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Abstract

Nonresponse frequently arises in practice, and simply ignoring it may lead to er-
roneous inference. Besides, the number of collected covariates may increase as the
sample size in modern statistics, so parametric imputation or propensity score weight-
ing usually leads to inefficiency without consideration of sparsity. In this paper, we
propose a nonparametric imputation method with sparse learning by employing an
efficient kernel-based learning gradient algorithm to identify truly informative covari-
ates. Moreover, an augmented probability weighting framework is adopted to improve
the estimation efficiency of the nonparametric imputation method and establish the
limiting distribution of the corresponding estimator under regularity assumptions. The
performance of the proposed method is also supported by several simulated examples
and one real-life analysis.
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1 Introduction

Nonresponse is a common problem in social science and other related fields, and simply

ignoring it may lead to inefficiency or even erroneous inference due to confounding covariates

(Rosenbaum and Rubin; 1983; Qu et al.; 2010; Abadie and Imbens; 2016; Lin et al.; 2018).

Moreover, the number of collected covariates is relatively large in modern statistics, which

makes learning nonresponse even more challenging (Yang et al.; 2020). How to deal with

the nonresponse under the high-dimensional setup is still an open question.

Sparse learning bridges the gap between the high-dimensional data analysis and non-

response. It is generally believed that among the numerous covariates, only a few of them

contribute to the response of interest, known as truly informative ones, while others are noise.

Thus, a variety of sparse learning methods have been proposed to identify those truly infor-

mative covariates under regularity assumptions. The linear response model assumption is

popularly imposed, and various attempts have been made by designing sparse-induced regu-

larization (Tibshirani; 1996; Fan and Li; 2001; Zou; 2006; Shen et al.; 2012, 2013), evaluating

the marginal dependence (Fan and Lv; 2008; Wang and Leng; 2016), or checking variable ro-

bustness against added noise (Barber and Candes; 2019). Extended methods have also been

developed for nonparametric models (Lin and Zhang; 2006; Huang et al.; 2010; Fan et al.;

2011). However, all these methods require explicit model assumptions that are difficult to

validate in practice or suffer from heavy computational burden. To circumvent this diffi-

culty, Belloni et al. (2013) proposed a feasible lasso method, which is similar to the adaptive

lasso (Zou; 2006), for variable selection in a partial linear model. By using machine learning

algorithms to handle high-dimensional nuisance parameters, Chernozhukov et al. (2018) pro-

posed a double/debiased machine learning procedure to achieve parametric convergence rate

for a low dimensional parameter. A valid double robust estimator using lasso-type penalty is

discussed by Tan (2020). Recently, kernel-based sparse learning methods have been inspired
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by the fact that the gradient functions provide an appropriate criterion to identify a general

dependence structure in a model-free fashion. Specifically, Rosasco et al. (2013) proposed

a novel learning-gradient method, which adds an empirical functional penalty on the gra-

dients to a standard kernel ridge regression in a reproducing kernel Hilbert space (RKHS).

Besides, Yang et al. (2016) employed pair-wise learning to estimate the gradient functions

and considered a functional group lasso penalty to induce sparsity. It is worth pointing out

that the lack of selection consistency (Rosasco et al.; 2013) and the high computational cost

(Yang et al.; 2016) remain unsolved. To alleviate the difficulties, He et al. (2021) proposed

a two-step sparse learning framework, which is computationally efficient in the sense that

it only requires to fit the standard kernel ridge regression and the selection consistency is

established under regularity assumptions. The method proposed by He et al. (2021) can be

regarded as a nonparametric joint screening approach and achieves methodological flexibility,

numerical efficiency and asymptotic consistency simultaneously.

Propensity score weighting is commonly used to handle nonresponse (Robins et al.; 1994;

Wooldridge; 2007; Tan; 2010; Graham et al.; 2012; Zhao et al.; 2017), but conventional meth-

ods using all covariates may lead to numerical failure, including the lack of convergence

and inefficiency, due to overfitting. Thus, sparse assumption is often imposed to estimate

the propensity scores more efficiently (Shevade and Keerthi; 2003; Genkin et al.; 2007). A

Bayesian variable selection method has been proposed by Chen et al. (1999) for logistic

regression; also see Wainwright et al. (2007), Banerjee et al. (2008) and Ravikumar et al.

(2010) for details about penalized logistic regression models. The group lasso (Yuan and Lin;

2006) was generalized to logistic regression model by Kim et al. (2006), and Meier et al.

(2008) proposed a more efficient group lasso algorithm than that of Kim et al. (2006). Be-

sides, Meier et al. (2008) also established the asymptotic consistency of the corresponding es-

timator. Ning et al. (2020) proposed a high-dimensional covariate balancing propensity score

estimator, and they validated that their proposed estimator is of parametric convergence rate
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and is asymptotically normal distributed. See Tang et al. (2014) and Bertsimas and King

(2017) for a review of identifying informative covariates for logistic regression models.

In this paper, we propose a nonparametric Augmented Inverse Probability Weighting

(AIPW) framework (Robins et al.; 1994) to handle the nonresponse under the assumption

of sparsity. Inspired by the key observation that the gradient functions provide an appro-

priate information of the truly informative covariates in a model-free fashion, we employ a

kernel-based sparse learning algorithm to efficiently impute the nonresponse. It only requires

to fit the standard kernel ridge regression, which has an analytical solution, and the gradient

functions can be directly computed by the derivative reproducing property. More impor-

tantly, the truly informative covariates can be exactly recovered with high probability. Even

though the nonparametric imputation with sparse learning achieves consistency, its conver-

gence rate is at most OP(n
−1/6 log(n)) under regularity assumptions, so it is hard to construct

an interval estimator. To alleviate this difficulty, an AIPW framework is adopted to improve

the convergence rate of the corresponding estimator, and a central limit theorem can be

established. To achieve this goal, certain propensity score methods for analyzing sparse data

suffice under regularity conditions; see Section 2.2 for details. The corresponding variance

estimator is also discussed. The superior performance of the proposed nonparametric AIPW

framework is also supported by the numerical comparisons against some state-of-the-art

methods in several simulated examples and one real-life analysis.

The rest of this paper is organized as follows. Section 2 provides the background and

introduces the proposed nonparametric AIPW framework. The theoretical properties of the

corresponding estimator are established under regularity assumptions in Section 3. Section 4

reports the numerical experiments on the simulated and real-life examples. A brief summary

is provided in Section 5.
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2 Method

Consider

Y = f ∗(x) + ǫ, (1)

where f ∗(x) = E(Y | X = x) is a continuous function of a covariate vector x = (x1, ..., xp)
⊤

taking values from a p dimensional separable and compact metric space X ⊂ R
p, and ǫ

denotes a random noise with conditional mean zero and bounded variance. We are interested

in inferring θ∗ = E(Y ) from a random sample {(xi, yi) : i = 1, . . . , n} generated by (1).

If y1, . . . , yn were fully observed, the sample mean θ̂n = n−1
∑n

i=1 yi would be an efficient

estimator of θ∗. However, it is generally not the case in practice, and the response of interest

suffers from nonresponse. For i = 1, . . . , n, denote δi to be the response indicator of yi,

where δi = 1 if yi is observed and 0 otherwise. For simplicity, we assume missing at random

(Rubin; 1976) for the response mechanism,

Pr(δi = 1 | xi, yi) = Pr(δi = 1 | xi), (2)

and denote π∗(x) = Pr(δ = 1 | x).

If consistent estimators f̂0(x) and π̂(x) for f ∗(x) and π∗(x) are available, then an AIPW

estimator,

θ̂AIPW =
1

n

n∑

i=1

[
f̂0(xi) +

δi
π̂(xi)

{yi − f̂0(xi)}
]
, (3)

can be applied to estimate θ∗. More rigorously, the estimator (3) is not an AIPW estima-

tor unless we replace n−1 by (
∑n

i=1 δiπ̂
−1
i )−1. However, if the response model is correctly

specified, we can show that n−1
∑n

i=1 δiπ̂
−1
i → 1 in probability under regularity conditions.

When p is small and f ∗(x) is a parametric model, standard statistical methods can be used
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to obtain f̂0(x) and π̂(x). As p increases, however, it is not reasonable to include all covari-

ates to estimate f ∗(x) and π∗(x) due to the curse of dimensionality. Moreover, the model

misspecification for f ∗(x) leads to erroneous inference.

2.1 Estimation of f ∗(x) via nonparametric sparse learning

To overcome those difficulties, we employ an efficient kernel-based sparse learning algorithm

(He et al.; 2021) to estimate f ∗(x) in (1). Denote HK to be an RKHS induced by a pre-

specified kernel function K(·, ·), where K(·, ·) : X × X → R is bounded, symmetric and

positive semi-definite. It can be shown that HK associated with the kernel K(·, ·) is the

completion of the linear space spanned by {Kx(·) : x∈X} with an inner product 〈Kx, Ku〉K =

K(x,u) for x,u ∈ X , where Kx(·) = K(x, ·). Thus, HK is uniquely determined by a kernel

function K(·, ·) and the reproducing property, 〈f,Kx〉K = f(x) for f ∈ HK and x ∈ X . It is

noteworthy that the RKHS induced by some universal kernel, such as the Gaussian kernel, is

fairly large in the sense that any continuous function can be well approximated (Steinwart;

2005). Thus, by (2), we assume

f ∗(x) = argmin
f∈HK

E[δ{y − f(x)}]2. (4)

By (2), (4) implies that f ∗(x) = E(Y | X = x) ∈ HK .

A covariate xl is non-informative for f ∗(x), if and only if g∗l (x) = 0 for x ∈ X almost

surely, where xl is the lth component of x for l = 1, . . . , p, and g∗l (x) = ∂f ∗(x)/∂xl. Thus,

the usefulness of xl for estimating f ∗(x) can be measured via the L2-norm of g∗l (x), ‖g∗l ‖22 =
∫
X
{g∗l (x)}2dρ(x), where ρ(x) is the marginal distribution of X. Denote A∗ =

{
l : ‖g∗l ‖22 >

0
}

to be the active set containing all informative covariates associated with f ∗(x). To

estimate g∗l (x) efficiently, we consider the following derivative reproducing property (Zhou;
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2007):

g∗l (x) = 〈f ∗, ∂lKx〉K , (5)

where ∂lKx(·) = ∂K(x, ·)/∂xl. Specifically, by (4)–(5), once an initial estimator of f ∗(x)

is available, say f̂(x), its gradient function g∗l (x) can be estimated by (5). Without loss

of generality, we assume that the first m samples are fully observed, and the subsequent

analysis is conditional on the realised sample, where m =
∑n

i=1 δi. Under (2) and the high-

dimensional setup, to obtain an initial estimator f̂(x), we employ the standard kernel ridge

regression by solving

f̂ = argmin
f∈HK

[ 1
m

m∑

i=1

{yi − f(xi)}2 + λ ‖f‖2K
]
, (6)

where λ > 0 is a tuning parameter controlling the model complexity and typically goes to 0

as m goes to infinity, and ‖·‖2K denotes the RKHS-norm induced by the inner product 〈·, ·〉K;

see Section 3 for details. By the representer theorem (Mercer; 1909), the solution of (6) is

of the form

f̂(x) =
m∑

i=1

α̂iK(xi,x) = α̂⊤Km(x), (7)

where Km(x) = (K(x1,x), ..., K(xm,x))
⊤, and α̂ = (α̂1, ..., α̂m)

⊤ ⊂ R
m are the estimated

representer coefficients. That is, the representer theorem converts the original optimization

task (6) in an infinite functional space HK into a m-dimensional vector space. By (7), the

optimization task (6) is equivalent to

α̂ = argmin
α

[ 1
m

m∑

i=1

{
yi −α⊤Km(xi)

}2
+ λαTKα

]
,
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and its solution is α̂ = (K + λI)−1y, where K is an m×m matrix with (i, j)th entry being

K(xi,xj) and y = (y1, . . . , ym)
⊤ ∈ R

m.

Once α̂ is obtained, the gradient function in (5) can be estimated by

ĝl(x) =
∂f̂ (x)

∂xl

= α̂⊤∂lKm(x), (l = 1, ..., p),

where ∂lKm(x) = (∂lKx1(x), . . . , ∂lKxm
(x))⊤. Since the marginal distribution ρ(x) is sel-

dom available, instead of the L2-norm, the empirical norm ‖·‖m is considered:

‖ĝl‖2m =
1

m

m∑

i=1

{
ĝl(xi)

}2
=

1

m

m∑

i=1

{
α̂⊤∂lKm(xi)

}2
,

and the estimated active set is Âvm =
{
l : ‖ĝl‖2m > vm

}
, where vm is a thresholding value

determined through a stability-based selection criterion (Sun et al.; 2013). Finally, we refit

(6) with the selected covariates in Âvn to obtain the nonparametric estimator f̂0(x).

It is worthy pointing out that the employed sparse learning algorithm was originally

proposed by He et al. (2021), and they only focused on the purpose of variable selection and

established the selection consistency without considering nonresponse. Yet, we generalized

their method to handle incomplete samples in this paper and treat it as an valid intermediate

estimator of our proposed estimator. More importantly, we further established a central limit

theorem for the proposed nonparamtric estimator, which is rare and attractive in machine

learning, and a variance estimation is also provided as well; see Section 3 for details.
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2.2 Estimation of π∗(x)

There exist works to estimate π∗(x) under the assumption of sparsity, and we consider the

group lasso (Meier et al.; 2008) as an example by assuming

logit{π∗(xi)} = β∗
0 + x⊤

i β
∗
1,

where logit(z) = log(z) − log(1 − z) for z ∈ (0, 1). In addition, assume that the covariate

vector can be rewritten as x = (x⊤
1 , . . . ,x

⊤
G)

⊤, where xg ∈ R
dfg contains the covariates of the

gth group for g = 1, . . . , G, and dfg is the corresponding degrees of freedom. For example,

dfg = 3 if xg corresponds to a categorical covariate with four levels, and dfg = 1 if xg is

continuous; see Meier et al. (2008) for details.

The log-likelihood estimator with a group lasso penalty is obtained by solving

β̂λ2 = argmin
β

{
− l(β) + λ2p(β)

}
, (8)

where l(β) =
∑n

i=1[δi log{π(xi)}+(1−δi) log{1−π(xi)}] is the log-likelihood of the response

indicators, β⊤ = (β0,β
⊤
1 ) ∈ R

p+1 with β0 ∈ R and β1 ∈ R
p, p(β) =

∑G
g=1 df

1/2
g ‖βg‖2 is the

group lasso penalty, ‖·‖2 is the Euclidean norm, and βg corresponds to xi,g for g = 1, . . . , G.

The block co-ordinate gradient descent algorithm is used to obtain β̂λ2 in (8), and the

detailed algorithm is adjourned to Appendix A.

Remark 1. Since the estimated response probability is used to improve the convergence rate

of the estimator in (3), the response model is assumed to be correctly specified; see Qin et al.

(2017) for a similar assumption. In addition to the group lasso method (Meier et al.; 2008),

other penalized logistic regression estimators (Fan et al.; 2014; Ning et al.; 2020) can be

used to estimate the response probability. However, to guarantee the asymptotic central limit

theorem in Theorem 2, the estimated response probability by other methods should satisfy
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Lemma 3; see Section 3 for details.

3 Theoretical Properties

In this section, we investigate the asymptotic consistency of f̂0(x) and establish the central

limit theorem for the AIPW estimator in (3) under regularity assumptions.

Denote an integral operator LK : L2(X , ρ) → L2(X , ρ) as LK(f)(x) =
∫
X
K(x,u)f(u)dρ(u),

for f ∈ L2(X , ρ), where L2(X , ρ) = {f :
∫
f 2(x)dρ(x) < ∞}. If the RKHS HK is

separable, then by the spectral theorem (Fischer and Steinwart; 2020), we have LKf =

∑
j≥1 µj〈f, ej〉2ej , where {ej : j = 1, 2, . . .} form an orthonormal basis of L2(X , ρ), {µj : j =

1, 2, . . .} are the corresponding eigenvalues with respect to LK , and 〈f, g〉2 =
∫
X
f(x)g(x)dρ(x)

denotes the inner product of f(x) and g(x) in L2(X , ρ). By Mercer’s theorem (Steinwart and Christmann;

2008), under regularity assumptions, the eigen-expansion ofK(x,u) isK(x,u) =
∑

j≥1 µjej(x)ej(u).

Hence, the RKHS-norm of any f ∈ HK can also be expressed as

‖f‖2K =
∑

j≥1

〈f, ej〉22
µj

.

The above result implies the decay rate of µj fully characterizes the complexity of the RKHS.

The following technical assumptions are made to investigate the theoretical properties of

the AIPW in (3).

Assumption 1: There exists a positive constant r ∈ (1/2, 1], such that f ∗(x) is in the

range of the rth power of LK , denoted as Lr
K . Besides, the distribution of ǫ has a q-

exponential tail with some function q(·); that is, there exists a constant c1 > 0, such that

Pr(|ǫ| > t) ≤ c1 exp{−q(t)} for any t > 0.

Assumption 2: There exist positive values κ1,p and κ2,p, which may depend on p, such that

sup
x∈X

‖Kx‖K ≤ κ1,p and sup
x∈X

‖∂lKx‖K ≤ κ2,p for l = 1, ..., p.

10



Assumption 3: There exists a positive constant ξ1 > 1 such that

min
l∈A∗

‖g∗l ‖22 >

cmmax

{
κ1,p‖f ∗‖K , q−1

(
log

4c1m

δm

)}
m− 2r−1

2(2r+1) (log p)ξ1 ,

where cm is provided in Lemma 1.

Assumption 4: There exists κ ∈ (0, 1/2) such that κ < π(x) < 1− κ for all x ∈ X .

Assumption 5: E(XX⊤) is invertible, and its smallest eigenvalue is bounded away from

zero by a fixed positive constant cmin, and recall that X is the random vector associated

with x1, . . . ,xn.

Assumption 6: Let Xg be the random vector associated with the gth group, and we

normalize Xg such that E(X⊤
g Xg) is a dfg × dfg identity matrix. Then, there exists Ln such

that maxxmaxg(x
⊤
g xg) ≤ nL2

n, where xg corresponds to the normalized Xg.

Assumption 7: maxg=1,...,G dfg = O(1), there exists a constant number ζ > 0 such that

log(G) = o(n1/3−2ζ) and G ≫ log(n), N0 = O(1), λ2 ≍ log(G), i.e. λ2 is of the order log(G),

and L2
n = O{1/ log(G)}, where N0 is the number of non-zero group effects.

Assumptions 1–3 are proposed for the kernel-based sparse learning algorithm, and As-

sumptions 4–7 are required by the group lasso logistic regression. In Assumption 1, the

integral operator LK is self-adjoint and semi-positive definite, so its fractional operator Lr
K

is well-defined, and its range is contained in HK as long as r ≥ 1/2; see Smale and Zhou

(2007) and Mendelson and Neeman (2010) for details. This implies that for some function

h ∈ L2(X , ρ), it holds Lr
Kf

∗ =
∑

j≥1 µ
r
j〈h, ej〉2ej ∈ HK , so ensures strong estimation con-

sistency under the RKHS-norm. The second part of Assumption 1 characterizes the tail

behavior of the error distribution, and it relaxes the commonly-used bounded response as-

sumption in the machine learning literature (Smale and Zhou; 2007; Rosasco et al.; 2013;

Lv et al.; 2018). Besides, the assumption on the error distribution is general and can be
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satisfied by a variety of distributions (Wang and Leng; 2016; Zhang et al.; 2016). For ex-

ample, if the error distribution is sub-Gaussian or bounded, then q(t) = O(t2) suffices; if

the distribution of ǫ is sub-exponential, q(t) = O(min{t/C, t2/C2}) suffices with C > 0.

Assumption 2 bounds the RKHS-norms associated with the kernel function and its gradient

functions, and it is satisfied by popular kernels, including the Gaussian kernel, linear kernel

and the Sobolev kernel (Smale and Zhou; 2007; Rosasco et al.; 2013; Yang et al.; 2016). For

example, κ1,p = κ2,p = 1 for the Gaussian kernel, K(x,u) = exp{−‖x − u‖22/(2σ2)}, and

κ1,p = Cp and κ2,p = C for the linear kernel, K(x,u) = x⊤u, for some positive constant C.

Assumption 3 requires that the gradient functions contain sufficient information about the

truly informative covariates. It is worthy pointing out that we measure the significance of

each gradient function to distinguish informative and uninformative covariates without any

explicit model specification. The minimal signal strength in Assumption 3 is much tighter

than those in other nonparametric sparse learning methods (Huang et al.; 2010; Yang et al.;

2016), which often require the signal strength to be bounded below by some positive con-

stant. Assumption 4 bounds the response probability, and it is commonly used to avoid

inefficient estimators. To obtain the desired convergence rate, Assumption 4 guarantees that

m ≍ n in probability, where an ≍ bn is equivalent to an = O(bn) and bn = O(an). The small-

est eigenvalue of E(XX⊤) is bounded by a fixed positive constant in Assumption 5, and it

is a special case of assumption (b) of Meier et al. (2008). In Assumption 6, the convergence

rate of Ln is related with that of the estimated response probability. Assumption 7 is used

to guarantee that

E{|η
β̂λ2

(X)− ηβ∗(X)|2} = OP(n
−2/3−2ζ), (9)

where ηβ(x) = β0 + x⊤β1, β
∗ = (β∗

0 ,β
∗
1) and the expectation is taken with respect to X

conditional on β̂λ2 or the observations. Specifically, the value ζ is used to show n−ζ/2 log(n) →

0 as n → 0, so it can be chosen arbitrarily small; see the proof of Theorem 2 for details.
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Lemma 1. Suppose Assumptions 1–2 are satisfied, and λ = m−1/(2r+1). Then, for any

δm ∈ (0, 1), with probability at least 1− δm, there holds

max
1≤l≤p

∣∣‖ĝl‖2m − ‖g∗l ‖22
∣∣ ≤ cmcp,qlog

( 8p
δm

)
m−Θ,

where cm is a constant depending only on κ1,p, κ2,p and ‖f ∗‖2K, cp,q = max
{
κ1,p‖f ∗‖K , q−1

(
log 4c1m

δm

)}

with q−1(·) denoting the inverse function of q(·), and Θ = 2r−1
2(2r+1)

.

Lemma 1 guarantees that ‖ĝl‖2m converges to ‖g∗l ‖22 with high probability, and it is cru-

cial to establish the selection consistency of the employed sparse learning algorithm. The

convergence result in Lemma 1 still holds even when the dimension diverges with the sample

size, and the quantities ‖f ∗‖2K and ‖L−r
K f ∗‖2, which may depend on the number of truly

informative covariates of f ∗(x), may also diverge as the sample size increases. For instance,

if f ∗(x) = xTβ∗, then ‖f ∗‖2K = ‖β∗‖22, which clearly depends on the number of truly in-

formative covariates. However, such dependency is difficult to quantify explicitly in a fully

general case (Fukumizu and Leng; 2014).

The following lemma establishes the asymptotic selection consistency of the proposed

sparse learning method.

Lemma 2. Suppose that the assumptions of Lemma 1 and Assumption 3 are satisfied. If

vm = 0.5cmcp,qm
−Θ(log p)ξ1 , then Pr

(
Âvm = A∗

)
→ 1, as m → ∞.

Lemma 2 shows that the selected covariates can exactly recover the truly informative

ones with probability tending to 1. This result is particularly general in that it is established

without any model specification. The following theorem shows that f̂0(x) achieves a fast

convergence rate in term of the infinity norm, where f̂0(x) is obtained by the standard kernel

ridge regression (6) based on the selected covariates in Âvn.
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Theorem 1. Suppose the assumptions of Lemma 2 are satisfied and denote the probability

Pr(Âvn 6= A∗) = ∆m. If λ = m− 1
2r+1 , then with probability at least 1− δm −∆m, there holds

‖f̂0 − f ∗‖K ≤ cm,2cp0,qlog
( 4

δm

)
m−Θ,

where p0 = |A∗|,

cm,2 = 4max{κ2
2,p0

, κ2
2,p0

‖f ∗‖K , ‖f ∗‖2K}

×max{3κ1,p0, 2
√
2κ2

2,p0 , ‖L
−r
K f ∗‖2},

and cp0,q = max
{
κ1,p0‖f ∗‖K , q−1

(
log 4c1m

δm

)}
.

Additionally, if we take r = 1, and assume that p0 = O(1), ǫ has sub-Gaussian or sub-

exponential tail and by Assumption 4, we have
∥∥∥f̂0 − f ∗

∥∥∥
∞

= OP(n
− 1

6 log n).

Theorem 1 establishes the uniform convergence rate of the refitted estimator f̂0(x), and

it plays a crucial role to establish the central limit theory of the AIPW estimator in (3). The

required tail behavior of ǫ in Theorem 1 is to quantify q−1(·) explicitly for simplicity, and it

can be extended to any error distribution satisfying Assumption 1.

Lemma 3. Suppose Assumptions 4–7 are satisfied. Then, given β̂λ2, there holds E[|π̂(X)−

π∗(X)|2] = OP(n
−2/3−2ζ).

Lemma 3 establishes the convergence rate of the estimated response probability using

group lasso logistic regression. By Lemma 3, we essentially require that the estimated

response probability should be at least consistent. A similar requirement is also discussed

by Tan (2020). Specifically, Tan (2020) assumed a correctly specified response model in

order to achieve valid interval estimator. If other penalized logistic regression estimators are

considered, Assumptions 4–7 should be replaced in order to guarantee Lemma 3.
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By Theorem 1 and Lemma 3, we can validate the following central limit theorem for the

AIPW estimator in (3).

Theorem 2. Suppose all the assumptions in Theorem 1 and Lemma 3 are satisfied. If

E{|f ∗(X)+δπ∗(X)−1{Y −f ∗(X)}|2} < ∞, then
√
n(θ̂AIPW−θ∗) → N(0, σ2), in distribution,

where π∗(X) = Pr(δ = 1 | X) and σ2 = var [f ∗(X) + δπ∗(X)−1{Y − f ∗(X)}].

It is worthy pointing out that the derived result is particularly attractive given the fact

that the central limit theorem is built by nonparametric estimation of f ∗(x) with diverging

dimension, and to our knowledge, such a result is novel in literature. More importantly, the

variance term σ2 can be estimated by the sample variance of {f̂0(xi)+δiπ̂(xi)
−1{yi−f̂0(xi)} :

i = 1, . . . , n}:

σ̂2
AIPW =

1

n− 1

n∑

i=1

(ŷi − θ̂AIPW )2,

where ŷi = f̂0(xi) + δiπ̂(xi)
−1{yi − f̂0(xi)}. Thus, based on Theorem 2 and the estimated

variance σ̂2
AIPW , we can also obtain the interval estimators of θ∗.

4 Numerical analysis

In this section, we compared the numerical performance of the proposed AIPW estimator,

denoted as Prop, against several state-of-the-art competitors under two simulated experi-

ments and a real-data application. For Prop, in all the scenarios, we applied a Gaussian

kernel, K(x,u) = exp (−‖x− u‖22/(2σ2
n)) with σn being the median of all the pairwise dis-

tances among the covariates (Jaakkola et al.; 1999). As suggested by He et al. (2021), we

also applied the stability-based selection criterion (Sun et al.; 2013) to determine the thresh-

olding value vn and set the ridge parameter λn = 0.001 for the employed sparse learning

algorithm.
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4.1 Simulated experiments

In this section, we considered n ∈ {800, 1 000} and p ∈ {400, 2 000}, and covariates were

generated by xil ∼ U(−0.5, 0.5) for i = 1, . . . , n and l = 1, . . . , p, where xil denoted the

lth element of xi, and U(−0.5, 0.5) denoted a uniform distribution over [−0.5, 0.5]. The

following regression models were applied to generate the response of interest:

M1. Linear regression model: yi = 5xi1 + 6xi2 + 4xi3 + 4xi4 + ǫi with ǫi ∼ N(0, 1).

M2. Nonlinear regression model: yi = 6xi1+4(2xi2+1)(2xi3−1)+6h(xi4)+5 sin(xi5π)/{2−

sin(xi5π)}+ǫi, where h(x) = 0.1 sin(xi4π)+0.2 cos(xi4π)+0.3 sin(xi4π)
2+0.4 cos(xi4π)

3+

0.5 sin(xi4π)
3, and ǫi ∼ N(0, 1).

For i = 1, . . . , n, the response indicator δi was generated by a Bernoulli distribution with

success probability π∗(xi), which was obtained by the following models:

R1. Logistic response model: logit{π∗(xi)} = −0.1 + 2xi1 + 2xi3.

R2. Multi-modal response model π∗(xi) = sin(6xi2 + 8xi4)/3 + 0.5.

The linear regression model M1 is commonly assumed in practice (Fan and Li; 2001). The

nonlinear regression model M2, however, is more complex, and the interaction effect is also

taken into consideration. The logistic response model R1 is widely used in practice. However,

the response model R2 violates (2.2), so it is used to test the robustness of the proposed

AIPW estimator.

The primary interest was to estimate θ∗ = E(Y ). For the regression model M1, we had

θ∗ = 0. However, instead of deriving θ∗ analytically, we used θ̃ = L−1
∑L

l=1 yl as the “true

value” for the regression model M2, where {yl : l = 1, . . . , L} was a random sample of size

L = 1 000 000. The following competitors were considered:

CC. The sample mean of the complete cases, θ̂cc = m−1
∑n

i=1 δiyi, where m =
∑n

i=1 δi.
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PS. Conventional propensity score estimator θ̂ps = n−1
∑n

i=1 δiπ
−1(xi; β̂)yi, where β̂⊤ =

(β̂0, β̂
⊤
1 ) solves

∑n
i=1{δi − π(xi; β̂)}(1,x⊤

i ) = 0 without consideration of the sparsity.

DI. Deterministic imputation using kernel ridge regression (Wang and Kim; 2021) θ̂di =

n−1
∑n

i=1{δiyi + (1− δi)f̂(xi)}, where f̂(x) is the fitted kernel ridge regression model

based on the fully observed data {(xi, yi) : δi = 1} without employing sparse learning.

NAIPW. Naive AIPW estimator θ̂AIPW1 = n−1
∑n

i=1{f̂(xi) + δiπ
−1(xi; β̂){yi − f̂(xi)}}, where

β̂ is the same as that in the PS estimator without consideration of the sparsity, and

f̂(x) is the same as that in the DI estimator without employing sparse learning.

The CC estimator completely ignore the unobserved data, leading to a biased estimator if

E(δi | xi) involves covariates used in the regression model. PS estimator is widely used

in causal inference (Rosenbaum and Rubin; 1983) and missing data analysis (Wooldridge;

2007). The imputation methods are commonly used to provide a complete dataset, es-

pecially in survey sampling; see Kim and Shao (2013, Chapter 4) for details. Recently,

Wang and Kim (2021) has proposed a kernel-based deterministic imputation method, and

we consider their method for comparison as well. Except for the proposed AIPW estimator,

we also considered the naive AIPW estimator based on the conventional propensity score

estimator and the deterministic imputation estimator.

We conductedM = 500 Monte Carlo simulations for each estimator under different model

setups. First, we compared different estimators in terms of the Monte Carlo bias and the

Monte Carlo standard error:

Bias = θ̄(M)
n − θ,

SE =

{
1

M − 1

M∑

m=1

(θ̂(m)
n − θ̄(M)

n )2

}1/2

,
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where θ̄
(M)
n = M−1

∑M
m=1 θ̂

(m)
n , θ̂

(m)
n was a specific estimator of θ for the mth Monte Carlo

simulation. Simulation results were summarized in Table 1. The CC estimator is biased since

the response of interest yi is correlated with the response index δi. Even though a logistic

model is correctly specified for the response model R1, the PS estimator is still biased or

even unrealistic due to the curse of dimensionality. Since the NAIPW estimator was obtained

using the same response model as the PS estimator, it is also questionable, especially when

the sample size is small and the number of useless covariates is large. Since the response

probability was not used by the DI estimator, it does not suffer the same problem as the PS

estimator. However, even under the linear regression model, the bias of the DI estimator

may not be negligible compared with its standard error. Compared with its competitors,

the proposed AIPW estimator performs the best since it has the smallest bias under most

model setups, and its standard error is reasonably small.

Next, the proposed AIPW estimator was evaluated by the relative bias of the variance

estimator and its coverage rate of a 95% confidence interval:

RB =
σ̄
2(M)
n − SE2

SE2 ,

CR =
1

M

M∑

m=1

I(θ̂(m)
n − 1.96σ̂(m)

n ≤ θ ≤ θ̂(m)
n + 1.96σ̂(m)

n ),

where σ̄
2(M)
n = M−1

∑M
i=1 σ̂

2(m)
n , σ̂

2(m)
n is the variance estimator for the mth Monte Carlo

simulation, σ̂
(m)
n is the square root of σ̂

2(m)
n , and I(a ≤ x ≤ b) is an indicator function of u for

given a ≤ b, and it takes value 1 if u ∈ [a, b] and 0 otherwise. We conducted 500 Monte Carlo

simulations, and Table 2 summarized the corresponding results. Generally, as the sample

size increases from n = 800 to n = 1 000, the relative bias of the variance estimator decreases,

and it is negligible if sample size n = 1 000. Thus, the proposed variance estimator performs

well, especially when the sample size is large. The coverage rates are close to their nominal
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Table 1: Summary of the Monte Carlo bias (Bias) and standard error (SE) corresponding to
the five estimators under different model setups, and the unit is 0.1. For “Model”, “C1–C4”
represent (M1, R1),(M2, R1), (M2, R2) and (M2, R2), respectively. For “Size”, “I–IV”
corresponds to (n, p) = (800, 400), (1 000, 400), (800, 2 000), and (1 000, 2 000), respectively.
Notation “-” is used when the absolute value of either bias or standard error is greater than
100.

Model Size CC PS DI NAIPW Prop
I 6.9 (1.5) - (-) 0.9 (1.1) - (-) 0.3 (1.2)
II 7.0 (1.3) - (-) 0.9 (1.0) - (-) 0.1 (1.0)
III 7.0 (1.5) 3.4 (0.7) 1.1 (1.2) 1.1 (1.2) 0.4 (1.3)

C1

IV 6.9 (1.3) 3.3 (0.6) 1.0 (1.0) 1.0 (1.0) 0.2 (1.1)

I -0.7 (2.8) - (-) 0.1 (2.0) - (-) 0.0 (2.0)
II -0.8 (2.4) - (-) -0.1 (1.7) - (-) -0.1 (1.6)
III -0.7 (2.6) 2.5 (1.3) 0.3 (2.1) 0.3 (2.1) 0.0 (2.0)

C2

IV -0.6 (2.3) 2.6 (1.1) 0.0 (1.7) 0.0 (1.7) -0.1 (1.7)

I -1.2 (1.5) - (-) -0.3 (1.1) - (-) -0.2 (1.1)
II -1.3 (1.3) 0.3 (57.1) -0.3 (1.0) 0.2 (8.4) -0.2 (1.0)
III -1.2 (1.5) -0.6 (0.7) -0.2 (1.1) -0.2 (1.1) -0.1 (1.1)

C3

IV -1.2 (1.3) -0.6 (0.7) -0.2 (1.0) -0.2 (1.0) -0.2 (1.0)

I 1.7 (2.6) - (-) 0.2 (1.9) - (-) 0.0 (1.9)
II 1.7 (83.6) -3.0 (2.2) 0.2 (1.6) -0.2 (17.9) 0.0 (1.7)
III 1.8 (2.6) 3.6 (1.3) 0.3 (2.0) 0.3 (2.0) 0.1 (2.0)

C4

IV 1.9 (2.2) 3.6 (1.1) 0.3 (1.6) 0.3 (1.6) 0.0 (1.6)

truth 0.95 when sample size is large. Since the variance of the proposed AIPW estimator

is under-estimated for the setup with regression model M1 and response model R1, the

corresponding coverage rate is much lower than 0.95. As the sample size increases, however,

the coverage rate gets closer to its nominal truth. For the two setups with response model

R2, a logistic regression model is wrongly specified for the response indicator. However, the

absolute values of the relative bias of the variance estimator are generally less than 0.05

and the corresponding coverage rates are close to the nominal truth 0.95, specially when the

sample size is large. Thus, the proposed AIPW estimator is indeed robust against a wrongly

specified response model.
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Table 2: Relative bias (RB) of the variance estimator and coverage rate (CR) of the
95% confidence interval of θ for the proposed method. For “Model”, “C1–C4” repre-
sent (M1, R1),(M2, R1), (M2, R2) and (M2, R2), respectively. “I–IV” corresponds to
(n, p) = (800, 400), (1 000, 400), (800, 2 000), and (1 000, 2 000), respectively.

RB CR
Model

I II III IV I II III IV
C1 -0.10 -0.07 -0.33 -0.20 0.92 0.94 0.88 0.92
C2 -0.13 0.01 -0.14 -0.01 0.94 0.94 0.93 0.95
C3 0.04 -0.02 -0.03 0.05 0.95 0.95 0.95 0.96
C4 -0.10 -0.01 -0.14 0.05 0.94 0.94 0.93 0.96

4.2 Application to a supermarket dataset

In this section, the proposed AIPW estimator and its competitors were applied to a su-

permarket dataset (Wang; 2009), which was collected from a major supermarket located in

northern China, consisting of daily sale records of p = 6 398 products on n = 464 days. This

data included almost all kinds of daily necessities and the response of interest was the num-

ber of customers on each day, and the covariates are the daily sale volumes of each product.

For simplicity, denote yi and xi = (xi1, . . . , xip)
⊤ to the be the response of interest and the

corresponding covariate for the ith day. In this section, we were interested in estimating the

average number of customers visiting the supermarket. This dataset was fully observed, and

it was studentized before analyzing. Thus, the sample mean θ̂ = n−1
∑n

i=1 yi = 0 served as

a benchmark.

To compare the performance of the proposed AIPW estimator with other competitors,

we considered the following missing mechanism for yi:

logit{π(xi)} = 1− 0.6xi5 − xi6 + 0.5xi10, (10)

and yi was treated as observed if and only if δi = 1, where δi = 1 with probability πi. The

mechanism in (10) was MAR, and the corresponding covariates were identified as informative
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for estimating the response of interest by He et al. (2021). Then, instead of observing the

whole data, we assumed that all the covariates and only {yi : δi = 1} were available, and the

resulting response rate was about 0.70.

We generated 500 incomplete datasets using (10) and compare the estimators in Sec-

tion 4.1. Table 3 summarized the average of the estimators and the corresponding standard

error. The CC estimator is highly biased since it ignores the missing mechanism. The

performance of the PS estimator is also questionable in that the response model using all

covariates results in overfitting. The DI, NAIPW and Prop estimators outperform the CC

and PS estimators since their estimates are much closer to 0. However, the standard error

of the Prop estimator is much smaller than the other two, illustrating the superior of the

proposed AIPW estimator.

Table 3: The average and standard error of 500 incomplete datasets for estimating the
number of customers visiting the supermarket. Since studentized is applied, the sample
mean 0 serves as the benchmark.

CC PS DI NAIPW Prop
Estimate -0.20 -0.13 -0.04 -0.04 -0.04

Standard error 0.03 0.02 0.03 0.03 0.01

5 Conclusion

In this paper, we propose a novel AIPW estimator to infer the population mean, which incor-

porates an efficient nonparametric imputation with sparse structure and a penalized propen-

sity score estimator under the assumption of missing at random. The proposed method is

computationally efficient and allows the dimension diverging. More importantly, the esti-

mation consistency as well as the corresponding central limit theorem are established under

regularity assumptions. Its superior is also supported by several simulated examples and one

application to a supermarket dataset.
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A Block co-ordinate gradient descent algorithm

For gth group of β1, consider a vector d such that dk = 0 for k 6= g, and assume that the

dfg × dfg submatrix is of the form H
(t)
gg = h

(t)
g Idfg for some scalar h

(t)
g , where Im is an m×m

identity matrix.

If ‖∇l(β̂(t))g − h
(t)
g β̂

(t)
g ‖2 ≤ λ2df

1/2
g , let d

(t)
g = −β̂

(t)
g . Otherwise,

d(t)
g = − 1

h
(t)
g

{
∇l(β̂(t))g − λ2df

1/2
g

∇l(β̂(t))g − h
(t)
g β̂

(t)
g

‖∇l(β̂(t))g − h
(t)
g β̂

(t)
g ‖2

}
.

If d(t) 6= 0, let β(t+1) = β(t) + α(t)d(t), where α(t) is the largest value among {α0δ
l : l ≥ 0}

such that

Sλ2(β
(t) + α(t)d(t))− Sλ2(β

(t)) ≤ α(t)σ∆(t),

δ ∈ (0, 1), σ ∈ (0, 1), α0 > 0, and

∆(t) = −
(
d(t)
)⊤ ∇l(β̂(t)) + λ2df

1/2
g ‖β̂(t)

g + d(t)
g ‖2 − λ2df

1/2
g ‖β̂(t)

g ‖2.

See Meier et al. (2008) for details.
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B Proofs

Proposition 1. Suppose Assumptions 1–2 are satisfied. Then, with probability at least

1− δn/2, there holds

∥∥f̂ − f ∗
∥∥
K
≤ 2 log

(
8

δn

)[ 3κ1,p

n1/2λn

{
κ1,p‖f ∗‖K + q−1

(
log

4c1n

δn

)}

+λr−1/2
n ‖L−r

K f ∗‖2
]
.

The proof of Proposition 1 is similar as that in He et al. (2021) and thus we omit it here.

Proof of Lemma 1. The proof of Lemma 1 is similar as that in He et al. (2021) by using

Proposition 1, the property of Hilbert-Schmidt operators and the concentration inequalities

in Hilbert-Schmidt operator space. Thus we omit the detail here.

Proof of Lemma 2. The proof of Lemma 2 is similar as that in He et al. (2021), and thus we

omit the detail here.

Proof of Theorem 1. Define the event that

C1 =
{
‖f̂0 − f ∗‖∞ > cm,2 max

{
κ1,p0‖f ∗‖K , q−1

(
log

2c1m

δm

)}

× log

(
4

δm

)
m− 2r−1

2(2r+1)

}
. (11)

Then, the probability Pr(C1) can be decomposed as

Pr (C1) = Pr
(
C1,
{
Âvm = A∗

})
+ Pr

(
C1,
{
Âvm = A∗

})

= Pr
(
C1 |

{
Âvm = A∗

})
Pr
(
Âvm = A∗

)

+ Pr
(
C1 |

{
Âvm = A∗

})
Pr
(
Âvm 6= A∗

)

≤ Pr
(
C1 |

{
Âvm = A∗

})
(1−∆m) + ∆m.
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By Lemma 2, we have ∆m → 0 and (1 −∆m) → 1. For Pr(C1 |
{
Âvm = A∗

}
), by applying

the proof in Proposition 1 conditioning on
{
Âvm = A∗

}
, with probability at least 1 − δm,

there holds

∥∥f̂ − f ∗
∥∥
K

≤ cm,2max
{
κ1,p0‖f ∗‖K , q−1(log 2c1m

δm
)
}

×log
(

4
δm

)
m

− 2r−1
2(2r+1) ,

which implies Pr(C1 |
{
Âvm = A∗

}
) ≤ δm. Combining the above results, we have Pr(C1) ≤

δm +∆m. This completes the proof of the first part in Theorem 1.

Additionally, by Assumption 4, we have m = O(n), and if we take r = 1 and assume

that p0 = O(1) and ǫ has sub-Gaussian or sub-exponential tail, there holds

∥∥f̂ − f ∗
∥∥
K
= OP(n

− 1
6 log n).

Note that

∥∥f̂ − f ∗
∥∥
∞

= sup
x

|f̂(x)− f ∗(x)|

= sup
x

|〈f̂ − f ∗, Kx〉K | ≤ κ1,p0

∥∥f̂ − f ∗
∥∥
K
,

which completes the proof.

Proof of Lemma 3. By Assumptions 4–7, Meier et al. (2008) showed (9). Denote g(x) =

{1 + exp(−x)}−1, and we can show that g′(x) = dg(x)/dx = g(x){1− g(x)}. That is,

|g′(x)| ≤ 1, (12)

for any x by the fact that 0 ≤ g(x) ≤ 1. Thus, by (12) and the mean value theorem, we
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conclude that g(x) is Lipschitz continuous in the sense that

|g(x1)− g(x2)| ≤ |x1 − x2|,

for any x1 and x2 in R. By noting the fact that π̂(x) = g{η
β̂λ2

(x)} and π∗(x) = g{ηβ0(x)},

by (9), we have

E{|π̂(X)− π∗(X)|2} ≤ E{|η
β̂λ2

(X)− ηβ0(X)|2}

= OP(n
−2/3−2ζ), (13)

where the expectation is taken conditional on β̂λ2. By (13), we have shown Lemma 3.

Lemma 4. Suppose Assumptions 4–7 are satisfied. Then, given β̂λ2, there holds

max{|β̂k − β∗
k| : k = 0, . . . , p} = OP(n

−1/3−ζ),

where β̂k and β∗
k are the (k + 1)th component of β̂λ2 and β∗, respectively.

Proof of Lemma 4. Given the estimated parameters for the response model, (9) can be re-

expressed as

E{|η
β̂λ2

(X)− ηβ∗(X)|2}

= E{(β̂λ2 − β∗)⊤XX⊤(β̂λ2 − β∗)}

= (β̂λ2 − β∗)⊤E(XX⊤)(β̂λ2 − β∗)}

= OP(n
−2/3−2ζ), (14)
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By Assumption A5 and (14), we conclude that

(β̂λ2 − β∗)⊤(β̂λ2 − β∗) = (β̂0 − β∗
0)

2 +

p∑

k=1

(β̂k − β∗
k)

2

= OP(n
−2/3−2ζ). (15)

Notice that

max{(β̂k − β∗
k)

2 : k = 0, . . . , p} ≤ (β̂0 − β∗
0)

2 +

p∑

k=1

(β̂k − β∗
k)

2. (16)

Thus, we have proved Lemma 4 by (15) and (16).

Proof of Theorem 2. For simplicity, denote π∗
i = π∗(xi) and π̂i = π̂(xi) = (1+exp[−{(1,x⊤

i )β̂λ2}])−1.

What if we consider

θ̂AIPW =
1

n

n∑

i=1

[
f̂0(xi) +

δi
π̂i

{
yi − f̂0(xi)

}]
,

where π̂i is an estimator of Pr(δi = 1 | xi) by the group lasso for logistic regression.
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Then, we have

θ̂AIPW =
1

n

n∑

i=1

[
f ∗(xi) +

{
f̂0(xi)− f ∗(xi)

}
+

δi
π∗
i

{yi − f ∗(xi)}

+
δi
π̂i
{yi − f ∗(xi)} −

δi
π∗
i

{yi − f ∗(xi)}

+
δi
π̂i
{f ∗(xi)− f̂0(xi)}

]

=
1

n

n∑

i=1

[
f ∗(xi) +

δi
π∗
i

{yi − f ∗(xi)}
]

+
1

n

n∑

i=1

{
1− δi

π̂i

}{
f̂0(xi)− f ∗(xi)

}

+
1

n

n∑

i=1

[
δi
π̂i

− δi
π∗
i

]
{yi − f ∗(xi)}

=
1

n

n∑

i=1

[
f ∗(xi) +

δi
π∗
i

{yi − f ∗(xi)}
]

+
1

n

n∑

i=1

{
1− δi

π̂i

}{
f̂0(xi)− f ∗(xi)

}

+
1

n

n∑

i=1

[
δi
π̂i

− δi
π∗
i

]
ǫi, (17)

where ǫi = yi − f ∗(xi).

First, we consider the first term of (17), and we have

E

[
f ∗(X) +

δ

π∗(X)
{Y − f ∗(X)}

]

= E

(
E

[
f ∗(X) +

δ

π∗(X)
{Y − f ∗(X)}

]
| X, Y

)

= E(Y ),

where δ is a binary random variable with success probability π∗(X) conditional on X.

Since E{|f ∗(X) + δπ∗(X)−1{Y − f ∗(X)}|2} < ∞, by the classical central limit theorem
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(Van der Vaart; 2000, Example 2.1), we have

√
n

(
1

n

n∑

i=1

[
f ∗(xi) +

δi
π∗
i

{yi − f ∗(xi)}
]
− θ∗

)
→ N(0, σ2), (18)

in distribution under regularity conditions, where θ = E(y) and σ2 is to be estimated.

Next, we consider the third term of (17) .

1

n

n∑

i=1

[
δi
π̂i

− δi
π∗
i

]
ǫi =

1

n

n∑

i=1

δiǫi
π∗
i

π∗
i − π̂i

π̂i
.

By Assumption 4 and Lemma 3, we conclude that (π∗
i − π̂i)π̂

−1
i = oP(1) uniformly for

i = 1, . . . , n. Since

1

n

n∑

i=1

δiǫi
π∗
i

= OP(n
−1/2),

we conclude that

1

n

n∑

i=1

[
δi
π̂i

− δi
π∗
i

]
ǫi = oP(n

−1/2). (19)

Now, we focus on the second term of (17), and consider

1

n

n∑

i=1

{
1− δi

π̂i

}{
f̂0(xi)− f ∗(xi)

}

=
1

n

n∑

i=1

{
1− δi

π∗
i

}{
f̂0(xi)− f ∗(xi)

}

+
1

n

n∑

i=1

δi
π∗
i π̂i

(π̂i − π∗
i )
{
f̂0(xi)− f ∗(xi)

}
.

(20)

By Theorem 1, f̂0(xi)−f ∗(xi) = OP(log(n)n
−1/6) uniformly for i = 1, . . . , n. Since n−1

∑n
i=1{1−

δi(π
∗
i )

−1} = OP(n
−1/2), the first term of is of (20) is of the order oP(n

−1/2). Besides, to show
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the second term of (20) is also of the order oP(n
−1/2), it is enough to show

1

n

n∑

i=1

δi
π∗
i π̂i

(π̂i − π∗
i ) = OP(n

−1/3−ζ/2), (21)

where ζ is in Assumption 7.

By Lemma 4, we conclude that max{|β̂k − β∗
k| : k = 0, . . . , p} = op(1). Denote An to be

the event that {max{|β̂k − β∗
k| : k = 0, . . . , p} ≥ Cκ}, where Cκ is a positive constant such

that min{β̂λ2(x) ≥ κ/2 : x ∈ X}. The existence of Cκ is guaranteed by the compactness of

X and Assumption A4. Then, we have P (An) → 0 as n → ∞. On x ∈ AC
n , we conclude

π̂(x) ≥ κ/2.

Since {x1, . . . ,xn} is a random sample, given β̂λ2, for any positive constant C, we consider

Pr

(∣∣∣∣∣
1

n

n∑

i=1

δi
π∗(Xi)π̂(Xi)

{π̂(Xi)− π∗(Xi)}
∣∣∣∣∣ ≥ Cn−1/3−ζ/2

)

≤ Pr

(∣∣∣∣∣
1

n

n∑

i=1

2δi
κ2

{π̂(Xi)− π∗(Xi)}
∣∣∣∣∣ ≥ Cn−1/3−ζ/2

)
+ P (An)

≤ E[2κ−2n−1
∑n

i=1[δi{π∗(Xi)π̂(Xi)}−1{π̂(Xi)− π∗(Xi)}]2
C2n−2/3−ζ

+P (An)

≤ 2
∑n

i=1 E{π̂(Xi)− π∗(Xi)}2
nκ2C2n−2/3−ζ

+ P (An)

≤ E{π̂(X1)− π∗(X1)}2
κ2C2n−2/3−ζ

+ P (An)

= oP(1), (22)

where Xi is the random variable associated with xi, the first inequality holds by the Markov

inequality, the second inequality holds by Assumption 4 and the fact that δi ≤ 1 for i =

1, . . . , n, the third inequality holds since X1, . . . ,Xn are identically distributed, and the
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fourth inequality holds by Lemma 3. By (22), we have validated (21), so we have

1

n

n∑

i=1

{
1− δi

π̂i

}{
f̂0(xi)− f ∗(xi)

}
= oP(n

−1/2). (23)

By (18), (19) and (23), we have proved Theorem 2 by the Slutsky’s theorem (Athreya and Lahiri;

2006, Theorem 9.1.6).
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