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Abstract

This paper investigates the efficient solution of penalized quadratic regres-
sions in high-dimensional settings. A novel and efficient algorithm for ridge-
penalized quadratic regression is proposed, leveraging the matrix struc-
tures of the regression with interactions. Additionally, an alternating direc-
tion method of multipliers (ADMM) framework is developed for penalized
quadratic regression with general penalties, including both single and hybrid
penalty functions. The approach simplifies the calculations to basic matrix-
based operations, making it appealing in terms of both memory storage
and computational complexity for solving penalized quadratic regressions in
high-dimensional settings.
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1. Introduction

Quadratic regression, which extends linear regression by accounting for
interactions between covariates, has found widespread applications across
various disciplines. However, as the complexity of the interactions increases
quadratically with the number of variables, parameter estimation becomes
increasingly challenging for problems with large or even moderate dimen-
sionality. A surge of methodologies have been developed in the past decade
to tackle the high-dimensionality challenge under different structural as-
sumptions; see for example Bien et al. (2013); Hao and Zhang (2014, 2017);
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Hao et al. (2018); Tang et al. (2020); Wang et al. (2021); Lu et al. (2023)
and Yu et al. (2023), among others.

Given the observations (xi, yi) ∈ Rp × R, i = 1, . . . , n, we consider a
general penalized quadratic regression model expressed as

argmin
B=B⊤,B∈Rp×p

1

2n

n∑
i=1

(yi − x⊤
i Bxi)

2 + f(B), (1)

where B = (Bjk)p×p denotes a symmetric matrix of parameters, and f(·) is
a convex penalty function. Typically, the first element of xi is a constant 1,
allowing for the capture of the intercept, linear effect, and interaction effect
through B1,1,, {B1,i, i = 2, . . . , p}, and {Bi,j , 2 ≤ i ≤ j ≤ p}, respectively.

Without the penalty f(B), the mean squared error is:

1

2n

n∑
i=1

yi −B11 −
p∑

j=2

(B1j +Bj1)xij −
p∑

j,k=2

Bjkxijxik

2

.

The penalty term f(B) is introduced to impose different structures on the
parameter matrix B depending on the application scenario. For instance,
in gene-gene interaction detection where the number of genes is typically
large and the interactions related to the response are sparse, the ℓ1 penalty
f(B) = λ∥B∥1 is often used to induce sparsity in B. The resulting model
is called the all-pairs LASSO by Bien et al. (2015). In addition to spar-
sity, researchers have also considered heredity, where the existence of the
interaction effect Bj,k depends on the existence of its parental linear effects
B1,j , B1,k. Specifically, we have:

strong heredity: Bj,k ̸=0 ⇒ B1j ̸= 0 and B1k ̸= 0,

weak heredity: Bj,k ̸=0 ⇒ B1j ̸= 0 or B1k ̸= 0.

Several penalty functions are proposed in the literature to enforce these
heredity structures, including those proposed by Yuan et al. (2009), Rad-
chenko and James (2010), Choi et al. (2010), Bien et al. (2013), Lim and
Hastie (2015), Haris et al. (2016), and She et al. (2018), among others. In
addition to sparsity and heredity, we can also introduce the nuclear norm
penalty to impose a low rank structure in B, and hybrid penalties to impose
more than one structure. Further details will be provided in Section 3.

A naive approach to solving the penalized quadratic regression model
(1) is to use vectorization. We define

zi = xi ⊗ xi ∈ Rp2×1,
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where ⊗ denotes the Kronecker product, and write

b = vec(B) ∈ Rp2×1,

where vec(·) denotes the vectorization of a matrix. We can then obtain the
following equivalent form of (1):

argmin
b

1

2n

n∑
i=1

(yi − z⊤i b)
2 + f(b).

Therefore, the penalized quadratic regression problem (1) can be reformu-
lated as a penalized linear model with O(p2) features. From a theoretical
perspective, we can use this formulation together with the classical theory
for high-dimensional regularized M -estimators (Wainwright, 2019, Chap-
ter 9). Detailed theoretical analyses of the consistency of the penalized
quadratic regression model can be found in Zhao and Leng (2016) and the
references therein. However, from a computational perspective, many al-
gorithms do not scale well with a large p, since the number of parameters
scales quadratically with the dimension p. Moreover, storing the design
matrix and computer memory can also be expensive when vectorization is
applied to the interaction variables. For example, computing an all-pairs
LASSO with n = 1000 and p = 1000 on a personal computer can cause the
well-known algorithm glmnet (Friedman et al., 2010a) to break down due
to out-of-memory errors. Specifically, the feature matrix of order 103 × 106

has a memory size of about 8GB.
To address the computational challenges associated with high-dimensional

penalized quadratic regression, several two-stage methods have been pro-
posed in the literature (Hao and Zhang, 2014; Fan et al., 2015; Kong et al.,
2017; Hao et al., 2018; Yu et al., 2023, e.g.,). These methods are computa-
tionally efficient and have been proven to be consistent under some structural
assumptions, which can reduce the computational complexity via a feature
selection procedure in the first stage. In this paper, we do not assume any
of these structures, and our main goal is to develop efficient algorithms for
solving the general penalized quadratic regression model (1) directly. In-
tuitively, penalized quadratic regression is different from a common linear
regression with O(p2) features because the data has a specific structure for
interactions. In this work, we leverage this structure in the algorithm and
design an efficient framework for the general penalized quadratic regression
problem. In previous works, Tang et al. (2020) and Wang et al. (2021) also
developed efficient formulas for the matrix parameter under a factor model.
However, their procedures greatly rely on the distributional assumptions
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and cannot be extended to general cases. In contrast, our approach does
not require any distributional assumptions and can be applied to a wide
range of high-dimensional data.

In this work, we study the original optimization problem (1) and design
the algorithm from the viewpoint of matrix forms. To the best of our knowl-
edge, this is the first algorithm for penalized quadratic regression that does
not use vectorization and avoids any matrix operation of the n× p2 feature
matrix. Our contributions are summarized as follows:

1. For ridge regression, we obtain an efficient solution for quadratic re-
gression with a computational complexity of O(np2 + n3).

2. To solve the general penalized quadratic regression problem for sin-
gle non-smooth penalty and hybrid penalty functions, we propose an
alternating direction method of multipliers (ADMM) algorithm. The
algorithm is fully formulated with matrix forms, using only p×p, n×p,
or n × n matrices, and has explicit formulas for the solutions in each
iteration.

3. We have developed an R package for penalized quadratic regression.
Compared to other existing solvers/packages, our algorithm is much
more robust since we do not impose any structural assumptions such
as heredity or distributional conditions. Our algorithm is appealing in
both memory storage and computational cost, and can handle datasets
with very high dimensions. This makes our package a useful tool for
researchers and practitioners who need to analyze high-dimensional
data using penalized quadratic regression.

The rest of the paper is organized as follows. In Section 2, we start
with ridge-penalized quadratic regression and derive an efficient closed-form
formula for the solution. In Section 3, we design an efficient ADMM algo-
rithm for both single non-smooth penalty and hybrid penalty functions. We
conduct simulations in Section 4 to illustrate the proposed algorithm and
conclude the work in Section 5 with discussions. The developed R pack-
age “HiQR” and all the codes for simulations are available on GitHub at
https://github.com/cescwang85/HiQR.
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2. Ridge regression

To facilitate the discussion, we introduce some notations first. For a real
p× q matrix A = (Ak,l)p×q, we define:

∥A∥∞
def
= max

1≤k≤p,1≤l≤q
|Ak,l|, ∥A∥1

def
=

p∑
k=1

q∑
l=1

|Ak,l|, ∥A∥22
def
=

p∑
k=1

q∑
l=1

|Ak,l|2.

Denoting the singular values of A as σ1 ≥ · · ·σp ≥ 0, the nuclear norm of
A is defined as

∥A∥∗ =
p∑

i=1

σi.

We first consider the ridge regression for the quadratic regression, i.e.,

Ridge QR: argmin
B=B⊤,B∈Rp×p

1

2n

n∑
i=1

(yi − x⊤
i Bxi)

2 +
λ

2
∥B∥22. (2)

where λ > 0 is a tuning parameter. Since the object function is convex in
B, the solution can be obtained by solving the following equation:

1

n

n∑
i=1

(x⊤
i Bxi − yi)xix

⊤
i + λB = 0p×p. (3)

Denote D = 1
n

∑n
i=1 yixix

⊤
i . Equation (3) can be equivalently written as:

1

n

n∑
i=1

xix
⊤
i Bxix

⊤
i + λB = D.

By applying vectorization to the above equation, we have:

1

n

n∑
i=1

{
(xix

⊤
i )⊗ (xix

⊤
i )
}
vec(B) + λ · vec(B) = vec(D),

and then the solution can be seen as:

vec(B) =
{
XX⊤ + λIp2

}−1
vec(D) =

{
XX⊤ + λIp2

}−1
XY, (4)

where

X =
1√
n
(x1 ⊗ x1, · · · ,xn ⊗ xn).
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Note that XX⊤ is a p2 × p2 matrix, which can lead to a high computational
complexity of O(p6) for direct calculation of its inverse. Moreover, storing
such a large matrix when p is large is also impractical. Therefore, the
naive algorithm that computes (4) directly is usually not applicable for high-
dimensional quadratic regression.

Note that the rank of X is min{n, p2}, which can be much smaller than
p2 when n ≪ p. To exploit the low-rank structure of X, we can use the
Woodbury matrix identity, which allows us to compute (XX⊤ + λIp2)

−1

more efficiently. Specifically, by applying the Woodbury identity, we have:

(XX⊤ + λIp2)
−1 = λ−1Ip2 − λ−1X(λIn + X⊤X)−1X⊤. (5)

The computational complexity is now been reduced to O(n2p2 + n3), where
the n2p2 term is due to matrix multiplication and n3 is the complexity of
matrix inverse. The Woodbury identity has been widely used in many other
algorithms, and it is sometimes referred to as the “shortcut-trick” for high-
dimensional data ((Boyd et al., 2011, section 4.2.4); Friedman et al. 2001).

Another efficient technique to further reduce the computational cost is
the implementation of the singular value decomposition(SVD) to X (Haris
et al., 2016). Specifically, let X = UΛV⊤ be the thin SVD of X. Together
with (5), the solution (4) can be expressed as:

(XX⊤ + λIp2)
−1XY = U(Λ2 + λI)−1ΛV⊤Y. (6)

Here, the complexity of SVD is O(n2p2), which can significantly reduce the
computational complexity compared to the naive algorithm that computes
(4) directly. However, for some large-scale problems, the reduction in com-
putational complexity may still be insignificant.

In what follows, we will further exploit the special structure of the param-
eter matrix in quadratic regression and reduce the computational complexity
to O(np2). Note that from (5) and the first equation of (4), we have:

vec(B) =
{
λ−1Ip2 − λ−1X(λIn + X⊤X)−1X⊤

}
vec(D).

Firstly, note that

X⊤X =


1√
n
(x1 ⊗ x1)

⊤

...
1√
n
(xn ⊗ xn)

⊤

( 1√
n
x1 ⊗ x1, · · · ,

1√
n
xn ⊗ xn

)

=
1

n

(
(x⊤

i xj)
2
)
n×n

= n−1(XX⊤) ◦ (XX⊤), (7)
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where ◦ is the Hadamard product and the complexity of the last equation
is of order O(n2p). Secondly, note that

X⊤vec(D) =


1√
n
(x1 ⊗ x1)

⊤

...
1√
n
(xn ⊗ xn)

⊤

 vec(D) =


1√
n
x⊤
1 Dx1

...
1√
n
x⊤
nDxn


=

1√
n
· diag

(
XDX⊤

)
, (8)

where in the last equation the complexity is also reduced to O(np2). Lastly,
denoting

w =
1√
n
(λIn + X⊤X)−1X⊤vec(D) ∈ Rn,

we have:

X(λIn + X⊤X)−1X⊤vec(D) =

n∑
k=1

wkxk ⊗ xk

=vec

(
n∑

i=1

wkxkx
⊤
k

)
= vec

(
X⊤diag(w)X

)
,

(9)

where the complexity of the last equation is also O(np2).
By combining equations (7)-(9), we can obtain a computationally effi-

cient form for the explicit solution of the ridge-penalized quadratic regression
(2). We summarize the results in the following proposition.

Proposition 2.1. For a given tuning parameter λ > 0, the solution of the
ridge-penalized quadratic regression problem (2) is given as:

B̂ = λ−1D− λ−1X⊤diag{w}X, (10)

where

X =(x1, . . . ,xn), D =
1

n

n∑
i=1

yixix
⊤
i =

1

n
X⊤diag(y1, · · · , yn)X,

w =
{
λIn + n−1(XX⊤) ◦ (XX⊤)

}−1
diag

(
1

n
XDX⊤

)
.
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The computational complexity for calculating the close-form solution
(10) is O(np2+n3), which is much more efficient than the forms given in (4)
and (6) under the high-dimensional setting where n ≪ p. In addition, the
memory cost of the solution is also lower because it only requires components
in the form of either an n × n matrix, an n × p matrix, or a p × p matrix.
In next section, we will further extend our results obtained in this section
to solve quadratic regression with other non-smooth penalties.

3. Non-smooth penalty and beyond

In this section, we consider the case where the penalty f(·) in the pe-
nalized quadratic regression (1) is possibly non-smooth. For example, we
can consider setting f(B) = λ∥B∥1 as in the all-pairs-LASSO, or f(B) =
λ∥B∥∗ as in reduced rank regression. For high-dimensional quadratic re-
gression, it is also attractive to introduce additional penalties to impose
different structures simultaneously. For instance, we can combine the ℓ1
norm and the nuclear norm to get a sparse and low-rank solution, i.e.,
f(B) = λ1∥B∥1 + λ2∥B∥∗. In the literature, several hybrid penalty func-
tions are proposed for quadratic regression, and we summarize these hybrid
penalties as follows.

• ℓ1 + ℓ2:

f(B) = λ1∥B∥1 + λ2

p∑
k=2

∥B·,k∥2 + λ2

p∑
k=2

∥Bk,·∥2.

See Radchenko and James (2010) and Lim and Hastie (2015) for more
details.

• ℓ1 + ℓ∞:

f(B) = λ1∥B∥1 + λ2

p∑
k=2

∥B·,k∥∞ + λ2

p∑
k=2

∥Bk,·∥∞.

See Haris et al. (2016).

• ℓ1 + ℓ1/ℓ∞:

f(B) = λ1∥B∥1 + λ2

p∑
k=2

max{|B1,k|, ∥B−1,k∥1}

+λ2

p∑
k=2

max{|Bk,1|, ∥Bk,−1∥1}.
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See Bien et al. (2013) and Haris et al. (2016).

• ℓ1 + ℓ∗:

f(B) = λ1∥B∥1 + λ2∥B∥∗.

See Lu et al. (2023) and the references therein.

We remark that all of these penalties are formulated in a symmetric pattern,
i.e., f(B) = f(B⊤). Thus, the final solution will be a symmetric matrix.
Utilizing the efficient formulation we obtained in Proposition 2.1, we now
introduce an ADMM algorithm for solving the general penalized quadratic
regression problem (1).

3.1. ADMM algorithm

Writing the squared loss function

f0(B) =
1

2n

n∑
i=1

(yi − x⊤
i Bxi)

2,

we study the generic problem

min f0(B) + f1(B) + · · ·+ fN (B),

where fk(·), k = 1, . . . , N are penalty functions. Introducing the local vari-
ables Bi ∈ Rp×p, the problem can be equivalently rewritten as the following
global consensus problem (Boyd et al., 2011, Section 7)

min
N∑
i=0

fi(Bi), subject to Bi −B = 0, i = 0, 1, . . . , N. (11)

The augmented Lagrangian of (11) is

L(B0, . . . ,BN ,B,U0, . . . ,UN ) =
N∑
i=0

{
fi(Bi) +

ρ

2
∥Bi −B+Ui∥22

}
,

where ρ > 0 is the step-size parameter. For a given solution Bk
i , i = 0, . . . , N

in the kth iteration, the (k+1)th iteration of the ADMM algorithm is given
as follow:

• Step 1: Bk+1
i = argminBi

{
fi(Bi) +

ρ
2∥Bi −Bk +Uk

i ∥22
}
, i = 0, · · · , N ;
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• Step 2: Bk+1 = 1
N+1

∑N
i=0

{
Bk+1

i +Uk
i

}
;

• Step 3: Uk+1
i = Uk

i +Bk+1
i −Bk+1, i = 0, · · · , N .

If we start with
∑

U1
i = 0, it can be shown that

∑
Uk

i = 0 for every k > 1
and so Step 2 will simply be an average operator, i.e.,

Bk+1 =
1

N + 1

N∑
i=0

Bk+1
i .

As we can see, the computational complexity of the algorithm is usually
dominated by the first step.

In general, for a convex function f(·), the proximal operator (Parikh and
Boyd, 2014) is defined as:

procf,ρ(A)
def
= argmin

B
f(B) +

ρ

2
∥B−A∥22. (12)

Thus, givenBk and theUk
i ’s, Step 1 is a proximal operator for the sum of the

squared loss function f0(·) and the penalty functions fi(·), i = 1, . . . , N . In
Proposition 2.1 we have derived an efficient form for the proximal operator of
the squared loss f0(·) atA = 0. For a generalA in (12), the efficient solution
can be obtained by setting λ = ρ/2 and updating D as n−1

∑n
i=1 yixix

⊤
i +A

in Proposition 2.1. In next subsection, we provide the proximal operator for
each penalty function.

3.2. Proximal operator

For most penalty functions, the proximal projection has an explicit so-
lution, and we summarize these operators in this section. With some abuse
of notation, let B be a parameter matrix with dimension p × q. For the ℓ1
norm, writing A = (Aij)p×q, we have

argmin
B

λ∥B∥1 +
1

2
∥B−A∥22 = (sign(Aij)(|Aij | − λ)+)p×q

def
= soft(A, λ),

where x+ = max(0, x). For the nuclear norm, denoting the singular value
decomposition of A as

A =

min(p,q)∑
i=1

σiuiv
⊤
i ,

10



we have

argmin
B

λ∥B∥∗ +
1

2
∥B−A∥22 =

min(p,q)∑
i=1

(σi − λ)+uiv
⊤
i .

For other penalties imposed on the columns or the rows of B, we present
the solutions in the form of row vectors for brevity. Without loss of gen-
erality, for a convex penalty function f(·) on the row of B, the proximal
operator is given as:

b̂ = argmin
b

f(b) +
1

2
∥b− a∥22, a,b ∈ Rq,

we have the following solution.

• ℓ2 norm–Group LASSO (Yuan and Lin, 2006):

f(b) = λ∥b∥2, b̂ =

(
1− λ

∥a∥2

)
+

· a.

• ℓ∞ norm penalty (Duchi and Singer, 2009):

f(b) = λ∥b∥∞.

When λ ≥ ∥a∥1, we have b̂ = 0. Otherwise, the solution is

b̂ = a− soft(a, λ1),

where λ1 ≥ 0 satisfies the equation

q∑
i=1

(|ai| − λ1)I(|ai| > λ1) = λ.

The details of the derivation can be found in Section 5.4 of Duchi and
Singer (2009).

• Hybrid ℓ1/ℓ∞ norm penalty (Haris et al., 2016):

f(b) = λmax

(
|b1|,

q∑
i=2

|bi|

)
.

The solution is

ŷ = (soft(a1, λ1), soft(a−1, λ− λ1)) ,
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where

λ1 = argmin
t∈[0,λ]

∥soft(a1, t)∥22 + ∥soft(a−1, λ− t)∥22.

In particular, when λ ≥ |a1|+ ∥a−1∥∞, b̂ = 0. Further details can be
found in Haris et al. (2016).

In the above, we have summarized some commonly used penalties in quadratic
regression and their explicit proximal operators. For other non-smooth
penalty, the propose algorithm is still applicable and we only need to update
the algorithm with the corresponding proximal operators. We remark for
the penalties imposed on the column vectors, the proximal operators can be
obtained similarly.

With these explicit proximal operators, we can get the unified algorithm
as follows.

Algorithm 1 HiQR: High dimensional Quadratic Regression.
Initialization:
1: Input the observations (xi, yi), i = 1, · · · , n;
2: Set the loss function f0(·) and the penalty functions f1(·), · · · fN (·);
3: Start from k = 0, B0

i = U0
i = 0p×p.

Iteration:
4: Update Bk+1

i = procfi,ρ(B
k −Uk

i ), i = 0, · · · , N .

5: Update Bk+1 = 1
N+1

∑N
i=0 B

k+1
i .

6: Update Uk+1
i = Uk

i +Bk+1
i −Bk+1 i = 0, · · · , N .

7: Repeat steps 4-6 until convergence.
Output: Return B.

Algorithm 1 is simple and efficient owing to the fact that each step of the
iteration has a closed form, and we have greatly utilized the matrix structure
of the problem to obtain a closed-form solution for the proximal operator of
the squared loss for quadratic regression, i.e., in the update of B0 in Step
4 of Algorithm 1. The algorithm is fully matrix-based, where we update
p× p matrices in each step without any unnecessary matrix operations such
as vectorization or Kronecker product. This can greatly reduce the memory
and computational burden when handling high-dimensional data.

Here we develop the algorithm by following the classical ADMM algo-
rithm (Boyd et al., 2011) and the convergence results have been explored in
the literature. Empirically, the step-size parameter ρ has an impact on the
convergence of the algorithm. Note that there are O(p2) parameters and
the Hessian matrix XX/n⊤ of the squared loss has eigenvalues that diverge
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considerably, we have chosen a relatively large default value, i.e., ρ = 10,
for the step-size parameter in our package. Alternatively, users can set it to
ρ =

√
p. A more comprehensive way is to use different step-size parameters

for each iteration (Boyd et al., 2011, e.g., Section 3.4.1).

4. Simulations

To illustrate the efficiency of the proposed algorithm, we consider a toy
example:

Y = 2X1 − 2X5 + 2X10 + 3X1X5 − 2.5X2
5 + 4X5X10 + ϵ.

For all the simulations, we generate x1, · · · ,xn independently from N(0,Σ),
where Σ = (0.5|k−l|)p×p, and the error term ϵ from N(0, 1). We fix the
sample size n = 500, and vary the data dimension p from small to large.
The code is implemented on an Apple M1 chip with 8-core CPUs and 8G
RAM, and the R version used is 4.3.1 with vecLib BLAS.

4.1. Ridge regression

In this part, we compare four algorithms for computing the ridge-penalized
quadratic regression, namely, the naive inverse (4), the Woodbury trick (5),
the SVD method (6), and the proposed HiQR. We fix λ = 10, and the
computation times are recorded in seconds based on 10 replications.

Table 1: Average computation time (standard deviation) of different algorithms for ridge
regression (λ = 10) over 10 replications. Time is recorded in seconds.

p=100 p=200 p=400 p=800 p=1200

Naive 9.814(0.061) NA NA NA NA
Woodbury 0.131(0.009) 0.566(0.045) 2.262(0.173) 24.772(4.686) NA

SVD 0.534(0.012) 2.718(0.021) 13.996(0.095) 71.996(2.074) NA
HiQR 0.020(0.001) 0.020(0.001) 0.024(0.002) 0.047(0.003) 0.051(0.004)

*NA is produced due to out of memory in R.

From Table 1, we can observe that our HiQR algorithm greatly out-
performs other algorithms in terms of computation efficiency. Additionally,
the results are roughly consist with their native computational complexity,
e.g., O(p6), O(n2p2 + n3), O(n2p2) and O(np2 + n3). As we can see, the
vectorization methods all fail to handle the p = 1200 case due to memory
shortage, while our method is still efficient, as we only need to handle the
storage of n× p and p× p matrices.
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4.2. Single penalty function

In this part, we investigate the performance of the proposed HiQR for a
single penalty, i.e., f(B) = λ∥B∥1. As a comparison, we also implement the
all-pairs LASSO of vectorized features using two state-of-the-art algorithms,
e.g., “glmnet” (Friedman et al., 2010b) and “ncvreg” (Breheny and Huang,
2011). Table 2 reports the computation times of these three algorithms for
a solution path with 50 λs based on 10 replications.

Table 2: Average computation time (standard deviation) of three packages for obtaining
a solution path for all-paris LASSO over 10 replications. The same set of 50 λs has been
used for the three different packages, and time is recorded in seconds.

p=200 p=400 p=800 p=1200 p=1600 p=2000 p=2400

glmnet 0.65(0.04) 2.92(0.11) 21.53(1.89) NA NA NA NA
ncvreg 1.38(0.07) 5.77(0.08) 34.48(2.96) NA NA NA NA
HiQR 1.64(0.54) 3.68(0.29) 16.67(1.18) 45.46(6.13) 98.78(18.58) 190.08(46.44) 298.87(76.66)

*NA is produced due to out of memory in R.

From Table 2, we can see that both “glmnet” and “ncvreg” fail to gen-
erate solutions when p ≥ 1200 due to out-of-memory errors. We note that
“glmnet” and “ncvreg” are coordinate descent methods and they use the
maximum norm between two iterations to stop the algorithm. Our proposed
HiQR is an ADMM method and we use the Frobenius norms of primal and
dual errors to stop the iteration. Although the stopping criterion varies
for each method, the solutions only differ slightly. In particular, we have
checked the stopping condition of our HiQR using the solutions generated
from “glmnet” and “ncvreg”, and found that the scales of the stopping con-
dition are comparable to that of the HiQR solution. Moreover, we remark
that both “glmnet” and “ncvreg” are accelerated by using strong rules; see
Tibshirani et al. (2012) and Lee and Breheny (2015) for more details. Strong
rules screen out a large number of features to substantially improve compu-
tational efficiency. However, as Tibshirani et al. (2012) has pointed out, the
price is that “the strong rules are not foolproof and can mistakenly discard
active predictors, that is, ones that have nonzero coefficients in the solu-
tion.” As a comparison, our algorithm can be as efficient as “glmnet” and
“ncvreg” without the need for the same type of acceleration.

4.3. Hybrid penalty functions

In this part, we report the performance of HiQR for hybrid penalty
functions. Specifically, we conduct simulations for the ℓ1 + ℓ2, ℓ1 + ℓ∞, ℓ1 +
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ℓ1/ℓ∞, and ℓ1+ ℓ∗ penalties. The two parameters λ1 and λ2 are determined
by λ and α ∈ (0, 1), that is,

λ1 = λ · α · λ1,max, λ2 = λ · (1− α) · λ2,max,

where λ1,max (λ2,max) is set to be the smallest tuning value corresponding to
a zero estimation when λ2 (λ1) is set to be 0. We apply HiQR over a 10×10
grid of (α, λ) values, and Table 3 presents the average computation times for
the whole procedure. As a comparison, we include the “FAMILY” method
(Haris et al., 2016) which can solve the same problem with ℓ1 + ℓ∞ and
ℓ1+ℓ2 penalties. In the original paper, Haris et al. (2016) has demonstrated
the advantages of these models and here we focus on the computation time.
From Table 3, we can see that the proposed algorithm scales very well to
high-dimensional quadratic regression.

Table 3: Average computation times (standard deviation) of “HiQR” and “FAMILY”
under hybrid penalties with 100 tuning pairs over 10 replications. Time is recorded in
seconds.

Method p=50 p=100 p=200

ℓ1 + ℓ∞ HiQR 2.648(0.216) 6.592( 0.953) 23.490( 1.657)
FAMILY 28.429(1.557) 259.403(112.138) NA

ℓ1 + ℓ2 HiQR 0.952(0.123) 1.411( 0.321) 3.055( 0.231)
FAMILY 18.820(1.949) 1399.746(407.768) NA

ℓ1 + ℓ1/ℓ∞ HiQR 3.065(0.161) 7.711( 0.824) 19.878( 1.278)
ℓ1 + ℓ∗ HiQR 2.285(0.157) 5.883( 0.510) 29.322( 2.828)

*NA is produced due to FAMILY did not converge.

4.4. Model performance

Lastly, we evaluate different penalties on different models. In particular,
we consider

Model 1: Y = 2X1 − 2X5 + 2X10 + 3X1X5 − 2.5X2
5 + 4X5X10 + ϵ, (13)

Model 2: Y = −2X5 + 3X1X5 − 2.5X2
5 + 4X5X10 + ϵ, (14)

Model 3: Y = 3X1X5 − 2.5X2
5 + 4X5X10 + ϵ, (15)

where the true parameters of B[(1, 2, 6, 11), (1, 2, 6, 11)] are
0 1 −1 1
1 0 1.5 0
−1 1.5 −2.5 2
1 0 2 0

 ,


0 0 −1 0
0 0 1.5 0
−1 1.5 −2.5 2
0 0 2 0

 ,


0 0 0 0
0 0 1.5 0
0 1.5 −2.5 2
0 0 2 0

 ,
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respectively. In particular, Model 1 has a strong hierarchical structure,
Model 2 has a weak hierarchical structure, and Model 3 is a model with
only interactions.

Due to the efficiency of HiQR, we can study a high-dimensional case
where p = 200 and n = 500. It is noted that the model has about 2× 104

parameters. We implement the penalized quadratic regression with 50 αs
and 50 λs, resulting in a solution path for 2500 grids. To measure each
estimation B̂, we adopt the critical success index (CSI), which can evaluate
the support recovery rate and the model size simultaneously. For the true
B and an estimation B̂, the CSI is defined as follows:

CSI(B, B̂) =
#{(i, j) : Bij ̸= 0 and B̂ij ̸= 0}
#{(i, j) : Bij ̸= 0 or B̂ij ̸= 0}

.

Figure 1 presents the results for different models and different penalties.
From these solution paths, we can see that these methods can detect the
true signals if the tuning parameters are set suitably. Tuning parameters
selection is beyond the scope of the current work. Our results indicate that
the proposed “HiQR” algorithm is capable of training a model with 2× 104

parameters and 2500 tuning parameters efficiently.

5. Discussions

In this work, we propose an efficient algorithm for high-dimensional
quadratic regression that leverages the special matrix structure of inter-
action terms. By exploiting the Woodbury identity trick and the properties
of the Kronecker product, we derive an explicit solution for ridge-penalized
quadratic regression. We then incorporate this solution into the ADMM
algorithm to effectively solve the regularized model with non-smooth penal-
ties. Building upon the efficient solution for ridge regression, a potential
extension of the current work is to address distributed computing scenar-
ios. This would involve adapting the algorithm to handle data distributed
across multiple computing nodes. Furthermore, while we employed the clas-
sical ADMM algorithm in this study, incorporating computational tricks
from the ”OSQP” algorithm (Stellato et al., 2020) could lead to further en-
hancements in terms of computational efficiency and scalability. We view
these aspects as promising future directions for our research.
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Strong hierarchical model (13)
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Weak hierarchical model (14)
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Pure interaction model (15)
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Figure 1: The critical success index for different models and different penalties with 2500
tuning parameters.
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