

Towards interoperability of i* models using
iStarML

Carlos Cares1,2 ccares@essi.upc.edu
Xavier Franch1 franch@essi.upc.edu
Anna Perini3 perini@itc.it
Angelo Susi3 susi@itc.it

1 Universitat Politècnica de Catalunya, C/Jordi Girona, 1-3, 08034 Barcelona, Spain
2 Universidad de la Frontera, Avenida Francisco Salazar 01145, Temuco, Chile

3 ITC-irst, Trentine Culture Institute, Scientific and Technological Research Centre, 38050
Povo, Trento, Italy

January 2010

1

Towards interoperability of i* models using iStarML

Carlos Cares a,b,*, Xavier Franch a, Anna Perini c, Angelo Susic
a Technical University of Catalonia, C/Jordi Girona, 1-3, 08034 Barcelona, Spain

b University of La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile

c FBK-irst, Via Sommarive 18, I-38050, Povo, Trento, Italy

Abstract

Goal-oriented and agent-oriented modelling provides an effective approach to the understanding of distributed information
systems that need to operate in open, heterogeneous and evolving environments. Frameworks, firstly introduced more than ten
years ago, have been extended along language variants, analysis methods and CASE tools, posing language semantics and
tool interoperability issues. Among them, the i* framework is one the most widespread. We focus on i*-based modelling
languages and tools and on the problem of supporting model exchange between them. In this paper, we introduce the i*
interoperability problem and derive an XML interchange format, called iStarML, as a practical solution to this problem. We
first discuss the main requirements for its definition, then we characterise the core concepts of i* and we detail the tags and
options of the interchange format. We complete the presentation of iStarML showing some possible applications. Finally, a
survey on the i* community perception about iStarML is included for assessment purposes.

Keywords: agent orientation; requirements engineering; i*; interoperability

———

1. Introduction

Requirement Engineering (RE) has been defined
as the branch of software engineering (SE) concerned
with the real-world goals for functions of, and
constraints on, software systems [1]. RE is inherently
broad, interdisciplinary and open-ended because it
embraces from real life situations to mathematical
specification languages.
Goal-oriented RE methodologies were introduced

more than ten years ago. They have been recognized

to play a crucial role to model the domain and to
identify the requirements of a new software system,
through the understanding of stakeholders’ domain
goals and of their strategic dependencies for goal
achievement [2, 3]. Goal-oriented approaches have
been formulated either as formal frameworks, e.g.
KAOS [4], or as rigorous (but not formal) ones, both
of them proposing their own modelling language,
with a specific set of conceptual entities, a graphical
notation to depict models, and a set of analysis
techniques. Among rigorous frameworks, the i*
(pronounced eye-star) framework [5] is one of the
most, if not the most, widespread and adopted by the

 2

RE community. Several indicators support this
statement, from the increasing number of scientific
papers and experience reports on i* presented in
RE&SE journals and papers; the periodic
organization of an i* workshop; the construction of
the i* wiki (http://istar.rwth-aachen.de/tiki-
index.php) with more than 35 universities and
organizations currently registered; the imminent
publication of a monograph on i* [6]; the recognition
of an i*-based language like URN as a
telecommunication standard (standard Z.150); and
the offering of tutorials in world-leading conferences
like IEEE RE (2008).
The i* framework provides the ability to model

concepts such as actors, roles and agents, and to
reason about them. Also relevant in this kind of
modelling is the assignment of goals to actors or
agents, which has been the base of agent-oriented
software methodologies [7]. Combining goals and
agents altogether allows labelling the i* framework
both as agent-oriented and goal-oriented. i* is one of
the most widespread modelling languages by itself
and also as part of the Tropos SE methodology [8].
As a side effect of this growing interest around i*,

several extensions to the original framework have
been defined; a summary can be found in [9]. They
have been applied not only to RE but also to other
fields as organizational patterns [10], agent networks
simulation [11], and agent security patterns [12]
among others. These more recent approaches aim at
dealing with the increasing complexities in
developing nowadays software-intensive systems,
which need to operate in open, heterogeneous and
evolving environments. Also, several i*-related tools
have been built. They offer capabilities for editing i*
models, for analyzing them and for applying
techniques over them.
Therefore, problems on: (i) the consistency of the

semantics of the different language variants, and on
(ii) how to exploit reasoning services offered by the
tools each one requesting specific modelling formats,
have become relevant.
The first of these two problems has been recently

addressed by different approaches. For instance, in
[13] the authors propose to root the modelling
language to a domain-independent metamodel that
takes into account more basic entities motivated by
philosophical cognitive science theories (e.g., object,

event). These ideas have been illustrated with respect
to the concept of goal. In [14], the problem of
language variants is analyzed along a set of ten
concept properties like reflexivity, boundary,
symmetry, with the aim to refine the syntax of
i*-based modelling languages. In [9], a comparison
of some variants of i* is presented and a metamodel
for embracing the commonalities is proposed;
customization on the source variants is projected by
using refactoring techniques. In [15] the Tropos
metamodel includes the i* constructs and its use has
promoted both extensions to Tropos such as Secure
Tropos [16] and tool implementations such as
TAOM4E [17].
The diversification of i* applications has produced

semantic variations which have implied practical
problems concerning interoperability of tools, e.g.
goal-analysis tools, modelling tools, metric
calculation tools, etc., because each tool works over a
particular i* variant. This prevents sharing models
among tools or combining two of them for providing
enhanced functionalities. This problem could be
unsolvable if variants were radically different but as
shown in [9] this is not the case: changes are either
minor differences on basic i* constructs. For this
reason, the objective of overcoming that
interoperability limitation seems feasible.
In our work we focus on practical issues related to

the i* tools interoperability problem. In particular,
our main objective is to provide a representation
where differences and similarities among i* variants
are explicit, generating a common representational
framework for the i* community and, in spite of the
differences, enabling effective communication inside
the community, tool interoperability and a common
representation for repository of i* models. Our
proposal is based upon the definition of an XML
interchange format for i* diagrams, called iStarML.
iStarML includes six basic categories of core
concepts, transformed into six abstract core concepts,
common to all of i*-based modelling languages.
Using XML as basic infrastructure makes it possible
to have other goals, specifically to take advantage of
the XML format for Internet communication and also
to use general-purpose XML tools.
The rest of the paper is structured as follows. In

Section 2 we show the basic features of the i*-based
framework, discuss about i* variations and present

3

the related interoperability problem. Next, in Section
3, we outline a set of requirements for an interchange
format showing the analysis that generated the
essential principles of the language design. Also in
this section we explain how we have considered both
stable i* concepts and variant i* concepts. In Section
4, we illustrate the facilities of using iStarML
showing four generic application scenarios by
pointing to particular technological examples.
Finally, in Section 5, we show the results of a survey
applied to representative members of the i* research
community which have expressed their perception
about the tool interoperability problem in the i*
community, and about how iStarML could solve this
problem. Conclusions include an overview of
benefits and drawbacks of the proposal, related work
comments, mainly focused on XMI and MDA
proposals and the planned future work.

2. The i* framework and its variations

In this section we briefly introduce the i*
framework and the main features of its variants,
highlighting differences and similarities, with the aim
of characterizing the interoperability problem in this
framework. We generalize then this discussion
proposing a formal definition of this interoperability
problem and of the solution we propose.

2.1. The i* framework and its variations

The i* framework [5] was formulated for
representing, modelling and reasoning about socio-
technical systems (e.g. [18, 19]). Its modelling
language is constituted basically by a set of graphic
constructs which can be used in two models. Firstly,
the Strategic Dependency (SD) model, which allows
the representation of organizational actors,
specialized on roles, positions and agents (positions
cover roles; agents are physical instances). Actors
can be related by is-a, is-part-of, covers, instance-of,
plays and occupies relationships. Also actors can
have social dependencies. A dependency is a
relationship among two actors, one of them, named
depender, who depends for the accomplishment of
some internal intention from a second actor, named

dependee. The dependency is then characterized by
an intentional element (dependum) which represents
the dependency’s element. The primary intentional
elements are: resource, task, goal and softgoal. A
softgoal represents a goal that can be partially
satisfied, or a goal that requires additional agreement
about how it is satisfied. They have usually been used
for representing non-functional requirements and
quality concerns.
Secondly, the Strategic Rationale (SR) model

represents the internal actors’ rationale. The
separation between the external and internal actor’s
worlds is represented by the actor’s boundary. Inside
this boundary the rationality of each actor is
represented using the same types of intentional
elements described above. Additionally these
intentional elements can be interrelated by using
relationships such as means-end (e.g., a task can be a
mean to achieve a goal), contributions (e.g., some
resource could contribute to reach a quality concern
or softgoal) and decompositions (e.g., a task can be
divided into subtasks). In Figure 1 we show an
excerpt of an i* model for an academic tutoring
system. There appear most of constructs already
described. The intuitive meaning of this context
should help to capture the practical use and the
semantics of the i* framework. For a through
discussion see [20].
Different methodologies have been created based

on i* concepts and modelling techniques. In
particular the i* framework has been exploited in
different areas such as organizational modelling,
business process reengineering and requirements
engineering. Moreover, some proposals have been
made that incorporate i* modelling concepts to deal
with software systems requirements representation
and design. An example of these proposals is Tropos
[8], an agent-oriented software development
methodology. The contribution of Tropos at the
requirements stage and in agent-oriented design has
been acknowledged by different comparative studies
[21-23]. Also relevant is URN [24], an i* variation
which has been added as part of the industrial
Telecommunications Standard Z.151 [25] for systems
specification. Besides these three main proposals,
namely seminal i*, Tropos and GRL [26], there are
also others that have introduced several constructs in
the language with different research aims, such as

 4

security and trust concerns [12, 18], temporal
operators [27] and traceability constructs [28], among

others.

Fig. 1. Excerpt of an i* model for an academic tutoring system.

In spite of the different aims of the proposals
using the i* framework, it is possible to classify the
i* extensions or modifications with respect to the
constructs they customize (see Table 1). A more in-
depth discussion may be found at [9]. We have
identified only one proposal [28, 29] which generates
a different language structure because it adds
softgoals to describe dependency’s security
properties. However, even this proposal is built upon
the same conceptual framework.

Table 1. Variations of the i* framework

Variation (additions or modifications) i*-related proposals

Intentional elements(s) [30-33]

Relationship(s) between actors [8]

Relationship(s) between intentional
elements

[26, 30, 33-35]

Attribute(s) for existing relationships [36]

Attribute(s) for dependencies [26, 36]

Constraints over the i* framework [8, 26, 28, 30, 31, 34]

Others [37]

Many of these proposals have inspired the

development of i*-based software tools. In [9] there
is a summary of i*-based tools which shows a big

diversity in their objectives and language details as
well as limited interoperability capabilities.
In general, existing i*-based tools and

development frameworks are not capable to
interoperate, i.e. interchange models and diagrams,
which prevents taking advantage of existing
functionalities. One of the main reasons related to the
lack of interoperability of different i*-based
frameworks is that few of them have exporting
capabilities to formats which allow importing the
result in another tool. Moreover the different i*-based
proposals, as we show in Table 1, add or modify the
syntax or even the semantics of the seminal i*
language constructs which means an additional
barrier to interoperability.
As mentioned in the introduction, we have

previously generated conceptual frameworks [15, 38]
which help to conceptualize the different i*
variations. For example we have successfully
communicated ST-TOOL [36], a software tool
supporting Secure Tropos [39] with TAOM4E [15], a
Tropos-based CASE tool. These tools can
interchange information using a specific format based
on the conceptual framework presented in [9]. The
result of this experience cannot be generalized to

Actors

Role

Position

Agent

Generic Actor

Intentional Elements

Goal

Softgoal

Task

Resource

Some Dependencies

Task-dependency Goal-dependency

Intentional Relationships

Means-end Contribution
+ | ++ | - | --

Decomposition

Actor’s Relationships

is_a | is_part_of | instance_of |
covers | plays | occupies

An actor and its boundary

D D DD

StudentTutor

Optimal
satisfaction

Optimal
satisfaction

Timely
attention
Timely

attention

Other
functions

done

Information
about career

provided
Doubts
solved

Doubts
clarified

Ask for
information

Information
about career

Solve
doubts

by email

D
Pay attention

to students

Supervise
students’ career

+

+-

Solve
doubts

personally

D

D

D
D

D

5

other situations because in general the underlying
tool metamodels will be different.
Given the limited nature of this set of variations

and following the study [40] which proposes a set of
i* shared concepts, we have confronted the problem
of defining a common interoperability language for
our research community.

2.2 Formalizing the i* interoperability problem

Given that we have a set of implicit or explicit
different metamodels supporting the different i*
variations, we can formalize the interoperability
problem at the level of metamodels. We use the
metamodel formalism notation presented in [41]:
given a metamodel µ:
� C(µ) represents the set of concepts defined in µ

(i.e., its concrete classes).
� I(µ) represents all its valid instances i.e., the

models built from C(µ) that satisfy all the
constraints stated in µ.

� Given a subset C ⊆ C(µ), IC(µ) represents the set
of instances of µ restricted to the concepts of C.
It holds that IC(µ) ⊆ I(µ).

Given k i* metamodel variations, denoted µ1, …, µk,
the interoperability problem can be stated as:
definition of the mapping functions ϕi,j: I(µi)→→→→I(µj)
between all pair of metamodels such that any instance
in I(µj) can be translated into another instance of
I(µj). Two questions remain open: 1) when these
mapping functions exist, and 2) how many mapping
functions need to be provided.
For the first point, it is clear that not any arbitrary

pair of metamodels may be related by mapping
functions because we are requiring dom(ϕi,j) = I(µi).
A closer look to the metamodel variations reported in
[41] shows that there are two types of relationships
among them. On the one hand, semantic-preserving
relationships that imply that µi and µj are variants
modulo ϕi,j, i.e., ϕi,j is really a bijection, e.g.
renamings. On the other hand, increasing or
decreasing transformations that require a value of ϕi,j
different from identity. But even in these cases, we
have found that differences are so minor that this
mapping may be effectively defined in virtually all
cases.

For the second case, assuming that all the mapping
functions ϕi,j: I(µi)→→→→I(µj) exist, 1 ≤ i ≤ k, 1 ≤ j ≤ k,
the simplest solution would be to define all these
mappings explicitly. As a result, we obtain k×(k-1)
mapping functions. Furthermore, when a new
metamodel µk+1 appears, 2×k mappings, {ϕi,k+1:
I(µi)→→→→I(µk+1)} and {ϕk+1,j: I(µk+1)→→→→I(µj)}, need to be
defined from the new metamodel to the existing ones
and vice versa. An alternative approach consists on
defining a reference super-metamodel µSM that
mediates among the µ1, …, µk existing ones. This is
the iStarML solution. This way, the number of
mapping functions is 2×k, i.e. {ϕi,µSM: I(µi)→→→→I(µSM)}
and {ϕµSM,j: I(µSM)→→→→I(µj)}, whilst any new
metamodel requires just two new mappings to be
defined. Of course, for this approach to work out, a
fundamental property is required, namely that the
result is the same:

∀i, j: 1 ≤ i ≤ k ∧ 1 ≤ j ≤ k ∧ dom(ϕi,j) = I(µi):
 ∀x: x∈ I(µi): ϕµSM,j (ϕi,µSM(x)) = ϕi,j(x)

The property is taken into account as a fundamental
one in the iStarML language requirements presented
in the next section. Figure 2 summarizes the
dimension of the i* interoperability problem and the
dimension of a solution assuming the existence of a
common super metamodel.

Fig. 2 The i* interoperability problem dimension without
and with a super metamodel.

µ1

µ2 µ3

µ4 µ5

µ1

µ2 µ3

µ4 µ5=k

µSM

k2-k mapping functions 2k mapping functions

φ
µ1→→→→µ2

Without a super metamodel With a super metamodel

 6

3. iStarML Language Requirements

We explore below which requirements shall fulfil the
iStarML language in order to be adopted by the
community:
• Expressiveness. iStarML shall allow the
representation, at least, of the most known
versions of i* language and, also, the design of
language variations.

• Extensibility. The iStarML structure shall allow
extending the language with new i* constructs,
and/or considering new aspects of existing
constructs.

• Filterability. iStarML elements shall be easily
separable among different criteria in order to
perform adequate analysis. It means that new
elements (due to extensibility) shall be described
as part of knowing language constructs in order to
allow their filterability.

• Flexibility. iStarML shall allow representing
incomplete i*-related information, even
incomplete diagrams, and shall allow a tool to
process i* diagrams even if they include some
constructs not directly treatable by that tool.

• Minimality. iStarML elements shall constitute a
minimal set of constructs for representing the
required knowledge on i*.

• Simplicity. iStarML structure shall be easily
readable by humans, with language elements
corresponding as much as possible to the agreed
names of the selected i* constructs.

• Stability. The main iStarML elements shall
represent mature and stable i* constructs. As a
result, the language shall represent the maturity of
i* established along its temporal use.

To support these requirements, we propose iStarML
to be an XML-based interchange file format.
Nowadays XML is the de-facto interchange format in
Internet and it is being used in many different
disciplines [42]. The XML language is based on tags
which could be nested and mixed with text data. Also
the tags admit attributes for keeping track of
properties. Moreover, for defining specific languages
using this structure, it is possible to use different
Schema Languages [43]. Also there are many
software tools and complementary languages (e.g.
XPath [44]) which help to create, parsing and process
any XML-based language. iStarML will use a set of

core concepts at its heart, and then variations will be
implemented in terms of these stable concepts.
The stated requirements are then fulfilled:

• Being iStarML a XML-based language contributes
to the goals of flexibility (XML allows specifying
optional structures), filterability (the use of some
known XML query languages, such as XPath [9],
allows selecting particular elements in an i*
diagram), extensibility (by the redefinition or use
of extensible XML data types) and expressiveness
(XML optional attributes also allow representing
the current and future variations of the language).

• To use a core set of stable i* concepts contributes
to stability (iStarML focuses in the most mature
concepts, i.e. those concepts which have been used
into the different i* related proposals with the
same meaning), minimality (a core set means that
there is not redundancy of concepts and, therefore,
redundancy of language constructs) and simplicity
(having a reduced set of clear and differentiable
concepts contributes to an easy understanding of
the language).

• To implement i* variations in terms of stable
concepts fixes a relevant implementation strategy
that makes possible both to keep the focus on a set
of mature and abstract concepts and, at the same
time, to include i* language variations as options
of this core set. Thus, it contributes to extensibility
(a broad door is kept open in order to represent
language variations) and expressiveness (under the
same schema, it is possible to represent current
language variations). As a side-effect, filterability
becomes possible because both variations and new
elements can be filtered because the supporting
language structure is known.

Finally we have explicitly considered two additional
constructs for the language. On the one hand, given
the highly graphical nature of i*, we have included a
construct for describing the graphical appearance of
an i* model component (e.g., position, size) so
contributing additionally to expressiveness. On the
other hand, we have also included a construct for
delimitating diagrams. This diagram construct
contributes to expressiveness, because different
diagrams can be represented in the same file. Also it
contributes to simplicity, because in order to share a
detailed view of a diagram or to transfer several
diagrams, only one file is be necessary.

7

As a result of this requirements analysis, we end
up with two open questions left. First, determining
the set of i* core concepts and second, to design the
precise form that the iStarML specification takes. We
tackle these issues in the two next sections.

4. Determining a set of core concepts

As it was previously mentioned, in spite of the
existence of different variations of i*, there is a set of
constructs which we may consider mature. Our
previous work on the analysis of i* metamodels [9,
15] have oriented us towards a core set of stable i*

abstract concepts and so to obtain a limited set of
concepts which constitutes the basis of the existing i*
variations.
The core concepts have been formulated from [40]

by making this metamodel more extensible: all
specialization constraints were changed from
complete to incomplete allowing easier addition of
new subclasses; non-universal integrity constraints
(e.g., restrictions on types of intentional elements)
were removed; and Links were abstracted from
InternalElements to IntentionalElements allowing
thus the definition of links between dependums (and
thus, dependencies). The resulting metamodel is
presented in Figure 3.

Fig. 3. The core concepts in the context of the i* metamodel

 8

We may distinguish up to six different parts that
are highlighted in the figure and that yield to six
types of core concepts: (a) actor (area 1), for
representing organizational units, humans or software
agents; (b) intentional element (area 2), for
representing the set of elements which give
rationality to the actor’s actions, e.g. goals and tasks;
(c) dependency (area 3), for representing actors’
dependencies in order to accomplish their own goals;
(d) boundary (area 4), for representing the scope of
actors; (e) intentional element link (area 5), for
representing the relationships among intentional

elements such as means-end or decomposition
relationships; and (f) actor association link (area 6),
for representing the relationships among actors such
as is_part_of and is_a, among others. We have
considered each area as a category of core concepts
that drive the structure of iStarML. Table 2
summarizes this result. The first column has the core
concept name and identifies the corresponding
labeled area in the metamodel (Fig 2). The second
column describes the core concept. The next two
columns are related to the iStarML specification
which is explained in the next section.

Table 2. iStarML abstract core concepts, tags and variation representations

Abstract core
concept

Core Representation Tag Variation Representations

Actor

(Area 1)

An actor represents an entity which may
be an organization, a unit of an
organization, a single human or an
autonomous piece of software.

<actor>

By using the type attribute, traditional actors’
specializations (role, position or agent) or new
actors’ types can be specified.

Intentional
element

(Area 2)

An intentional element is an entity which
allows relating different actors that
conform a social network or, also,
expressing the internal rationality
elements of an actor.

<ielement>

By using the type attribute, traditional (goal, softgoal,
resource and task) or other intentional elements can
be configured. The attribute state can be used to
specify an open set of intentional satisfactibility
values.

Dependency

(Area 3)

A dependency is a relationship which
represents the explicit dependency of an
actor (depender) respect to the other actor
(dependee).

<dependency>

<dependee>

<depender>

By using the value attribute on tags dependee and
depender an open set of dependency features can be
configured.

Boundary

(Area 4)

A boundary represents a group of
intentional elements. The common type
of boundary is the actor’s boundary
which represents the vision of an
omnipresent objective observer with
respect to the actor’s scope.

<boundary>

By using the type attribute, other explicit viewpoints
(different from an omnipresent observer) can be
added. No i* variation has this feature but we think
that including subjectivity is a natural extension to
intentional models. This attribute could handle some
extension like that.

Intentional
element link

(Area 5)

An intentional element link represents an
n-ary relationship among intentional
elements (either in the actor’s boundary
or outside).

<ielementLink>

By using the type and value attributes, traditional
(decomposition, means-end and contribution) and
new relationships can be represented. For example an
or decomposition can be represented setting type to
“decomposition” and value to “or”

Actor
association link

(Area 6)

An actor relationship is a relationship
between two actors.

<actorLink>

By using the type attribute, traditional (is_a,
is_part_of, plays, occupies, covers and instance) and
new and less used actors’ relationships can be
represented

9

5. The iStarML Specification

Once core concepts and their options have been
identified, we have confronted the task of generating
the iStarML specification. To do that, we have
associated each core concept to an XML that
represents it. Additionally the variations of each core
concept are represented using attribute values. Table
2, two columns on the right, shows the result.
In addition, we have included the two explicit

constructs initially considered for representing i*
diagrams and graphic expression. This action was
attained by defining the corresponding tags
<diagram> and <graphic>. In the first case, iStarML
design allows many i* diagrams being represented in
the same file. In the second case, the <graphic> tag is
a nested structure which specifies the graphic features
that allow a graphic display of the i* elements. In
order to support complex graphic expressions we
have extended the graphic specification to include
SVG expressions, which is a XML-based graphic
language gaining popularity [45]. The detailed syntax
of iStarML has been described in the iStarML
Reference’s Guide [8].
In order to illustrate the proposal we present a

simple example of using iStarML representing a
small Tropos diagram [46]. In Figure 4 we show a
goal dependency (G) which involves actor A as
depender and actor B as dependee.

T1

U1
U2

U3

V12 V13

A

G

BD

D

Fig. 4. Tropos’s diagram for the iStarML example

The interpretation of this diagram is that the intention
of the actor A to accomplish the goal G depends of
the actor B. The actor B has a boundary that includes
a set of tasks. There are two decompositions: an and-
decomposition (U1, U2 and U3) and an or-

decomposition (V12 and V13). In Tropos the line
crossing the arrows indicates this difference. We
assume that in this case we are not interested in the
graphical representation of the model, i.e. which
coordinates do they occupy in the view, which size
do the elements have, etc.
For the diagram in Figure 4 we have developed

the corresponding iStarML code which appears in
Figure 5. In this example we show the use of the
general iStarML and diagram tags. We show the use
of the boundary tag in the case of actor B. Both the
type of intentional link and the type of intentional
element are specified by adding attributes to the core
concepts corresponding to the ielementLink and
ielement tags.
Also we show the corresponding decompositions

using nested XML structures. Note that a change on
the value attribute in the ielementLink tag could
extend the decomposition type to new types of
decompositions or, even, a change on the type
attribute could extend the set of relationships to new
conceptualizations. Finally the goal-dependency is
specified as a nested structure including both
dependee and depender.

Fig. 5. The iStarML code of the above diagram

 10

6. Using iStarML in Practice

In this section we present some scenarios that may
benefit from the use of iStarML and a more detailed
example that shows the concrete mapping between
two metamodels both at the theoretical and practical
levels.
Interconnection of two modelling tools for the

same dialect of i*. An example is the interconnection
of the REDEPEND tool (developed by City
University) [47] and the HiME tool (developed by
Technical University of Catalonia) [48] both of them
compliant to the seminal i* definition by Eric Yu.
The main purpose here is to share models developed
in each site. In general, one may expect just minor
problems concerning the core concepts that may be
solved with minor effort.
Interconnection of two modelling tools for

different dialects of i*. An example is the
interconnection of the OME tool
(http://www.cs.toronto.edu/km/ome/) used for editing
GRL models (developed by the University of
Toronto) and HiME. In this case, the core concepts
may have more important discrepancies. For instance,
GRL has 10 types of softgoal contributions (HURT,
BREAK, etc.) whilst i* in HiME has just 3 (+, –,
unknown). Therefore, when translating from GRL in

OME to i* in HiME some accuracy is lost (e.g., both
MAKE and HELP are translated into +, although
MAKE is stronger than HELP). More difficult is the
translation from i* to GRL. In order to avoid false
statements, a + contribution in i* has to be translated
into the weakest positive contribution in GRL, i.e.
SOME+, which means “the contribution is positive,
but the extent of the contribution is unknown”, which
in fact reflects the meaning that + has in i* models.
In order to enable this scenario we have developed

a transformer from OME (telos) format file to
iStarML (http://www.lsi.upc.edu/~ccares/ometoistar
ml/ccIstarmlTransformation.html).
Under this scenario we can also take advantage

from the XML technology, for example if we want to
translate contributions from GRL to i* under a
specific mapping function, we could use XSLT
technology to translate the iStarML representation of
the GRL diagram into a iStarML representation of a
i* diagram. In Figure 6 we show an example of
mapping function from GRL/OME contributions to
i*/HiME contributions at the left-hand side and, at
the right-hand side, the corresponding XSLT
transformation to change an iStarML file from a GRL
version to an i* version.

Fig. 6. Mapping function from GRL to HiME version of i*, excerpts: formal definition (left) and XSLT file using iStarML (right)

Interconnection of two i*-related tools that

have different purposes. A simple example would
come again considering REDEPEND and the J-PRiM
tool [47] not just as modelling tools but also their

11

own capabilities. For instance, among the facilities of
REDEPEND we find the ability of generating a
system requirements document in textual form from
an i* model. On the other hand, J-PRiM aims at
supporting system reengineering: starting from a use-
case-based description of the system, an i* model is
generated and then alternatives may be explored and
compared using metrics. Interconnecting both tools
will allow generating the requirements document of
the reengineered system. If we work following the
other direction, J-PRiM facilities for computing
metrics may be applied over models built with
REDEPEND.
Interconnection of an i*-related tool with a

different kind of tool. This situation arises when we
want to implement a goal- or agent-oriented view
over some other paradigm. As a kind of example,
there are several recent approaches that propose to
extract variation points in feature models from goal-
oriented models according to some properties [49,
50]. We have developed an implementation of this
case by connecting HiME with the Decision King
tool [51]. Variation points are defined from elements
like softgoals, means-end decompositions and is-a
relationships.

Interconnection of an i*-related tool with an

XML tool. It is a particular case of the former
scenario. In a few words, the i* community may take
advantage of the great deal of existing tools available
in the XML community.
For the sake of brevity, we just illustrate the last

scenario with two short examples. The first example
is about goal and actor metrics [44, 51]. For instance,
a good indicator could be the relation between the
load of the most goal-loaded actor and the ideal
situation of balanced goal load. If we have an
iStarML representation of the analysis domain then
we could use XPath [52], in order to calculate the
metric value. In Figure 7 we show a reduced view of
a specific iStarML file (goals are hidden) that could
have been obtained from any modelling tool, and the
XPath sentence which allows obtaining the pretended
value. In the case we can say that the most goal-
loaded actor is 2.4 more goal-heavy than a balanced
situation.
In this case we observe the simplicity of the

resulting query and its direct relation with explicit
concepts of the i* framework.

Fig. 7. Goal and actor metric calculation using XPath

The second example is about parsing iStarML
files. As we suggest above, we have implemented a
Schematron [53] schema. This is a rule-based syntax
checker which allows customizing error messages.
Applying a XSL transformation the iStarML
Schematron specification produces a XSL file
(istarml.xsl) which allows verifying iStarML files.
In Figure 8 we illustrate the Schematron output for

the parsing of an iStarML file. In the output report we
show a case of an activated rule belonging to a
specific pattern (fired-rule tag on line 9). On line 10,

there is a failed rule however, which adds an error
message when the rule is not accomplished.

Fig 8. A partial output of an Schematron iStarML parser

 12

These interoperability examples show how
iStarML, XML and i* tools can interoperate in order
to reach typical goals into the software process.

7. The i* community’s perception on iStarML

In order to measure a first community perception
we applied a survey about current uses of the i*
framework.1 The population was defined as the i*
research and development community. For this
reason we applied the survey on a session of the
Third International i* Workshop2 which constituted
the sample. The workshop had around 30 participants
but there were more than 50 authors belonging to
approximately 15 different working groups, and
therefore the resulting sample size was 15. We
assumed a homogenous population, this means that
traditional social variables such gender or age were
not considered significant on interoperability
opinions or iStarML adoption attitudes. Therefore we
have not stratified the population and, under this
assumption, the sample of researchers is
representative. This sample may seem small but in
fact it represents the core of the community of i*
researchers and developers. The community of i*
users is much wider but the type of knowledge they
have about i* interoperability-related issues will be in
general not so detailed as to provide highly confident
answers to the questions.
In the survey, we asked for the specific perception

of the interoperability problem, general knowledge
about iStarML and its possibilities for overcoming
the interoperability problem and, finally, we asked
for the general willingness of adopting iStarML on
their current research or practical applications.
 The instrument is mainly based on 5-degree

Likert scales, from “strongly agree” to “strongly
disagree”. However, the questions about iStarML
adoption were formulated describing different
explicit adoption attitudes.
For the data processing we followed the statistical

recommendations given in [54], i.e. we selected a

———
1 The instrument is available at
http://www.lsi.upc.edu/~ccares/surveyistarml1.php
2 http://www.cin.ufpe.br/~istar08/site/

multinomial approach for answer evaluation of the
Likert scales. It means that, for each question, we
obtained five proportions, the proportion of those that
answered “strongly agree” (35%), the proportion of
those that answered “agree” (15%), etc. However,
this way we did not arrive to any significant
conclusion because confidence intervals resulted very
wide and too much overlapped ([10%, 60%]). Then
we applied a binomial approach, a particular case of
multinomial but considering only two proportions.
This means converting the 5-degree answers into
success-fail answers as recommended by [53], which
means losing the grade of agreement or
disagreement, but it allows getting narrowest
confidence intervals.
We considered three cases of data interpretation:

agree answers were considered successful ones;
disagree answers were considered fail answers; and,
given the number of answers checking “neither agree
nor disagree” (“nor”-answers), we considered the half
of them as successful answers and the other half as
fail answers. This option means choosing the
maximum variance for a binomial case
(0,25=0,5*0,5). Under these considerations we used a
first test by applying the simple and rough interval of
Fitzpatrick and Scott recommended in [55], and then
the interval of Agresti-Coull, recommended in [56] to
get confidence intervals for binomial proportions.
Moreover, given that the Agresti-Coull confidence
intervals allow small sample sizes (starting from 12),
we added a third analysis, this time discarding the
“nor-answers”. In Figure 9 we show the resulting
Agresti-Coull’s confidence intervals using a
probability of 95% (alpha = 0.05).
These results confirm our initial hypothesis

because they point out that there is a shared vision
about the existence of an interoperability problem.
Even the worst case indicates that more than the 60%
of the population recognizes the problem. Moreover,
at least (i.e., considering again the worst case) the
52% of the population agrees that iStarML
overcomes the problem. If we consider the center of
the interval then the different population proportions
appear very relevant.

13

Fig 9. Confidence intervals of the i* community perception about interoperability and iStarML.

About the answers related to adoption (either any
generic interoperability mechanism or specifically the
iStarML proposal) also yield good results. In this
case, we have a worst case representing, at least, a
42.9% of declared first adopters. If we analyze this
proportion, under the Rogers’s innovation adoption
theory [47], we can see that first adopters normally
became 13.5% and the “early majority”, after first
adoptions, became 34% of the population. Therefore,
although this 42.9% of declared adopters does not
seems to be very high with respect to the whole i*
community, on the light of Rogers’s theory it seems
one of the most optimistic findings of this survey.
If we analyze the possible deviation of the results

due to the considered population, we remark again
that workshop attendees constitute a sample formed
by “special people”: at least innovators and experts.
Therefore, the adoption tendency showed by the
survey would correspond to leaders’ attitudes (as an
opposition to followers) and their opinions would
correspond to experts’ judgments Consequently, even

under this hypothetical scenario, , i.e. assuming that
the sample is not representative, then we can affirm
that we are in presence of expert leaders, then, we
can say that the qualitative and validated technique of
experts’ judge can be used, therefore we do not find a
different conclusions under a different (qualitative or
quantitative) scenario. Moreover the conclusions
coming from a qualitative perspective give additional
support to these findings

8. Conclusions

In this paper, we have provided a broad
justification of the iStarML proposal as a conceptual
vehicle enabling interoperability inside the i*
community, both from a model-oriented perspective,
and also from a tool-oriented perspective. The first
one aims to provide a shared interpretation of i* core
constructs and variations and, the second one aims to

Proportion that
agrees that there

is an
interoperability

problem

Proportion that
agrees that

interoperability i*
mechanisms

would help them

Proportion that
agrees to use

some i*
interoperability
mechanisms

Proportion that
agrees that

iStarML tackles
the

interoperability
problem

Proportion that
agrees that
including

iStarML brings
them benefits

Proportion of
declared first

adopters

upper limit 0,975 0,993 0,917 0,980 0,984 0,908
lower limit 0,609 0,644 0,508 0,526 0,555 0,429
interval width 0,367 0,348 0,409 0,454 0,429 0,479

upper limit 1,007 1,039 1,048 1,002 1,048 1,055
lower limit 0,646 0,718 0,628 0,543 0,628 0,511
interval width 0,362 0,321 0,420 0,459 0,420 0,544

Agresti-Coull 95% "nor-answers" included

Agresti-Coull 95% "nor-answers" not included

95% confidence intervals“nor” answers included “nor” answers discarded

1,0

0,5
0,6

0,4

0,7

Agresti-Coull 95% “nor-answers” included

Agresti-Coull 95% “nor-answers” discarded

 14

develop and share i* tools enabling a common way of
storing and transmitting i* models. The practical
impact of iStarML in the i* community may be
summarized as: (i) support to model interchange
among different tools; (ii) composition of existing
tools to create new, complex functionalities; (iii)
extending existing tools with new i*-based analysis
components; (iv) developing i*-based analysis
algorithms independently of dialect issues; (v)
representing specific additional syntactic constraints
to specify evolutions or new variations; (vi) having a
common way of representing the differences and
similarities between existing i* variations
Interoperability can be reached even by the

different i* variants because the iStarML proposal is
abstractly formulated on the core i* concepts. This
makes possible not only sharing models between
different variants but also with new variants which
can be built using this set of abstract core concepts.
Moreover, we have carried out an empirical approach
to assess the i* community perception about the
interoperability problem and the iStarML proposal.
The findings confirm our initial perception about the
existence of an interoperability problem and,
moreover, there is an initial positive evaluation about
iStarML and its capability of tackling the referred
interoperability problem. Besides, the results reveal
an optimistic scenario for future adoptions. At this
respect we have presented two local adoptions that
have been developed on our research-related tools
[17, 57] and we have outlined other possible cases.
In terms of related work, as far as we know,

iStarML is the first proposal aiming in this direction
and accounting with a previous approval from
different scholars from RE and agent-oriented
software engineering communities.
About the technological implementation it is

necessary to mention that not any type of schema can
be applicable for the XML implementation of
iStarML. For example widespread proposals such as
DTD [37] and XSD [58] are not useful for the
iStarML because the specification power of these
proposals is restricted to elements (tags) but they do
not allow specifying attribute rules which is
necessary in order to express the different i*
variations. Derived from this, the XML Metadata
Interchange (XMI) [59], a proposal which allow
specifying generic diagrams interchange formats, is

not a choice either. That is because XMI requires a
MOF metamodel [24] which does not allow a flexible
specification of dependencies among attributes. The
only choice allowing using XMI also implies to
explicitly represent intentional elements (e.g., as our
Tropos MOF model in [60]), however this means
losing flexibility which only be compensated by
adding tags, which would made the language more
complex and applicable only to some i* variations.
On our previous experiences of using XMI on Tropos
tools [61, 62], we have taken into account the
benefits of its technological support, but also of its
difficulty, not for generating, transmitting and
reading the information, but on easily understanding
its contents and creating queries or transformations
on it. Therefore we consider this proposal an
evolution from our first attempts using XMI.
Also in term of related work Model Driven

Architectures, or MDA [59] is an approach for
software development for building and transforming
models along the software life cycle. These models
follow a set of specifications such as UML [63],
MOF [24], CWM [64] and XMI for UML Models.
All of them have been generated by the Object
Management Group (http://www.omg.org). As far as
we know, even novel domain modelling proposals
from OMG like Business Process Modelling Notation
(BPMN) [65] do not consider neither goal modelling,
quality cross cutting concerns nor agents’
intentionality modelling. That is because goal-
oriented and agent-oriented conceptual frameworks
have been out of the paradigmatic modelling
boundaries of object orientation. Therefore we claim
that iStarML is a good first step applying model-
driven principles (models’ transformation and
interoperability) inside the i* goal-oriented and
agent-oriented conceptual frameworks. On the
boundary, i.e. on the transformation of i* and Tropos
models to object-oriented modelling, different
approaches have been already proposed [66]. If we
try some automatization approach of these
transformation proposals, for sure that iStarML
would be a relevant option as Platform Independent
Language (PIM). Therefore, we claim that iStarML
enables MDA principles beyond object orientation.
Besides, if we consider not only an agent-oriented
design but also an agent-oriented implementation,
iStarML can enable MDA principles on software

15

methodologies which consider agent or goal-
orientation as methodological choice.
As the main barrier to overcome for adopting

iStarML, of course semantic integration is the most
important. First of all, we remark again that, as we
have already reported in [9], differences in the core of
i* are minor. For those cases in which direct
translation from one i* framework to another is not
direct, we need to develop point-to-point translations
as mentioned in Section 6 for the case of soft goal
contributions. Other constructs may be treated
similarly, e.g. trust relationships in trust models may
be translated to dependencies. For others, they may
be just discarded, e.g., the traceability construct
“supports” as defined in [33] is just syntactic sugar
and may be removed without losing meaning.
However, a few of existing proposals have not an
obvious treatment (e.g., the temporal relationship
among tasks as proposed in Formal Tropos) and
therefore the only action to take is to detect and
report these situations, probably keeping them as
annotations in the generated models.
In terms of future work we will keep supporting

iStarML adoptions because they will allow
materializing interoperability benefits in the i*
community, e.g. using goal-oriented domain models
on agent-oriented software design, implementing
repositories of requirements patterns, using agent-
oriented metric tools on actor-oriented business
modelling, and a long and unpredictable list of
human activities resulting of the capacity of sharing
models and tools that work on a common but
customizable conceptual framework. Precisely, in
order to clarify these possibilities, we have already
started a study about interoperability scenarios for
using iStarML in the context of software
development process.

References

[1] P. Zave, Classification of Research Efforts in Requirements

Engineering, ACM Computing Surveys, 29 (4) (1997) 315-

321.

[2] A. v. Lamsweerde, Requirements Engineering in the Year 00:

A Research Perspective, Proceedings of the International

Conference on Software Engineering, ICSE 2000, Limerick

Ireland, Jun 4-11, (2000) 5-19.

[3] J. Mylopoulos, L. Chung, E. Yu, From Object-Oriented to

Goal-Oriented Requirements Analysis, Communications of the

ACM, 42 (1) (1999) 31-37.

[4] A. Dardenne, A. v. Lamsweerde, S. Fickas, Goal-directed

requirements acquisition, Science of Computer Programming,

20 (1-2) (1993) 3-50.

[5] E. Yu, Modelling Strategic Relationships for Process

Reengineering, Computer Science, University of Toronto,

Toronto (1995).

[6] E. Yu, J. Mylopoulos, N. Maiden, P. Giorgini, Social

Modelling for Requirements Engineering. Boston: MIT Press,

To be published, 2008.

[7] X. J. Mao, E. Yu, Organizational and social concepts in agent

oriented software engineering, Lecture Notes in Computer

Science, 3382 (2005) 1-15.

[8] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, J.

Mylopoulos, Tropos: An agent-oriented software development

methodology, Autonomous Agents And Multi-Agent Systems,

8 (3) (2004) 203-236.

[9] C. Ayala, C. Cares, J. P. Carvallo, G. Grau, M. Haya, G.

Salazar, X. Franch, E. Mayol, C. Quer, A Comparative

Analysis of i*-Based Agent-Oriented Modeling Languages,

Proc of the Conf on Software Engineering and Knowledge

Engineering (SEKE2005) (2005) 43-50.

[10] M. Kolp, P. Giorgini, J. Mylopoulos, Organizational Patterns

for Early Requirements Analysis, Lecture Notes in Computer

Science (CAiSE'03), 2681 (2003) 617-632.

[11] G. Gans, G. Lakemeyer, M. Jarke, T. Vits, SNet: A Modeling

and Simulation Environment for Agent Networks Based on i*

and ConGolog, Lecture Notes in Computer Science

(CAiSE'02), 2348 (2002) 328-343.

[12] H. Mouratidis, M. Weiss, P. Giorgini, Security Patterns Meet

Agent Oriented Software Engineering: A Complementary

Solution for Developing Secure Information Systems, Lecture

Notes in Computer Science (ER2005), 3716 (2005) 225 - 240.

[13] R. Guizzardi, G. Guizzardi, A. Perini, J. Mylopoulos, An

Ontological Account of Agent-Oriented Goals, Lecture Notes

in Computer Science, 4408 (2007) 148-164.

[14] H. Estrada, A. Martínez, O. Pastor, J. Mylopoulos, An

Experimental Evaluation of the i* Framework in a Model-

based Software Generation Environment, 18th Int. Conf. on

Advanced Information Systems Engineering (CAISE 06),

Luxembourg, June, (2006) 513-527.

[15] A. Susi, A. Perini, J. Mylopoulos, P. Giorgini, The Tropos

Metamodel and its Use, Informatica, 29 (2005) 401-408.

[16] P. Giorgini, F. Massacci, J. Mylopoulos, N. Zannone,

Requirements Engineering Meets Trust Management, Model,

 16

Methodology, and Reasoning, Lecture Notes in Computer

Science, 2995 (2004) 176-190.

[17] D. Bertolini, A. Novikau, A. Susi, A. Perini, TAOM4E: an

Eclipse ready tool for Agent-Oriented Modeling. Issue on the

development process, FBK-irst,

http://sra.itc.it/tools/taom4e/file/demo//TAOM4E_technical_re

port.pdf (accessed March 2008) (2006).

[18] L. Liu, E. Yu, J. Mylopoulos, Security and Privacy

Requirements Analysis within a Social Setting, International

Conference on Requirements Engineering (RE’03), Monterey,

California, USA, September, (2003) 151-161.

[19] A. G. Sutcliffe, S. Minocha, Linking Business Modelling to

Socio-technical System Design, Lecture Notes in Computer

Science (CAiSE'99), 1626 (1999) 73-87.

[20] E. Yu, J. Mylopoulos, N. Maiden, P. Giorgini, Social

Modeling for Requirements Engineering. Boston: MIT Press,

To be published, 2010.

[21] L. Cernuzzi, M. Cossentino, F. Zambonelli, Process models

for agent-based development, Engineering Applications of

Artificial Intelligence, 18 (2) (2005) 205–222.

[22] K. H. Dam, M. Winikoff, Comparing agent-oriented

methodologies, Lecture Notes in Computer Science, 3030

(2003) 78-93.

[23] J. Sudeikat, L. Braubach, A. Pokahr, W. Lamersdorf,

Evaluation of Agent–Oriented Software Methodologies –

Examination of the Gap Between Modeling and Platform,

Lecture Notes in Computer Science (AOSE'04), 3382 (2005)

126-141.

[24] D. Amyot, G. Mussbacher, URN: Towards a New Standard

for the Visual Description of Requirements, Lecture Notes in

Computer Science, 2599 (2003) 21-37.

[25] Z.151: User Requirements Notation (URN) - Language

Definition, ITU-T, http://www.itu.int/rec/T-REC-Z.151-

200811-P/en (accessed Oct 2009) (2009).

[26] GRL - Goal Oriented Requirement Language,

http://www.cs.toronto.edu/km/GRL/ (accessed Jan 2009)

(n.d.).

[27] A. Fuxman, M. Pistore, J. Mylopoulos, P. Traverso, Model

Checking Early Requirements Specifications in Tropos,

Proceedings of the 5th IEEE International Symposium on

Requirements Engineering, Toronto, Canada (2001) 174-181.

[28] H. Mouratidis, J. Jürjens, J. Fox, Towards a Comprehensive

Framework for Secure Systems Development, Lecture Notes

in Computer Science (CAiSE'06), 4001 (2006) 48-62.

[29] G. Grau, A Comparative of i* Modelling Tools,

http://istar.rwth-aachen.de/tiki-index.php?page=i%2A+Tools

(accessed Jan 2009) (2006).

[30] C. Cares, X. Franch, E. Mayol, Extending Tropos for a Prolog

Implementation: A Case Study Using the Food Collecting

Agent Problem, Lecture Notes in Computer Science (CLIMA

VI), 3900 (2006) 396-405.

[31] P. Donzelli, A goal-driven and agent-based requirements

engineering framework, Requirements Engineering, 9 (1)

(2004) 16-39.

[32] G. Gans, M. Jarke, S. Kethers, G. Lakemeyer, Modeling the

Impact of Trust and Distrust in Agent Networks, Third

International Bi-Conference Workshop on Agent-Oriented

Information Systems (AOIS-2001), Interlaken, Switzerland,

June 4, (2001)

[33] X. Franch, G. Grau, E. Mayol, C. Quer, C. Ayala, C. Cares, F.

Navarrete, M. Haya, P. Botella, Systematic Construction of i*

Strategic Dependency Models for Socio-technical Systems,

International Journal of Software Engineering and Knowledge

Engineering, 17 (1) (2007) 79-106.

[34] J. Castro, M. Kolp, J. Mylopoulos, A Requirements-Driven

Development Methodology, Advanced Information Systems

Engineering: 13th International Conference, CAiSE

2001,Interlaken, Switzerland(2001) 108-123.

[35] A. Fuxman, L. Liu, J. Mylopoulos, M. Pistore, Specifying and

analyzing early requirements in Tropos, Requirements

Engineering, 9 (2) (2004) 132-150.

[36] P. Giorgini, F. Massacci, J. Mylopoulos, N. Zannone,

Modeling Social and Individual Trust in Requirements

Engineering Methodologies, Lecture Notes in Computer

Science, 3477 (2005) 161–176.

[37] D. C. Fallside, P. Walmsley, XML Schema Part 0: Primer,

http://www.w3.org/TR/xmlschema-0/ (accessed Jan 2009)

(2004).

[38] P. Giorgini, F. Massacci, J. Mylopoulos, N. Zannone, ST-

Tool: A CASE Tool for Security Requirements Engineering,

Proc. of the 13th IEEE Conference on Requirements

Engineering (RE'05), Paris, France, Aug 29 - Sept 2, (2005)

451-452.

[39] D. Bertolini, A. Siena, TAOM4E and the Tropos Reasoners.

Issues on the integration process, ITC-Irst, Trento, Technical

Report 2006.

[40] C. Cares, X. Franch, E. Mayol, C. Quer, A Reference Model

for i*, in Social Modeling for Requirements Engineering,, E.

Yu, J. Mylopoulos, N. Maiden, and P. Giorgini, Eds.: MIT

Press, 2010

[41] G. Wachsmuth, Metamodel Adaptation and Model Co-

adaptation, Lecture Notes in Computer Science, 4609 (2007)

600-624.

[42] L. Dongwon, W. C. Wesley, Comparative analysis of six

XML schema languages, SIGMOD Rec., 29 (3) (2000) 76-87.

17

[43] Altova, XMLSpy user manual and programmers' reference.,

Altova Gmbh, Technical Report 2005.

[44] J. Clark, S. DeRose, XML Path Language (XPath) Version

1.0, World Wide Web Consortium (W3C),

http://www.w3.org/TR/xpath (accessed Jan 2009) (1999).

[45] C. Cares, X. Franch, A. Perini, A. Susi, iStarML Reference's

Guide, Technical University of Catalonia, Report LSI-07-46-

R, http://www.lsi.upc.edu/~techreps/files/R07-46.zip

(accessed Jan 2009) (2007).

[46] G. Grau, X. Franch, N. Maiden, REDEPEND-REACT: an

Architecture Analysis Tool, Proc. of the 13th IEEE

Conference on Requierements Engineering, Paris, France, Aug

29 - Sept 2, (2005) 455-456.

[47] G. Grau, X. Franch, S. Ávila, J-PRiM: A Java Tool for a

Process Reengineering i* Methodology, 14th IEEE

International Requirements Engineering Conference (RE'06),

Minneapolis, MN, USA, Sept. 11-15, (2006) 359-360.

[48] L. López, X. Franch, J. Marco, HiME: Hierarchical i*

Modeling Editor, Proc. of the 28th Int. Conf. on Conceptual

Modeling (Tool Demo Session), Gramado, Brazil, Nov 9-12,

(2009)

[49] B. González-Baixauli, M. A. Laguna, J. C. S. P. Leite, Using

Goal Models to Analyze Variability, First Int. Workshop on

Variability Modelling of Software-intensive Systems (VaMoS

07), Limerick, Ireland, January 16–18, (2007) 101-107.

[50] D. Dhungana, P. Grünbacher, R. Rabiser, DecisionKing: A

Flexible and Extensible Tool for Integrated Variability

Modeling, Proc of the First International Workshop on

Variability Modelling of Software-intensive Systems,

Limerick, Ireland, January 16-18, (2007) 119-126.

[51] X. Franch, On the Quantitative Analysis of Agent-Oriented

Models, Proc. of the 18th Conf. on Advanced Information

Systems Engineering (CAiSE'06), Luxembourg, Jun 5-6,

(2006) 495-509.

[52] R. Jelliffe, The Schematron Assertion Language 1.5,

Academia Sinica Computing Centre,

http://xml.ascc.net/resource/schematron/Schematron2000.html

(accessed September 2007) (2002).

[53] R. Göb, C. McCollin, M. F. Ramalhoto, Ordinal Methodology

in the Analysis of Likert Scales, Quality & Quantity, 41

(2007) 601-626.

[54] R. Peck, L. D. Haugh, A. Goodman, Statistical Case Studies:

A Collaboration Between Academe and Industry: SIAM, 1998.

[55] L. D. Brown, T. T. Cai, A. DasGupta, Interval Estimation for a

Binomial Proportion, Statistical Science, 16 (2) (2001) 101-

133.

[56] E. M. Rogers, Diffusion of Innovations, 4th ed. New York:

Free Press, 1995.

[57] J. Bosak, T. Bray, D. Connolly, E. Maler, G. Nicol, C. M.

Sperberg-McQueen, L. Wood, J. Clark, W3C XML

Specification DTD (“XMLspec”),

http://www.w3.org/XML/1998/06/xmlspec-report-

19980910.htm (accessed Jan 2008) (1998).

[58] MOF 2.0/XMI Mapping Specification, v2.1, Object

Management Group - OMG,

http://www.omg.org/docs/formal/05-09-01.pdf (accessed Jan

2009) (2005).

[59] Unified Modeling Language Specification, Object

Management Group - OMG,

http://www.omg.org/docs/formal/05-04-01.pdf (accessed Jan

2009) (2005).

[60] D. Bertolini, L. Delpero, J. Mylopoulos, A. Novikau, A. Orler,

L. Penserini, A. Perini, A. Susi, B. Tomasi, A Tropos Model-

Driven Development Environment, Forum Proceedings

CAiSE, Luxembourg, June 5-9, (2006)

[61] L. Penserini, A. Perini, A. Susi, J. Mylopoulos, Agent

Capability: Automating the Design to Code Process,

Proceedings of the 4th European Workshop on Multi-Agent

Systems (EUMAS'06), Lisbon, Portugal, December 14-15,

(2006)

[62] A. Brown, An introduction to Model Driven Architecture,

IBM,

http://www.ibm.com/developerworks/rational/library/3100.ht

ml (accessed March 2008) (2004).

[63] Meta Object Facility (MOF) 2.0 Core Specification, Object

Management Group - OMG, http://www.omg.org/docs/ptc/04-

10-15.pdf (accessed Jan 2009) (2003).

[64] G. L. Zuñiga, Ontology: Its Transformation From Philosophy

to Information Systems, Proceedings of the international

conference on Formal Ontology in Information Systems,

Ogunquit, Maine, USA (2001) 187 - 197.

[65] Business Process Modeling Notation Specification, Object

Management Group (OMG),

http://www.bpmn.org/Documents/OMG%20Final%20Adopte

d%20BPMN%201-0%20Spec%2006-02-01.pdf (accessed Jan

2009) (2006).

[66] F. Alencar, B. Marín, G. Giachetti, O. Pastor, J. Castro, J. H.

Pimentel, From i* Requirements Models to Conceptual

Models of a Model Driven Development Process, Proc. of the

2nd IFIP WG8.1 Working Conference on The Practice of

Enterprise Modeling, PoEM 2009, Lecture Notes in Business

Information Processing, vol39, Stockholm, Sweden,

November 18-19, (2009)

