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Abstract

Bayesian synthetic likelihood (BSL) is a popular method for performing approximate Bayesian
inference when the likelihood function is intractable. In synthetic likelihood methods, the
likelihood function is approximated parametrically via model simulations, and then standard
likelihood-based techniques are used to perform inference. The Gaussian synthetic likelihood
estimator has become ubiquitous in BSL literature, primarily for its simplicity and ease of im-
plementation. However, it is often too restrictive and may lead to poor posterior approxi-
mations. Recently, a more flexible semi-parametric Bayesian synthetic likelihood (semiBSL)
estimator has been introduced, which is significantly more robust to irregularly distributed
summary statistics. In this work, we propose a number of extensions to semiBSL. First, we
consider even more flexible estimators of the marginal distributions using transformation ker-
nel density estimation. Second, we propose whitening semiBSL (wsemiBSL) – a method to
significantly improve the computational efficiency of semiBSL. wsemiBSL uses an approxi-
mate whitening transformation to decorrelate summary statistics at each algorithm iteration.
The methods developed herein significantly improve the versatility and efficiency of BSL algo-
rithms.

Keywords: likelihood-free inference, approximate Bayesian computation (ABC), kernel density
estimation, copula, covariance matrix estimation, Markov chain Monte Carlo.
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1 Introduction

Simulator models are a type of stochastic model that is often used to approximate a real-life
process. Unfortunately, the likelihood function for simulator models is generally computation-
ally intractable, and so obtaining Bayesian inferences is challenging. Approximate Bayesian
computation (ABC) (Sisson et al., 2018a) and Bayesian synthetic likelihood (BSL) (Price et al.,
2018; Wood, 2010) are two methods for approximate Bayesian inference in this setting. Both
methods eschew evaluation of the likelihood by repeatedly generating pseudo-observations
from the simulator, given an input parameter value. ABC and BSL methods have been applied
in many different fields; recently, in biology, to model the spread of the Banana Bunchy Top
Virus (Varghese et al., 2020); in epidemiology, to model the transmission of HIV (McKinley
et al., 2018) and tuberculosis (Lintusaari et al., 2019), and, in ecology, to model the dispersal
of little owls (Hauenstein et al., 2019). ABC is a more mature and established technique than
BSL, and so it is more prevalent in applied fields. However, ABC can suffer from the curse of
dimensionality with respect to the dimension of the summary statistic, requires a large number
of model simulations, and the results can be highly dependent on a set of tuning parameters.
BSL methods can be used to overcome many of these limitations.

Synthetic likelihood methods approximate the likelihood function with a tractable distribution;
in contrast, ABC methods are effectively non-parametric (Blum and François, 2010). The origi-
nal synthetic likelihood method of Wood (2010) approximates the summary statistic likelihood
with a Gaussian distribution and then uses a Markov chain Monte Carlo (MCMC) sampler for
maximum likelihood estimation. Later, Price et al. (2018) consider the Gaussian synthetic like-
lihood in the Bayesian setting, and refer to their method as Bayesian synthetic likelihood. In
practice, the Gaussian assumption of the summary statistic vector may be too restrictive, lead-
ing to a poor estimate of the likelihood, and then a poor estimate of the posterior. Herein, we
refer to the Gaussian BSL method as standard BSL, denoted sBSL.

A few authors have considered more flexible density estimators to improve the robustness
of sBSL to irregular summary statistic distributions (e.g. Papamakarios et al., 2018; An et al.,
2020; Fasiolo et al., 2018). In particular, the semi-parametric Bayesian synthetic likelihood
(semiBSL) method of An et al. (2020), estimates the intractable summary statistic likelihood
semi-parametrically – non-parametrically estimating the marginal distributions using kernel
density estimation (KDE), and parametrically estimating the dependence structure using a
Gaussian copula. An et al. (2020) show empirically that semiBSL performs favourably to sBSL
when summary statistics are distributed irregularly. semiBSL maintains many of the attractive
properties of sBSL, including its scalability to a high dimensional summary statistic and ease
of tuning.

Despite the appeal of semiBSL, the number of model simulations required to accurately esti-
mate the correlation matrix scales poorly with the dimension of the summary statistic. The
equivalent problem for sBSL, the scaling of the estimation of covariance matrix with the num-
ber of model simulations, has been explored by An et al. (2019), Ong et al. (2018a), Ong et al.
(2018b), Everitt (2017), Frazier et al. (2019) and Priddle et al. (2020). However, there are cur-
rently no methods designed specifically for the semi-parametric estimator, which, in practice,
may preclude its application to problems where model simulation is computationally expen-
sive. The first contribution of this article adapts and extends the methodology presented in
Priddle et al. (2020), which combines a whitening transformation with shrinkage covariance
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matrix estimation, to the semiBSL context.

SemiBSL provides additional robustness over sBSL when the summary statistic marginals de-
viate from normality. However, as we demonstrate in subsequent sections, for some distri-
butions the KDE will fail. For instance, when a marginal summary statistic distribution has
extremely heavy tails, the KDE will allocate essentially no density to the center of the distri-
bution, and all weight to the tails (see Figure 2). In addition, it is well-known that the global
bandwidth KDE rarely provides adequate smoothing over all features of the underlying distri-
bution (Wand et al., 1991; Yang et al., 2003). Our second contribution addresses this problem
with a procedure that draws upon and extends the vast body of literature on density estima-
tion. Specifically, we consider transformation kernel density estimation (TKDE, Wand et al.,
1991) to estimate the marginal distributions of the summary statistic. The idea is to transform
the distribution so that the standard global bandwidth KDE is accurate, and then transform
back to the original domain to estimate the density. We adapt the hyperbolic power transfor-
mation of Tsai et al. (2017), and propose a procedure to effectively apply TKDEs in a semiBSL
algorithm.

The remainder of this article is structured as follows. In sections 2 and 3, we provide an
overview of sBSL and semiBSL, respectively. In section 4, we present our method to signifi-
cantly improve the computational efficiency of semiBSL. In section 5, we propose a new esti-
mator of the marginal summary statistic distributions for semiBSL using TKDE. We assess the
accuracy of the TKDEs on a number of test densities with known distribution. In section 6, we
apply our new methods to four different examples. Last, we conclude in section 7.

2 BSL

Synthetic likelihood algorithms are applicable in settings where the likelihood function p(y|θ)
is intractable but simulation from the model is straightforward, where y = (y1, ..., ym)> (with
m ≥ 1) is the set of observed data and θ ∈ Θ ⊂ Rp is an unknown parameter. Here, our target
is the posterior distribution p(θ|y) ∝ p(y|θ)p(θ), where p(θ) is the prior distribution on the pa-
rameter. In synthetic likelihood, among other likelihood-free algorithms, such as approximate
Bayesian computation (ABC) (see Sisson et al., 2018b), it is standard practice to degrade the
data to a vector of informative summary statistics to help mitigate problems associated with
dimensionality. Specifically, let S(·) : Rm → Rd be the summary statistic function that maps
an m-dimensional dataset to a d-dimensional summary statistic. For sy = S(y), the implied
target conditional on the summary statistic, often referred to as the partial posterior, is then
p(θ|sy) ∝ p(sy|θ)p(θ); depending (to a large extent) on the informativeness of the summary
statistic, p(θ|y) ≈ p(θ|sy). However, since p(y|θ) is intractable, it is generally the case that
p(sy|θ) is also intractable, which leads us to consider sampling based methods that do not
require evaluation of p(sy|θ) to obtain approximate inferences from the partial posterior.

In essence, synthetic likelihood methods assume a parametric form of the likelihood, which
acts as a surrogate for the true likelihood and may be used directly in an MCMC (Markov
chain Monte Carlo) sampler. In sBSL (see Price et al., 2018), the summary statistic likelihood
is approximated with a Gaussian distribution, N (sy;µ(θ),Σ(θ)). The synthetic likelihood
parameters µ(θ) and Σ(θ) are typically unknown, but a series of n independent and identi-
cally distributed simulations from the model x1, . . . ,xn ∼ p(·|θ) with corresponding summary
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statistics S(x1), . . . , S(xn) can be used to construct the Monte Carlo estimates:

µn(θ) =
1

n

n∑
i=1

S(xi) and (1)

Σn(θ) =
1

n− 1

n∑
i=1

(S(xi)− µn(θ))(S(xi)− µn(θ))>. (2)

These may be used to yield the Gaussian synthetic likelihood estimator, N (sy;µn(θ),Σn(θ)),
and the corresponding sBSL posterior approximation:

psBSL(sy|θ) =

∫
N (sy|µn(θ),Σn(θ))

n∏
i=1

p(S(xi)|θ) dS(x1) · · ·S(xn)

psBSL(θ|sy) ∝ pBSL(sy|θ)p(θ).

There are two main appeals of BSL: (1) that it can handle a relatively high dimensional sum-
mary statistic, and (2) that it can be more computationally efficient than competing likelihood-
free Bayesian methods (Price et al., 2018; Frazier et al., 2019). These are both direct benefits of
specifying a parametric form of the summary statistic likelihood. However, as demonstrated
by An et al. (2020), in cases where the marginal summary statistic distributions deviate greatly
from Gaussian, with, for example, heavy skewness, heavy tails or multiple modes, sBSL meth-
ods begin to break down. Often the posterior distribution will fail to adequately approximate
the true partial posterior. In particularly challenging cases, the variance of the log synthetic
likelihood estimator may be so large that the MCMC chain will become stuck within only a
few iterations, and no discernible posterior distribution may be recovered (see Figure 8).

3 semiBSL

In this section, we provide an overview of the semiBSL method of An et al. (2020). semiBSL
provides additional robustness for a non-Gaussian distributed summary statistic. In semiBSL,
the semi-parametric likelihood estimator is constructed as follows. Denote Sj the random vari-
able corresponding to the jth summary statistic. Given the set of n model simulations, the true
PDF (probability density function) gSj (s) is approximated using the kernel density estimate:

ĝSj (s) =
1

n

n∑
i=1

Kh(s− S(xi)
j), (3)

where Kh(u) = h−1K(u/h) and h is the bandwidth. The kernel function K(·) may be any
symmetric PDF; in semiBSL, the Gaussian kernelK(u) = 1/

√
2π exp

{
−u2/2

}
is used due to its

simplicity and unbounded support. The above kernel density estimator uses a global (constant)
bandwidth, selected according to the rule of Silverman (1986). It is straightforward to obtain
the corresponding estimate of the CDF (cumulative density function) ĜSj (s) from the above
equation.

Following estimation of the marginal summary statistic distributions, the dependence between
the summaries is modelled via the Gaussian copula. Essentially, copula modelling allows the
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dependence structure and the marginal distributions to be estimated independently, allowing
the user to consider alternative and more flexible marginal density estimators than the Gaus-
sian distribution, as the case is in sBSL. For an introduction to copula models, we refer the
reader to Trivedi et al. (2007). The Gaussian copula density,

c(u) =
1√

det(R)
exp

{
−1

2
η>(R−1 − Id)η

}
is parameterised by the correlation matrixR and the vector of standard Gaussian quantiles η =
(Φ−1(u1), . . . ,Φ

−1(ud))
>, where Φ−1(·) is the inverse CDF of the standard normal distribution

and uj = GSj (s
j
y) for j = 1, . . . , d. Replacing GSj (s) with its kernel density estimate evaluated

at the observed summary ĜSj (s
j
y), and R with the estimated correlation matrix R̂, we obtain

the semiBSL posterior:

psemiBSL(sy|θ) =

∫
1√

det(R̂)
exp

{
−1

2
η̂>sy(R̂

−1 − Id)η̂sy

} d∏
j=1

ĝj(s
j
y)

n∏
i=1

p(S(xi)|θ) dS(x1) · · ·S(xn)

psemiBSL(θ|sy) ∝ psemiBSL(sy|θ)p(θ).

In the above equation, η̂sy = (Φ−1(û1), . . . ,Φ
−1(ûd))

> where ûj = Ĝj(s
j
y) for j = 1, . . . , d

and R̂ is estimated using a collection of n simulated summary statistics S(x1), . . . , S(xn). In
practice, An et al. (2020) advocate to estimateRwith the Gaussian rank correlation (GRC) (see
Boudt et al., 2012), which provides additional robustness to the potential lack of fit of the KDEs.

We highlight two main limitations of semiBSL. First, the number of model simulations required
to accurately estimate R scales poorly with d. This may be problematic for applications where
model simulation is computationally expensive, especially if a relatively low dimensional and
informative summary statistic is unavailable. Furthermore, the KDE is unreliable for distribu-
tions with extremely heavy tails, which may induce unduly high variance in the psemiBSL(sy|θ)
estimator and cause semiBSL to fail. In subsequent sections, we propose methods to overcome
each of these limitations.

4 Whitening semiBSL

We now propose a method to improve the computational efficiency of semiBSL. Namely, we ex-
tend the whitening BSL (wBSL) methodology proposed by Priddle et al. (2020) to the semiBSL
context. The motivation behind wBSL is articulated in Theorem 1 of Priddle et al. (2020). The
main consequence of the theorem is that for a Gaussian log synthetic likelihood estimator with
diagonal covariance structure, n must scale linearly with d to control the variance of the es-
timator. On the other hand, to control the variance of the traditional Gaussian log synthetic
likelihood estimator (that estimates the full covariance structure), n must scale quadratically
with d. This result suggests that there are significant computational benefits possible in BSL
algorithms if the summary statistics are uncorrelated.

Despite such a compelling result, it is a challenging problem to find a summary statistic vector
that is both independent across its dimensions and retains a large proportion of the information
content intrinsic to the observed data. The main idea of wBSL is that an approximate whiten-
ing or decorrelation transformation may be applied to the summary statistic at each algorithm
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iteration. In doing so, the covariance shrinkage estimator of Warton (2008) may be applied
with a high penalty, producing an accurate, low variance estimate of the likelihood function
for a relatively small number of model simulations. If the full penalty is applied, this coincides
with the Gaussian synthetic likelihood estimate with a diagonal covariance structure, and thus
the desired computational gains may be achieved. In several empirical examples, Priddle et al.
(2020) demonstrate that wBSL is able to produce an accurate partial posterior approximation,
with an order of magnitude less model simulations than sBSL. Given the semi-parametric syn-
thetic likelihood estimator uses the Gaussian copula, it is likely that it will inherit similar com-
putational gains to the classical Gaussian estimator, particularly in cases where the marginal
distributions are close to Gaussian. However, the extension of these concepts to semiBSL is not
yet clear; here we provide an outline of our methodology, which we refer to as wsemiBSL.

Consider the Gaussian approximation of the summary statistic likelihood:

N (sy;µ,Σ) =
1√

(2π)ddet(Σ)
exp

{
−1

2
(sy − µ)>Σ−1(sy − µ)

}
,

where the dependence of µ and Σ on θ has been suppressed for notational convenience. It is
straightforward to show that:

N (sy;µ,Σ) ∝ 1√
det(R)

exp

{
−1

2
ηsy
>R−1ηsy

} d∏
j=1

N (ηjy; 0, σ2j )

φ(η̂jy)
,

where Σ = Σ
1/2
d RΣ

1/2
d and Σd = diag(σ21, . . . , σ

2
d).

The main disparity between wBSL and wsemiBSL, is that in wsemiBSL the whitening transfor-
mation is applied to the standard Gaussian quantiles, and not directly to the summary statis-
tics. We find that in the context of semiBSL, the latter approach does not produce as accurate
posterior approximations (results not shown). Specifically, we propose to apply the whitening
transformation to convert the random vector η of arbitrary distribution with covaraince matrix
Var(η) = R into the transformed vector

η̃ = Wη

for some d × d whitening matrix W , such that the covariance Var(η̃) = Id is the identity
matrix. Like in wBSL, we estimate the whitening matrix off-line using ncov independent model
simulations such that x1, . . . ,xncov ∼ p(·|θ0) given some carefully chosen parameter value θ0

with reasonable posterior support. Picchini et al. (2020) detail how Bayesian optimization may
be used to rapidly generate a θ0 that has reasonable support under the posterior. This method,
or the techniques described in Priddle et al. (2020), may be employed to find a suitable θ0 for
our methods. ncov is set high (much higher than n) to ensure an accurate estimate of W is
obtained. Of course, for the transformation to be exact, W must evolve as a function of θ;
however, like in wBSL, we hold W constant to preserve the target partial posterior obtained
using semiBSL (when no penalty is applied), and so generally Var(η̃) ≈ Id. Given the inverse
transformation η = W−1η̃ and Jacobian term |dη/dη̃| = det(W−1), the summary statistic
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likelihood under the transformed variable is

g̃(sy|θ) ∝ det(W−1)√
det(R)

exp

{
−1

2
(W−1η̃sy)>R−1W−1η̃sy

} d∏
j=1

N (ηjsy ; 0, σ2j )

φ(ηjsy)

=
1√

det(Σ̃η)
exp

{
−1

2
η̃>syΣ̃

−1
η η̃sy

} d∏
j=1

N (ηjsy ; 0, σ2j )

φ(ηjsy)
,

where Σ̃η = WRW> = Var(η̃sy) ≈ Id is the covariance matrix of the transformed quantiles
η̃sy . Of course, in semiBSL, we replace each marginal N (ηjsy ; 0, σ2j ) with the kernel density
estimate ĝSj (s) and Σ̃η with a sample estimate. That is,

g̃(sy|θ) ∝ 1√
det(Σ̃η)

exp

{
−1

2
ˆ̃η>sy

ˆ̃Σ−1η ˆ̃ηsy

} d∏
j=1

ĝj(s
j
y)

φ(η̂jsy)
.

where ˆ̃ηsy = W (Φ−1(û1), . . . ,Φ
−1(ûd))

> and ûj = Ĝj(s
j
y) for j = 1, . . . , d. ˆ̃Ση is estimated

using n simulated quantiles ˆ̃ηS(x1), . . . ,
ˆ̃ηS(xn) which constitute the rows of the n × d matrix

W (η̂S(x1), . . . , η̂S(xn))
> such that η̂S(xi) = (Φ−1(û1i ), . . . ,Φ

−1(ûdi ))
> and ûji = Ĝj(S(xi)

j) for
j = 1, . . . , d and i = 1, . . . , n. Given the whitening transformation approximately decorrelates
the summary statistic quantiles, the Warton (2008) covariance shrinkage estimator

Σ̃η,γ = Σ̃
1/2
η,d(γR̃η + (1− γ)Id)Σ̃

1/2
η,d

may be applied accurately with a high degree of shrinkage, where Σ̃η,d = diag(Σ̃η), R̃η is
an estimate of the correlation matrix and γ ∈ [0, 1] is the shrinkage parameter. Effectively, γ
is a constant that is multiplied by the off-diagonal elements of the sample covariance. Thus,
γ = 0 shrinks the pairwise covariance elements to 0, assuming independent summary statistic
quantiles. The heavier the shrinkage, the lower the value of n required to precisely estimate
the likelihood.

The choice of whitening matrix W was considered carefully in Priddle et al. (2020). Any W
that satisfies Var(η̃) = Var(Wη) = WΣW> = Id will whiten the data at θ0; however, as
the current parameter value deviates further from θ0, the transformation will become less ac-
curate. The most suitable W for BSL is the one that most effectively decorrelates summary
statistics generated by parameter values that reside in regions of the parameter space with non-
negligible posterior density. Priddle et al. (2020) consider the five optimal whitening matrices
of Kessy et al. (2018). Priddle et al. (2020) find that in the context of BSL, principal components
analysis (PCA) whitening produces the most accurate partial posterior approximations upon
the application of heavy shrinkage. Thus, in wsemiBSL we also use the PCA whitening matrix,

W PCA,η = Λ
−1/2
η U>η ,

where Λη andUη are the eigenvalue and eigenvector matrices of the covariance matrix Var(η) =
Ση such that Ση = UηΛηU

>
η .
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5 Transformation KDE in semiBSL

Our second contribution significantly improves the robustness of the semi-parametric estima-
tor proposed in An et al. (2020) in the context of BSL. As demonstrated in Figure 2, if a given
marginal summary statistic distribution has extremely heavy tails, as is common in financial
applications for example (see Section 6.4), the standard KDE does not accurately approximate
the true marginal distribution for reasonable sample sizes (number of model simulations in our
context). We propose a new semi-parametric estimator that uses transformation kernel density
estimation (see Wand et al., 1991) to model each marginal summary statistic. Like in the classic
semiBSL estimator, we model the dependence between the summary statistic dimensions using
the Gaussian copula. By doing so, the whitening method proposed in the previous section may
be applied in conjunction with the new estimator, to achieve computational gains on top of the
improved robustness. In this section, we provide details of our TKDE method for semiBSL.

Transformation kernel density estimation was introduced by Wand et al. (1991); although, the
general ideas have been applied in many different contexts (see, for example, Kingma et al.,
2016; Parno and Marzouk, 2018). In brief, the idea is to transform a sample of data so that
the standard global bandwidth kernel density estimator (as in (3)) is more accurate, and then
transform back to the original domain to obtain the estimate of the desired density.

Recall we are interested in estimating the marginal distributions of the summary statistic vec-
tor. That is, for the jth marginal S j, we wish to provide an estimate of the true density gSj (s)
with support supp(gSj ) given access to our sample S(x1)

j , ..., S(xn)j . Hereafter we suppress
the j notation for simplicity, and emphasise that we are considering a univariate distribution.
Denote a family of bijective and differentiable transformations {Gω : ω ∈ Ω} indexed by the
parameter ω that map supp(gS) to the real line. The PDF of the transformed random variable
S̃ = Gω(S) is given by:

gS̃(s̃;ω) = gS(G−1ω (s̃))

∣∣∣∣dG−1ω (s̃)

ds̃

∣∣∣∣ .
The value of ω is chosen so that gS̃ is approximately Gaussian. Given this, KDE should provide
an accurate approximation of the PDF on the transformed domain according to

ĝS̃(s̃;h, ω) =
1

n

n∑
i=1

Kh(s̃− S(xi)).

An estimate of the density on the original domain is then obtained via the inverse transforma-
tion:

ĝS(s;h, ω) =
1

n

n∑
i=1

Kh(Gω(s)− Gω(S(xi)))

∣∣∣∣dGω(s)

ds

∣∣∣∣ .
The above estimator can be thought of as using a location adaptive bandwidth on the original
domain. This allows more appropriate smoothing over all features of the density, and often
leads to a more accurate density approximation. Variable bandwidth methods, such as those
proposed in Loftsgaarden et al. (1965) and Breiman et al. (1977) explicitly model the bandwidth
as a function of the data. We find (results not shown) for the test distributions considered in
this paper, that TKDE performs better.
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A non-trivial aspect of applying TKDE to semiBSL is choosing an appropriate family of trans-
formations, and then finding a method of efficiently estimating ω. The most suitable family
of transformations is highly dependent on the shape of the data. Wand et al. (1991) focus on
right-skewed data and use the shifted power transformation; Yang et al. (2003) use sequential
transformations from the Johnson family to estimate the density of a wide range of distribu-
tions and Buch-Larsen et al. (2005) use the Champernowne transformation for heavy-tailed
data. Our method can be extended to use any of these transformations (among others), but,
due to its flexibility, we focus on the hyperbolic power transformation (HPT) introduced by
Tsai et al. (2017), which has not previously been used in the TKDE context. The HPT is given
by:

Gω(s) =

{
ν sinh(ψ−s) sechλ−(ψ−s)/ψ− s ≤ 0

ν sinh(ψ+s) sechλ+(ψ+s)/ψ+ s > 0

where s is median centered, ω = {ν, ψ−, λ−, ψ+, λ+}, ν, ψ−, ψ+ > 0 and |λ−|, |λ+| ≤ 1. λ−, λ+
are the power parameters; ψ−, ψ+ are the scale parameters, and ν is the normalising constant.
By splitting the data either side of the median, the transformation is able to handle bimodal dis-
tributions, provided the modes are not well separated. As demonstrated by Tsai et al. (2017),
the HPT outperforms other relevant normality transformations for a wide range of distribu-
tions.

There are many different optimality criteria possible to determine ω. Wand et al. (1991) and
Yang et al. (2003) use asymptotic results based on minimising the mean integrated square error.
Here we follow the approach used in Tsai et al. (2017) and use maximum likelihood estimation.
That is, given we wish to transform the summary statistics such that the global bandwidth KDE
will perform well, we target the standard normal distribution p(Gω(s)) = 1√

2π
exp{−G2ω(s)/2}

in our transformation. It can be shown that the objective function is given by:

log p(S(xi), . . . , S(yn)|ω) =
n∑
i=1

log φ(Gω(S(xi))) + log |J(S(xi))|

where φ is the PDF of the standard normal distribution, and the Jacobian term is:

|J(s)| =
∣∣∣∣∂Gω(s)

∂s

∣∣∣∣ =

{
ν(1− λ− tanh2(ψ−s)) sechλ−−1(ψ−s) s ≤ 0

ν(1− λ+ tanh2(ψ+s)) sechλ+−1(ψ+s) s > 0.

In practice, there are often several solutions to the score equation, however, only one is the
global maximum. Tsai et al. (2017) employ the simplex method (see Nelder and Mead, 1965)
to approximate the MLEs by iteratively optimising each split of the data separately and then
perturbing the estimate of the slope parameter according to its MLE:

ν̂ =

(
1

n

n∑
i=1

(Gω(S(xi))
2

)−1/2
.

In our implementation, we take a similar approach to Tsai et al. (2017) in splitting the data and
estimating each of the pairs {ψ−, λ−} and {ψ+, λ+} separately. However, we update the value
of ν using the MLE (using the relevant split of the data) for each evaluation of the likelihood,
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due to its dependence on the other parameters. We find that this approach works well without
having to iteratively maximise the parameters and perturb ν. This is crucial in the context of
semiBSL as each iteration of MCMC will involve an estimate of the synthetic likelihood at the
proposed parameter value. Of course, our method only serves as an approximation of the true
maximum, but as we shall demonstrate, this is sufficient to significantly improve the accuracy
of the density estimate over standard KDE. Each marginal summary statistic distribution may
be estimated in parallel, meaning the overall additional computational time is small. We use
the quantile approach outlined in Tsai et al. (2017) to initialise ω for each optimisation problem.
Alternatively, optimal parameters found at previous iterations may be used to inform initial
parameter values at subsequent iterations.

Despite the appeal of the HPT, we find that for very heavy tailed data, the transformation is
not numerically stable. It is also a non-trivial task to reparameterise the transformation such
that it is numerically stable. Therefore, we propose an extension of the HPT that uses a series of
log transformations to first reduce the heaviness of tails, allowing the HPT to subsequently be
applied more effectively. The log transformations do not require any estimation of parameters,
and so they add negligible computation time. For positively skewed data with heavy kurtosis,
we use the transformation:

S̃ = log(1 + S −min(S(x1), . . . , S(xn)) + ∆)

where ∆ = min(S(x1), . . . , S(xn)) − sy + 1 if sy < min(S(x1), . . . , S(xn)), otherwise ∆ =
0. Analogously, we use the following transformation for negatively skewed data with heavy
kurtosis:

S̃ = − log(1− S + max(S(x1), . . . , S(xn)) + ∆)

where ∆ = sy − max(S(x1), . . . , S(xn)) + 1 if sy > max(S(x1), . . . , S(xn)), otherwise ∆ = 0.
Lastly, for symmetric data with heavy kurtosis we use

S̃ = sgn(S) log(1 + Ssgn(S)).

When one of the above three log transformations is applied concurrently with the HPT, we
refer to each method as semiBSL TKDE1, semiBSL TKDE2, or semiBSL TKDE3, respectively.
SemiBSL TKDE0 refers to semiBSL TKDE without an initial log transformation, and semiBSL
TKDE is the general method of using transformation kernel density estimation for semiBSL. We
emphasise that the main purpose of the log transformations is to transform the data such that
the HPT can be accurately computed, not to transform the data to Gaussian. It is the HPTs job
to Gaussianise the log transformed data. Figure 1 shows the estimated density after each step
of the TKDE procedure for several test densities with known PDF. Each test density is close to
standard Gaussian after applying the HPT (row 3, Figure 1), and the final density estimate is
close to the true density (row 4, Figure 1). For our semiBSL TKDE method, we recommend the
user perform a number of model simulations at θ0, visualise the marginal summary statistic
distributions and then decide whether or not (and which) log transformation is necessary.

To illustrate the efficacy of the proposed density estimation procedure, we perform a simu-
lation study using a wide a range of distributions with known density. This follows directly
from the work in An et al. (2020). Specifically, we assume the observed data is drawn from
the standard Gaussian distribution y ∼ φ, and the summary statistic is given by S(y) =
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sinh
(
1
δ

(
sinh−1(y) + ε

))
(this is the sinh-archsinh transformation of Jones and Pewsey, 2009).

ε and δ control the skewness and kurtosis respectively. Here we choose the values of ε and δ
to reflect the shapes of densities that arise in practice, for example, in the models of Section
6. We also consider an observed dataset drawn directly from a bimodal Gaussian distribution,
such that y = 0.5N (3, 1) + 0.5N (8, 1) and take S(y) = y. For each test density, we estimate
the PDF using KDE and TKDE for n = 100, n = 500 and n = 1000. For TKDE, we show
the results using the most appropriate log transformation (or lack thereof), see Figure 2. Fur-
thermore, we estimate the total variation distance between the true and estimated PDFs using
numerical integration over a grid of parameter values based on 1000 independent replicates
of the above procedure. We report the sample mean and standard deviation of the 1000 total
variation distances (see Table 1). The total variation between two PDFs f1(θ) and f2(θ) is given
by tv(f1, f2) = 1

2

∫
|f1(θ)− f2(θ)|dθ.

Figure 1: Intermediate densities of TKDE procedure for various test densities. Each row corresponds
to a step in the density estimation: row 1 is a histogram of the original data; row 2 is a KDE after
the log transformation; row 3 is a KDE after the HPT (with the standard normal distribution in black)
and row 4 is the final density estimate on the original domain (with the true PDF shown in black).
Columns correspond to each test density: skewness and kurtosis (ε = 1.3, δ = 0.6; left), kurtosis only
(ε = 0, δ = 0.35), skewness only (ε = 5, δ = 1), bimodal (0.5N (3, 1) + 0.5N (8, 1)), heavy skewness
(ε = 0, δ = 0.1) and skewness with heavy kurtosis (ε = 5, δ = 0.4; right).

Figure 2 demonstrates that the proposed TKDE scheme is able get much closer to the true
PDF than standard KDE, even with a small number of model simulations. The TKDE nicely
captures the peaks of each distribution, and provides adequate smoothing over the tails. For
ε = 0, δ = 0.1, the KDE appears completely flat due to the extremely heavy tails, whereas
the TKDE is very accurate. TKDE also outperforms KDE for the bimodal test density, with
a noticeably better performance for n = 1000. Interestingly, in some cases, we find that the
log transformation is detrimental to the TKDE, and so the user must carefully decide whether
or not the log transformation is needed. The simulation results in Table 1 support the above
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Figure 2: Comparison of density estimators (KDE and TKDE) with the true density. Rows correspond
to n = 100 (top row), n = 500 and n = 1000 (bottom row) model simulations. Columns correspond to
the same test densities listed in Figure 5.

Table 1: Total variation distances between density estimators (KDE and TKDE) and the true density.
The mean is reported for each of the four test densities using n = 100, n = 500 and n = 1000 model
simulations. The corresponding standard deviations are given in parentheses.

n = 100 n = 500 n = 1000
KDE TKDE KDE TKDE KDE TKDE

Skewness and Kurtosis
(ε = 1.3, δ = 0.6)

0.201
(0.027)

0.101
(0.033)

0.138
(0.014)

0.053
(0.012)

0.116
(0.010)

0.041
(0.008)

Kurtosis
(ε = 0, δ = 0.35)

0.162
(0.022)

0.095
(0.030)

0.099
(0.011)

0.050
(0.011)

0.079
(0.008)

0.039
(0.008)

Skewness
(ε = 5, δ = 1)

0.136
(0.023)

0.072
(0.025)

0.094
(0.011)

0.038
(0.011)

0.080
(0.008)

0.030
(0.007)

Bimodal
0.5N (3, 1) + 0.5N (8, 1)

0.253
(0.028)

0.175
(0.032)

0.189
(0.010)

0.121
(0.015)

0.159
(0.007)

0.100
(0.011)

Heavy Kurtosis
(ε = 0, δ = 0.1)

0.166
(0.013)

0.058
(0.033)

0.163
(0.008)

0.026
(0.011)

0.165
(0.006)

0.019
(0.007)

Skewness and Heavy
Kurtosis (ε = 5, δ =
0.4)

0.044
(0.011)

0.014
(0.009)

0.023
(0.005)

0.007
(0.004)

0.018
(0.004)

0.006
(0.003)

findings, with all TKDEs having a lower total variation distance than the corresponding KDE.
The benefits of TKDE are most apparent for heavy tailed distributions.
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6 Results

In this section, we apply our methods to four examples. The examples, and what they are
designed to demonstrate are listed below:

1. MA(2) example: demonstrates the potential efficiency gains of wsemiBSL; the robust-
ness of semiBSL TKDE, and the simultaneous use of whitening and TKDE in semiBSL
(wsemiBSL TKDE hereafter) for improved effiency and robustness.

2. Fowler’s Toads example: demonstrates the potential efficiency gains of wsemiBSL.

3. M/G/1 example: demonstrates the improved robustness of semiBSL TKDE.

4. α-stable stochastic volatility model: demonstrates the improved robustness of semiBSL
TKDE.

The likelihood for the MA(2) example is known, allowing us to compare the result of our
methods to the output of a Metropolis-Hastings sampler that uses the true likelihood. Each of
the remaining three models have an intractable likelihood and are representative of a real-life
modelling scenario.

In all cases, we use the Metropolis-Hastings algorithm with a Gaussian random walk. The
random walk covariance matrix is set to be roughly the (approximate) posterior covariance
obtained from pilot runs. Unless stated otherwise, the value of n is tuned such that the standard
deviation of the log synthetic likelihood evaluated at θ0 is in the range [1, 2], as Price et al.
(2018) find that this maximises the computational efficiency of sBSL. We compare posterior
approximations using the total variation distance, as described in Section 5. For wsemiBSL,
we use ncov = 5000 to accurately estimate W . Each sampler is run for T = 100000 MCMC
iterations.

6.1 MA(2)

The tth observation xt in a moving average process of order 2, denoted MA(2), evolves accord-
ing to:

xt = wt + θ1wt−1 + θ2wt−2 where wi ∼ N (0, σ2) for i = 1, . . . , T0

subject to the constraints −1 < θ2 < 1, θ1 + θ2 > −1 and θ1 − θ2 < 1. It is straightforward
to show that the likelihood is Gaussian with zero mean vector and pentadiagonal covariance
matrix, with entries given by: ζ(0) = 1 + θ21 + θ22, ζ(1) = θ1 + θ1θ2 and ζ(2) = θ2, where
ζ(k) = Cov(xt, xt−k). The MA(2) model is commonly used as a toy example to demonstrate
likelihood-free methods (see, Chiachio et al., 2014; Marin et al., 2012; Frazier et al., 2019).

We simulate 50 observations from the MA(2) process at θtrue = (θ1, θ2)
> = (0.6, 0.2)> and

set this to be our observed data, such that y = (x1, . . . , x50)
>. We assume that σ2 is known,

and equal to 1. For semiBSL, we are interested in cases where the marginal summary statistic
distributions deviate from Gaussian. As in Section 5, we use the sinh-archsinh transformation
of Jones and Pewsey (2009) to transform and generate a summary statistic with non-Gaussian
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marginals; thus, sy = S(y), where S(·) is the sinh-archsinh transformation applied element-
wise. We use a uniform prior over the parameter space.

We first test our methods with a summary statistic generated with 4 different ε and δ combina-
tions. We consider ε = 0, δ = 1, which corresponds to no transformation; ε = −1, δ = 1, which
creates negative skewness; ε = 0, δ = 0.6, which creates positive kurtosis and ε = 1, δ = 2,
which creates negative kurtosis and positive skewness. For each of these summary statistics,
we consider the following methods: semiBSL (equivalent to wsemiBSL with γ = 1); wsemiBSL
with γ = 0; semiBSL TKDE (γ = 1) and wsemiBSL TKDE with γ = 0. We compare the results
to the ‘true’ posterior, which is obtained using an MCMC sampler with the true likelihood.

Posterior approximations are shown in Figure 3. Comparing columns 1 with 3 (no shrinkage,
γ = 1), and columns 2 with 4 (complete shrinkage, γ = 0), it can be seen that the posterior
approximations obtained with TKDE are generally more accurate in terms of the total variation
distance to the ‘true’ posterior. The only case where the posterior approximation obtained
using TKDE is less accurate than the corresponding estimate that uses KDE (albeit slightly,
with tv distances of 0.2 and 0.16, respectively), is when γ = 0 and the marginal summary
statistics have negative kurtosis (ε = 0, δ = 0.6; row 3 of Figure 3).

The bivariate posterior approximations obtained using wsemiBSL with complete shrinkage are
good approximations of the ‘true’ posterior in all cases (Figure 3). Interestingly, we find that
there is a quite a strong dependence between the regularity of the marginal summary statis-
tic distributions and the capacity of wsemiBSL to significantly reduce the number of model
simulations. For no summary statistic transformation, the skewness transformation and the
skewness and kurtosis transformation, wsemiBSL is extremely effective – allowing us to re-
duce n by about an order of magnitude. However, for the kurtosis transformation, we are only
able to reduce n by a factor of three, while accurately estimating the log synthetic likelihood.
In addition, we find that wsemiBSL is generally not as effective in reducing the number model
simulations when TKDE is used compared to when KDE is used, to estimate the marginal sum-
mary statistic distributions. This is the case for all summary statistics except for the kurtosis
transformation, where n could be reduced further (from n = 330 to n = 275) when TKDE is
used compared to standard KDE.

We consider two additional summary statistics with extremely heavy kurtosis. Specifically, we
set ε = 0 and δ = 0.1, which creates negative kurtosis, and also ε = 5 and δ = 0.4, which
creates heavy negative kurtosis and positive skewness. This presents an extremely challenging
example for standard semiBSL. We find that n = 750 is required for semiBSL TKDE for both
datasets and n = 20000 is required for semiBSL when ε = 5 and δ = 0.4. However, we
are unable to find an n that can accurately estimate the log synthetic likelihood when ε = 0
and δ = 0.1, since the KDE completely fails even for a huge number of model simulations
(due to the heaviness of the tails). We also consider n = 750 for semiBSL, representing the
same number of model simulations used for semiBSL TKDE. For these examples, wsemiBSL
is ineffective at reducing the required number of model simulations as the marginal summary
statistics deviate too far from Gaussian and the pairwise correlation is low.

Bivariate posterior approximations are shown in Figure 4. For n = 750, it can be seen that
standard semiBSL completely fails, while semiBSL TKDE produces an accurate posterior ap-
proximation, for both summary statistics. From Figure 5, it can be seen that the acceptance rates
are much higher for semiBSL TKDE than standard semiBSL. For ε = 0 and δ = 0.1 for standard
semiBSL, the variance of the log synthetic likelihood is so high that no samples are accepted.
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When n = 20000 model simulations are used for semiBSL, the parameter space appears to be
explored well (Figure 5), but the posterior approximation is far less accurate than the semiBSL
TKDE method (tv = 0.21 compared to tv = 0.08), which only used n = 750 model simulations.
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Figure 3: Bivariate posterior approximations and true marginal summary statistic distributions for the
MA(2) example – plot 1. Columns denote (left to right) the true marginal summary statistic distribution,
semiBSL KDE, wsemiBSL with γ = 0, semiBSL TKDE and wsemiBSL TKDE with γ = 0. Each row uses
the same marginal summary statistics. Black contours correspond to be the output of an M-H sampler
using the known likelihood, green contours are for γ = 1 and blue contours are for γ = 0. The parameter
used to generate the observed data is shown in red. tv denotes the total variation distance between the
approximate and true bivariate posterior distributions.

6.2 Fowler’s Toads

The next example we consider is the individual-based movement model of Fowler’s Toads
(Anaxyrus fowleri) developed by Marchand et al. (2017). The model has since been considered
as a test example in likelihood-free literature by several authors (see An et al., 2020; Frazier
and Drovandi, 2020; Priddle et al., 2020). Marchand et al. (2017) consider three models, each
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Figure 4: Bivariate posterior approximations and true marginal summary statistic distributions for
the MA(2) example – plot 2. Similar to Figure 3, the columns (left to right) denote the true marginal
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Figure 5: Trace plots corresponding to the results in Figure 4 (in the respective order). θ1 is green and
θ2 is red.

assuming that toads take refuge during the day and forage throughout the night. The models
differ in their returning behaviour; here we expressly consider the random return model. We
provide only a brief overview of the model herein, and refer the reader to Marchand et al.
(2017) for more details.

To simulate from the model, we draw an overnight displacement from the Levy alpha-stable
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distribution S(α, ξ), where 0 ≤ α ≤ 2 and ξ > 0. At the end of the night, toads return to
their previous refuge site with probability p0, or take refuge at their current overnight displace-
ment. In the event of a return on day i, the refuge site is chosen randomly from the set of
previous refuge sites, thereby giving higher weighting to sites that have been visited multi-
ple times. Here y is the refuge locations of nt = 66 toads over nd = 63 days, generated at
θtrue = (α, ξ, p0)

> = (1.7, 35, 0.6)>.

The summary statistic is 48-dimensional, and is constructed as follows. For each toad, we split
the observed data in two, corresponding to displacements less than or greater than 10m. We
count the number of absolute displacements less than 10m. For the latter dataset, we find
the distance moved distribution at time lags 1, 2, 4 and 8 days, and compute both the log of
the differences in the 0, 0.1, . . . , 1 quantiles and the median. For this example, the marginal
summary statistic distributions are roughly Gaussian (see Appendix A, Figure 10), meaning
sBSL or wBSL would likely perform well. However, semiBSL (and wsemiBSL) will provide
additional robustness over their Gaussian counterparts with little additional computation and
so we would generally advocate to use these methods even for such models. Of course, TKDE
is not necessary for this example.

We find that n = 500 model simulations is adequate for standard semiBSL. We compare the
output of standard semiBSL to wsemiBSL with n = 250 (γ = 0.7), n = 100 (γ = 0.3) and n = 50
(γ = 0) – results are shown in Figure 6. For all cases, the wsemiBSL posterior approximation is
close to the standard semiBSL posterior approximation. With complete shrinkage (γ = 0), we
are able to reduce the number of model simulations by an order of magnitude.

6.3 M/G/1

The M/G/1 queueing model is a stochastic single-server queue model whereby ‘customers’
arrive according to a Poisson process and service times have a general distribution. Here we
expressly consider the case where service times are U(θ1, θ2), as this has been a popular choice
in other likelihood-free literature (see e.g. An et al., 2020; Blum and François, 2010). The time
between arrivals is Exp(θ3) distributed. We assume that only the inter-departure times are
known, and take this to be the observed data y. We observe 50 inter-departure times (corre-
sponding to 51 customers) and set sy = y, generated at θtrue = (θ1, θ2, θ3)

> = (1, 5, 0.2)>. The
prior is U(0, 10)× U(0, 10)× U(0, 0.5) on (θ1, θ2 − θ1, θ3).

The marginal summary statistic distributions are right skewed with moderate kurtosis (see
Appendix A, Figure 11). Thus, for our TKDE method, it would be reasonable to use semiBSL
TKDE0 or semiBSL TKDE1. wsemiBSL does not provide additional benefit for this example
since the summary statistics have very low correlation. We run semiBSL TKDE0, semiBSL
TKDE1 and standard semiBSL. We compare the results of each sampler to the ‘true’ poste-
rior, obtained using the MCMC scheme for the M/G/1 queue model of Shestopaloff and Neal
(2014). We use n = 500 to estimate the summary statistic likelihood for semiBSL.

Bivariate posterior approximations are shown in Figure 7. Both semiBSL TKDE methods pro-
duce more accurate posterior approximations than standard semiBSL. semiBSL TKDE esti-
mates the θ1 marginal distribution more accurately than semiBSL; the θ2 and θ3 marginals are
similar. The additional log transformation (in semiBSL TKDE1 compared to semiBSL TKDE0)
slightly improves the accuracy of the posterior approximation for this example, as evidenced
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Figure 6: Contour plots of the bivariate posterior approximations for the toad model. Rows (top to
bottom) correspond to the n and γ combination, and columns correspond to each pair of parameters.
θtrue is shown as a red dot. The total variation distance between each bivariate semiBSL posterior ap-
proximation and each bivariate wsemiBSL posterior approximation is shown in the bottom right of each
panel.

by the total variation distance.

6.4 α-Stable Stochastic Volatility Model

Stochastic volatility models (SVMs) are commonly used in econometric applications, such as
the modelling of financial returns (see Vankov et al., 2019). In SVMs, the observed data are
assumed to follow a latent stochastic process in evenly spaced discrete time. The return process
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Figure 7: Contour plots of the bivariate posterior approximations for the M/G/1 example. Columns
(left to right) correspond to each bivariate marginal (θ1, θ2), (θ1, θ3) and (θ2, θ3), respectively. Rows
correspond to the method used. ‘Exact’ denotes the posterior approximation obtained using the method
of Shestopaloff and Neal (2014). θtrue is shown as a red dot.

is given by:

yt = exp
(xt

2

)
vt

xt ∼ N (µ+ φ(xt−1 − µ), σt)

where yt is the observed data at time t, which directly depends on the log volatility xt and the
shock vt; µ is the modal instantaneous volatility; φ is the persistence parameter, and σt is the
variance of xt. The typical model formulation uses a Gaussian shock parameter, vt ∼ N (·, ·)
(Kim et al., 1998); however, due to the heavy tailedness of asset returns, more recent studies
have found the stable distribution to be more appropriate (Casarin, 2004). That is, we assume
vt ∼ SD(α, β, κ, η), where α, β, κ and η control the tail heaviness (with a lower α having heavier
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tails), the skewness, the scale and the location, respectively. Despite the additional flexibility
inherited by this family of SVMs, the PDF of the stable distribution is unavailable in closed
form for most parameter values. This motivates the development of likelihood-free algorithms
such as ABC and BSL for heavy tailed distributions (see, for example, Ebert et al., 2019; Vankov
et al., 2019). The extremely heavy tails of yt may cause sBSL and standard semiBSL to fail.

We test our methods on two datasets. We infer θ = (α, β)> and assume the remaining parame-
ters are known and fixed, such that: µ = 5, φ = 1, κ = 1, η = 0 and σ = 0.2 for each dataset. We
set θtrue = (1.2, 0.5)> and θtrue = (0.7, 0.5)> for datasets 1 and 2, respectively and generate 50
observations from the α−stable SVM and set this to be y in each case. We take sy = y. Given
the marginal summary statistic distributions are symmetric and heavily skewed (see Figure 8),
we use semiBSL TKDE3. We do not consider wsemiBSL for this model, since there is only a low
degree of correlation between the pairwise statistics. The results are compared directly to stan-
dard semiBSL. We find n = 2000 is sufficient to control the variance for semiBSL TKDE for each
dataset, and n = 20000 is required for semiBSL for the θ = (1.2, 0.5)> dataset. We are unable to
find a large enough n to accurately estimate the standard semi-parametric synthetic likelihood
for the θ = (0.7, 0.5)> dataset. Similar to the MA(2) example, we also consider n = 2000 for
semiBSL for each dataset – the same value of n we use for semiBSL TKDE.

Marginal posterior approximations are shown in Figure 8. The corresponding trace plots are
shown in Figure 9. We observe similar results to the MA(2) example. For n = 2000, for stan-
dard semiBSL, the acceptance rate is low (extremely low for dataset 2), while we observe high
acceptance rates and good mixing for semiBSL TKDE for both datasets. The posterior approx-
imations for dataset 1 obtained using semiBSL are reasonable, but are poor for dataset 2. On
the other hand, the posterior approximations for semiBSL TKDE for each dataset are smooth
and have reasonable support for the true parameter value. When n is increased to 20000 for
standard semiBSL, the posterior approximation is smoother; however there is less support for
the true parameter value than the posterior approximation generated using semiBSL TKDE.

7 Discussion

In this article, we proposed two extensions to semiBSL. First, we extended the wBSL method
of Priddle et al. (2020) to the semiBSL context. We demonstrated in a number of empirical ex-
amples that our new method, wsemiBSL, is able to produce accurate posterior approximations
with up to an order of magnitude less model simulations than standard semiBSL, even when
the summary statistic deviates from normality. We also proposed a new method to estimate the
marginal summary statistic distributions in semiBSL using TKDE. We show several examples
where standard semiBSL will fail due to heavy kurtosis in the marginal summary statistic dis-
tributions, whereas our semiBSL TKDE method produces accurate posterior approximations
in each case. Furthermore, we showed that wsemiBSL can be used in conjunction with TKDE
for both improved computational efficiency and robustness to irregular summary statistic dis-
tributions.

There are a few limitations to the proposed methods. For wsemiBSL, we find that there is a
rather strong dependence between the regularity of the marginal summary statistic distribu-
tions and the potential for large reductions in n. That is, the efficiency gain appears to diminish
as the marginal summary statistic distributions become increasingly non-Gaussian.
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Figure 8: Posterior approximations and marginal summary statistic distributions for the α−stable SVM.
Top row corresponds to dataset 1, and bottom row corresponds to dataset 2. The columns (left to right)
correspond to the marginal summary statistic distributions, and the parameters α and β, respectively.
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Figure 9: Trace plots corresponding to Figure 8 results. Rows correspond to each dataset – top row
when θ = (1.2, 0.5)> and bottom row when θ = (0.7, 0.5)>. Columns correspond to the method and
number of model simulations combination.

In future work, it may be of interest to consider ways to further increase the robustness of
semiBSL to non-linear dependence structures. One way of overcoming such a problem may be
via more advanced multivariate transformations such as normalising flows (see Rezende and
Mohamed, 2015; Papamakarios et al., 2017). In addition, sBSL is known to be adversely affected
in the setting of model misspecification, or more specifically, summary statistic incompatibility
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(see Frazier and Drovandi, 2020). Future work may investigate the equivalent problem in the
context of semiBSL.
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Figure 10: Marginal summary statistic distributions for the Fowler’s toads example.
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Figure 11: Marginal summary statistic distributions for the M/G/1 example.
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