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Abstract

In the analysis of binary longitudinal data, it is of interest to model a dynamic relationship
between a response and covariates as a function of time, while also investigating similar pat-
terns of time-dependent interactions. We present a novel generalized varying-coefficient
model that accounts for within-subject variability and simultaneously clusters varying-
coefficient functions, without restricting the number of clusters nor overfitting the data.
In the analysis of a heterogeneous series of binary data, the model extracts population-level
fixed effects, cluster-level varying effects, and subject-level random effects. Various sim-
ulation studies show the validity and utility of the proposed method to correctly specify
cluster-specific varying-coefficients when the number of clusters is unknown. The proposed
method is applied to a heterogeneous series of binary data in the German Socioeconomic
Panel (GSOEP) study, where we identify three major clusters demonstrating the different
varying effects of socioeconomic predictors as a function of age on the working status.

Keywords: Longitudinal data, Probit mixed models, Varying-coefficients, Partial collapsed
Gibbs sampler, Dirichlet process.

1. Introduction

Mixed-effects models are commonly used in binary longitudinal studies in the social, be-
havioral, and health sciences. These models’ popularity stems from their ability to capture
longitudinal effects generated by repeated-measurement processes. To be more specific, ran-
dom effects are introduced into linear models with only fixed effects to reflect the correlation
between observations on the same subject. This extension also avoids some of the technical
issues that can arise during the analysis of variance. For example, Stiratelli et al. (1984)
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showed that mixed-effects models have advantages over Markov models when dealing with
a series of binary data because they are better at interpreting the effects of covariates and
circumventing some of the difficult issues caused by unbalanced design or missing values.
Other approaches to dealing with serial effects in longitudinal data provide practical rec-
ommendations by combining the mixed-effects models with other statistical methods (Varin
and Czado, 2009; Guerra et al., 2012).

A varying-coefficient model has been shown to be extremely effective for modeling of
time-varying effects in longitudinal studies (Hastie and Tibshirani, 1993; Hoover et al.,
1998; Wu et al., 1998; Lang and Brezger, 2004; Sun and Wu, 2005; Fan and Zhang, 2008;
Lu and Zhang, 2009; Jeong and Park, 2016; Jeong et al., 2017; Park and Jeong, 2018). Such
varying-coefficient functions can be easily modeled by Bayesian methods, e.g., Bayesian P-
splines (Lang and Brezger, 2004), series priors (Shen and Ghosal, 2015), Gaussian process
priors (Neal, 1998), Bayesian wavelets (Chipman et al., 1997), and free-knot splines and
adaptive knot selection (Smith and Kohn, 1996; DiMatteo et al., 2001). The main advantage
of using the Bayesian approaches is that uncertainty quantification is naturally performed
with credible sets obtained by Markov chain Monte Carlo (MCMC). The method of free-
knot splines and adaptive knot selection, in particular, exhibits natural local adaptation to
spatially inhomogeneous smoothness (Smith and Kohn, 1996; Kohn et al., 2001; Ruppert
et al., 2003; Kang and Jeong, 2023).

Traditional varying-coefficient mixed models focus on exploring common varying coef-
ficients shared across all subjects. However, because there are often various sources of
heterogeneity among subjects, particularly in longitudinal studies, such a common structure
of varying coefficients may be oversimplified, leading to incorrect conclusions. To uncover
the heterogeneity of the population, many model-based clustering approaches have been
proposed from both frequentist and Bayesian perspectives (Lenk and DeSarbo, 2000; James
and Sugar, 2003; Heard et al., 2006; Shi and Wang, 2008; Aßmann and Boysen-Hogrefe,
2011; Coffey et al., 2014; Berrettini et al., 2022). For example, James and Sugar (2003) sug-
gested modeling individual basis coefficients by random effects with the mean indexed by
the cluster. Heard et al. (2006) developed a hierarchical Bayesian model that avoids MCMC
using their particular model formulation. Coffey et al. (2014) developed a clustering method
for longitudinal gene profiles via penalized splines. More recently, Berrettini et al. (2022)
devised a semi-parametric mixture model with mixture weights and conditional means that
are modeled as nonlinear functions of covariates. Although these frameworks clearly of-
fer inferential advantages in the presence of heterogeneity, most require determining the
appropriate number of clusters and additional evaluation steps decoupled from parameter
estimation such as cross validation.

In contrast, the Bayesian nonparametric framework naturally chooses the required num-
ber of clusters in a data-driven way by using stochastic process priors that randomly partition
a sample space to be clustered. These priors include the Dirichlet process (DP) (Ferguson,
1973), the two-parameter Poisson-Dirichlet process (Pitman and Yor, 1997), and the gen-
eralized stick-breaking process (Ishwaran and James, 2001), to name a few. As they are
basically infinite-dimensional priors, they have become essential clustering tools for model-
ing an infinite number of clusters in various areas (Ishwaran and James, 2001; Teh et al.,
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2006; Lau and Green, 2007; Wallach et al., 2010; Canale and Dunson, 2011; Yerebakan et al.,
2014; Kyung, 2015). In the context of nonparametric regression, Müller et al. (1996) em-
ployed the DP prior to jointly partition the support of response and predictor variables,
which performs locally weighted regression estimation in terms of Bayesian predictive infer-
ence. Gelfand et al. (2005) incorporates the dependent DP prior (MacEachern et al., 2001)
into the Gaussian process prior for spatial analysis. Ray and Mallick (2006) studies the
Bayesian wavelet regression model where the DP prior has a base measure that expedites
sparsity of the wavelet coefficients. Petrone et al. (2009) further considered the local het-
erogeneity in a subgroup of curves by proposing a hybrid Dirichlet prior that overcomes the
global heterogeneity. Chib and Greenberg (2010) used the DP prior for modeling an error
distribution while approximating nonlinear components via cubic splines with a smoothness
prior regularizing difference of spline coefficients at the knot locations. Rodriguez and Dun-
son (2014) employed the generalized DP prior to cluster curves smoothed by the free-knot
spline method. Suarez and Ghosal (2016) assigned the DP prior on each wavelet coefficient
independently not jointly on the set of coefficients with the sparsity structure used in Ray
and Mallick (2006). Margaritella et al. (2021) applied the DP prior to the clustering of
functional principle scores, which improves the curve and correlation reconstruction.

While functional clustering for continuous response has emerged, there have been rela-
tively fewer works for longitudinal binary responses with nonparametric components. Kuss
et al. (2006) considered a parametric logistic model where the cluster allocation is assumed
to follow a multinomial distribution. Similarly, Aßmann and Boysen-Hogrefe (2011) de-
signed a Bayesian probit regression model with the multinomial label allocation. On the
one hand, Hannah et al. (2011) proposed a DP mixture model for generalized linear models
in the spirit of Müller et al. (1996), with the restriction of a linear relationship within each
cluster. More recently, Zhu et al. (2021) devised a model-free clustering method for binary
longitudinal data using a pairwise penalty to nearby clusters, but their model does not ac-
count for any functional effects. We find that none of the aforementioned studies deal with
both model-based clustering on a mixed-effects model (especially with the DP prior) and
nonparametric function estimation with guaranteed smoothness.

Our contribution is threefold. First, we propose a flexible framework for simultaneously
modeling population-level fixed effects, cluster-level varying effects, and subject-level ran-
dom effects in the analysis of binary longitudinal data. The proposed model is a probit
varying-coefficient mixed model that flexibly and adaptively identifies different subpopula-
tions having their own varying-coefficient functions that can be either constant, linear, or
nonlinear. Second, we devise new prior distributions for the posterior analysis and effective
functional clustering of the proposed model. In particular, it is well known that the mea-
surement scale of data must be considered in choosing the base measure for the DP prior
(Gelman et al., 2015). We carefully design a prior distribution with a reasonable scale so that
it can start a new cluster well within a sampler to account for an infinite number of clusters,
while achieving suitable smoothing for function estimation with spatial adaptation. Third,
we construct a partially collapsed Gibbs (PCG) sampler to cover the varying-dimensional
parameter issue of a standard Gibbs sampler and facilitate posterior computation via the
method of partial collapse (van Dyk and Park, 2008; Park and van Dyk, 2009). To maintain
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a transition kernel, a PCG sampler, unlike a standard Gibbs sampler, requires its steps to
be performed in a specific order. We thus develop a PCG sampler that can be used in the
fitting of the proposed model.

The remainder of this paper is organized as follows. In Section 2, we describe the
probit varying-coefficient mixed model and discuss how the DP prior constructs model-
based clustering. Section 3 specifies prior distributions and constructs efficient sampling
steps based on the method of partial collapse. In Section 4, simulation studies are presented
to validate the proposed method. Section 5 applies the proposed model to the GSOEP
data, and Section 6 discusses the results. Appendix A contains a detailed description of the
proposed method, while Appendix B describes how to install the R package for the proposed
method. The R package is currently available on the first author’s github1 to demonstrate
that all of the results in Sections 4 and 5 can be reproduced.

2. Probit Varying-Coefficient Mixed Models for Functional Clustering

Let Yij represent a binary response observed at time tij for observation j on subject i,
where i = 1, . . . , N and j = 1, . . . , ni. The outcome of the response Yij can be expressed as
an indicator function of the sign of a latent variable Lij , i.e.,

Yij = I(Lij > 0),

where the latent variable is introduced for computational convenience but can be interpreted
as a utility difference between choosing Yij = 1 or 0.

In longitudinal studies, a relationship between the latent variable Lij and the available
covariates is commonly specified by a generalized linear mixed model to account for between-
subject variability. Specifically, the generalized linear mixed model is expressed as

Lij = X
(j)
i β + Z

(j)
i bi + ǫij , (1)

where Xi = (xi1, . . . ,xiq) and Zi = (zi1, . . . , zir) are ni × q, and ni × r design matrices for

subject i, X
(j)
i and Z

(j)
i denote the jth row vectors of Xi and Zi, respectively, β is a q × 1

vector of fixed effects, bi is a r × 1 vector of random effects for subject i, and ǫij is an
underlying error term that is assumed to follow a logistic or normal distribution in the logit
or probit model, respectively. Note that the model in (1) involves multiple random effects
on binary longitudinal data; for linear mixed models with multiple random effects, see Vines
et al. (1996); Meng and van Dyk (1998); van Dyk (2000); Kim et al. (2013); Park and Min
(2016).

In the presence of within-subject correlation over time, Jeong et al. (2017) extends the
generalized linear mixed model in (1) to incorporate varying-coefficients α(t) that vary over
time t, i.e.,

Lij = W
(j)
i α(tij) +X

(j)
i β + Z

(j)
i bi + ǫij , (2)

1https://github.com/Jwsohn612/fvcc
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where Wi = (wi1, . . . ,wip) is ni × p design matrices for subject i, W
(j)
i denotes the jth row

vector of Wi, α(t) = (α1(t), . . . , αp(t))
⊤ is a p× 1 vector of unknown smooth functions that

vary over time t, and tij is the jth time of the ith subject. Note that α(tij) is a vector of real
values of α(t) evaluated at tij . The lth time-varying function in the vector α(t), i.e., αl(t)
can be modeled with regression splines that use a linear combination of basis functions, e.g.,

Bl(t) =
(

1, t, |t− ωl1|
3 , |t− ωl2|

3 , . . . , |t− ωlMl
|3
)⊤
, (3)

where ωl = (ωl1, . . . , ωlMl
) is an ordered sequence of knot-candidate locations within the

range of observed time points, for l = 1, . . . , p. The amount of smoothness for the lth
regression spline is controlled by the number Ml and locations ωl.

To account for heterogeneity among the subjects while borrowing strength across the
different subjects, we consider allocating each subject to its own cluster with different func-
tions of varying-coefficients. To do so, we represent the set of functions α(t) in (2) as the
subject-level varying-coefficients, i.e., αi(t) = (αi1(t), . . . , αip(t))

⊤. Each of the unknown
subject-specific varying-coefficient functions is assumed to fall in the linear span of a set of
its own basis functions according to basis selection, i.e.,

αil(t) ≈ (Bl(t)⊙ γil)
⊤φil,

where ⊙ denotes element-wise multiplication of vectors in accordance with values of γil,
γil = (1, γil0, γil1, . . . , γilMl

)⊤ denotes an (Ml + 2)× 1 vector of indicator variables for basis
inclusion, γilm = 1 represents that the (m+ 2)th element in γil is used as a basis function,
and φil denotes an (Ml +2)× 1 vector of basis coefficients corresponding to the lth varying-
coefficient for subject i. The first element in γil equals one, so the constant basis function
in (3) always remains in the model. When the corresponding covariate has no interaction
with time, we have γilm = 0 for m = 0, . . . ,Ml, and the model in (2) is reduced to the
generalized linear mixed model in (1). That is, when the true varying-coefficient function
is constant, our model can estimate it as a constant function by choosing γilm = 0 for
m = 0, . . . ,Ml, reducing modeling bias and avoiding the possibility of overfitting. When
the true varying-coefficient function is nonlinear, selecting appropriate knots allows the
estimated function to adapt to the true one’s curvature. That is, we use data to adjust the
spatially inhomogeneous smoothness of a varying-coefficient function, so that more knots
are used in a high-curvature region and fewer knots in a low-curvature region. This implies
that we do not need to a priori determine whether a varying-coefficient function is constant,
linear, or nonlinear (Jeong and Park, 2016; Jeong et al., 2017, 2022). The value ofMl for the
knot-candidates is not crucial as long as it is large enough to capture the global and local
characteristics of a function. Following the literature (e.g., Kohn et al., 2001), we recommend
using 20 to 30 knot-candidates chosen by the sample quantiles of the time variable t. If the
time variable is repeatedly observed at some points in time, Ml should not be larger than
the number of the non-duplicated values for t.

Next, the individualized vector of functions αi(t) is given the DP prior, which induces
functional clustering with respect to the functions. Section 3.1 describes how the model
leverages the DP prior to cluster varying-coefficients in detail. Let Ci = k denote that
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subject i belongs to cluster k sharing identical basis functions for varying-coefficients, for
i = 1, . . . , N and k = 1, . . . , K. Then through the DP prior, we have αi(t) = α∗

k(t), which
implies γil = γ∗

kl and φil = φ∗
kl as well. To be specific,

αil(t) = α∗
kl(t) ≈ (Bl(t)⊙ γ∗

kl)
⊤φ∗

kl, l = 1, . . . , p, (4)

for the ith subject who is allocated to cluster k, having Ci = k. Thus, for the ith subject,
the model in (2) can be represented in a matrix form,

Li =

p
∑

l=1

(

wil ⊙ α∗
Cil

(tij)|
ni

j=1

)

+Xiβ + Zibi + ǫi, (5)

where α∗
Cil

(tij)|
ni

j=1 =
(

α∗
Cil

(ti1), . . . , α
∗
Cil

(tini
)
)⊤

is a ni×1 vector of real values, Li is an ni×1
vector of latent variables, and ǫi is a ni × 1 error vector. This representation implies that
the clustering process is implemented with information about only dynamic covariates.

To express (5) with the approximation in (4), we define an ni × (Ml + 2) matrix B∗
il =

(

⊕ni

j=1(Bl(tij)⊙ γ∗
Cil

)
)⊤

where ⊕ represents the direct sum of vectors or matrices, for the
lth covariate of the ith subject. It is obvious that this matrix can have zero column vectors
when the corresponding elements of γ∗

Cil
are zero. By removing the columns of 0’s, we can

obtain an ni × |γ∗
Cil

| submatrix of B∗
il, which is denoted by B⋆

il, where |γ∗
Cil

| =
∑

m γ
∗
Cilm

.
Then the model in (5) can be written as

Li = W⋆
i(γ∗

Ci
)φ

⋆
(γ∗

Ci
) +Xiβ + Zibi + ǫi, (6)

where φ⋆
(γ∗

Ci
) is a vector of cluster-level basis coefficients whose size is the sum of all elements

of γ∗
Ci
. It is

φ⋆
(γ∗

Ci
) =

(

φ∗
γ∗

Ci1
, . . . ,φ∗

γ∗

Cip

)⊤

∈ R
|γ∗

Ci
|×1,

where |γ∗
Ci
| =

∑

l,m γ
∗
Cilm

and φ∗
γ∗

Cil
is a |γ∗

Cil
|×1 subvector of φ∗

Cil
whose elements correspond

to nonzero columns of B∗
il. Then, the design matrix W⋆

i(γ∗

Ci
) is constructed by multiplying

each set of selected basis terms to each column of Wi, i.e.,

W⋆
i(γ∗

Ci
) =

[

wi11
⊤
|γ∗

Ci1
| ⊙B⋆

i1, . . . ,wip1
⊤
|γ∗

Cip
| ⊙B⋆

ip

]

∈ R
ni×|γ∗

Ci
|.

where 1|γ∗

Cil
| is a vector of ones in R

|γ∗

Cil
|×1

.

3. Bayesian Analysis

3.1. Dirichlet Process Prior

In this paper, the DP is used as a prior distribution to cluster αi(t), and this clustering
procedure is equivalent to clustering the set of (φi,γi), where φi = (φi1, . . . ,φip)

⊤ and
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γi = (γi1, . . . ,γip)
⊤, as implied in (4). This process assigning the DP prior to the set of

(φi,γi) is expressed as

(φi,γi)|H
iid
∼ H, i = 1, . . . , N,

H ∼ DP(ν,H0),

where ν > 0 and H0 is a base distribution that randomly generates cluster-level parameters
for (φi,γi). As another representation of the DP, it is worthwhile to look at the stick-
breaking process (Sethuraman, 1994; Ishwaran and James, 2001) that allows the truncation
of the summation in the DP after a large K component, i.e.,

H(·) =

∞
∑

k=1

πkδ(φ∗

k,γ
∗

k
)(·) ≈

K
∑

k=1

πkδ(φ∗

k,γ
∗

k
)(·), (φ∗

k,γ
∗
k)

iid
∼ H0, (7)

where φ∗
k = (φ∗

k1, . . . ,φ
∗
kp)

⊤ and γ∗
k = (γ∗

k1, . . . ,γ
∗
kp)

⊤ are the parameters for cluster k,
δ(φ∗

k,γ
∗

k
)(·) is a Dirac measure at (φ∗

k,γ
∗
k), πk is the probability mass at atom (φ∗

k,γ
∗
k), and

K is a finite truncation for the maximum number of clusters. The equation in (7) implies
that the model in (6) explores latent subpopulations by limiting the maximum number
of subpopulations to K, not to infinity; see Ishwaran and James (2001) for theoretical
arguments. Meanwhile, the set of cluster-level parameters, φ∗

k and γ∗
k, is drawn from the

base distribution H0, and the random weight πk derives from a set of random variables that
each follows a beta distribution, i.e.,

πk = πk(V) = Vk
∏

ℓ<k

(1− Vℓ), Vk
ind
∼ Beta (1, ν) , k = 1, . . . , K − 1,

where V = {V1, . . . , VK} and VK = 1, which guarantees the sum of all random weights is
equal to one. Then, we can write P (Ci = k|V) = πk(V). The specification of ν may affect
clustering performance. As ν goes to 0, the concentration toward the existing clusters gets
stronger by decreasing the probability that a vector (φi,γi) forms a new cluster. In this
work, we set ν = 1 by default so that every subject has the equal probability for shaping a
new cluster.

3.2. Prior Specification for the Submodel Parameters

This section discusses the specification of prior distributions of each model component.
The set of indicator variables γ∗

kl has a beta-binomial prior distribution, i.e.,

p(γ∗
kl) ∝ B(|γ∗

kl|+ a,Ml + 1− |γ∗
kl|+ b), (8)

for k = 1, . . . , K and l = 1, . . . , p, where B(·, ·) denotes the beta function. If a = b = 1,
this prior distribution allocates equal probabilities for the number of active knots (Scott and
Berger, 2010). This choice has been shown work successfully for function estimation with
knot selection (Jeong and Park, 2016; Jeong et al., 2017).
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For the basis coefficients φ⋆
(γ∗

k
) that have varying dimension in each iteration, we consider

the following mixture of g-priors,

φ⋆
(γ∗

k
)|(γ

∗
k, τk)

ind
∼ N|γ∗

k
|

(

0, τkR
−1
k(γ∗

k
)

)

,

Rk(γ∗

k
) =

N
∑

i=1

W⋆⊤
i(γ∗

k
)W

⋆
i(γ∗

k
), k = 1, . . . , K,

τk
iid
∼ IG(1/2, N/2), k = 1 . . . , K.

(9)

By characterizing the scale parameter with the total number of subjects, the prior in (9)
corresponds to a Zellner-Siow prior, which is a multivariate Cauchy prior marginally for
φ⋆

(γ∗

k
) (Liang et al., 2008). Therefore, the base measure H0 is constructed by combining a

beta-binomial distribution and a multivariate Cauchy distribution.
The prior in (9) has several desirable properties. First, the prior distribution is invariant

to linear transformations of the design matrix (Zellner, 1986). This means that the posterior
distribution of the varying-coefficients is not affected by linear transformations of the basis
functions in (3). More importantly, the prior in (9) utilizes the population-level covariance,
which is determined by assuming that all individuals belong to the kth cluster. This spe-
cific structure enhances the convergence efficiency of MCMC because the cluster-level basis
coefficients φ⋆

(γ∗

k
) of empty clusters are sampled by taking advantage of the summed infor-

mation of all subjects. As a result, the prior can naturally begin a new cluster to which a
few subjects may belong. Indeed, it is well known that choosing a reasonable scale for the
base measure H0 is very important in using the DP prior (Gelman et al., 2015). In this
regard, our prior construction in (9) has a clear advantage over the related studies, which
use the DP prior but do not fully account the concern of scale (Ray and Mallick, 2006;
Rodriguez and Dunson, 2014). Furthermore, having the right scale may be difficult with
other penalty priors. For example, the Bayesian P-spline is a widely used Bayesian approach
for nonparametric regression (Lang and Brezger, 2004). Since its covariance structure plays
an important role in smoothing, however, the prior distribution cannot be simply modified
to have a reasonable scale for the DP prior.

The remaining specification of priors for the fixed-dimensional parameter is standard.
As for the fixed effects β, we assign a multivariate normal distribution whose covariance
matrix is positive definite, i.e.,

β ∼ Nq(0,P).

For practical purposes, P can be chosen as a diagonal matrix with large diagonal entries.
For random effects, a multivariate normal distribution is used to generate the effects,

bi|Ψ
iid
∼ Nr(0,Ψ), i = 1, . . . , N,

where Ψ is the covariance matrix of the random effects and has an inverse-Wishart prior,

Ψ ∼ IW(u,D).

In our study, u and D are fixed in advance to make the prior distribution diffuse.
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3.3. Partially Collapsed Gibbs Sampler

Given the prior distributions in Section 3.2, we propose a sampling algorithm used to
simulate the target posterior distribution,

p(φ⋆
(γ∗),γ

∗,β,b,C,V, τ ,Ψ,L|Y), (10)

where γ∗ = {γ∗
1, . . . ,γ

∗
K}, φ

⋆
(γ∗) = {φ⋆

(γ∗

1)
, . . . ,φ⋆

(γ∗

K
)}, b = {b1, . . . ,bN}, τ = {τ1, . . . , τK},

C = {C1, . . . , CN}, L = {L1, . . . ,LN}, and Y = {Y1, . . . ,YN} denoting Yi as a set of
binary responses for subject i. To simulate the target posterior distribution in (10), a
standard Gibbs sampler based on its full conditional distributions cannot be implemented
because the dimension |γ∗

k| × 1 of φ⋆
(γ∗) depends on another model component γ∗. In such a

varying-dimensional problem, PCG sampling avoids the need of jumping between spaces of
different dimensions through marginalization, permutation, and trimming, thereby making
it implementable with the expectation of faster convergence; refer to Section 4 in Park and
van Dyk (2009). In this study, we consider marginalizing the random effects b and the basis
coefficients φ⋆

(γ∗) in (10), thereby producing the following marginal distributions,

p(γ∗,β,C,V, τ ,Ψ,L|Y), (11)

p(φ⋆
(γ∗),γ

∗,β,C,V, τ ,Ψ,L|Y). (12)

One iteration of the PCG sampler is shown in Algorithm 1. Steps 1 and 2 are marginalized
by using (11), while Steps 3 and 4 are marginalized by using (12). To maintain the target
stationary distribution of Algorithm 1, the sampling steps are permuted in a specific order.
Trimming is used to remove the redundant samples of components. For more applications
of the PCG sampling including other varying dimensional cases, refer to Park and van Dyk
(2009); Jeong and Park (2016); Jeong et al. (2017); Park and Jeong (2018); Park et al.
(2019). Because the target stationary distribution of Algorithm 1 is maintained in a specific
order, the change of the order of sampling steps may not guarantee the stationarity of a
Markov chain, and care must be taken not to change the sampling order; refer to van Dyk
and Park (2008). The details of Algorithm 1 are given in Appendix A.

4. A Simulation Study

In this section, we validate the robustness and sensitivity of the proposed method through
extensive simulation studies. All simulation results are based on 300 replicated datasets.

4.1. Simulation Setting

Throughout the simulation, we mainly consider three groups of varying coefficients, and
the total number N of subjects and the number of subjects in each cluster will be specified
later based on simulation setups. The values of an underlying effect modifier t, {tij : i =
1, . . . , N, j = 1, . . . , ni}, are randomly generated from a uniform distribution between 0 and
1, and the values of known covariates for subject i, i.e., Wi, Xi, and Zi, are independently
generated from a standard normal distribution, except that the first column of both Wi and
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Algorithm 1: One iteration of the PCG sampler

Initialize: (φ⋆
(γ∗),γ

∗,β,b,C,V, τ ,Ψ,L)

for k = 1, 2, . . . , K do

for l = 1, 2, . . . , p do
Step 1: Draw γ∗

kl from p(γ∗
kl|γ

∗
−kl,β,C,V, τ ,Ψ,L,Y)

for k = 1, 2, . . . , K do
Step 2: Draw Vk from p(Vk|γ

∗,β,C, τ ,Ψ,L,Y)

for k = 1, 2, . . . , K do
Step 3: Draw φ⋆

(γ∗

k
) from p(φ⋆

(γ∗

k
)|γ

∗,β,C,V, τ ,Ψ,L,Y)

Step 4: Draw β from p(β|φ⋆
(γ∗),γ

∗,C,V, τ ,Ψ,L,Y),

for i = 1, 2, . . . , N do
Step 5: Draw bi from p(bi|φ

⋆
(γ∗),γ

∗,β,C,V, τ ,Ψ,L,Y)

for k = 1, 2, . . . , K do
Step 6: Draw τk from p(τk|φ

⋆
(γ∗),γ

∗,β,b,C,V,Ψ,L,Y)

Step 7: Draw Ψ from p(Ψ|φ⋆
(γ∗),γ

∗,β,b,C,V, τ ,L,Y),

for i = 1, 2, . . . , N do

for j = 1, 2, . . . , ni do
Step 8: Draw Lij from p(Lij|φ

⋆
(γ∗),γ

∗,β,b,C,V, τ ,Ψ,Y)

for i = 1, 2, . . . , N do
Step 9: Draw Ci from p(Ci|φ

⋆
(γ∗),γ

∗,β,b,V, τ ,Ψ,L,Y)

Zi is set to a column vector of 1’s. Within the range of t between 0 and 1, αkl(t) denotes
a varying-coefficient function of the lth covariate in cluster k. The varying coefficients for
three clusters are constant, linear, or nonlinear, as described below:

α11(t) = 2 exp{−200(t− 0.2)2}+ exp{−10(t− 0.6)2},

α12(t) = sin(2πt3),

α21(t) = sin{8(t− 0.5)}+ 1.5 exp{−400(t− 0.5)2},

α22(t) = 2t,

α31(t) = − 2t,

α32(t) = 0.

The true values of the other model parameters are set to β = (β1, β2)
⊤ = (1,−1)⊤ and

Ψ =

(

ψ11 ψ12

ψ12 ψ22

)

=

(

0.5 0.25
0.25 0.8

)

.

The latent response Lij of the probit varying-coefficient mixed model is drawn from

Lij ∼ N
(

W
(j)
i αCi

(tij) +X
(j)
i β + Z

(j)
i bi, 1

)

, i = 1, . . . , N, j = 1, . . . , ni,
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Table 1: RMSE of the posterior median and coverage probabilities of the 95% credible intervals for the
fixed-dimensional parameters obtained from 300 replicated datasets.

RMSE 95% coverage

Parameter ν = 0.1 ν = 1 ν = 10 ν = 0.1 ν = 1 ν = 10

Scenario I β1 0.029 0.030 0.031 0.930 0.930 0.930
β2 0.032 0.033 0.033 0.913 0.920 0.909
ψ11 0.070 0.072 0.072 0.937 0.916 0.937
ψ12 0.042 0.043 0.043 0.955 0.944 0.948
ψ22 0.073 0.074 0.075 0.937 0.934 0.941

Scenario II β1 0.042 0.046 0.044 0.962 0.919 0.920
β2 0.041 0.047 0.046 0.941 0.912 0.934
ψ11 0.119 0.124 0.121 0.882 0.908 0.885
ψ12 0.067 0.069 0.069 0.948 0.951 0.944
ψ22 0.102 0.110 0.107 0.948 0.930 0.948

Scenario III β1 0.029 0.030 0.031 0.946 0.932 0.917
β2 0.032 0.031 0.034 0.907 0.929 0.897
ψ11 0.063 0.064 0.064 0.929 0.943 0.921
ψ12 0.041 0.041 0.042 0.946 0.957 0.952
ψ22 0.077 0.077 0.079 0.946 0.954 0.941

where αCi
(tij) = (αCi1(tij), αCi2(tij))

⊤ and it is used to generate a series of binary data such
that Yij = I(Lij > 0) for observation j on subject i.

4.2. Performance of the Proposed Method

In this section, we demonstrate the performance of the proposed method under various
simulation setups. We consider three different scenarios: Scenario I, where each cluster
has 400 subjects (N = 1200), Scenario II, where each cluster has 200 subjects (N = 600),
and Scenario III, where the three clusters have 600, 400, and 200 subjects, respectively
(N = 1200). For each scenario, three different values of the concentration parameter are also
considered to examine the robustness of the DP prior: ν ∈ {0.1, 1, 10}. The proposed method
is applied to each combination of the scenarios for the sample size and the concentration
parameter with 300 replications of the datasets. We run 20,000 iterations of the PCG
sampler, discarding the first half of the draws as burn-in and using the second half for our
posterior analysis.

The side-by-side boxplots in Figure 1 illustrate clustering performance for the 300 repli-
cated datasets in terms of precision, recall, and F1-score. The clustering labels of all subjects
are chosen by the posterior modes. As expected, clusters with larger sample sizes perform
better in clustering. The metrics show similar results across different values of the concentra-
tion parameter ν, indicating that clustering performance is robust to the specification of the
hyperparameter for the DP prior. We calculate coverage probabilities of the pointwise 95%
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Figure 1: Performance measures for the clustering procedure obtained from 300 replicated datasets with
ν = 0.1 (red), ν = 1 (green), and ν = 10 (blue).

credible bands with the 300 replicates, where the bands are specified by the 2.5% and 97.5%
posterior quantiles. Figure 2 shows that the coverage probabilities are close to the nominal
value of 0.95, which validates the uncertainty quantification through the posterior distribu-
tion. The coverage probabilities are consistent for different values of ν, further supporting
the robustness of our proposed method against the hyperparameter specification. With 300
replicated datasets, Table 1 shows the root-mean-square errors (RMSE) of the posterior
median and coverage probabilities of the 95% credible intervals for the fixed-dimensional
parameters. The results indicate that the fixed-dimensional parameters are also insensitive
to the hyperparameter specification.

To assess the efficiency of our proposed PCG sampler, we calculate the multivariate ef-
fective sample size (ESS) (Vats et al., 2019) for all simulation settings, as shown in Figure 3.
The second half of the chain with 20,000 iterations is used to calculate the multivariate
ESS, along with the running time of the sampler on a server equipped with CentOS7 and
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Figure 2: Coverage probabilities of the pointwise 95% credible bands for the varying coefficients obtained
from 300 replicated datasets with ν = 0.1 (red), ν = 1 (green), and ν = 10 (blue).
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Figure 3: Estimates of the multivariate ESS out of 10,000 PCG iterations and the multivariate ESS per
second. The estimates of the multivariate ESS are replaced by 10,000 if they are larger than 10,000.

two Sky Lake CPUs @ 2.60GHz. The target parameters have a dimension of 185, in-
cluding two varying-coefficient functions with 30 knots for each of three clusters and five
fixed-dimensional parameters. As shown in Figure 3, the multivariate ESS is approximately
4,000–5,000 out of 10,000 iterations, implying that the proposed sampling algorithm exhibits
reasonable convergence characteristics. Figure 3 also shows the multivariate ESS divided by
time (seconds), providing the number of independent draws obtained per unit time. The
results demonstrate that roughly 1.5 to 2.5 independent draws are obtained per second.
Furthermore, the concentration hyperparameter has no significant influence on the multi-
variate ESS, indicating the robustness of our proposed method to the specification of the
hyperparameter.

Figure 4 overlays the pointwise posterior medians of the varying coefficients of the 300
replicated datasets using the default concentration parameter value of ν = 1. Our results
show that the estimated posterior medians become closer to the true functions as sample
sizes increase. We also examined the posterior medians obtained with alternative values
of ν, specifically ν = 0.1 and ν = 10, but found that the results were similar and therefore
omitted here.

4.3. Effects of Ignoring Subpopulation

To evaluate the necessity of subpopulation modeling, we compared our proposed method
with two competing approaches that do not account for functional clustering: Jeong et al.
(2017) and the mgcv package (Wood, 2017). Jeong et al. (2017) is a fully Bayesian method
for estimating probit varying-coefficient mixed models with a homogeneous population using
free-knot splines (Smith and Kohn, 1996). The mgcv package uses penalized quasi-likelihood
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Figure 4: Pointwise posterior medians of the varying coefficients for 300 replicated datasets (gray solid lines)
and the true varying-coefficient functions (red solid lines).
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pointwise posterior medians for Jeong et al. (2017) and the penalized quasi-likelihood estimates for mgcv.

Table 2: RMSE of the estimates and coverage probabilities of the 95% intervals for the fixed-dimensional
parameters obtained from 300 replicated datasets. The coverage probabilities are obtained by the 95%
credible intervals for Jeong et al. (2017) and the 95% confidence intervals approximated with standard
errors for mgcv. The mgcv package does not provide standard errors for the covariance of random effects.

Proposed method (ν = 1) Jeong et al. (2017) mgcv

Parameter RMSE 95% coverage RMSE 95% coverage RMSE 95% coverage

β1 0.030 0.930 0.205 0.000 0.190 0.000
β2 0.033 0.920 0.204 0.000 0.190 0.000
ψ11 0.072 0.916 0.220 0.000 0.199 -
ψ12 0.043 0.944 0.097 0.170 0.099 -
ψ22 0.074 0.934 0.299 0.000 0.351 -

to estimate the same model. To avoid redundancy, we compared the two competing methods
with our proposed method using replicated datasets under Scenario I specified in Section 4.2

In Figure 5, we present the estimates of varying coefficients obtained by two competing
methods that do not account for functional clustering. The estimated trends appear to be
the average of the varying coefficients across the clusters in Scenario I, resulting in significant
estimation bias for the cluster-specific effects. Furthermore, ignoring subpopulations leads to
significant estimation bias for the fixed-dimensional parameters, as demonstrated in Table 2,
despite the fact that they are common across all clusters. This suggests that accounting for
subpopulation effects is crucial even for parameters that are shared among clusters.
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Figure 6: Estimates of varying coefficients of 300 replications (solid gray lines) and the true functions (solid
red lines). The estimates are the pointwise posterior medians for the proposed method and Jeong et al.
(2017) and the penalized quasi-likelihood estimates for mgcv.
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Figure 7: Coverage probabilities of the 95% intervals for the varying coefficients obtained from 300 replicated
datasets: the proposed method (red), Jeong et al. (2017) (blue), and mgcv (green). The coverage probabilities
are obtained by the pointwise 95% credible bands for the proposed method and Jeong et al. (2017) and the
pointwise 95% confidence bands approximated with standard errors for mgcv.

4.4. Homogeneous Population

We also investigate the performance of the proposed method in a homogeneous popu-
lation with a single true cluster. To generate the simulation datasets, we set all subjects
to have the same values of α11(t) and α12(t), as described in Section 4.1. Specifically, we
set αCi

(tij) = (α11(tij), α12(tij))
⊤ for all i, resulting in a single cluster. The number of sub-

jects is set to N = 300, and all other simulation settings are identical to those specified in
Section 4.1.

Figure 6 displays the pointwise posterior medians of the varying coefficients using the
proposed method and two competitors under the homogeneous population assumption. The
proposed method shows a reasonably small estimation bias compared to Jeong et al. (2017)
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Table 3: RMSE of the estimates and coverage probabilities of the 95% intervals for the fixed-dimensional
parameters obtained from 300 replicated datasets. The coverage probabilities are obtained by the 95%
credible intervals for Jeong et al. (2017) and the 95% confidence intervals approximated with standard
errors for mgcv. The mgcv package does not provide standard errors for the covariance of random effects.

Proposed method (ν = 1) Jeong et al. (2017) mgcv

Parameter RMSE 95% coverage RMSE 95% coverage RMSE 95% coverage

β1 0.055 0.954 0.048 0.960 0.058 0.916
β2 0.055 0.944 0.050 0.953 0.058 0.923
ψ11 0.111 0.923 0.089 0.950 0.678 -
ψ12 0.073 0.958 0.066 0.960 0.093 -
ψ22 0.143 0.944 0.135 0.943 0.148 -

despite some deviation for the incorrectly clustered subjects, implying its applicability with-
out knowing the population structure. In contrast, mgcv yields larger estimation bias than
the other two methods. Figure 7 presents the coverage probabilities of the pointwise 95%
credible or confidence bands of the varying coefficients, further demonstrating the worse
performance of mgcv. Table 3 summarizes the results of the fixed-dimensional parameters,
indicating that the RMSEs of the proposed method are slightly larger than those for Jeong
et al. (2017). Considering the flexibility of the proposed method in accounting for poten-
tially heterogeneous populations, however, it can be deemed more useful than Jeong et al.
(2017).

5. Application to Binary Longitudinal Data

5.1. Data Description and Modeling Procedure

In this section, we consider the German Socioeconomic Panel (GSOEP) data (Riphahn
et al., 2003). The dataset consists of repeated observations from 7,293 subjects in Germany
for the years 1984–1988, 1991, and 1994. The response variable of interest is working status
(employed=1; otherwise=0) and covariates consist of Aij (age), Mij (marital status; mar-
ried=1, otherwise=0), Kij (children under the age of 16 in the household; yes=1, no=0),
Hij (degree of handicap; 0 to 100 in percent), and Sij (personal health satisfaction; 0 to 10).
We confine our samples to 893 subjects under the age of 53 with Abitur degrees in order to
examine the varying effect of having young children in the household on working status as
a function of age for people with secondary education.

According to our preliminary analysis, which assumes varying effects for all covariates, we
have decided to treat handicap, personal health satisfaction, and marital status as constant
effects in subsequent analyses. As a result, we aim to model the varying effects of the
intercept and the presence of children under the age of 16, while treating the remaining
covariates as fixed effects. Our target model is then given by

Lij = α∗
Ci0

(Aij) + α∗
CiK

(Aij)Kij + βMMij + βSSij + βHHij + bi + ǫij .
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Figure 8: The R1/2 statistics for the fixed-dimensional parameters (left) and the fixed points of the varying
coefficients (right).

Table 4: Characteristics of the clustered groups

Covariate Overall Group 1 Group 2

Female 35.1% 33.3% 89.1%
Married 57.7% 55.9% 71.2%

White-collar workers 38.7% 41.1 % 20.8%
Civil servants 25.8% 29.0% 4.0%
University 57.2% 58.4% 42.0%

The reduced model complexity based on the preliminary analysis leads to faster computation
and greater stability.

Similar to Section 4.3, we compare the proposed method with the model in Jeong et al.
(2017) that ignores heterogeneity among subjects; mgcv is not considered because Jeong
et al. (2017) outperforms it (see Section 4.4). The corresponding simple model is given by

Lij = α0(Aij) + αK(Aij)Kij + βMMij + βSSij + βHHij + bi + ǫij .

As shown in the next section, the simple model fails to account for heterogeneity among
samples and can be obtained by pooling the results of the proposed target model.

5.2. Analysis and Results

We ran the proposed PCG sampler with three over-dispersed initial values. Figure 8
shows the convergence characteristics of the sampler by using the R1/2 diagnostic for the
fixed-dimensional parameters and the fixed points of the varying coefficients (Gelman and
Rubin, 1992). Because all R1/2 statistics are below 1.1, we combine the second halves of
three chains each with 150,000 iterations through a label switching algorithm. Then, after
thinning every 50th sample, our posterior inference is based on 4,500 mixed samples.

According to our posterior analysis, there are two main groups and a few minor groups.
The group membership is determined by the posterior modes of the cluster labels. The
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Table 5: Posterior summaries of the fixed-dimensional parameters

Proposed method Jeong et al. (2017)

Parameter Mean Median 95% interval Mean Median 95% interval

ψ 3.539 3.357 (1.573, 6.334) 3.949 3.893 (3.031, 5.106)
βS 0.016 0.016 (−0.065, 0.097) 0.006 0.006 (−0.051, 0.063)
βH −0.002 −0.002 (−0.023, 0.020) −0.010 −0.010 (−0.026, 0.006)
βM 0.292 0.284 (−0.178, 0.793) 0.299 0.297 (−0.041, 0.647)

interpretation of the analysis focuses on the two main groups. The first largest cluster,
Group 1, accounts for 89.4% of subjects, the second largest, Group 2, accounts for 7.2%,
and the remaining clusters account for 3.4%. Some characteristics of the two major groups
are summarized in Table 4, demonstrating that these groups are made up of heterogeneous
subjects. Specifically, Group 1 has a much lower proportion of females who tend to be more
responsible for parenting than Group 2. In addition, Group 1 has a higher proportion of
white-collar workers, civil servants, and university graduates with high job security than
Group 2. Such difference in characteristics results in the different posterior estimates of
varying-coefficient functions, as shown in Figure 9.

Figure 9 shows the posterior summaries of the varying-coefficient functions resulting
from functional clustering. The first row of Figure 9 corresponds to the group-level varying-
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Figure 10: The first column shows the posterior summaries of the varying coefficients obtained by Jeong et al.
(2017), and the second column is with respect to the proposed method pooled by the weights corresponding
to cluster assignments, with posterior medians (solid lines) and pointwise 95% posterior intervals (gray
areas).

intercept functions. The intercept function of Group 1 is significantly positive and keeps
increasing up to early 50s, implying that a posterior probability of being employed becomes
higher as one tends to be old while holding all covariates constant. In contrast, Group 2 has a
slightly positive but constant intercept function in all ages. The second row of Figure 9 shows
the varying-coefficient function for having children below age 16 in the household. The 95%
pointwise posterior intervals for Group 1 includes 0, which implies that having children below
age 16 in the household does not significantly affect the probability of employment. Unlike
Group 1, the existence of young children in Group 2’s household significantly decreases the
probability of employment until his/her mid 40s. The probability is further decreased when
the employee’s age tends to be younger. This is due in part to the fact that Group 2 has
a higher proportion of females than Group 1, and females were more responsible for child
care in the late twentieth century.

Table 5 shows the posterior summaries of fixed-dimensional parameters, where Var(bi) =
ψ represents the variance of a random effect, and βH , βS, and βM represent the coefficients
of fixed effects, Hij, Sij , and Mij , respectively. Based on the fact that the 95% posterior
intervals include zero, we decide that the fixed effects have no significant influence on the
employment status when the varying effects of having young children in the household for
heterogeneous subpopulations are accounted for in the model. When the heterogeneous
subpopulation assumption is ignored, the results obtained by Jeong et al. (2017) appear to
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be similar, but with narrower 95% credible intervals. This is due to the fact that Jeong et al.
(2017) does not fully account for the variability of heterogeneous subpopulations.

Our proposed method identifies two major subpopulations with different characteristics,
as shown in Table 4, and these subpopulations show different age-varying effects of hav-
ing young children in a household on working status, as illustrated in Figure 9. When the
heterogeneous subpopulation assumption is ignored, however, the single population model
proposed by Jeong et al. (2017) estimates the varying-coefficient functions applied to the
entire population, as shown in the first column of Figure 10. In the presence of heteroge-
neous subpopulations, such an approach would fail to separate subpopulations with different
characteristics, leading to erroneous conclusions. This is confirmed by producing the pooled
varying-coefficient functions estimated by the proposed method, as shown in the second
column of Figure 10. These findings demonstrate the proposed model’s validity and utility
in accounting for a heterogeneous population.

6. Discussion

In this paper, we propose a novel model-based functional clustering method for ana-
lyzing a heterogeneous series of binary data. Our proposed method models the varying
effects of covariates on a series of binary responses as a function of an effect modifier,
while accounting for heterogeneity among subjects using functional clustering and random
effects. The proposed model estimates population-level fixed effects, cluster-level varying
effects, and subject-level random effects. Even when the number of clusters is unknown, our
proposed method accurately estimates cluster-specific varying coefficients with appropriate
smoothness using a free-knot spline prior. We use the DP prior for functional clustering,
which avoids specifying the exact number of clusters in advance. To perform posterior in-
ference, we carefully develop a PCG sampler by specifying appropriate prior distributions
and marginalizing some model components.

We suggest that there are several directions for future research, such as extending the
clustering methodology to other generalized semi-parametric models using partitioning pri-
ors. Furthermore, a Gaussian process prior may be used instead of a free-knot spline for the
functional clustering of varying coefficients because it may easily achieve the right scale for
the base measure of the DP prior by employing a suitable covariance kernel.

Appendix A. Details of Algorithm 1

In this section, we describe the details of Algorithm 1. Let Cd denote a set of clusters
containing at least one subject and let Cc

d denote a set of clusters containing no subject, in
the dth sampling iteration. For dth iteration:

Step 1: Draw γ∗
kl from p(γ∗

kl|γ
∗
−kl,β,C,V, τ ,Ψ,L,Y) that is a Bernoulli with success prob-

ability

f(γ∗
kl = 1,γ∗

−kl)

f(γ∗
kl = 1,γ∗

−kl) + f(γ∗
kl = 0,γ∗

−kl)
, k ∈ Cd, l = 1, . . . , p,
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where γ∗
−kl denotes all latent indicator variables except γ

∗
kl in γ∗

k,

f(γ∗
kl,γ

∗
−kl) = B (|γ∗

kl|+ a,Ml + 1− |γ∗
kl|+ b)× det

(

τkR
−1
k(γ∗

k
)Ξk(γ∗

k
,C,Ψ) + I|γ∗

k
|

)−1/2

× exp

{

1

2
ξ⊤k(γ∗

k
,C,Ψ,L,β)

(

Ξk(γ∗

k
,C,Ψ) + τ−1

k Rk(γ∗

k
)

)−1
ξk(γ∗

k
,C,Ψ,L,β)

}

,

Ξk(γ∗

k
,C,Ψ) =

∑

i:Ci=k

W⋆⊤
i(γ∗

k
)T

−1
i W⋆

i(γ∗

k
),

ξk(γ∗

k
,C,Ψ,L,β) =

∑

i:Ci=k

W⋆⊤
i(γ∗

k
)T

−1
i (Li −Xiβ) ,

and I|γ∗

k
| and Ini

are identity matrices whose sizes of each dimension are |γ∗
k| and ni respec-

tively; and Ti = Ini
+ZiΨZ⊤

i . In the case of k ∈ Cc
d, γ

∗
kl is drawn from its prior distribution

because Ξk(γ∗

k
,C,Ψ) and ξk(γ∗

k
,C,Ψ,L,β) do not exist.

Step 2: Draw Vk from p(Vk|γ
∗,β,C, τ ,Ψ,L,Y) that is a beta, i.e.,

Vk|(γ
∗,β,C, τ ,Ψ,L,Y) ∼ Beta

(

1 +mk, ν +

K
∑

h=k+1

mh

)

, k = 1, . . . , K − 1,

where mk =
∑N

i=1 I(Ci = k).

Step 3: Draw φ⋆
(γ∗

k
) from p(φ⋆

(γ∗

k
)|γ

∗,β,C,V, τ ,Ψ,L,Y) that is a multivariate normal dis-
tribution, i.e.,

φ⋆
(γ∗

k
)|(γ

∗,β,C,V, τ ,Ψ,L,Y)

∼ N|γ∗

k
|

(

(

Ξk(γ∗

k
,C,Ψ) + τ−1

k Rk(γ∗

k
)

)−1
ξk(γ∗

k
,C,Ψ,L,β),

(

Ξk(γ∗

k
,C,Ψ) + τ−1

k Rk(γ∗

k
)

)−1
)

, k ∈ Cd,

and

φ⋆
(γ∗

k
)|(γ

∗,β,C,V, τ ,Ψ,L,Y) ∼ N|γ∗

k
|

(

0, τkR
−1
k(γ∗

k
)

)

, k ∈ Cc
d.

Step 4: Draw β from p(β|φ⋆
(γ∗),γ

∗,C,V, τ ,Ψ,L,Y) that is multivariate normal, i.e.,

β|(φ⋆
(γ∗),γ

∗,C,V, τ ,Ψ,L,Y) ∼ Nq

(

∆−1
N
∑

i=1

X⊤
i T

−1
i

(

Li −W⋆
i(γ∗

Ci
)φ

⋆
(γ∗

Ci
)

)

,∆−1

)

,

where ∆ = P−1 +
∑N

i=1X
⊤
i T

−1
i Xi.

Step 5: Draw bi from p(bi|φ
⋆
(γ∗),γ

∗,β,C,V, τ ,Ψ,L,Y) that is multivariate normal, i.e.,

bi|(φ
⋆
(γ∗),γ

∗,β,C,V, τ ,Ψ,Li,Y) ∼ Nr

(

Ui(Ψ,φ⋆
(γ∗

Ci
)
,γ∗

Ci
,L,β), A(Ψ)

)

, i = 1, . . .N,
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where

Ui(Ψ,φ⋆
(γ∗

Ci
)
,γ∗

Ci
,Li,β) = ΨZ⊤

i (Ini
+ ZiΨZ⊤

i )
−1(Li −W⋆

i(γ∗

Ci
)φ

⋆
(γ∗

Ci
) −Xiβ),

A(Ψ) = Ψ−ΨZ⊤
i (Ini

+ ZiΨZ⊤
i )

−1ZiΨ.

Step 6: Draw τk from p(τk|φ
⋆
(γ∗),γ

∗,β,b,C,V,Ψ,L,Y) that is an inverse gamma, i.e.,

τk|(φ
⋆
(γ∗),γ

∗,β,b,C,V,Ψ,L,Y)

∼ IG

(

1 + |γ∗
k|

2
,
N + φ⋆⊤

(γ∗

k
)Rk(γ∗

k
)φ

⋆
(γ∗

k
)

2

)

, k = 1, . . . , K.

Step 7: Draw Ψ from p(Ψ|φ⋆
(γ∗),γ

∗,β,b,C,V, τ ,L,Y) that is an inverse Wishart,

Ψ ∼ IW

(

u+N,D+
N
∑

i=1

bib
⊤
i

)

.

Step 8: Draw Lij from p(Lij |φ
⋆
(γ∗),γ

∗,β,b,C,V, τ ,Ψ,Y) that is truncated normal, i.e.,

Lij |(φ
⋆
(γ∗),γ

∗,β,b,C,V, τ ,Ψ,Y) ∼

{

TN(−∞,0](µ
(j)
Ci
, 1) if Yij = 0

TN(0,∞)(µ
(j)
Ci
, 1) if Yij = 1

, i = 1, . . . , N, j = 1, . . . , ni,

where µ
(j)
Ci

denotes the jth element of µCi
= W⋆

i(γ∗

Ci
)φ

⋆
(γ∗

Ci
) +Xiβ + Zibi.

Step 9: Draw Ci from p(Ci|φ
⋆
(γ∗),γ

∗,β,b,V, τ ,Ψ,L,Y) that has a discrete distribution
with probabilities

P (Ci = k|(φ⋆
(γ∗),γ

∗,β,b,V, τ ,Ψ,L,Y) ∝
πk(V)Nni

(Li;µk, Ini
)

∑K
k=1 πk(V)Nni

(Li;µk, Ini
)
, k = 1, . . . , K,

where µk = W⋆
i(γ∗

k
)φ

⋆
(γ∗

k
) +Xiβ + Zibi.

Appendix B. R package fvcc

We provide an R package called fvcc for the proposed model. The package can be
installed with the devtools package available in CRAN as follows.

devtools::install_github("jwsohn612/fvcc")

library(fvcc)

help(fvcc)

The main function fvcc contains a code script for reproducing the simulation results in
Section 4.
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