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Abstract

The quantile varying coefficient (VC) model can flexibly capture dynamical patterns of re-
gression coefficients. In addition, due to the quantile check loss function, it is robust against
outliers and heavy-tailed distributions of the response variable, and can provide a more com-
prehensive picture of modeling via exploring the conditional quantiles of the response vari-
able. Although extensive studies have been conducted to examine variable selection for the
high-dimensional quantile varying coefficient models, the Bayesian analysis has been rarely
developed. The Bayesian regularized quantile varying coefficient model has been proposed to
incorporate robustness against data heterogeneity while accommodating the non-linear inter-
actions between the effect modifier and predictors. Selecting important varying coefficients
can be achieved through Bayesian variable selection. Incorporating the multivariate spike-
and-slab priors further improves performance by inducing exact sparsity. The Gibbs sampler
has been derived to conduct efficient posterior inference of the sparse Bayesian quantile VC
model through Markov chain Monte Carlo (MCMC). The merit of the proposed model in
selection and estimation accuracy over the alternatives has been systematically investigated
in simulation under specific quantile levels and multiple heavy-tailed model errors. In the
case study, the proposed model leads to identification of biologically sensible markers in a
non-linear gene-environment interaction study using the NHS data.

Keywords: Bayesian variable selection; Quantile regression; Markov Chain Monte Carlo;
Robustness; Varying coefficient model

1 Introduction

The quantile varying coefficient model (Kim (2007)) has two defining characteristics. First,
it can safeguard against heavy-tailed distribution and outliers due to the robustness of check
loss function in quantile regression. Compared to the modeling based on conditional means,
the check loss also makes a more comprehensive modeling of data feasible. Second, the
quantile varying coefficient model can account for the dynamic effects of predictors on the
response variable. As it has inherited from the varying coefficient model (Hastie and Tib-
shirani (1993)), its regression coefficients are nonparametric functions of other variables, or
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effect modifiers, so the dynamic influences of the predictor can be properly captured through
the varying coefficients. Therefore, the quantile varying coefficient model enjoys wide popu-
larity and application in a broad spectrum of scientific research areas due to its robustness,
superior flexibility and interpretability. For example, in the gene-environment interaction
analysis (Zhou et al. (2021)) of the Nurse’s Health Data conducted in Section 5 of this pa-
per, we aim at addressing the scientific question on how the genetic factors, which are single
nucleotide polymorphisms or SNPs, are influenced by age to affect the change in body mass
index (BMI). The exploratory data analysis in Figure 1 clearly shows the skewness in the
response variable BMI, and nonlinear interactions between SNP rs13001304 and age (the
effect modifier), which justifies the use of the quantile VC model.

Body Mass Index

y

F
re

qu
en

cy

15 20 25 30 35 40

0
50

10
0

15
0

20
0

25
0

30
0

35
0

45 50 55 60 65

−
2

−
1

0
1

2

rs13001304

Age

γ̂(
A

ge
)

Figure 1: Distribution of the BMI (left) and non-linear interaction effect of SNP rs13001304
(right) from the NHS data. The blue dashed lines denote the 95% credible interval.

With a large number of the genetic factors, identification of important gene-environment
interactions naturally leads to a sparse high-dimensional problem. Regularized variable se-
lection has been extensively studied for quantile varying coefficient models. For example,
Noh et al. (2012) have developed the regularization procedure based on the second order
cone programming. The selection of important varying coefficients amounts to group level
selection of the spline coefficients with group SCAD penalty. In longitudinal studies, Tang
et al. (2013) have developed adaptive LASSO based variable selection method for quantile
varying coefficient models, where the group level spline coefficients are penalized via the
shrinkage of the Lv norm (v ≥ 1). Tang et al. (2012) have further examined structural iden-
tification of varying coefficients by separating the varying, nonzero constant and zero effects
in quantile regression. All these studies have established the asymptotic properties of the
corresponding regularized estimators in terms of (1) consistency in variable selection; that
is, the proposed methods can identify nonzero quantile varying coefficient functions with
probability approaching 1, and (2) the rate of convergence of the nonzero quantile varying
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coefficient functions. However, they have not developed the asymptotic distributions of the
regularized estimators. On the other hand, Dai and Kolar (2021) have established asymp-
totic normality and estimation consistency for a sparse kernel estimator that approximates
quantile VC functions. The consistency in variable selection has not been established.

From the Bayesian perspective, variable selection for quantile varying coefficient models
has not been well developed yet. One advantage of the fully Bayesian methods is that ex-
act posterior inference can be conducted through the MCMC algorithms, even under small
sample sizes. Therefore, the Bayesian analysis can provide additional insight over existing
frequentist approaches, including the statistical inference based on credible intervals of the
quantile varying coefficient functions. As the general framework for penalized (robust) vari-
able selection can be formulated as “(robust) loss function + penalty function” (Wu and Ma
(2015); Wu et al. (2019)), choosing the appropriate likelihood function and sparsity inducing
priors, which correspond to the (robust) loss function and penalty terms respectively, have
been shown to be an effective way to develop the Bayesian hierarchical models (Casella et al.
(2010); Park and Casella (2008)). For Bayesian quantile regression, Yu and Moyeed (2001)
have proposed using the asymmetric Laplace distribution (ALD) as the likelihood function
to formulate the Bayesian quantile regression. Li et al. (2010) have further developed the
Bayesian regularized quantile regression based on adopting the univariate and multivariate
conditional Laplace priors as sparse priors. A major limitation of the conditional Laplace
prior is that it does not lead to shrinkage with exact 0 coefficient, which has motivated Ren
et al. (2023) to consider incorporating the spike-and-slab priors in bi-level selection for the
Bayesian least absolute deviation (LAD) regression, a special case of the Bayesian penalized
quantile regression with 50% quantile level. These methods are of a parametric nature, and
cannot be adopted for analyzing the quantile varying coefficient models.

In literature, nonparametric Bayesian variable selection has been examined in varying
coefficient models. Li et al. (2015) have developed Bayesian group LASSO for varying co-
efficient models in longitudinal studies. In gene-environment interaction studies, Ren et al.
(2019) have examined the sparse structure identification for Bayesian partially linear vary-
ing coefficient models. Both work have developed Gibbs samplers for posterior sampling and
inference. As the likelihood functions are employed based on normal distribution, both are
not robust to long-tailed distributions and outliers in the response variable.

To the best of our knowledge, Bayesian regularized variable selection in quantile re-
gression models with varying coefficients has not been well studied. As the quantile VC
model can be further extended to a large family of non-/semi-parametric models (Lv and
Li (2020); Ma and Song (2015); Wang et al. (2009)), it is not feasible to investigate these
models within the Bayesian framework if the cornerstone model in this family has not been
fully understood from the Bayesian perspective. Therefore, to fill this gap, we have devel-
oped a novel regularized Bayesian quantile varying coefficient model. The proposed model
shares the two aforementioned defining characteristics of the quantile varying coefficient
model within the Bayesian framework by accommodating the heavy-tailed errors and outly-
ing observations in the response while flexibly modeling the nonlinear interactions between
the predictor and the effect modifying variable. Selection of important varying coefficients
can be efficiently conducted through group level Bayesian variable selection. Incorporation
of the multivariate spike and slab priors in our model promotes identification of impor-
tant effects with exact sparsity, thus further improving the performance in identification
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and estimation. The Bayesian hierarchical model leads to a Gibbs sampler which facilitates
fast posterior inference based on MCMC algorithms. We have implemented the proposed
and alternative methods in R package pqrBayes on the corresponding author’s Github page
(https://github.com/cenwu/pqrBayes). The core modules of the R package have been
developed in C++. The package will be available on CRAN shortly.

2 Statistical Methods

2.1 The Quantile Varying Coefficient Model

Let (Yi,Xi, Vi,Ei), i = 1, ..., n, be independent and identically distributed random vectors,
where Yi is the response, Vi is the univariate index variable, Xi = (Xi0, Xi1, ..., Xip)

⊤

denotes the (1 + p)-dimensional design vector with the first element Xi0 being 1, and
Ei = (Ei1, ..., Eiq)

⊤ is the q-dimensional design vector. In particular, Xi is of high di-
mensionality (e.g., denoting gene expressions), and Ei represents low dimensional clinical
factors. At a given quantile level 0 < τ < 1, we consider the following quantile varying
coefficient model:

Yi =

q∑
k=1

Eikβk,τ +

p∑
j=0

γj,τ (Vi)Xij + ϵi,τ , i = 1, ..., n (1)

where Eik is the kth component of Ei, Xij is the jth component of Xi, and γj,τ (·)’s are
unknown smooth varying-coefficient functions. The τth quantile of random error ϵi equals 0.
The quantile varying coefficient model enjoys the flexibility in that the high dimensional pre-
dictors X = (X1, ...,Xn)

⊤ are linearly associated with the response, but the corresponding
regression coefficients γj,τ (·)’s vary with the univariate index variable V = (V1, ..., Vn)

⊤. It
frequently rises in many applications that only a subset of predictors among X are relevant
to the response variable in model (1), motivating the variable selection for quantile varying
coefficient models. Here, E stands for the low dimensional clinical and environmental factors
that are pre-determined as important covariates and not subject to selection. Without loss
of generality, we assume that the index variable Vi ∈ [0, 1]. Besides, we omit the subscript
“τ” hereafter for simplicity of notation.

2.2 The Bayesian formulation of the Quantile Varying Coefficient
Model

To formulate the Bayesian quantile varying coefficient model, we begin with approximating
the varying coefficient function γj(·) in model (1) through basis expansion using polynomial
splines. Denote Nn as the number of uniform interior knots, and O as the degree of the
polynomial. Then O = 1 and 2 correspond to the linear and quadratic splines respectively,
and so on. Let πj(·) = (πj1(·), ..., πjd(·))⊤ be a set of normalized B-spline basis with d =
Nn +O+1 (Schumaker (2007)). Then for j = 0, ..., p, we have the following approximations

γj(·) ≈
d∑

s=1

πjs(·)αjs = α⊤
j πj(·),
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where αj = (αj1, ..., αjd)
⊤ is the spline coefficient vector. Subsequently, model (1) becomes

Yi =

q∑
k=1

Eikβk +

p∑
j=0

α⊤
j Zij + ϵi. (2)

where Zij = πj(Vi)Xij = (πj1(Vi)Xij, ..., πjd(Vi)Xij)
⊤.

Given the above basis expansion, the regression coefficients β = (β1, ..., βq)
⊤ and α =

(α⊤
0 , ...,α

⊤
p )

⊤ can be estimated by solving the following minimization problem:

argmin
β,α

n∑
i=1

ρτ (Yi −
q∑

k=1

Eikβk −
p∑

j=0

α⊤
j Zij), (3)

where ρτ (ϵi) = ϵi{τ − I(ϵi < 0)} is the check loss function for quantile regression.
Given a quantile level τ , we assume that the random errors ϵi’s from model (2) follow

an i.i.d. skewed (or asymmetric) Laplace distribution with density shown below (Yu and
Moyeed (2001); Yu and Zhang (2005)):

f(ϵ|θ) = τ(1− τ)θexp[−θρτ (ϵ)] = τ(1− τ)θ

e
−θτϵ, if ϵ ≥ 0

eθ(1−τ)ϵ, if ϵ < 0,

where θ−1 is a scale parameter determining the skewness of the distribution. Then the joint
distribution of Y given E and Z can be expressed as:

f(Y |E,Z,β,α, θ) = τn(1− τ)nθnexp
(
− θ

n∑
i=1

ρτ (Yi −
q∑

k=1

Eikβk −
p∑

j=0

α⊤
j Zij)

)
.

It is worth pointing out that the asymmetric Laplace likelihood is essentially a working
likelihood. It has been adopted merely for the purpose to ensure that the minimization
problem specified in (3) is equivalent to maximizing the above likelihood (Yang et al. (2016)),
which allows us to work with the usual likelihood function. Because of its connection to the
check loss function in quantile regression, the asymmetric Laplace distribution has been
widely adopted to specify the likelihood function for Bayesian quantile regression, which
sheds additional insight over the frequentist-based approaches to quantile regression.

Kozumi and Kobayashi (2011) have shown that the skewed Laplace distribution can
be equivalently represented as a mixture of an exponential distribution and a scaled normal
distribution. To be more specific, let the random variables u andW be standard exponential
distribution, Exp(1), and standard normal distribution, N(0,1), respectively. Define κ1 =
1−2τ
τ(1−τ)

and κ2 =
√

2
τ(1−τ)

for 0 < τ < 1. Then we have the following representation based on

a location–scale mixture of normals as

ϵ = θ−1κ1u+ θ−1κ2
√
uW,

where ϵ follows a skewed Laplace distribution with a scale parameter θ−1. Consequently,
model (2) becomes
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Yi =

q∑
k=1

Eikβk +

p∑
j=0

α⊤
j Zij + θ−1κ1ui + θ−1κ2

√
uiWi,

where ui ∼ Exp(1) and Wi ∼ N(0, 1). Let ũi = θ−1ui ∼ Exp(θ−1). Therefore, we have the
following hierarchical model:

Yi =

q∑
k=1

Eikβk +

p∑
j=0

α⊤
j Zij + κ1ũi + θ−

1
2κ2
√
ũiWi.

ũ1, ..., ũn ∼
n∏

i=1

θexp(−θũi),

W1, ...,Wn ∼
n∏

i=1

1√
2π

exp(−1

2
W 2

i ).

2.3 The Bayesian Regularized Quantile Varying Coefficient Model

In the literature, penalized variable selection for quantile varying coefficient models have
been examined with different group level penalty functions. For example, Noh et al. (2012)
have developed a group SCAD to select important groups of spline coefficients after basis
expansion. Tang et al. (2013) have proposed adaptive group LASSO for quantile varying
coefficient models, where the group level shrinkage on spline coefficients has been imposed
through the Lν norm with ν ≥ 1. From the Bayesian perspective, the group LASSO estimator
can be viewed as the posterior mode estimate when independent and identical multivariate
Laplace priors are assumed for groups of regression coefficients. Such a connection has
motivated us to consider the following regularized quantile varying coefficient model with
group LASSO penalty:

min
β,α

n∑
i=1

ρτ (Yi −E⊤
i β −Z⊤

i α) + λ

p∑
j=1

||αj||2, (4)

where ||αj||2= (α⊤
j αj)

1/2, and λ > 0 is the tuning parameter. We first set the independent
and identical multivariate Laplace prior on αj as π(αj|λ, θ) ∝ (λθ)dexp{−λθ||αj||2}, where
d is the group size (i.e. the length of αj). The resulting posterior distribution of α is

f(α|Y ,E,Z,β, λ, θ) ∝ exp
{
− θ

n∑
i=1

ρτ (Yi −
q∑

k=1

Eikβk −
p∑

j=0

α⊤
j Zij)− λθ

p∑
j=1

||αj||2)
}
.

With the reparametrization η = λθ, the multivariate Laplace prior can be rewritten as a
scale mixture of multivariate normal distribution using Gamma mixing density, that is,

M-Laplace(αj|η) ∝ (η2)
d/2

exp{−η||αj||2},

∝
∫ +∞

0

Nd{αj|0, gjId}Gamma(gj|
d+ 1

2
,
η2

2
)dgj,

(5)
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where the multivariate normal (MVN) distribution has zero mean vector and a d-by-
d diagonal matrix diag(gj, ..., gj) as the covariance matrix, and the Gamma distribution

is defined with the shape parameter d+1
2

and the rate parameter η2

2
. By integrating out

gj, the conditional prior on αj has the multivariate Laplace distribution defined in (5).
Therefore, the prior can be expressed as a gamma mixture of normal distributions in a
Bayesian hierarchical model:

αj|gj
ind∼ Nd(0, gjId),

gj|η2
ind∼ Gamma(

d+ 1

2
,
η2

2
),

(6)

A major limitation of the above Laplacian shrinkage based formulation of hierarchical
model is that the posterior estimates for regression coefficients α cannot be shrunk to 0
exactly. In general, a 95% credible interval needs to be constructed to determine the spar-
sity, which suffers from inaccuracy as shown in many published studies. Here, we consider
incorporating multivariate spike-and-slab priors to achieve direct identification of sparsity,
i.e.,

αj|gj, ψj
ind∼ (1− ψj)Nd(0, gjId) + ψjδ0(αj),

ψj|π0
ind∼ Bernoulli(π0),

gj|η2
ind∼ Gamma(

d+ 1

2
,
η2

2
),

(7)

where the spike is defined as δ0(αj), a point mass at 0d×1, and the slab component is
Nd(0, gjId). The parameter π0 ∈ [0, 1]. For j = 1, ..., p, we introduce a latent binary indicator
variable ψj corresponding to each group to conduct the selection of spline coefficients on the
group level. When ψj = 1, the spline coefficient vector αj has a point mass density at zero,
suggesting that αj is estimated as a zero vector and the varying coefficient corresponding
to the jth predictor in X is 0, i.e., the jth predictor is not associated with the response.
Besides, if ψj = 0, the slab part, or the normal distribution, is in action, and the spike-
and-slab prior reduces to the hierarchical priors in (6), leading to a Bayesian quantile group
LASSO. Therefore, ||αj||2 ̸= 0 and the jth group of spline coefficients is selected in final
model. By integrating out ψj and gj in (7), we have the marginal prior on αj as a mixture
of a multivariate Laplace distribution and a point mass at 0d×1:

αj|η2 ∼ (1− π0)M-Laplace(αj|η) + π0δ0(αj), (8)

which borrows strength from both the Laplacian shrinkage and spike-and-slab priors. The
multivariate Laplacian in the slab component plays the role as a diffuse density to model
the large effects, and δ0(·) is a point mass at zero to achieve variable selection via shrinking
negligible group of spline coefficients to 0. Note that (8) reduces to (5) when π0 = 0. We
assign a conjugate beta prior as π0 ∼ Beta(e, f) with fixed parameters e and f , which
accounts for the uncertainty in choosing π0.

Besides, for computational convenience, we assign conjugate Gamma priors to η2 and θ
as follows:
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η2 ∼ Gamma(c,m),

θ ∼ Gamma(a, b),

where a, b, c and m are constants. The multivariate normal prior has been placed on the
q-dimensional coefficient vector β = (β1, ..., βq)

⊤ as:

β ∼ Nq(0,Σβ),

where Σβ denotes the covariance matrix. Similarly, for the coefficients α0 corresponding to
the varying intercept, we assign the following prior:

α0 ∼ Nd(0,Σα0).

3 The Gibbs Sampler

The joint likelihood of the unknown parameters conditional on data will be given as

p(α,β, ũi, gj, π0, θ, η
2|Y ) ∝

n∏
i=1

1√
2πθ−1κ22ũi

exp{−
(Yi −E⊤

i β −
∑p

j=0 α
⊤
j Zij − κ1ũi)

2

2θ−1κ22ũi
}

×
p∏

j=1

(
(1− π0)(2πgj)

− d
2 exp

(
− 1

2gj
α⊤

j αj

)
I(αj ̸=0) + π0δ0(αj)

)

× πe−1
0 (1− π0)

f−1

×
p∏

j=1

(
η2

2
)
d+1
2 g

d−1
2

j exp(−η
2

2
gj)

×
n∏

i=1

θexp(−θũi
)

× θa−1exp(−bθ)

× (η2)c−1exp(−mη2)

× (2π)−
q
2 |Σβ|−

1
2 exp(−1

2
β⊤Σ−1

β β)

× (2π)−
d
2 |Σα0 |−

1
2 exp(−1

2
α⊤

0 Σ
−1
α0
α0).

The full conditional distributions can be derived as follows. We provide all the details in the
Appendix.

• The full conditional distribution of ũi is:
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ũi
−1|rest ∼ Inverse-Gaussian(

√
κ21 + 2κ22

(Yi −E⊤
i β − Z⊤

i α)2
, (
θκ21
κ22

+ 2θ)),

where “rest” denotes the data and all the other model parameters sampled in the MCMC.
• Let lj = p(αj = 0|rest), then the conditional posterior distribution of αj(j = 1, ..., p)

is a multivariate spike-and-slab distribution given as:

αj|rest ∼ (1− lj)Nd(µj,Σj) + ljδ0(αj),

where

Σj = (θκ−2
2

n∑
i=1

1

ũi
ZijZ

⊤
ij + g−1

j Id)
−1,

µj = Σjθκ
−2
2

n∑
i=1

Zij

ũi
(Yi −Z⊤

i,−jα−j −E⊤
i β − κ1ũi),

and
lj =

π0

π0 + (1− π0)|gjId|−
1
2 |Σj|

1
2 exp(1

2
µ⊤

j Σjµj)
.

Therefore, the posterior distribution of αj is a mixture of a multivariate normal distribution
and a point mass at 0. At each iteration of MCMC, αj is drawn from Nd(µj,Σj) with
probability (1− lj) and is set to 0 with probability lj.

• The full conditional distribution of θ is

θ|rest ∼ Gamma
(3
2
n+ a,

1

2

n∑
i=1

(Yi −E⊤
i β −

∑p
j=1α

⊤
j Zij)

2

κ22ũi
+

n∑
i=1

ũi + b
)
.

• The full conditional distribution of η2 is

η2|rest ∼ Gamma
((d+ 1)(p+ 1)

2
+ c,

1

2

p∑
j=1

gj +m
)
.

• The full conditional distribution of gj, j = 1, ..., p, is

g−1
j |rest ∼

Inverse-Gamma(d+1
2
, η2

2
) if αj = 0

Inverse-Gaussian(
√

η2

α⊤
j αj

,η2) if αj ̸= 0
.

• The full conditional distribution of π0

π0|rest ∼ Beta
(
1 + p−

p∑
j=1

Qj + e,

p∑
j=1

Qj + f
)
,

where

Qj =

0 if αj = 0

1 if αj ̸= 0
.
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• The full conditional distribution of β is multivariate normal:

β|rest ∼ Nq(µβ⋆ ,Σβ⋆),

with covariance

Σβ⋆ = (
n∑

i=1

θEiE
⊤
i

κ22ũi
+Σ−1

β )−1,

and mean

µβ⋆ = Σβ⋆

( n∑
i=1

θ

κ22ũi
(Yi −

p∑
j=0

α⊤
j Zij − κ1ũi)E

⊤
i

)⊤
.

• Similarly the full conditional distribution of α0 can be obtained as

α0|rest ∼ Nd(µ0,Σ0),

where

Σ0 = (
n∑

i=1

θZi0Z
⊤
i0

κ22ũi
+Σ−1

α0
)−1

and

µ0 = Σ0

( n∑
i=1

θ

κ22ũi
(Yi −E⊤

i β −
p∑

j=1

α⊤
j Zij − κ1ũi)Z

⊤
i0

)⊤
.

4 Simulation

We conduct a comprehensive evaluation to assess the performance of the proposed method,
Bayesian regularized quantile varying coefficient model with spike and slab priors (BQRVCSS),
with three alternative Bayesian methods: BQRVC, BVCSS and BVC. The BQRVC only dif-
fers from BQRVCSS in that the spike-and-slab prior is not incorporated. BVCSS and BVC
are the non-robust counterpart of BQRVCSS and BQRVC, respectively. Details of the hier-
archical model formulation and derivation of the corresponding Gibbs samplers are provided
in the Appendix C. Besides, two frequentist methods, regularized varying coefficient model
with adaptive group LASSO under the quantile check loss (QRVC-adp) and least square loss
(VC-adp) from Tang et al. (2013) are also included.

The response variable generated according to model 1 with sample size n=200 and dimen-
sionality of X being 100 after excluding the first column of 1’s. Without loss of generality,
the low dimensional clinical covariates, denoted as E in model 1, is omitted, which can
facilitate a fair comparison as such a component is not included in QRVC-adp and VC-adp
(Tang et al. (2013)). The total dimension of regression coefficients after basis expansion is
larger than the sample size. For instance, if the number of basis function is set to 5, the
actual dimension is 505, including the varying intercept. The varying coefficients are set as
γ0(v) = 2 + 2sin(2πv), γ1(v) = 2exp(2v − 1), γ2(v) = −6v(1− v), γ3(v) = −4v3. The rest of
the coefficients are 0. We simulate two types of predictors X separately. First, the predictors
are simulated from a multivariate normal distribution with mean 0 and an AR-1 covariance
matrix where marginal mean is 0 and correlation coefficient is 0.5, which represents the con-
tinuous gene expression data. Second, we generate the predictors as the categorical single
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nucleotide polymorphism (SNP) data by dichotomizing the aforementioned gene expression
values of each predictor at the 1st and 3rd quartiles, leading to the 3-level categories (0,1,2)
for genotypes (aa, Aa, AA).

We consider five error distribution for ϵi’s in model (1): N(µ, 1)(Error 1), 80%N(µ,1)
+ 20%Normal(µ, 3) (Error 2), Laplace(µ,b) with the scale parameter b = 1 (Error 3),
LogNormal(µ,1) (Error 4), t(2) with mean=µ (Error 5). Errors 2–5 are heavy-tailed distri-
butions. For each error, µ is chosen so that the τth quantile is 0. We also consider the case
of non i.i.d. random errors by using the following data generating model :

Yi =

q∑
k=1

Eikβk +

p∑
j=0

γj(Vi)Xij + (1 +Xi2)ϵi,

where Vi ∼ Uniform(0, 1), the i.i.d. errors ϵi in model (1) are replaced by (1 + Xi2)ϵi, and
the regression coefficients are the same as in the model under i.i.d. random errors.

The proportions of correct fitting (C), over-fitting (O), and under-fitting (U) are used to
evaluate identification performance. In addition, the integrated mean squared error (IMSE)
is adopted to assess estimation accuracy of varying coefficients. Let γ̂j(v) denote the posterior
median estimate for γj(v), and (v1, ..., v200) be the grid of points equally space on [0,1].
Therefore γ̂j(v) can be evaluated on the grid points {vi}200i=1. Then the IMSE of γ̂j(v) is
given as IMSE(γ̂j(v)) =

1
200

∑200
t=1 (γ̂j(vt) − γj(vt))

2. γj(vt) reduces to 0 if j > 3. The total
integrated mean squared error (TIMSE), or the sum of all the IMSE’s of estimated varying
coefficients, denote the overall estimation accuracy.

We have drawn the posterior samples from the Gibbs sampler. For Bayesian methods
that are based on the spike-and-slab priors, the median probability model (MPM) is adopted
to identify important predictors. Define the indicator ϕj for the jth predictor. At the mth

iteration, ϕ
(m)
j = 1 if the jth predictor is included in the regression model,i.e., the jth varying

coefficient is nonzero. Then, based on M posterior samples drawn from the MCMC after
excluding burn-ins, the posterior probability of including the jth predictor in the final model
can be calculated as

pj = π̂(ϕj = 1|y) = 1

M

M∑
m=1

ϕ
(m)
j , j = 1, ..., p.

A larger posterior inclusion probability suggests a stronger evidence for the importance of
the corresponding varying coefficients. The MPM model consists of predictors with posterior
inclusion probability no less than 0.5. It has been recommended due to its optimal prediction
performance when selecting a single model is of interest (Barbieri and Berger (2004)). For
methods without using spike–and–slab priors, we use the 95% credible interval (95%CI) to
conduct identification. In simulation, the Gibbs sampler run 10,000 MCMC iterations in
which the first 5,000 samples are burn-ins.

For the 4 data generating scenarios, i.e., (1) gene expression with i.i.d. error; (2) gene
expression with non-i.i.d. error, (3) SNPs with i.i.d. error and (4) SNPs with non-i.i.d.
error, all the 6 methods have been compared across 5 error distributions and 3 different
quantile levels (0.3, 0.5 and 0.7). The identification results for the first scenario are shown
in Figure 2. We can observe that under the standard normal error, BQRVCSS and BVCSS,
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the two Bayesian methods with the spike-and-slab priors, as well as the two frequentist
methods (QRVC-adp and VC-adp), have comparable performance in correctly identifying
the true model. When the random errors are heavy-tailed, Figure 2 clearly shows the
advantage of BQRVCSS over non-robust alternatives. On the other hand, BQRVCSS is
apparently superior over BQRVC and BVC by yielding much larger percentage of correctly
fitted models. In fact, the two Bayesian approaches without adopting spike-and-slab priors
consistently lead to the two lowest proportions of identifying the true model. A comparison
between BQRVCSS and QRVC-adp indicates that the two are comparable in general, and
the proposed one appears slightly better. Among the 12 sub-panels in Figure 2, robust
methods tend to perform the worst at quantile level 0.7 under the lognormal error (Error
4), since lognormal distribution is right skewed. Such a phenomenon has not been observed
under other 4 symmetric errors.

Figure 3 shows the identification results under the 2nd setting where the response vari-
able is generated based on gene expression data with non-i.i.d. errors. The advantage of
BQRVCSS can be again concluded. Furthermore, the estimation results in terms of total
integrated mean square error (TIMSE) for scenario 1 and 2 are provided in Table 1 to Table
2, respectively. Under the heavy-tailed error, BVCSS leads to the smallest estimation error.
For example, in Table 1, at quantile 0.5 with the t(2) error distribution, BQRVCSS has
a TIMSE of 0.33 (sd 0.23), less than that of the BQRVC (4.35 (sd 0.78)) and QRVC-adp
(0.76 (sd 0.99)), as well as non–robust alternatives. The advantage of the proposed method
over the rest is due to its robustness and incorporation of the spike-and-slab prior. We also
observe similar patterns in the 3rd and 4th setting from Figure 5, Figure 6, Table 3 and
Table 4 in the Appendix.

We have also shown the estimated varying coefficients of the proposed method (BQRVCSS)
for the gene expression data with i.i.d. errors and 50% quantile level in the first setting in
Figure 7. Here are the details of generating the Figure 7. At each replicate, a new dataset
has been simulated with the aforementioned data generating model. We can obtain the
posterior median estimates and 95% credible intervals after fitting the proposed method to
the data generated at every replicate. The median estimates, as well as the lower and upper
bound of the credible intervals, have been averaged respectively across 100 replicates to yield
the estimated varying coefficients and corresponding 95% credible intervals shown in Figure
7. In addition, we have evaluated the empirical 95% coverage probabilities of four Bayesian
methods using their pointwise 95% credible intervals over the 200 grid points. Table 5 in the
Appendix shows the 95% coverage probabilities for four varying coefficient functions under
simulated gene expression data with i.i.d. t(2) errors. We can observe that overall, the
proposed BQRVCSS outperforms all the alternatives. Specifically, BQRVC and BVC, the
two methods not incorporating the spike-and-slab priors, can barely cover γ1(v) and γ3(v).
The nonrobust counterpart BVCSS is inferior particularly at quantile level 0.3 and 0.7. The
results also suggest that the performance may depend on the form of varying coefficients
under estimation. It is apparent that γ2(v), a quadratic function, is corresponding to bet-
ter coverage probabilities in general and none of the methods have completely missed the
coverage of γ2(v), compared to those under the non-polynomial functions (γ0(v) and γ1(v))
and polynomial functions with a higher order (γ3(v)). Yang et al. (2016) have proposed a
posterior variance adjustment procedure to improve the validity of credible intervals from
Bayesian quantile regression with the asymmetric Laplace likelihood. While their method
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has been developed from a low dimensional parametric regression setting, how to adjust pos-
terior variance to improve performance in terms of coverage probabilities in high-dimensional
nonparametric setting when more complicated sparsity priors (i.e. the spike-and-slab prior)
are involved worths further exploration beyond our study.

By far, the asymptotic distribution of the spline-based regularized quantile varying coeffi-
cient models have not been developed (Noh et al. (2012); Tang et al. (2013, 2012)). Without
the asymptotic variance, it is not feasible to construct the corresponding pointwise asymp-
totic confidence intervals for the varying coefficients. Therefore,the counterpart of Figure 7
for frequentist spline-based quantile VC models are not available. In literature, Dai and Ko-
lar (2021) have developed kernel-based inference procedure for estimators that approximates
quantile VC in high-dimensional setting. They did not show any plots of pointwise confi-
dence intervals for nonparametric functions. It is not immediately evident to us whether
or how their methods can be used to generate confidence intervals for varying coefficient
functions without the relevant specifics. Therefore we have not pursued a direct comparison
to frequentist coverage of confidence intervals using their methods. For frequentist methods
VC-adp and QRVC-adp, we have selected tuning parameters through Schwarz-type Infor-
mation Criterion (SIC) which has been widely adopted in published literature in choosing
tuning parameters for regularized (quantile) varying coefficient models (Noh et al. (2012);
Tang et al. (2013, 2012); Wang and Xia (2009)). Please refer to the Appendix for more
details.

The convergence of the MCMC chains is examined by using the potential scale reduction
factor (PSRF) (Gelman and Rubin (1992),Brooks and Gelman (1998)). The convergence is
achieved if PSRF values are close to 1. According to Gelman et al. (2013), we use 1.1 as the
cutoff (i.e. PSRF ≤ 1.1) to determine convergence. The PSRF has been computed for each
parameter, indicating convergence of all chains after burn-ins. Figure 8 shows the PSRF
of the estimated spline coefficients of each varying coefficient function. The convergence is
satisfactorily achieved.

We demonstrate the sensitivity of the proposed method BQRVCSS for variable selec-
tion to the choice of the hyperparameters for π0 and η2 in the Appendix and tabulate the
results from Table 6 to Table 9. These results suggest that the MPM model is insensi-
tive to different choices of the hyperparameters. We also conduct sensitivity analysis on
whether the smoothness specification of the parameters in the B spline will impact the
variable selection. The sensitivity analysis results are shown in Table 12 to 15 in the Ap-
pendix. It is evident that the proposed method is insensitive to the number of spline basis
d, which is equivalent to 1 + O + Nn, in smoothness specification. We provide a heuristic
justification as follows. In nonparametric literature, n1/(2O+3) has been established as the
optimal order of number of interior spline knots under certain regularity conditions (Xue
and Yang (2006)). Other orders, such as n1/(2O+1), has also been commonly assumed (Wang
and Yang (2009)). Therefore, if the number of interior knots is chosen within the range of
{max([0.5n1/(2O+3)], 1), [1.5n1/(2O+3)]}, where [a] denotes the integer part of a, the optimal
order can be achieved. In practice, to avoid over fitting, cubic splines and splines with a
smaller degree have been extensively used. With quadratic and cubic splines, where the
spline order O corresponds to 2 and 3 respectively, the aforementioned range results in 1 to
3 interior knots under the sample size 200 adopted in simulation. Therefore, the proposed
method is insensitive with the above specifications of O and Nn, i.e. the number of spline
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basis. Nevertheless, a rigorous justification on the optimal order of number of interior knots
in high-dimensional quantile varying coefficient models remains an open question. Based on
this finding, we set the degree O = 2 and the number of interior knots Nn = 2 for the B
spline basis, which leads to d = 5 basis functions.

The varying coefficient functions in the simulation study have been widely adopted in
published nonparametric literature (Noh et al. (2012); Tang et al. (2013, 2012); Wang and
Yang (2009); Xue and Yang (2006)). Functions with more complex structures may not lead
to the same satisfactory performance as shown here. For example, a sine function with
more oscillations in [0,1] is not a polynomial function in nature, and thus cannot be well
approximated by the spline–based methods with the established optimal order of number of
interior knots. We run additional simulations under setting 1 where gene expression data
are generated with i.i.d. errors by only changing γ0(v) to a more complicated sine function
γ⋆0(v) = 2 + 2sin(6πv). Table 11 in the Appendix shows that the estimation accuracy has
significantly decreased for all the methods, compared to the estimation results in Table 1.
In the Appendix, we have also provided the estimation plots of more complicated varying
coefficient functions using the BQRVCSS and the frequentist counterpart QRVC-adp. Figure
9 and Figure 10 show that γ⋆0(v) cannot be well modeled by both methods, which has also
been observed with all the other methods (BQRVC, BVCSS, BVC and VC-adp) under
comparison.

In the simulation, the figures of estimated curves are obtained based on averages over mul-
tiple replicates. To further explore the estimation performance when the proposed method
has been applied to single datasets, we have also shown the figure beyond the “average case”
scenario. Specifically, at each simulation run, we compute the IMSE of posterior median
estimates of the curves. Then the curves at the 25th, 50th and 75th percentile of IMSEs
across all the replicates have been overlaid with the true curve in Figure 11 in the Appendix.
We can observe that all of them are close to the true curves, although the curves at the 75th
percentile of IMSEs are slightly worse than those at the other two percentiles.
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Figure 2: Identification results for simulated gene expression data with i.i.d. errors based
on 100 replicates. C: correct-fitting proportion; O: overfitting proportion; U: underfitting
proportion.
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Figure 3: Identification results for simulated gene expression data with heterogeneous
errors based on 100 replicates. C: correct-fitting proportion; O: overfitting proportion; U:
underfitting proportion.
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Table 1: Estimation results in terms of total integrated mean square error (TIMSE) for
simulated gene expression data with i.i.d. errors based on 100 replicates.

τ BQRVCSS BQRVC BVCSS BVC QRVC-adp VC-adp

τ = 0.3 Normal 0.23(0.10) 2.28(0.35) 0.45(0.09) 1.56(0.16) 0.25(0.10) 0.70(0.09)

NormalMix 0.34(0.19) 3.90(0.62) 0.76(0.27) 3.04(0.43) 0.45(0.23) 0.92(0.16)

Laplace 0.27(0.13) 2.97(0.45) 0.47(0.15) 2.12(0.31) 0.26(0.11) 0.71(0.11)

Lognormal 0.11(0.05) 3.38(0.55) 1.14(0.85) 5.84(1.92) 0.18(0.41) 1.22(2.45)

t(2) 0.44(0.24) 5.01(1.16) 2.63(5.24) 8.35(9.76) 0.84(0.98) 2.58(3.22)

τ = 0.5 Normal 0.21(0.06) 2.42(0.36) 0.40(0.06) 1.57(0.16) 0.21(0.07) 0.62(0.11)

NormalMix 0.31(0.17) 3.75(0.60) 0.74(0.24) 2.71(0.49) 0.35(0.16) 0.92(0.11)

Laplace 0.22(0.06) 3.07(0.48) 0.46(0.08) 1.83(0.28) 0.22(0.09) 0.70(0.08)

Lognormal 0.25(0.19) 4.59(0.94) 1.18(1.69) 5.09(2.28) 0.40(0.56) 1.26(0.68)

t(2) 0.33(0.23) 4.35(0.78) 2.04(1.48) 6.82(6.51) 0.76(0.99) 2.05(4.32)

τ = 0.7 Normal 0.21(0.08) 2.53(0.41) 0.41(0.08) 1.58(0.18) 0.23(0.10) 0.71(0.10)

NormalMix 0.33(0.14) 3.84(0.58) 0.78(0.30) 3.03(0.53) 0.45(0.26) 0.92(0.18)

Laplace 0.29(0.11) 3.22(0.49) 0.49(0.16) 2.18(0.34) 0.30(0.17) 0.73(0.12)

Lognormal 0.71(0.45) 5.44(1.52) 0.99(0.90) 4.19(2.07) 0.96(0.95) 1.35(3.65)

t(2) 0.42(0.35) 5.07(1.21) 2.65(3.35) 9.10(11.24) 0.97(1.42) 2.02(1.75)

Table 2: Estimation results in terms of total integrated mean square error (TIMSE) for
simulated gene expression data with heterogeneous errors based on 100 replicates.

τ BQRVCSS BQRVC BVCSS BVC QRVC-adp VC-adp

τ = 0.3 Normal 0.35(0.15) 3.44(0.54) 0.94(0.30) 2.82(0.37) 0.37(0.20) 0.95(0.17)

NormalMix 0.50(0.24) 5.05(0.99) 1.04(1.20) 5.79(1.70) 0.45(0.23) 1.62(0.61)

Laplace 0.35(0.15) 4.04(0.79) 1.03(0.67) 3.57(0.90) 0.41(0.21) 0.94(0.27)

Lognormal 0.20(0.09) 4.18(0.93) 2.55(2.57) 9.84(4.87) 0.37(0.54) 3.59(2.03)

t(2) 0.64(0.39) 5.87(1.29) 2.99(2.83) 10.94(6.72) 1.37(1.59) 3.27(1.27)

τ = 0.5 Normal 0.27(0.21) 3.38(0.53) 0.93(0.17) 2.21(0.36) 0.28(0.16) 0.96(0.16)

NormalMix 0.29(0.12) 4.61(0.82) 1.12(0.94) 5.20(1.48) 0.35(0.16) 1.62(0.61)

Laplace 0.21(0.10) 3.84(0.67) 0.98(0.41) 3.18(0.72) 0.21(0.12) 1.06(0.33)

Lognormal 0.29(0.16) 4.36(0.95) 2.09(2.13) 8.26(3.61) 0.40(0.48) 2.45(2.17)

t(2) 0.38(0.22) 5.31(1.12) 3.33(3.15) 11.94(15.06) 1.16(2.20) 3.92(5.56)

τ = 0.7 Normal 0.33(0.11) 3.65(0.59) 0.85(0.25) 2.71(0.47) 0.38(0.16) 1.06(0.27)

NormalMix 0.51(0.22) 5.32(0.89) 1.22(1.04) 5.91(1.57) 0.78(0.56) 1.65(0.61)

Laplace 0.42(0.22) 4.25(0.73) 0.93(0.42) 3.37(0.72) 0.42(0.24) 1.10(0.39)

Lognormal 0.80(0.58) 6.85(1.71) 2.47(8.41) 7.98(6.94) 2.72(6.07) 2.54(3.39)

t(2) 0.62(0.29) 6.44(1.31) 5.37(4.67) 13.41(12.08) 1.27(1.13) 3.32(3.06)
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5 Real Data Analysis

We analyze the Nurse’s Health Study (NHS) data from the Gene, Environment Association
Studies Consortium (GENVEA) (Cornelis et al. (2010)). The NHS aims at assessing a
series of hypotheses of disease susceptibility in female based on genetic factors, i.e. single
nucleotide polymorphisms (SNPs), and environmental/clinical factors in gene-environment
interaction studies. The body mass index (BMI), which can quantify the obesity level, is set
as the response. We focus on SNPs on chromosome 2. We consider age as the environment
factor since it has been shown to be associated with the variations of obesity level. Besides,
three clinical covariates are included: total physical activity, trans fat intake and cereal fiber
intake. The healthy subjects in the NHS are selected in the case study. We clean the data
by keeping subjects with matched phenotypes and genotypes, removing SNPs with minor
allele frequency (MAF) less than 0.05 or deviation from Hardy-Weinberg equilibrium, and
imputing the missing values. The final working dataset contains 1716 subjects with 53,408
SNPs.

A common practice in variable selection for ultra-high dimensional data in omics data
analysis is to first conduct marginal screening and reduce the number of feature to a rea-
sonable scale so (Bayesian) regularized variable selection can be applied (Li et al. (2015);
Wu et al. (2014, 2018)). Here, we screen the SNPs using the testing procedure in non-linear
gene-environment interaction studies proposed by Ma et al. (2011) and Wu and Cui (2013).
In particular, three statistical tests have been performed to assess the effect of a genetic
factor under the environmental influences and to dissect whether the interaction effects are
nonlinear, linear, constant, or zero. We keep the SNPs with p-values less than a cutoff of
0.005 from any of the tests under the response BMI. 300 SNPs pass the screening.

We analyze the screened data using the proposed method BQRVCSS at the median and
the alternative BVCSS. Other methods, such as BQRVC and BVC are not considered since
they have inferior performance in the simulation studies. The eleven SNPs identified by
BQRVCSS and the corresponding estimated varying coefficients are displayed in Figures
4. BVCSS identifies nine SNPs which are rs17533992, rs16864365, rs6719951, rs7585571,
rs752833, rs4894108, rs16867269, rs2675102 and rs13418054. Six SNPs are commonly se-
lected by both methods. Besides, the proposed method uniquely identified five SNPs that
are located within the genes that have been reported to be associated with body weight
change. For example, BQRVCSS identifies the SNP rs17783776, which is located in the
gene ALK. ALK (anaplastic lymphoma kinase) has been identified as a thinness gene which
suggests it could be the target gene for obesity treatment (Orthofer et al. (2020)). As a com-
parison, the alternative method BVCSS misses this important gene. The proposed method
also identifies rs41349646, a SNP that is mapped to the gene NPAS2. NPAS2 has been
found to play an essential role in the regulation of peripheral circadian response and hepatic
metabolism, therefore affects weight change (O’Neil et al. (2013)). The SNP rs10933420 is
also uniquely identified by our proposed method and it is located in the gene NGEF. Kim
et al. (2015) has found NGEF associated with intra-abdominal fat accumulation. Besides,
our proposed method BQRVCSS identifies rs4854071 as well. The SNP rs4854071 is located
within the gene NDUFA10 (NADH:Ubiquinone Oxidoreductase Subunit A10), which has
been found to be involved in the NAFLD pathway regulating weight loss together with ten
other genes (Mirhashemi et al. (2021)).
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It is difficult to objectively evaluate the selection accuracy with real data. We assess
the prediction performance as it may provide additional information on the performance
of different methods. We refit the selected models of BQRVCSS and BQRVC by Bayesian
quantile LASSO and Bayesian LASSO, respectively, by following the refitting procedure in
Li et al. (2015). The prediction mean squared errors (PMSEs) and prediction mean absolute
deviations (PMADs) are computed based on the posterior median estimates. The proposed
method BQRVCSS has the PMSE and PMAD equal to 13.13 and 1.34, respectively, while
the PMSE and PMAD for BVCSS are 15.04 and 3.05, which are both larger than the
counterparts of BQRVCSS.
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Figure 4: Real data analysis using the proposed method (BQRVCSS). Black line: median
estimates of varying coefficients for BQRVCSS. Blue dashed lines: 95% credible intervals for
the estimated varying coefficients.

6 Discussion

Within a broader scope, regularized quantile varying coefficient model can be regarded as a
robust variable selection problem in the form of “robust loss function + penalty function”
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(Wu and Ma (2015)), which consists of a quantile check loss and a group level penalty
function. Although other robust loss functions, including the rank based loss (Wu et al.
(2015)), can also be considered for robust high-dimensional varying coefficient models, the
regularized quantile VC model naturally leads to a Bayesian formulation if the likelihood
function of the Bayesian hierarchical model is specified based on the asymmetric Laplace
distribution (ALD) (Yu and Moyeed (2001)). The modeling of spline basis in the proposed
study has connections to the development of semiparametric Bayesian regressions for the
“large n, small p” settings (Huang et al. (2015)). As the high-dimensional Bayesian quantile
VC model is underdeveloped, examining the Bayesian counterpart complements and further
advances the existing studies on the quantile VC model in the frequentist framework.

Nevertheless, our limited literature search shows that high dimensional Bayesian quantile
varying coefficient models have not been well examined by far. In this article, we have
developed a Bayesian regularized quantile varying coefficient model. The robust asymmetric
Laplace likelihood and sparsity inducing priors lead to full conditional distributions of the
model parameters. Therefore, posterior inference can be efficiently conducted through Gibbs
sampling. The varying coefficient model is a special case of the varying index coefficient
model (VICM) when the effect modifying variable is univariate with loading weight being 1
(Ma and Song (2015)). Ma and Song (2015) have further shown that the new class of VICM
gives rise to a broad spectrum of semi- and non-parametric models. Our study has laid
a solid foundation for initiating Bayesian analyses of these models in the high-dimensional
setting. Investigations on these extensions within the Bayesian framework will be postponed
to the near future.
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Appendix

A Additional Simulation Results

A.1 Additional Identification Results
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Figure 5: Identification results for simulated SNP data with i.i.d. errors based on 100 repli-
cates. C: correct-fitting proportion; O: overfitting proportion; U: underfitting proportion.
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Figure 6: Identification results for simulated SNP data with heterogeneous errors based
on 100 replicates. C: correct-fitting proportion; O: overfitting proportion; U: underfitting
proportion.

24



A.2 Additional Estimation Results

Table 3: Estimation results in terms of total integrated mean square error (TIMSE) for
simulated SNPs with i.i.d. errors based on 100 replicates.

τ BQRVCSS BQRVC BVCSS BVC QRVC-adp VC-adp

τ = 0.3 TMSE 0.23(0.10) 2.32(0.40) 0.45(0.12) 1.51(0.19) 0.28(0.11) 0.79(0.14)

NormalMix 0.34(0.17) 3.47(0.59) 0.76(0.23) 2.92(0.46) 0.53(0.35) 0.98(0.27)

Laplace 0.26(0.10) 2.91(0.53) 0.45(0.12) 2.06(0.32) 0.34(0.15) 0.80(0.11)

Lognormal 0.11(0.07) 3.23(0.61) 1.76(0.64) 4.7(1.38) 0.28(0.51) 1.45(0.76)

t(2) 0.38(0.17) 4.70(1.07) 1.99(1.66) 7.91(9.55) 1.30(1.30) 1.54(1.52)

τ = 0.5 Normal 0.19(0.07) 2.14(0.38) 0.41(0.09) 1.21(0.14) 0.28(0.12) 0.76(0.10)

NormalMix 0.27(0.12) 3.67(0.58) 0.73(0.16) 2.65(0.43) 0.49(0.37) 1.03(0.32)

Laplace 0.16(0.05) 2.88(0.43) 0.45(0.09) 1.87(0.35) 0.28(0.19) 0.78(0.23)

Lognormal 0.23(0.13) 4.16(0.83) 1.55(1.14) 5.3(2.43) 0.44(0.45) 1.43(0.66)

t(2) 0.31(0.18) 4.17(0.83) 1.94(1.63) 7.49(7.61) 1.25(1.23) 2.14(1.90)

τ = 0.7 Normal 0.19(0.07) 2.37(0.46) 0.41(0.10) 1.50(0.18) 0.30(0.16) 0.78(0.12)

NormalMix 0.35(0.15) 3.49(0.53) 0.7(0.19) 2.94(0.45) 0.52(0.30) 1.11(0.39)

Laplace 0.25(0.13) 2.76(0.46) 0.46(0.13) 1.99(0.27) 0.36(0.16) 0.86(0.19)

Lognormal 0.78(0.79) 5.24(1.38) 1.06(1.07) 4.21(1.91) 1.05(0.88) 0.49(0.77)

t(2) 0.46(0.38) 4.83(1.35) 1.9(1.67) 7.59(7.54) 1.13(1.01) 1.77(1.00)

Table 4: Estimation results in terms of total integrated mean square error (TIMSE) for
simulated SNPs with heterogeneous errors based on 100 replicates.

τ BQRVCSS BQRVC BVCSS BVC QRVC-adp VC-adp

τ = 0.3 Normal 0.26(0.11) 3.17(0.57) 0.83(0.24) 2.71(0.44) 0.35(0.24) 1.13(0.30)

NormalMix 0.40(0.20) 4.59(0.79) 1.72(0.86) 5.66(1.35) 0.63(0.54) 1.63(0.57)

Laplace 0.30(0.14) 3.72(0.68) 0.90(0.36) 3.74(0.80) 0.42(0.45) 1.17(0.49)

Lognormal 0.17(0.08) 3.54(0.67) 3.70(2.01) 8.86(3.66) 0.72(0.98) 4.32(3.00)

t(2) 0.66(0.65) 5.92(1.54) 4.64(5.71) 16.16(23.82) 2.09(4.68) 3.78(4.41)

τ = 0.5 Normal 0.17(0.08) 3.11(0.48) 0.82(0.21) 2.10(0.29) 0.25(0.18) 1.09(0.31)

NormalMix 0.25(0.12) 4.2(0.71) 1.66(0.63) 4.56(1.02) 0.68(0.73) 1.74(0.71)

Laplace 0.18(0.12) 3.78(0.63) 0.46(0.26) 3.18(0.55) 0.23(0.16) 0.85(0.45)

Lognormal 0.17(0.08) 4.20(0.74) 2.88(4.66) 9.86(9.94) 0.7(1.14) 2.79(3.26)

t(2) 0.3(0.16) 4.75(0.66) 3.19(4.68) 12.78(12.71) 1.55(1.46) 3.78(3.64)

τ = 0.7 Normal 0.25(0.11) 3.40(0.59) 0.80(0.22) 2.63(0.39) 0.30(0.13) 1.12(0.29)

NormalMix 0.39(0.17) 4.77(0.76) 1.35(0.49) 4.76(0.97) 0.94(1.08) 1.85(0.77)

Laplace 0.25(0.11) 4.14(0.70) 0.88(0.25) 3.57(0.64) 0.43(0.53) 1.30(0.50)

Lognormal 0.58(0.23) 6.55(1.35) 5.32(22.78) 9.11(11.68) 1.26(1.18) 2.15(2.68)

t(2) 0.49(0.25) 6.08(0.99) 5.98(9.18) 18.73(22.33) 3.2(3.84) 4.94(5.77)
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Table 5: Empirical 95% coverage probabilities under simulated gene expression data with
i.i.d. t(2) error based on 200 replicates.

t(2) error BQRVCSS BQRVC BVCSS BVC

τ = 0.3 γ0(v) 0.800 0.875 0.570 0.630

γ1(v) 0.865 0.020 0.815 0.055

γ2(v) 0.950 0.780 0.745 0.825

γ3(v) 0.860 0.000 0.760 0.055

τ = 0.5 γ0(v) 0.875 0.935 0.885 0.865

γ1(v) 0.930 0.020 0.850 0.050

γ2(v) 0.960 0.845 0.810 0.835

γ3(v) 0.905 0.015 0.790 0.050

τ = 0.7 γ0(v) 0.820 0.905 0.665 0.710

γ1(v) 0.930 0.045 0.870 0.080

γ2(v) 0.940 0.830 0.735 0.850

γ3(v) 0.910 0.020 0.815 0.070
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A.3 The estimated quantile varying coefficient functions
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Figure 7: Estimation of non-zero varying coefficients under the normal mixture error (Error
2) for the proposed method (BQRVCSS) at 50% quantile level. Red line: true varying
coefficients. Black line: posterior median estimates of varying coefficients from BQRVCSS.
Blue lines: 95% credible intervals for the estimated varying coefficients.
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A.4 Evaluation on the convergence of MCMC chains
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Figure 8: Potential scale reduction factor (PSRF) versus iterations for the varying functions
in Figure 7. Black line: PSRF. Red line: the threshold of 1.1. α̂j1 to α̂j5(j = 0, ..., 3) denote
the five estimated spline coefficients for the varying coefficient function γj, respectively.
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A.5 Hyper-parameters sensitivity analysis

Table 6: Sensitivity analysis on the choice of the hyperparameter for π0 using different Beta
priors for the Laplace error distribution for the 30% quantile. TIMSE: total integrated
mean square error.

C O U TIMSE

Beta(0.5,0.5) 0.90 0.10 0.00 0.27(0.12)

Beta(1,1) 0.90 0.10 0.00 0.28(0.12)

Beta(2,2) 0.90 0.10 0.00 0.28(0.11)

Beta(1,5) 0.90 0.10 0.00 0.27(0.11)

Beta(5,1) 0.90 0.10 0.00 0.27(0.11)

Table 7: Sensitivity analysis on the choice of the hyperparameter for η2 using different
Gamma priors for the Laplace error distribution for the 30% quantile. TIMSE: total
integrated mean square error.

C O U TIMSE

Gamma(0.1,1) 0.90 0.10 0.00 0.29(0.17)

Gamma(1,1) 0.90 0.10 0.00 0.29(0.16)

Gamma(1,5) 0.90 0.10 0.00 0.30(0.16)

Gamma(2,5) 0.88 0.12 0.00 0.30(0.16)

Gamma(5,1) 0.90 0.10 0.00 0.29(0.16)

Table 8: Sensitivity analysis on the choice of the hyperparameter for π0 using different Beta
priors for the Laplace error distribution for the 50% quantile. TIMSE: total integrated
mean square error.

C O U TIMSE

Beta(0.5,0.5) 0.92 0.08 0.00 0.22(0.05)

Beta(1,1) 0.94 0.06 0.00 0.22(0.06)

Beta(2,2) 0.94 0.06 0.00 0.22(0.06)

Beta(1,5) 0.94 0.06 0.00 0.22(0.06)

Beta(5,1) 0.92 0.08 0.00 0.22(0.06)
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Table 9: Sensitivity analysis on the choice of the hyperparameter for η2 using different
Gamma priors for the Laplace error distribution for the 50% quantile. TIMSE: total
integrated mean square error.

C O U TIMSE

Gamma(0.1,1) 0.96 0.04 0.00 0.22(0.05)

Gamma(1,1) 0.94 0.06 0.00 0.22(0.05)

Gamma(1,5) 0.94 0.06 0.00 0.23(0.05)

Gamma(2,5) 0.94 0.06 0.00 0.22(0.06)

Gamma(5,1) 0.94 0.06 0.00 0.22(0.05)

A.6 Selection of tuning parameters for frequentist methods

We have chosen the tuning parameters for VC-adp and QRVC-adp in terms of the Schwarz-
type Information Criterion (SIC):

SIC(λ) = log
n∑

i=1

L(Yi −E⊤
i β̂ −Z⊤

i α̂) +
logn

2n
edf,

where edf is the effective degree of freedom. For QRVC-adp, L(·) is the quantile check
loss function, and edf is the number of zero residuals which has been extensively used as
a metric indicating the effective dimension of the fitted quantile regression models. Such a
SIC criterion has been commonly adopted in published work on regularized quantile varying
coefficient models (Noh et al. (2012); Tang et al. (2013, 2012)). For VC-adp, L(·) is the least
square loss function, and edf is the total number of nonzero varying coefficients (Tang et al.
(2012); Wang and Xia (2009)). The R codes of VC-adp and QRVC-adp can be obtained
through minor modifications to the R codes for methods proposed in Tang et al. (2012)
available at Dr. Huixia Wang’s website (https://blogs.gwu.edu/judywang/software/).

We have examined the estimation performance of the two frequentist methods when the
tuning parameters are selected using validation. Specifically, after the regularized estimates
have been obtained using the training data, the prediction in terms of the check loss for
QRVC-adp and least square loss for VC-adp are assessed on an independently generated
testing data. For each tuning parameter across the sequence, the prediction performance
is assessed on the same testing data. Therefore, the optimal tuning is corresponding to
the smallest testing error. Such a method of choosing the tuning parameters is feasible in
simulation as the data generating model is available, which is computationally less intensive
compared to cross-validation. For illustration purpose, we have conducted the simulation
under the 1st setting where gene expression data have been generated with i.i.d errors. The
estimation results in Table 10 below are very close to the ones obtained in Table 1 from the
main text.
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Table 10: Selecting tuning parameters based on validation: estimation results in terms of
total integrated mean square error (TIMSE) for simulated gene expression data with i.i.d.
errors based on 100 replicates.

τ = 0.3 τ = 0.5 τ = 0.7

QRVC-adp VC-adp QRVC-adp VC-adp QRVC-adp VC-adp

Normal 0.29(0.09) 0.84(0.26) 0.28(0.13) 0.94(0.22) 0.31(0.09) 1.02(0.33)

NormalMix 0.63(0.52) 1.31(0.52) 0.45(0.24) 1.05(0.28) 0.51(0.23) 1.49(0.26)

Laplace 0.37(0.21) 0.96(0.17) 0.30(0.13) 1.00(0.31) 0.35(0.16) 1.23(0.25)

Lognormal 0.28(0.48) 2.63(0.77) 0.51(0.65) 2.13(0.90) 0.98(0.57) 1.77(0.71)

t(2) 1.19(0.91) 2.61(1.32) 0.82(0.68) 2.23(1.45) 1.18(1.13) 2.56(1.27)

A.7 Additional simulation under more complicated varying coef-
ficient functions

Table 11: Additional simulation under more complicated varying coefficient functions
(γ⋆0(v) = 2 + 2sin(6πv)): estimation results in terms of total integrated mean square error
(TIMSE) for simulated gene expression data with i.i.d. errors based on 100 replicates.

τ BQRVCSS BQRVC BVCSS BVC QRVC-adp VC-adp

τ = 0.3 Normal 2.22(0.28) 4.91(0.60) 2.14(0.29) 4.20(0.47) 2.52(0.43) 2.58(0.33)

NormalMix 2.49(0.52) 5.71(0.92) 2.49(0.47) 5.25(0.72) 2.89(0.71) 2.80(0.44)

Laplace 2.42(0.56) 5.41(0.76) 2.18(0.38) 4.47(0.58) 2.90(0.70) 2.57(0.37)

Lognormal 2.17(0.41) 5.34(0.87) 3.79(1.17) 7.45(2.38) 2.85(0.79) 3.80(0.77)

t(2) 2.74(0.61) 6.67(1.69) 4.41(3.97) 9.76(5.29) 4.73(3.27) 4.32(2.60)

τ = 0.5 Normal 2.02(0.34) 4.99(0.65) 1.81(0.21) 3.83(0.39) 2.31(0.37) 2.44(0.85)

NormalMix 2.26(0.48) 5.76(0.83) 2.11(0.36) 4.87(0.61) 2.81(0.70) 2.76(1.08)

Laplace 2.21(0.50) 5.36(0.59) 1.96(0.43) 4.40(0.60) 2.68(0.72) 2.55(0.88)

Lognormal 2.34(0.48) 6.08(0.77) 3.23(1.21) 7.32(3.39) 3.07(0.87) 3.40(1.14)

t(2) 2.53(0.74) 6.16(0.89) 5.12(9.20) 9.88(7.15) 4.03(2.94) 4.82(2.91)

τ = 0.7 Normal 2.20(0.32) 5.03(0.58) 2.28(0.22) 4.05(0.41) 2.67(0.57) 3.39(1.60)

NormalMix 2.44(0.52) 5.75(0.74) 2.57(0.50) 5.34(0.82) 2.93(0.77) 4.51(2.00)

Laplace 2.42(0.39) 5.43(0.70) 2.14(0.40) 4.44(0.61) 2.85(0.52) 3.86(1.90)

Lognormal 3.07(0.92) 7.30(1.45) 3.02(1.66) 6.73(3.14) 4.22(1.56) 3.58(1.72)

t(2) 2.73(0.73) 6.68(1.11) 4.92(4.32) 9.14(3.79) 4.09(2.67) 6.16(3.66)
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Figure 9: Estimation of more complicated non-zero varying coefficients (γ⋆0(v) = 2 +
2sin(6πv)) under the normal mixture error (Error 2) for the proposed method (BQRVCSS)
at 50% quantile level. Red line: true varying coefficients. Black line: posterior median
estimates of varying coefficients from BQRVCSS. Blue lines: 95% credible intervals for the
estimated varying coefficients.
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Figure 10: Estimation of more complicated non-zero varying coefficients (γ⋆0(v) = 2 +
2sin(6πv)) under the normal mixture error (Error 2) for the QRVC-adp at 50% quantile
level. Red line: true varying coefficients. Black line: estimated varying coefficients from
QRVC-adp. The confidence intervals are not available for frequentist regularized quantile
varying coefficients.
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Figure 11: Estimation of non-zero varying coefficients under the normal mixture error
(Error 2) for the proposed method (BQRVCSS) at 50% quantile level. Red line: true varying
coefficients. Black, Blue and Green lines: posterior median estimates of varying coefficients
from BQRVCSS under 25%, 50% and 75% IMSE respectively.

B Sensitivity analysis on smoothness specification

Let O denote the degree of B spline basis and Nn denote the number of interior knots.
For quadratic and cubic splines corresponding to O=2 and O=3 respectively, we conduct a
sensitivity analysis for the proposed model.
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Table 12: Sensitivity analysis on smoothness specification for the Laplace error distribution
for the 30% quantile. TIMSE: total integrated mean square error.

O=2 Nn 1 2 3 4 5

Laplace C 0.88 0.90 0.92 0.89 0.91

O 0.12 0.10 0.08 0.11 0.09

U 0.00 0.00 0.00 0.00 0.00

TIMSE 0.33(0.19) 0.28(0.12) 0.31(0.14) 0.24(0.12) 0.25(0.15)

O=3 Nn 1 2 3 4 5

Laplace C 0.89 0.90 0.92 0.86 0.88

O 0.11 0.10 0.08 0.14 0.12

U 0.00 0.00 0.00 0.00 0.00

TIMSE 0.25(0.11) 0.28(0.12) 0.28(0.15) 0.26(0.19) 0.25(0.16)

Table 13: Sensitivity analysis on smoothness specification for the Normal error distribution
for the 30% quantile. TIMSE: total integrated mean square error.

O=2 Nn 1 2 3 4 5

Normal C 0.97 0.96 0.98 0.95 0.94

O 0.03 0.04 0.04 0.05 0.06

U 0.00 0.00 0.00 0.00 0.00

TIMSE 0.26(0.12) 0.22(0.09) 0.29(0.16) 0.23(0.12) 0.22(0.18)

O=3 Nn 1 2 3 4 5

Normal C 0.96 0.94 0.97 0.94 0.95

O 0.04 0.06 0.03 0.06 0.05

U 0.00 0.00 0.00 0.00 0.00

TIMSE 0.24(0.09) 0.26(0.14) 0.21(0.10) 0.25(0.19) 0.24(0.12)
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Table 14: Sensitivity analysis on smoothness specification for the Laplace error distribution
for the 50% quantile. TIMSE: total integrated mean square error.

O=2 Nn 1 2 3 4 5

Laplace C 0.96 0.94 0.92 0.95 0.96

O 0.04 0.06 0.08 0.05 0.04

U 0.00 0.00 0.00 0.00 0.00

TIMSE 0.25(0.11) 0.21(0.09) 0.29(0.16) 0.28(0.11) 0.25(0.19)

O=3 Nn 1 2 3 4 5

Laplace C 0.95 0.93 0.94 0.96 0.93

O 0.05 0.07 0.06 0.04 0.07

U 0.00 0.00 0.00 0.00 0.00

TIMSE 0.24(0.07) 0.31(0.14) 0.26(0.12) 0.22(0.16) 0.26(0.13)

Table 15: Sensitivity analysis on smoothness specification for the Normal error distribution
for the 50% quantile. TIMSE: total integrated mean square error.

O=2 Nn 1 2 3 4 5

Normal C 0.97 0.98 0.96 0.99 0.98

O 0.03 0.02 0.04 0.01 0.02

U 0.00 0.00 0.00 0.00 0.00

TIMSE 0.21(0.06) 0.23(0.13) 0.22(0.07) 0.24(0.14) 0.22(0.09)

O=3 Nn 1 2 3 4 5

Normal C 0.98 0.96 0.98 0.98 0.97

O 0.02 0.04 0.02 0.02 0.03

U 0.00 0.00 0.00 0.00 0.00

TIMSE 0.19(0.07) 0.29(0.11) 0.25(0.07) 0.24(0.14) 0.23(0.08)

C Posterior inference

C.1 Posterior inference for BQRVCSS

C.1.1 Bayesian hierarchical model

Yi =

q∑
k=1

Eikβk +

p∑
j=0

α⊤
j Zij + κ1ũi + θ−

1
2κ2
√
ũiWi,

ũ1, ..., ũn ∼
n∏

i=1

θexp(−θũi), i = 1, ..., n,
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W1, ...,Wn ∼
n∏

i=1

1√
2π

exp(−1

2
W 2

i ), i = 1, ..., n,

αj|gj
ind∼ (1− π0)Nd(0, gjId) + π0δ0(αj), j = 1, ..., p,

gj|η2
ind∼ Gamma

(d+ 1

2
,
η2

2

)
, j = 1, ..., p,

π0 ∼ Beta(e, f),

θ ∼ Gamma(a, b),

η2 ∼ Gamma(c,m),

β ∼ Nq(0,Σβ),

α0 ∼ Nd(0,Σα0).

C.1.2 Gibbs Sampler

• The full conditional distribution of ũi, i = 1, ..., n,

p(ũi|rest)

∝ 1√
2πθ−1κ22ũi

exp
(
−1

2

(Yi −E⊤
i β −

∑p
j=0α

⊤
j Zij − κ1ũi)

2

κ22θ
−1ũi

)θexp(−θũi
)

∝ (ũi)
− 1

2 exp
(
−1

2

(Yi −E⊤
i β −

∑p
j=0 α

⊤
j Zij)

κ22θ
−1ũi

− 1

2

κ21ũi
θ−1κ22

− θũi

)

∝ (ũi)
− 1

2 exp

(
− 1

2

(
(
θκ21
κ22

+ 2θ)ũi +
θ(Yi −E⊤

i β −
∑p

j=0 α
⊤
j Zij

κ22

1

ũi

))
.

Hence, it follows that

ũi
−1|rest ∼ Inverse-Gaussian(

√
κ21 + 2κ22

(Yi −E⊤
i β − Z⊤

i α)2
, (
θκ21
κ22

+ 2θ)).

• The full conditional distribution of αj, j = 1, ..., p,

p(αj|rest)

∝
n∏

i=1

exp
(
− θ

2κ22ũi
(Yi −Z⊤

i,−jα−j −Z⊤
ijαj −E⊤

i β − κ1ũi)
2
)

×

(
(1− π0)(2πgj)

− d
2 exp

(
− 1

2
α⊤

j (gjId)
−1αj

)
I(αj ̸=0) + π0δ0(αj)

)
.
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Let lj = p(αj = 0|rest), then the full conditional posterior distribution of αj(j = 1, ..., p)
is given as:

αj|rest ∼ (1− lj)Nd(µj,Σj) + ljδ0(αj),

where

µj = Σjθκ
−2
2

n∑
i=1

Zij

ũi
(Yi −Z⊤

i,−jα−j −E⊤
i β − κ1ũi),

Σj = (θκ−2
2

n∑
i=1

1

ũi
ZijZ

⊤
ij + g−1

j Id)
−1,

and
lj =

π0

π0 + (1− π0)|gjId|−
1
2 |Σj|

1
2 exp(1

2
µ⊤

j Σjµj)
.

Hence, the posterior distribution of αj is a mixture of a multivariate normal distribution
and a point mass at 0. At each iteration of MCMC, αj is drawn from Nd(µj,Σj) with
probability (1− lj) and is set to 0 with probability lj.

• The full conditional distribution of θ is

p(θ|rest)

∝
n∏

i=1

√
θexp

(
−
θ(Yi −

∑p
j=0α

⊤
j Zij −E⊤

i β − κ1ũi)
2

κ22ũi

)
×

n∏
i=1

[θexp(−θũi)]

× θa−1exp(−bθ)

∝ θ
3
2
n+a−1exp

(
−
(1
2

n∑
i=1

(Yi −
∑p

j=0α
⊤
j Zij −E⊤

i β − κ1ũi)
2

κ22ũi
+

n∑
i=1

ũi + b
)
θ

)
.

Therefore,

θ|rest ∼ Gamma
(3
2
n+ a,

1

2

n∑
i=1

(Yi −
∑p

j=0 α
⊤
j Zij −E⊤

i β − κ1ũi)
2

κ22ũi
+

n∑
i=1

ũi + b
)
.

• The full conditional distribution of η2 is

p(η2|rest) ∝
p∏

j=1

[(
η2

2
)
d+1
2 exp(−η

2

2
gj)]× (η2)c−1exp(−mη2)

∝ (η2)
(d+1)p

2
+c−1exp(−(

1

2

p∑
j=1

gj +m)η2).

It follows that

η2|rest ∼ Gamma
((d+ 1)p

2
+ c,

1

2

p∑
j=1

gj +m
)
.
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• The full conditional distribution of gj (j = 1, ..., p) is

p(gj|rest)

∝

(
(1− π0)(2πgj)

− d
2 exp

(
− 1

2
α⊤

j (gjId)
−1αj

)
I(αj ̸=0) + π0δ0(αj)

)
× g

d−1
2

j exp(−η
2

2
gj).

Then,

g−1
j |rest ∼

Inverse-Gamma(d+1
2
, η2

2
) if αj = 0

Inverse-Gaussian(
√

η2

α⊤
j αj

,η2) if αj ̸= 0
.

• The full conditional distribution of π0 is

p(π0|rest)

∝
p∏

j=1

(
(1− π0)(2πgj)

− d
2 exp

(
− 1

2
α⊤

j (gjId)
−1αj

)
I(αj ̸=0) + π0δ0(αj)

)
× πe−1

0 (1− π0)
f−1

Let

Qj =

0 if αj = 0

1 if αj ̸= 0
,

consequently,

π0|rest ∝ Beta
(
1 + p−

p∑
j=1

Qj + e,

p∑
j=1

Qj + f
)

• The full conditional distribution of β is

p(β|rest)

∝
n∏

i=1

exp
(
− θ

2κ22ũi
(Yi −

p∑
j=0

α⊤
j Zij −E⊤

i β − κ1ũi)
2
)
exp(−1

2
β⊤Σ−1

β β)

∝ exp

(
− 1

2

(
β⊤(

n∑
i=1

θEiE
⊤
i

κ22ũi
+Σ−1

β )β − 2
n∑

i=1

θ

κ22ũi
(Yi −

p∑
j=0

α⊤
j Zij − κ1ũi)E

⊤
i β
))

,

therefore, we have
β|rest ∼ Nq(µβ⋆ ,Σβ⋆),

with

Σβ⋆ = (
n∑

i=1

θEiE
⊤
i

κ22ũi
+Σ−1

β )−1,

and

µβ⋆ = Σβ⋆

( n∑
i=1

θ

κ22ũi
(Yi −

p∑
j=0

α⊤
j Zij − κ1ũi)E

⊤
i

)⊤
.
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• Similarly the full conditional distribution of α0 is derived as

α0|rest ∼ Nd(µ0,Σ0),

with

Σ0 = (
n∑

i=1

θZi0Z
⊤
i0

κ22ũi
+Σ−1

α0
)−1

and

µ0 = Σ0

( n∑
i=1

θ

κ22ũi
(Yi −E⊤

i β −
p∑

j=1

α⊤
j Zij − κ1ũi)Z

⊤
i0

)⊤
.

C.2 Posterior inference for BQRVC

C.2.1 Bayesian hierarchical model

Yi = E⊤
i β +

p∑
j=0

α⊤
j Zij + κ1ũi + κ2θ

− 1
2

√
ũiWi, i = 1, ..., n,

ũ1, ..., ũn ∼
n∏

i=1

θexp(−θũi), i = 1, ..., n,

W1, ...,Wn ∼
n∏

i=1

1√
2π

exp(−1

2
W 2

i ), i = 1, ..., n,

αj|gj
ind∼ Nd(0, gjId), j = 1, ..., p,

gj|η2
ind∼ Gamma

(d+ 1

2
,
η2

2

)
, j = 1, ..., p,

π0 ∼ Beta(e, f),

θ ∼ Gamma(a, b),

η2 ∼ Gamma(c,m),

β ∼ Nq(0,Σβ),

α0 ∼ Nd(0,Σα0).

C.2.2 Gibbs Sampler

• The full conditional distribution of ũi, i = 1, ..., n,

π(ũi|rest) ∝
1√

2πθ−1κ22ũi
exp
(
−1

2

(Yi −E⊤
i β −Z⊤

i α− κ1ũi)
2

κ22θ
−1ũi

)
θexp(−θũi)

∝ (ũi)
− 1

2 exp
(
−1

2

(Yi −E⊤
i β −Z⊤

i α)2

κ22θ
−1ũi

− 1

2

κ21ũi
θ−1κ22

− θũi

)

∝ (ũi)
− 1

2 exp

(
− 1

2

(
(
θκ21
κ22

+ 2θ)ũi +
θ(Yi −E⊤

i β − Z⊤
i α)2

κ22

1

ũi

))
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Then, the full conditional distribution of ũi is

ũi
−1|rest ∼ Inverse-Gaussian(

√
κ21 + 2κ22

(Yi −E⊤
i β − Z⊤

i α)2
, (
θκ21
κ22

+ 2θ)).

• The full conditional distribution of gj(j = 1, ..., p) is

π(gj|rest) ∝ (2πgj)
− d

2 exp
(
− 1

2
α⊤

j (gjId)
−1αj

)
× g

d−1
2

j exp(−η
2

2
gj)

∝ g
− 1

2
j exp

(
− 1

2
(η2gj +α⊤

j αj
1

gj
)
)

It follows that

g−1
j |rest ∼ Inverse-Gaussian(

√
η2

α⊤
j αj

, η2).

• The full conditional distribution of αj, j = 1, ..., p,

p(αj|rest)

∝
n∏

i=1

exp
(
− θ

2κ22ũi
(Yi −Z⊤

i,−jα−j −Z⊤
ijαj −E⊤

i β − κ1ũi)
2
)

× (2πgj)
− d

2 exp
(
− 1

2
α⊤

j (gjId)
−1αj

)
∝ exp

(
− 1

2
θκ−2

2

n∑
i=1

1

ũi
(Yi −Z⊤

i,−jα−j −E⊤
i β − κ1ũi)

2
)

× exp

(
− 1

2

(
α⊤
j (θκ

−2
2

n∑
i=1

ZijZ
⊤
ij

ũi
+ g−1

j Id)αj − 2θκ−2
2

n∑
i=1

1

ũi
(Yi −Z⊤

i,−jα−j −E⊤
i β − κ1ũi)Z

⊤
ijαj

))

Denote the covariance

Σj = (θκ−2
2

n∑
i=1

1

ũi
ZijZ

⊤
ij + g−1

j Id)
−1

and the mean

µj = Σjθκ
−2
2

n∑
i=1

Zij

ũi
(Yi −Z⊤

i,−jα−j −E⊤
i β − κ1ũi),

then we have
αj|rest ∼ Nd(µj,Σj).
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• The full conditional distribution of θ is

π(θ|rest)

∝
n∏

i=1

√
θexp

(
− θ(Yi −Z⊤

i α−E⊤
i β − κ1ũi)

2

κ22ũi

)
×

n∏
i=1

[θexp(−θũi)]× θa−1exp(−bθ)

∝ θ
3
2
n+a−1exp

(
−
(1
2

n∑
i=1

(Yi −Z⊤
i α−E⊤

i β − κ1ũi)
2

κ22ũi
+

n∑
i=1

ũi + b
)
θ

)
Therefore,

θ|rest ∼ Gamma
(3
2
n+ a,

1

2

n∑
i=1

(Yi − Z⊤
i α− E⊤

i β − κ1ũi)
2

κ22ũi
+

n∑
i=1

ũi + b
)
.

• The full conditional distribution of η2 is

π(η2|rest) ∝
p∏

j=1

(
η2

2
)
d+1
2 exp(−η

2

2
gj)× (η2)c−1exp(−mη2)

∝ (η2)
(d+1)p

2
+c−1exp(−(

1

2

p∑
j=1

gj +m)η2)

It follows that

η2|rest ∼ Gamma
((d+ 1)p

2
+ c,

1

2

p∑
j=1

gj +m
)
.

• The full conditional distribution of β is

π(β|rest)

∝
n∏

i=1

exp
(
− θ

2κ22ũi
(Yi −

p∑
j=0

α⊤
j Zij −E⊤

i β − κ1ũi)
2
)
exp(−1

2
β⊤Σ−1

β β)

∝ exp

(
− 1

2

(
β⊤(

n∑
i=1

θEiE
⊤
i

κ22ũi
+Σ−1

β )β − 2
n∑

i=1

θ

κ22ũi
(Yi −

p∑
j=0

α⊤
j Zij − κ1ũi)E

⊤
i β
))

,

therefore, we have
β|rest ∼ Nq(µβ⋆ ,Σβ⋆),

with mean

µβ⋆ = Σβ⋆

( n∑
i=1

θ

κ22ũi
(Yi −

p∑
j=0

α⊤
j Zij − κ1ũi)E

⊤
i

)⊤
and covariance

Σβ⋆ = (
n∑

i=1

θEiE
⊤
i

κ22ũi
+Σ−1

β )−1.
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• The full conditional distribution of α0 is derived as

α0|rest ∼ Nd(µ0,Σ0),

where

Σ0 = (
n∑

i=1

θZi0Z
⊤
i0

κ22ũi
+Σ−1

α0
)−1

and

µ0 = Σ0

( n∑
i=1

θ

κ22ũi
(Yi −E⊤

i β −
p∑

j=1

α⊤
j Zij − κ1ũi)Z

⊤
i0

)⊤
.

C.3 Posterior inference for BVCSS

C.3.1 Bayesian hierarchical model

Y |β,α, σ2 ∼ Nn(Eβ +Zα, σ2In),

αj|ζ2j , σ2 ind∼ (1− π0)Nd(0, σ
2ζ2j Id) + π0δ0(αj), j = 1, ..., p,

ζ2j |λ2
ind∼ Gamma(

d+ 1

2
,
λ2

2
), j = 1, ..., p,

π0 ∼ Beta(a, b),

σ2 ∼ Inverse-Gamma(s, h),

λ2 ∼ Gamma(t, ψ),

β ∼ Nq(0,Σβ),

α0 ∼ Nd(0,Σα0).

C.3.2 Gibbs Sampler

• The full conditional distribution of αj, j = 1, ..., p,

π(αj|rest) ∝ exp(− 1

2σ2
||Y −Z−jα−j −Zjαj −Eβ||2)

×

(
(1− π0)(2πσ

2ζ2j )
− d

2 exp
(
− 1

2
α⊤

j (σ
2ζ2j Id)

−1αj

)
I(αj ̸=0) + π0δ0(αj)

)

Let lj = p(αj = 0|rest), then the conditional posterior distribution of αj(j = 1, ..., p) is
a multivariate spike-and-slab distribution given as:

αj|rest ∼ (1− lj)Nd(µj, σ
2Σj) + ljδ0(αj),

where Σj = (Z⊤
j Zj + ζ−2

j Id)
−1, µj = ΣjZ

⊤
j (Y −Eβ −Z−jα−j), and

lj =
π0

π0 + (1− π0)(ζ2j )
− d

2

√
|Σj|exp

(
1
2
µ⊤

j (σ
2Σj)−1µj

) .
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Hence, the posterior distribution of αj is a mixture of a multivariate normal distribution
and a point mass at 0.

• The full conditional distribution of σ2

π(σ2|rest)

∝ (σ2)−
n
2 exp

(
− 1

2σ2
||Y −Zα−Eβ||2

)
× (

1

σ2
)s+1exp(− h

σ2
)

×
p∏

j=1

(
(1− π0)(2πσ

2ζ2j )
− d

2 exp
(
− 1

2
α⊤
j (σ

2ζ2j Id)
−1αj

)
I(αj ̸=0) + π0δ0(αj)

)
Let

Qj =

0 if αj = 0

1 if αj ̸= 0

then the posterior distribution of σ2 becomes

π(σ2|rest)

∝ (σ2)−
n
2 exp

(
− 1

2σ2
||Y −Zα−Eβ||2

)
× (

1

σ2
)s+1exp(− h

σ2
)

×
p∏

j=1

(1− π0)
Qj(σ2)−

d
2

∑p
j=1 Qj

p∏
j=1

π
1−Qj

0 exp
(
− 1

σ2
· 1
2

p∑
j=1

(ζ2j )
−1α⊤

j αj

)

∝ (σ2)−
n
2
− d

2

∑p
j=1 Qj−s−1exp

(
− 1

σ2

(1
2
||Y −Zα−Eβ||2+1

2

p∑
j=1

(ζ2j )
−1α⊤

j αj + h
))
.

Therefore,

σ2|rest ∼ Inverse-Gamma
(n
2
+
d

2

p∑
j=1

Qj + s,
1

2
||Y −Zα−Eβ||2+1

2

p∑
j=1

(ζ2j )
−1α⊤

j αj + h
)
.

• The full conditional distribution of ζ2j , j = 1, ..., p,

π(ζ2j |rest)

∝

(
(1− π0)(2πσ

2ζ2j )
− d

2 exp
(
− 1

2
α⊤

j (σ
2ζ2j Id)

−1αj

)
I(αj ̸=0) + π0δ0(αj)

)

× (ζ2j )
d−1
2 exp(−λ

2

2
ζ2j ).

Then we have

(ζ2j )
−1|rest ∼

Inverse-Gamma(d+1
2
, λ2

2
) if αj = 0

Inverse-Gaussian(
√

σ2λ2

α⊤
j αj

,λ2) if αj ̸= 0
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• The full conditional distribution of λ2

π(λ2|rest) ∝
p∏

j=1

(
(
λ2

2
)
d+1
2 exp(−λ

2

2
ζ2j )
)
× (λ2)t−1exp(−ψλ2)

∝ (λ2)
1
2
(d+1)p+t−1exp

(
− (

1

2

p∑
j=1

ζ2j + ψ)λ2
)
,

and we have

λ2|rest ∼ Gamma(
1

2
(d+ 1)p+ t,

1

2

p∑
j=1

ζ2j + ψ).

• The full conditional distribution of π0

π(π0|rest)

∝
p∏

j=1

(
(1− π0)(2πσ

2ζ2j )
− d

2 exp
(
− 1

2
α⊤

j (σ
2ζ2j Id)

−1αj

)
I(αj ̸=0) + π0δ0(αj)

)

× πa−1
0 (1− π0)

b−1

∝ π
a+p−

∑p
j=1 Qj−1

0 (1− π0)
b+

∑p
j=1 Qj−1,

hence

π0|rest ∼ Beta(p+ a−
p∑

j=1

Qj, b+

p∑
j=1

Qj).

• The full conditional distribution of β

π(β|rest) ∝ exp
(
− 1

2σ2
||Y −Eβ −Zα||2

)
× exp(−1

2
β⊤Σ−1

β β)

∝ exp

(
− 1

2

(
β⊤(

E⊤E

σ2
+Σ−1

β )β − 2

σ2
(Y −Zα)⊤Eβ

))
,

and
β|rest ∼ Nq(µβ⋆ ,Σβ⋆)

where Σβ⋆ =
(

E⊤E
σ2 +Σ−1

β

)−1

and µβ⋆ = Σβ⋆

(
1
σ2 (Y −Zα)⊤E

)⊤
.

• The full conditional distribution of α0 is

α0|rest ∼ Nd(µ0,Σ0),

with Σ0 =
(

Z⊤
0 Z0

σ2 +Σ−1
α0

)−1

and µ0 = Σ0

(
1
σ2 (Y −Eβ −Z−0α−0)

⊤Z0

)⊤
.
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C.4 Posterior inference for BVC

C.4.1 Bayesian hierarchical model

Y |β,α, σ2, ζ2j ∼ Nn(Eβ +Zα, σ2In),

αj|ζ2j , σ2 ∼ Nd(0, σ
2ζ2j Id), j = 1, ..., p,

ζ2j |λ2 ∼ Gamma(
d+ 1

2
,
λ2

2
), j = 1, ..., p,

σ2 ∼ Inverse-Gamma(s, h),

λ2 ∼ Gamma(t, ψ),

β ∼ Nq(0,Σβ),

α0 ∼ Nd(0,Σα0).

C.4.2 Gibbs Sampler

• The full conditional distribution of αj, j = 1, ..., p

p(αj|rest)

∝ exp(− 1

2σ2
||Y −Zα−Eβ||2)exp

(
− 1

2
α⊤

j (σ
2ζ2j Id)

−1αj

)
∝ exp

(
− 1

2σ2

(
α⊤

j Z
⊤
j Zjαj − 2αjZ

⊤
j (Y −Eβ −Z−jα−j)

))
exp
(
− 1

2
α⊤

j (σ
2ζ2j Id)

−1αj

)

∝ exp

(
− 1

2σ2

(
α⊤

j (Z
⊤
j Zj + ζ−2

j Id)αj − 2αjZ
⊤
j (Y −Eβ −Z−jα−j)

))
,

Denote Σj = (Z⊤
j Zj + ζ−2

j Id)
−1 and µj = ΣjZ

⊤
j (Y − Eβ − Z−jα−j), then the posterior

distribution of αj is
αj|rest ∼ Nd(µj, σ

2Σj), j = 1, ...p.

• The full conditional distribution of β

p(β|rest) ∝ exp(− 1

2σ2
||Y −Eβ −Zα||2)× exp(−1

2
β⊤Σ−1

β β)

∝ exp

(
− 1

2

(
β⊤(

E⊤E

σ2
+Σ−1

β )β − 2

σ2
(Y −Zα)⊤Eβ

))
,

and we have
β|rest ∼ Nq(µβ⋆ ,Σβ⋆)

which is a multivariate normal distribution, with mean

µβ⋆ = ((
E⊤E

σ2
+Σ−1

β )−1(
1

σ2
(Y −Zα)⊤E)⊤
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and covariance

Σβ⋆ = (
E⊤E

σ2
+Σ−1

β )−1.

• The full conditional distribution of ζ2j , j = 1, ..., p

p(ζ2j |rest) ∝ (2πσ2ζ2j )
− d

2 exp
(
− 1

2
α⊤

j (σ
2ζ2j Id)

−1αj

)
× (ζ2j )

d−1
2 exp(−1

2
λ2ζ2j )

∝ (ζ2j )
− 1

2 exp(−1

2
(
α⊤

j αj

σ2

1

ζ2j
+ λ2ζ2j )),

therefore (ζ2j )
−1 ∼ Inverse-Gaussian(

√
σ2λ2

α⊤
j αj

, λ2).

• The full conditional distribution of λ2

p(λ2|rest) ∝
p∏

j=1

(
(
λ2

2
)
d+1
2 exp(−λ

2

2
ζ2j )
)
× (λ2)t−1exp(−ψλ2)

∝ (λ2)
1
2
(d+1)p+t−1exp(−(

1

2

p∑
j=1

ζ2j + ψ)λ2),

then,

λ2|rest ∼ Gamma(
1

2
(d+ 1)p+ t,

1

2

p∑
j=1

ζ2j + ψ).

•The full conditional distribution of σ2

p(σ2|rest)

∝ (σ2)−
n
2 exp(− 1

2σ2
||Y −Zα−Eβ||2)× (

1

σ2
)s+1exp(− h

σ2
)

×
p∏

j=1

(2πσ2ζ2j )
− d

2 exp
(
− 1

2
α⊤

j (σ
2ζ2j Id)

−1αj

)

∝ (σ2)−
n
2
− d(p+1)

2
−s−1exp

(
− 1

σ2
(
1

2
||Y −Zα−Eβ||2+1

2

p∑
j=1

(ζ2j )
−1α⊤

j αj + h)
)

Therefore, the posterior distribution of σ2 is

σ2|rest ∼ Inverse-Gamma
(n+ dp

2
+ s,

1

2
||Y −Zα−Eβ||2+1

2

p∑
j=1

(ζ2j )
−1α⊤

j αj + h
)
.

• The full conditional distribution of α0 is derived as

α0|rest ∼ Nd(µ0,Σ0),

where Σ0 = (
Z⊤

0 Z0

σ2 +Σ−1
α0
)−1 and µ0 = Σ0

(
1
σ2 (Y −Eβ −Z−0α−0)

⊤Z0

)⊤
.
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