log WAi) for the ith municipality. Since these auxiliary variables are also available
for the out-of-sample municipalities of HLS, the model can be further utilised to complete the
maps of the mean incomes and Gini coefficients.

1 Only are the numbers of households in each income class adjusted for the population sizes accessible in the
HLS data and the original sample sizes for the sampled municipalities of HLS are not published. How they are
estimated for this analysis is described in Appendix A.2.
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Figure 1: Proportions of households in in-sample-municipalities (G = 9)

To estimate the hyperparameters, we set S0 = 100, S1 = 10000, S2 = 500, H = 30, d = 5,
and δ = ε = 0.001 for the MCEM algorithm. The initial values are determined using the method
described in Section 2.2. The convergence of the MCEM algorithm occurs relatively fast. We
also tried other initial values obtained similar results. It is noted that the method in Section 2.2
took much shorter computing times. Figure 2 presents the 0.1, 0.5 and 0.9 quantiles of the
effective sample size (ESS) divided by S1 for the 1265 municipalities at each step of the MCEM
algorithm. It is seen that the ESS is fairly high and stable over the EM iterations, especially for
G = 9.
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Figure 2: Quantiles of effective sample size (ESS)

The Bayes estimator of zi is denoted by ξ1i(ψ;yi) = E(zi | yi) and that of GINI(zi) is
denoted by ξ2i(ψ;yi) = E[GINI(zi) | yi]. The EB estimates of zi and GINI(zi) are calculated
from the output of the Gibbs sampler (13) as

̂
ξ1i(ψ̂;yi) =

1

S3

S3∑
s=1

 1

Ni

Ni∑
j=1

h−1κ̂ (v
(s)
ij )

 ,

and

̂
ξ2i(ψ̂;yi) =

1

S3

S3∑
s=1

1

Ni

Ni + 1−
2
∑Ni

j=1(Ni + 1− j)h−1κ̂ (v
(s)
i(j))∑Ni

j=1 h
−1
κ̂ (v

(s)
ij )

 ,

where {v(s)i(1), . . . , v
(s)
i(Ni)
} are sorted values of {v(s)i1 , . . . , v

(s)
iNi
} in non-decreasing order. In this

analysis, we run the Gibbs sampler for S3 = 500 iterations with the initial burn-in period of 50
iterations.

While it is generally difficult to define a reasonable direct estimator for these small area
parameters from grouped data, for a comparison purpose, we may also think of the following
“naive” estimator of the areal mean zi that uses the class midpoints given by

ẑ
naive
i =

1

ni

G∑
g=1

cg × yig (14)

where cg = (cg−1+cg)/2 for g = 1, . . . , G−1 and cG = cG−1+(cG−1−cG−2)/2. This estimator is
naive particularly because the upper end cG has to be set and its choice is completely arbitrary.
The choice of cG would have a huge impact on its performance. Note that the proposed approach
has no arbitrariness with this respect as cG =∞ and (4) is well defined.

Figure 3 presents the estimates of the areal means based on the proposed method and
naive method (14). By borrowing strength from the other municipalities through the statistical
model (2), the proposed method can predict the income for the out-of-sample municipalities
and provide the complete maps of the mean incomes and Gini coefficients. The boxplots of

11



Figure 4 compares the EB and naive estimates of the areal means for the sample areas. The
figure indicates that the results for the naive estimates can vary between G = 5 and 9 resulting
the lower mean incomes for some areas for G = 5 than for G = 9. This would be because the
naive estimates cannot capture the behavior of the upper tail of the income distribution, which
has an impact on the estimation of the mean income. In fact, we also considered the different
values for c̄G for the naive estimates to demonstrate the impact. Figure 5 presents the boxplots
of the naive estimates under the different values of c̄G for G = 5 and 9. The figure shows that
the naive estimates exhibit severe sensitivity with respect to the setting of c̄G in the case of
G = 5. While the sensitivity decreases for G = 9, the areal mean estimates for the high income
areas still appear to increase with c̄G.

In order to assess the uncertainty of the estimators, we estimated the root mean squared
error (RMSE) of the estimators for the sampled municipalities by using a parametric bootstrap

method. Let z
∗(b)
ij (i = 1, . . . ,m; j = 1, . . . , Ni) and {y∗(b)1 , . . . ,y

∗(b)
m } denote the bth bootstrap

sample (b = 1, . . . , B) generated from the models (1) and (2) with the hyperparameter fixed to
the maximum likelihood estimate ψ̂. Then, the RMSE of the EB estimator of areal mean is
estimated as

R̂MSE
EB

i =

√√√√ 1

B

B∑
b=1

{
̂

ξ1i(ψ̂;y
∗(b)
i )− z∗(b)i

}2

,

for a large B, where z
∗(b)
i = N−1i

∑Ni
j=1 z

∗(b)
ij . For each b, we simply run the Gibbs sampler

described in Section 2.3 to calculate the EB estimates given the estimate ψ̂ from the original
data, not on the bootstrap samples. In the same way, the RMSE of the naive estimator is
estimated as

R̂MSE
naive

i =

√√√√ 1

B

B∑
b=1

{
ẑ
naive∗(b)
i − z∗(b)i

}2
,

where ẑ
naive∗(b)
i = n−1i

∑G
g=1 cg × y

∗(b)
ig . Figure 6 presents the estimates of the RMSE of the EB

estimators and naive estimators for the sampled areas. The naive estimators resulted in the
large RMSE indicated by the darker shade of red in the case of G = 5. While the RMSE for the
naive estimators improves as the number of income classes increases, the EB estimators resulted
in the smaller RMSE. The figure also shows that the overall improvement in the RMSE of the
EB estimators in the case of G = 9 over G = 5 is marginal compared to the naive estimators.

Finally, Figure 7 presents the EB estimates for the Gini coefficients for all municipalities and
associated estimates of RMSE for the sampled municipalities. As in the case of the mean incomes,
the proposed method can also predict the Gini coefficients for the out-of-sample municipalities
to complete the map. The RMSE of the estimator of the Gini coefficient is estimated in the same
way as that of the mean income by using the parametric bootstrap. The map for the case ofG = 9
exhibits darker shades of blue than the map for G = 5 implying that the degree of inequality
is greater across the country. This could be because that the data with G = 9 contains more
information on the income distribution, especially on the upper tail of the distribution which
can have an impact on the estimates. The figure also shows that the uncertainty regarding the
Gini coefficients estimation decreases as the number of income classes in the data increases.
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Figure 3: EB and naive estimates of areal means
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Figure 4: Boxplots of EB and naive estimates of areal means for the sampled areas
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Figure 5: Boxplots of naive estimates of areal means under different values of c̄G
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Figure 6: Estimates of RMSE of the naive estimators and EB estimators for areal means
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Figure 7: EB estimates and estimates of RMSE (multiplied by 1000) for Gini coefficients

4 Simulation Studies

4.1 Model-based simulation

In this section, the proposed approach is illustrated using the simulated data. The first simula-
tion is a model-based simulation where (2) is the data generating process. The true parameter
values are set to the estimates obtained in the real application in Section 3 and we use the same
values of the auxiliary variables xi’s as the real data for the randomly chosen m = 100 areas
out of the 1265 in-sample areas of HLS. Based on this setting, we generate R = 100 replications
of zij ’s with Ni = 1000 for all i and calculate the true mean zi and Gini coefficient GINI(zi).
For each replication, we obtain a frequency distribution for each area from the simulated data
{zi1, . . . , zi,ni}. The two cases of the numbers of groups G = 5 and 9 with the same thresholds
as HLS are considered. The sample sizes are set as ni = 10 (i = 1, . . . , 20), ni = 50 (i =
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21, . . . , 40), ni = 100 (i = 41, . . . , 60), ni = 150 (i = 61, . . . , 80), and ni = 200 (i = 81, . . . , 100).
The true parameter values and the auxiliary variables xi’s for i = 1, . . . ,m are fixed for all
replications. The settings for the MCEM algorithm and the Gibbs sampler are the same as the
real data analysis in Section 3.

In order to demonstrate the advantage of the present approach, the naive estimator of ẑ
naive
i

in (14) is also considered again. The performance of the methods is compared by the simulated
relative root MSE (RRMSE) over R = 100 replications of the data. The simulated RRMSE is
calculated as

RRMSE(ẑi) =

√√√√ 1

R

R∑
r=1

(
ẑ
(r)
i − z

(r)
i

z
(r)
i

)2

,

where ẑ
(r)
i is the EB or naive estimates and z

(r)
i is the true mean in the rth replication.

Figure 8 shows the result of the simulation. Noting that the horizontal axis represents the
area index, the figure shows that the RRMSE decreases as the sample size increases both for the
EB estimator and the naive estimator. In terms of RRMSE, the EB estimator improves on the
naive estimator for all the areas. It is interesting to see that the improvement of the RRMSE
is much larger for the areas with small sample sizes, especially for the areas with ni = 10 and
50. This is because the EB estimator borrows strength from other areas even though the area
sample size is small, while the naive estimator only uses the information of the target area. It
is also observed that EB estimator for G = 9 resulted in better performance than for G = 5 for
most of the areas. This is a natural result because the frequency distributions based on G = 9
contain more information of the distribution of the latent zij ’s.
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Figure 8: RRMSE of EB estimator and naive estimator for model based simulation

4.2 Design-based simulation

The second simulation is a design based simulation where (2) is not assumed to be the data
generating process. For this simulation, the Spanish income dataset included in the R package
sae developed by Molina and Marhuenda (2018).

This dataset contains the synthetic data on income and some related information of 17199
households including the province where the household is located and the gender of the head
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of the household. There are 52 provinces in Spain and for each province the dataset is divided
based on the gender of the head of the household. Therefore, this dataset consists of m = 104
small domains.

We generate the datasets for this design-based simulation study following the technique used
by Chandra et al. (2012). First, a synthetic population is created for each domain by resampling
with replacement from the original dataset and calculate the ‘true’ population mean for each
dataset. Then 100 independent samples are obtained from the fixed synthetic populations based
on the simple random sampling without replacement and form a frequency distribution for each
domain.

As the auxiliary variables, we use xi = (1,NATi,WAi,LABORi)
> where NATi is the pro-

portion of the people holding Spanish nationality in the ith domain, WAi is the proportion of the
people who are in working age in the ith domain, and LABORi is the proportion of the people
who are employed in the ith domain. For the transformation in (2), since the negative income
observations are present for some households in this dataset, the following modified Box–Cox
transformation is used:

hκ(z) =
(z − C)κ − 1

κ
,

where C is equal to 0.1 less than the minimum income of the synthetic population. The same
settings for the MCEM algorithm and Gibbs sampler as in the previous sections are used.

As in the previous sections, the performance of the proposed EB estimator and naive estima-
tor is compared. Figure 9 shows the RRMSE for the EB and naive estimators. The figure shows
that the the EB estimator resulted in the better performance than the naive estimators in terms
of RRMSE for most domains. In addition, the degree of improvement is larger in the case of
G = 5, where the frequency distributions contain less information. Since this simulation setting
does not assume a statistical model, we obtained an important implication that the proposed
EB estimator performs well even when the statistical model is misspecified. This design based
simulation can be seen as an empirical evidence to show the usefulness of our proposed method.
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Figure 9: RRMSE of EB estimator and naive estimator based on design based simulation

5 Conclusion

We have proposed a new model-based small area estimation method for grouped data where only
frequency distributions of the quantity of interest are observed at the area-level. In the proposed
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model, the observed frequencies are linked with the area-level auxiliary variables through the
unit-level latent variables which are modeled in a similar fashion to the nested error regression
model. The model parameter is estimated easily by using the Monte Carlo EM algorithm
based on the efficient importance sampling and the EB estimates of small area parameters are
calculated by the output of the Gibbs sampler. From the application to the real data of Japan
and simulation studies, we have shown that the proposed EB estimator performs better than
the naive estimator.

Because our proposed model is in a general form, it can be applied to a wide variety of
datasets. However, if we do focus on the income data, especially on the Gini coefficient or other
poverty indicators, a probability distribution assumed by the small area model should provide
good fit to the income distribution and provide a straightforward interpretation. The present
model that assumes the normal distribution after a transformation may be limited in this sense.
An extension of our model to the parametric income distribution is left for future studies.

Acknowledgments. This work is partially supported by JSPS KAKENHI (#19K13667,
#18K12754). The computational results were obtained by using Ox version 6.21 (Doornik,
2007).

A Appendix

A.1 Derivation of the full conditional distributions (13)

Here the full conditional distributions of ṽi, v̌i, µi and σ2i in (13) are derived. To avoid the
notational complexity, we use the notation p(·) as the pdf or pmf for arbitrary random variable.

First, the joint conditional distribution of {ṽi, v̌i, µi, σ2i } given yi, p(ṽi, v̌i, µi, σ
2
i | yi), is

given by

p(ṽi, v̌i, µi, σ
2
i | yi) =

p(yi, ṽi, v̌i | µi, σ2i )p(µi)p(σ2i )
p(yi)

.

Thus it follows that

p(ṽi, v̌i, µi, σ
2
i | yi) ∝ p(yi, ṽi, v̌i | µi, σ2i )p(µi)p(σ2i ).

Note that p(µi) = φ(µi;x
>
i β̂, τ̂

2), where φ(·; a, b) is the pdf of the normal distribution with the
mean a and variance b and

p(σ2i ) ∝ (σ2i )
−(λ̂/2+1)−1 exp

(
− λ̂ϕ̂i

2σ2i

)
.

Because out-of-sample v̌i is independent of {yi, ṽi} given {µi, σ2i }, it follows that

p(yi, ṽi, v̌i | µi, σ2i ) = p(yi, ṽi | µi, σ2i )p(v̌i | µi, σ2i ),
= p(yi | ṽi, µi, σ2i )p(ṽi | µi, σ2i )p(v̌i | µi, σ2i )

where

p(ṽi | µi, σ2i )p(v̌i | µi, σ2i ) = p(vi | µi, σ2i ) ∝
Ni∏
j=1

φ(vij ;µi, σ
2
i ),
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for vi = (ṽ>i , v̌
>
i )> = (vi1, . . . , vini , vi,ni+1, . . . , viNi)

>. Furthermore, we can write the pmf of yi
given {ṽi, µi, σ2i } as follows:

p(yi | ṽi, µi, σ2i ) =

 ỹi1∏
j=1

I{hκ̂(c0) ≤ vij < hκ̂(c1)}

×
 ỹi2∏
j=ỹi1+1

I{hκ̂(c1) ≤ vij < hκ̂(c2)}


× · · · ×

 ni∏
j=ỹi,G−1+1

I{hκ̂(cG−1) ≤ vij < hκ̂(cG)}

 ,
where I{·} is the indicator function and ỹig =

∑g
g′=1 yig′ , that is, ni =

∑G
g′=1 yig′ . Note that

the value of p(yi | ṽi, µi, σ2i ) only takes 1 or 0. Hence, the joint conditional distribution of
{ṽi, v̌i, µi, σ2i } given yi can be written as

p(ṽi, v̌i, µi, σ
2
i | yi)

∝ φ(µi;x
>
i β̂, τ̂

2)× (σ2i )
(−λ̂/2+1)−1 exp

(
− λ̂ϕ̂i

2σ2i

)

×

 ỹi1∏
j=1

I{hκ̂(c0) ≤ vij < hκ̂(c1)}φ(vij ;µi, σ
2
i )

×
 ỹi2∏
j=ỹi1+1

I{hκ̂(c1) ≤ vij ≤ hκ̂(c2)}φ(vij ;µi, σ
2
i )


× · · · ×

 ni∏
j=ỹi,G−1+1

I{hκ̂(cG−1) ≤ vij < hκ̂(cG)}φ(vij ;µi, σ
2
i )

× Ni∏
j=ni+1

φ(vij ;µi, σ
2
i ).

Then, it follows that

p(µi | ṽi, v̌i, σ2i ,yi) ∝ φ(µi;x
>
i β̂, τ̂

2)×
Ni∏
j=1

φ(vij ;µi, σ
2
i )

p(ṽi | µi, v̌i, σ2i ,yi) ∝

 ỹi1∏
j=1

I{hκ̂(c0) ≤ vij ≤ hκ̂(c1)}φ(vij ;µi, σ
2
i )


×

 ỹi2∏
j=ỹi1+1

I{hκ̂(c1) ≤ vij ≤ hκ̂(c2)}φ(vij ;µi, σ
2
i )


× · · · ×

 ni∏
j=ỹi,G−1+1

I{hκ̂(cG−1) ≤ vij < hκ̂(cG)}φ(vij ;µi, σ
2
i )

 ,
p(v̌i | µi, ṽi, σ2i ,yi) =

Ni∏
j=ni+1

φ(vij ;µi, σ
2
i ),

p(σ2i | µi, ṽi, v̌i,yi) ∝ (σ2i )
(−λ̂/2+1)−1 exp

(
− λ̂ϕ̂i

2σ2i

)
Ni∏
j=1

φ(vij ;µi, σ
2
i ),

which leads to the full conditional distributions (13).
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A.2 Appendix for the HLS data

HLS in 2013 was conducted based on the two stage stratified sampling. The first stage sampling
strata corresponds to the sampling areas used in Population Census in 2010 and the second
stage sampling strata consists of the households in the area. We have the information which
areas are sampled in the first stage and the total number of the households in each area at
the time when Population Census in 2010 was conducted. We also know which municipality
the sampled areas in the first stage belong to. In the second stage, all households are sampled
if the total number of the households in the area is less than 70, otherwise the number of
sampled households is approximately 50. Combining these information, the sample size in each
municipality is estimated.
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