Final published version of the paper available on journal's webiste:
http://lwww.sciencedirect.com/science/article/pii/S092054891400004X?via%3Dihub

Specification and Simulation of Queuing
Network Models using Domain-Specific
Languages

Javier Troya*, Antonio Vallecillo

Dept. Lenguajes y Ciencias de la Computacion, Universidad de Mdlaga, Bulevar Louis
Pasteur, 35. (29071) Mdlaga, Spain

Abstract

Queuing Network Models (QNMs) provide powerful notations and tools for
modeling and analyzing the performance of many different kinds of systems.
Although several powerful tools currently exist for solving QNMs, some of
these tools define their own model representations, have been developed in
platform-specific ways, and are normally difficult to extend for coping with
new system properties, probability distributions or system behaviors. This
paper shows how Domain Specific Languages (DSLs), when used in conjunc-
tion with Model-driven engineering techniques, provide a high-level and very
flexible approach for the specification and analysis of QNMs. We build on
top of an existing metamodel for QNMs (PMIF) to define a DSL and its
associated tools (editor and simulation engine), able to provide a high-level
notation for the specification of different kinds of QNMs, and easy to extend
for dealing with other probability distributions or system properties, such as
system reliability.

Keywords: Domain-Specific Languages, Queuing Network Models, PMIF

1. Introduction

The specification and analysis of the non-functional properties of software
systems, such as QoS usage and management constraints (performance, re-

*Corresponding author, telephone +34.95.213.2846, fax +34.95.213.1397
Email addresses: javiertc@lcc.uma.es (Javier Troya), av@lcc.uma.es (Antonio
Vallecillo)

Preprint submitted to Computer Standards € Interfaces November 2, 2012


jtroya
Cuadro de texto
Final published version of the paper available on journal's webiste:
http://www.sciencedirect.com/science/article/pii/S092054891400004X?via%3Dihub


liability, etc.), is critical in most distributed application domains, such as
embedded systems, multimedia applications or cloud computing. In fact,
the development of methods and tools for performance evaluation and mod-
eling has been an active area of research since the early days of software
engineering.

Queuing Network Models (QNMs) provide powerful notations and tools
for modeling and analyzing the performance of many different kinds of sys-
tems [1]. There are currently several tools for solving QNMs. However, some
of these tools define their own model representations, have been developed in
platform-specific ways, and are normally difficult to extend for coping with
new system properties, probability distributions or system behaviours. A
performance model interchange format, PMIF [2], was intended as a stan-
dard for defining and exchanging QNMs between tools, although only a few
tools support it.

Domain Specific Languages (DSLs) provide intuitive notations, closer to
the languages of the domain experts, in a compact and precise way, and
at the right level of abstraction. When used in conjunction with Model-
driven engineering (MDE) techniques [3], they become easy to develop, and
allow the resulting models to be manipulated, analyzed and executed using
standard tools.

This paper shows how a DSL for QNMs can be defined and built, provid-
ing a high-level and very flexible approach for the specification and execu-
tion of QNMs at a high-level of abstraction, and enabling the development of
end-user tools in a flexible and cost-effective manner. We also show how an
existing de-facto standard for QNM representation and interchange (PMIF)
can be integrated into the MDE domain, being also extended and improved
to cope with new required features and system properties.

Following the usual MDE process, the DSL is defined in terms of its
abstract syntax, concrete syntar and semantics. The abstract syntax defines
the domain concepts that the language is able to represent, and is defined
by a metamodel. Given that the performance engineering community has
already defined a common metamodel for QNMs, we have adopted PMIF as
the base of our abstract syntax. The concrete syntax defines the notation
of the language, and it is defined by a mapping from the concepts of the
language into their textual or graphical representation. In this case this is
defined using the Eclipse Graphical Modeling Framework (GMF [4]). Finally,
the semantics describe the meaning of the models represented in the language,
and in case of models of dynamic systems (such as ours) the semantics of a

2



model describe the effects of executing the models. Here, the semantics is
given by a semantic bridge [5] from QNMs to in-place behavioral rules, and
supported by the e-Motions toolkit [6, 7].

The resulting DSL, called xQNM, has been integrated in a tool, provides
a notation for the specification of different kinds of QNMs, is easy to extend
for dealing with other probability distributions or system properties—such
as reliability—and is comparable to other existing QNM tools.

The rest of the paper is organized as follows. After this introduction,
Section 2 presents the state of the art regarding QNMs, several tools and
PMIF. Then, Section 3 introduces the abstract syntax of xQNM, in terms
of an extension of PMIF 2 [2]. Section 4 presents the basic MDE concepts
and mechanisms that we have used in our proposal. Section 5 presents an
overview of the components of the xQNM language, describing its semantics
in terms of a generic behavioral model for QNMs, its concrete syntax, and the
graphical editor we have built to create and input queueing network models.
Then, Section 6 explains how we deal with QNMs behavioral simulations,
it compares them with other tools and presents the extensions needed to
consider failures in servers. Finally, Section 7 concludes and outlines some
lines of future work.

2. State of the Art

2.1. Queuing Network Models

In computer systems, many jobs share the system resources such as CPU,
disks, and other devices. Since generally only one job (or some of them)
can use the resource at any given time, all other jobs wanting to use that
resource wait in queues. Systems where jobs may be serviced at one or
more queues before leaving the system are modeled with queuing networks.
Queuing theory helps in determining the time that jobs spend in various
queues in the system [8]. These times can then be combined to predict the
system response time, which is basically the total time that a job spends
inside the system, and other non-functional features such as throughput,
idle-times, etc.

There are two main types of queuing networks: open and closed. The
former has external arrivals and departures. The jobs enter the system at a
source and depart at a sink (Fig. 1(a)). The number of jobs in the system
varies with time. Closed networks have no external arrivals or departures:
the jobs in the system keep circulating from one queue to the next. The



e LI
Lo (PO Lme
& e

SINK

(a) An Open Queuing Network (b) A Closed Queuing Network

Figure 1: Examples of an Open and a Closed Queuing Networks.

total number of jobs in the system is constant. It is possible to view a
closed system as a system where the sink is connected back to the source
(Fig. 1(b)), and jobs leaving the system immediately re-enter it. There are
also mized networks, which behave as open for some workloads and closed
for others. All jobs of a single class have the same service demands and
transition probabilities.

2.2. QNM tools

There are several commercial packages to queuing network modeling, like
QNAP2 [9], the PDQ analyzer [10], SPE-ED [11], RESQME [12], BEST/1
[13], CSIM [14]. There are also many academic tools including TANGRAM-
I [15], SHARPE [16], JINQS [17, 18], gqnetworks [19] and JMT [20] (for a
very complete list, see [21]).

Table 1 presents several relevant features of some of the existing packages
and tools for solving QNMs (xQNM has also been included for comparison
with the rest). They are listed according to their approximate chronological
appearance. For each tool we list the evaluation technique it uses (analytical
methods, simulation or both), the specific model representation needed, the
probability distributions it accepts and the types of QNMs it can analyze.
Most of these tools were developed some years ago, and each of them specifies
a queuing network model in a different way and with a different language. To
address the problem of exchanging models among tools, a performance model
interchange format (PMIF) was proposed [2, 24, 25, 26]. PMIF provides a
common representation for system performance model data that can be used
to exchange models among QNM modeling tools. However, still most of
the existing tools are not able to receive a PMIF model as input. It is
true that some tools tried to define common formats for tool interoperability
purposes, with goal similar to PMIF. This is the case of MOSEL-2 [27], a tool
that provides means for specifying QNMs and carrying out some performance

4



Table 1: Features of some packages and tools for QN modeling and analysis

Tool Evaluation tech- (Input) Model For- Probability Distribu- Types of QNM sup-
nique mat tions admitted ported
RESQME Discrete event simu- Graphical environ- Erlang, Exponential, Extended QNMs of re-
(1986) lation ment with textual Normal, Uniform, etc. source connection systems
information to draw
input models
SHARPE Analysis Graphical user inter- It allows s- indepen- QNMs and also multi-
(1987) face for drawing input dent random variables ple model types (Fault
models and mixing of distri- Tree, Markov Chain, Semi-
butions. It cannot Markov Chain, MRGP,
handle Weibull distribu- GSPN, PFQN, MPFQN,
tions [22] Trask graph, etc.)
QNAP2 Both discrete event Programmatical. The Erlang, Exponential, Open, closed and mixed
(1992) simulation and anal- analytical solvers need Normal, Uniform, etc. queuing networks
ysis to be invoked
QSIM Discrete event simu- Graphical user inter- Exponential, Gamma, Open and closed networks
(1995, Release lation face for drawing the Erlang, Uniform,
6.11) input models Deterministic, Non-
Homogeneous Poisson,
etc.
SPE-ED Analysis and Simula- Graphical user inter- Various (for simulation) Any QNM as well as SPE
(1996) tion face for drawing the models as defined in Con-

input models

nie U. Smith’s books

PEPSY-QNS Both analysis and Graphically (with Various (for simulation) Open, closed and mixed
(1996) discrete event simu- XPEPSY), or textu- networks
lation ally
TANGRAM-  Analysis and simula- Programmatical Exponential, Pareto, Models of communica-
II tion (models are composed Deterministic, Uni- tion systems (computer
(1997) of objects that in- form, Erlang, Gaussian, networks, traffic systems,
teract by exchanging Log-normal, FARIMA, etc.)
messages) FBM
PDQ Analysis Programmatical (us- Exponential distribu- Open and closed networks
(1998) ing C) tion
MQNA Analysis Textually Exponential  distribu- Open and closed product-
(2003) tion form QNs and finite capac-
ity QNs.
WinPEPSY- Analysis and simula- Graphical user inter- Phase-type distribu- Stochastic models based
QNS tion (closed queuing face for drawing input tions (approximations on queuing networks with
(2006) systems with capac- models of long-tail distribu- phase-type distributions
ity and phase type tions achieved by finite
distributions cannot mixtures of exponen-
be simulated) tials [23])
JINQS Discrete event simu- Programmatical (in Exponential, Weibull, Any queuing system and
(2006) lation Java) Cauchy, Deterministic, queuing network model
Erlang, Gamma, Geo-
metric, Normal, Pareto,
Uniform
JMT Analysis and discrete Graphical user inter- Pareto, Gamma, Hy- Any queuing system and
(2007) event simulation face for drawing input perexponential, Erlang, queuing network model
models. Wizards are etc.
available. It also sup-
ports interoperability
via XML
gnetworks Analysis Programmatical (in Poisson distributions Open, closed and mixed
(2009) Octave) for arrival rates and Ex- networks with multiple job
ponential distributions classes
for service times
xQNM Discrete event simu- Graphical user inter- Uniform, Exponen- Open and closed networks
(2012) lation face for drawing the tial, Normal, Gamma,
input models. Impor- Weibull, Erlang, F,
tation of PIMF mod- Log-normal, Pareto,

els is also allowed

Pascal, etc.




measurements over them. The tool is equipped with a set of model translators
that allow the automatic transformation of MOSEL-2 models to several third-
party performance evaluation tools. WEASEL [28] is an interesting client-
server application in which the user can specify a PMIF 2 (see Sect. 2.3)
model graphically and then solve it by using the following external solution
tools: PDQ, SHARPE, MVACCKSW (MVA using different methods) and
PEPSY. Furthermore, it offers the option to translate the PMIF 2 model
to the specific notation of different tools, such as PDQ, SHARPE, PMVA,
QNAP, OPENQN, CLOSEDQN, MVAQFP, MQNA1, MQNA2 and PEPSY.

Only some of the tools mentioned provide a graphical interface for the
definition of QNMs (namely RESQME, SHARPE, SPE-ED, PEPSY, JMT,
QSIM and xQNM), in the rest the input models have to be introduced textu-
ally or programmatically. And in most cases, all these formats are proprietary
and cannot be easily ported to other tools.

Analytical methods do not allow the exact evaluation of the performance
of QNMs with arbitrary probability distributions for arrival and service times,
only if they use Exponential and Uniform distributions. This is why many
packages also offer solutions based on simulation for dealing with other distri-
butions: TANGRAM-II, SPE-ED, QNAP2, WinPEPSY-QNS and the JMT
suite. Our tool belongs to this group.

Among the tools described in Table 1, there are tools written in FOR-
TRAN (QNAP2), C++ (TANGRAM-IT and WinPEPSY-QNS), C (PEPSY-
QNS, PDQ Analyzer), GNU Octave (qnetworks) and Java (JINQS, JMT).
This is one aspect in which our tool significantly differs from the rest, be-
cause it has been developed using MDE techniques, and is defined in terms
of DSLs and model transformations between them, at a higher level of ab-
straction. This allows us the possibility to modify or improve one of its
parts and keep the rest untouched, and provides us with a very organized
and modular architecture. Consequently, it makes the tool easier extensible
for future versions and improves its maintainability. jJEQN [29] is a DSL for
the specification and implementation of distributed simulators for extended
queueing networks. Although it also uses MDE techniques and provides a
DSL for specification and simulation, it builds on Java while our approach
relies on an existing DSL for the specification of real-time systems. Besides,
JEQN focuses on the development of distributed simulators from local ones
for extended QNMs while our tool focuses on the definition and management
of QNMs (definition, importation, exportation) as well as on their simulation.

Most of the works about QNMs do not consider failures. This is, the

6



servers that compose the network can fail, being unable to process jobs for
some time and contributing to system delay. In this sense, these works
consider that the networks have an “ideal” behavior, where nothing can go
wrong. But this is far from reality, since in many systems modeled with
queuing networks many things can go wrong. For example, in manufacturing
systems, the machines that make up the system can fail, or the actual servers
that compose any kind of network modeled with a QNM can have failures
too (hardware failures, failures due to wear out, random failures, etc.).

There are some works that do take into account failures of this type. For
example, Das and Murray Woodside [30] consider that any of the entities in
a model can undergo a failure, which is independent of the failures of other
entities in the model. Each entity ¢ has its own component state, S; (0 or
1), corresponding to its working state or failed state, and is governed by a
separate Markov chain with a working state (s; = 1) and a failed state (s; =
0), with rates of failure and repair. We have applied this idea of networks’
components having two states to extend the behavior of ordinary QNMs
(see Section 6.4). Altiok [31] has reviewed in detail literature pertaining to
queues with service breakdowns due to failures of service stations. S. Kumar
and P. R. Kumar consider machine’s failures in manufacturing systems [32],
and assign exponential times for times to failure and times to repair. Govil
and Fu survey in [33] contributions and applications of queuing theory in
the field of discrete part manufacturing, where they reference other works
dealing with failures in manufacturing flow lines [34, 35, 36].

2.3. FEwvolution of PMIF

PMIF was conceived as a common representation for system performance
model data that could be used to move models between modeling tools [26].
Its creators were interested in tool interoperability for Software Performance
Engineering [37]. Its structure represents the software processing steps and
other information for workloads that execute in the system performance level.
PMIF, however, was born for system performance models that represent
computer platforms and network interconnections with a network of queues
and servers. Its representation technique had to be appropriate to express the
interchange format and it needed to be capable of expressing a wide range of
system execution models: those containing a small number of servers to a very
large number of them, from one to many workloads, both open and closed
models, that may be solved using either analytical or simulation solution
techniques. It also had to be usable with existing tools, include modeling

7



Queueing
Network
Model

1+

- )

IsConnectedTo

Provides
ServiceFor

Closad
‘Workload

Non-Server Server

Node
IsPairedWith :

Source Sink WorkUnit
Node Node Sarver

Branch WorkUnit Time Demand
Paint Service Service Service
Request Request Request

Opan
Workload

RepresentsArrivalsFor

Figure 2: PMIF 1.0 Metamodel

features that tools provide, support the modeling paradigms prevalent in
tools, and use terminology common in tools and modeling research. So the
first version of PMIF (1998), as explained in [26], addressed a specific type
of performance model: Queuing Network Models that may be solved using
exact analytical solution algorithms. The resulting metamodel is shown in
Figure 2. In this version, the use of the operational analysis term wvisits rather
than the stochastic modeling probability among servers was proposed.

A new version of the PMIF metamodel and its XML schema specification
(called PMIF 2.0, and later PMIF 2) was then presented in [24, 38, 2]. An
XML-based approach was used to tackle the complexity and amount of ef-
fort required to create the PMIF interface. It uses the previous PMIF (PMIF
1.0) metamodel as a starting point because it is a good description of the
information requirements for performance model interchange, but uses XML
to implement the transfer format. As previously mentioned, the PMIF 1.0
metamodel uses number of visits instead of routing probabilities, assuming
that from the number of visits, and with the knowledge of the queuing net-
work topology, routing probabilities can be calculated. This assumption is
true for many of the queuing networks that model computer systems. How-
ever, it is not true for the general case. This is why the routing probability
was added as a transit element which specifies where a job has to transit and



'Queueing Network
Model

Name, Date-Time
Description

Workload
WorkloadNam
TimeUnits
Open Workload Closed Workload
ArrivalRate NumberOfJobs
ArrivesAt ThinkDevice
Think Time |
Service Request | |
WorkloadName
ServerlD
NumberOfVisits { l.n
| l 1 TransitNext
- — —~ e
WorkUnit T‘R“: f::“ ice DE“'R""i s‘:‘ ice TransitFirst Probabilty
Service Request 4 eques =
ServiceTime ServiceDemand Probability
TimeUnits TimeUnits e
il

Figure 3: PMIF 2 Metamodel (from [2])

with what probability. One of the advantages of PMIF is that it can be used
by web services to export and import QNMs among different modeling tools.
In [39], PMIF 2 is used as the exchange format of QNMs among SPE-ED
and QNAP by means of a web service. First, the software model created in
the SPE-ED performance modeling tool is exported to the PMIF 2 format.
Then, it is transformed to the QNAP notation, after which the model is
ready to be analyzed by QNAP. The PMIF 2 metamodel is shown in Fig. 3.

In this paper, we take a step forward because our aim is not just to be able
to describe models in XML, but to integrate them into the MDE tool chain.
Thus, we have used Ecore [40] as meta-metamodel, and so Ecore models
representing queuing network models expressed in PMIF can be defined.
Furthermore, several probability distributions for arrival and service times
can be specified in the models. This is further explained in Section 3.

3. Expressing PMIF in Ecore

The metamodel conforming to Ecore [40] that we propose for defining
QNMs, named ePMIF (for Ecore-PMIF), is shown in Figure 4. It can be
seen as the MDE version of the PMIF 2 metamodel presented in [2] (Fig. 3),
with some minor changes.

A QueuingNetworkModel is composed of one or more Workloads, zero or
more Arcs, one or more Nodes and one or more ServiceRequests. The Arc class

9



euingNetworkMode —_——— =
E] NetworkModel
[l I o St <<enumerations > <Teflmeratons >
“E\',““T’”ETJ““"‘”I B DZT;H‘WD;‘T‘SSMB < SchedulingPoli © Probpistribution
|2 Timeunits = . LT sy
=em © dateTime : EString (S Constant
A is ———— -5 - Uniform
= i 1.7 = Ps = Exponential
0.* Jarc _
- :5( H workload B ::;m"‘aal
= .
= = T name : EString ‘E' description EStrmgi‘ Taroe Lk T name‘EStrmg‘ = Weibull
= timeUnits ; TimeUnits === oy - Erlang
T wid' -F
= - chisquare
- Geometric
- Lognormal
- Pareto
—-— = == O lrSrd =
inkDevice | 1. - [sriRas
thinkD: 1 H server i-_ Rask ! gl
o < quantiyy : Elnt - E senviceReguest (E=HBo iSO
T Closedworklozd NonServerNods | < schedPol : SchedulingPoliffz! 3 | = mumbercfvisits ;ETnt_
H Openworkload ST ——— sy I transitTo : EString
S arrivalDistr : ProbDistributiond| | Jrﬁnk'l}is!?‘ oSG £ transitProbs ; EDouble
5 :
I5h arrivalParams: EDouble | (1 e TR T i
= ; (= :
I‘E:‘ (o .EE.trlng 15, transitTo : Estring % ‘% %
{ansifProbs; EDoyble |5 ransitProbs : EDouble_ _|
E_workunitserver
[2 serviceDistr : ProbDistributions
% serviceParams ; EDouble
& TmeUnits : TimeunTts
E Timesr
(FEpTes H SinkNode === === E DemandsR
- T WorkUnig] || serviceDist {ProbDistributiond e e
_ Ly E | serviceParams : EDouble || | = ServiceBemand: EDouble
:Tf\rFEU_n\t;TFHEUﬂI‘? —— timeUnits : TimeUnits

Figure 4: ePMIF metamodel (conforming to Ecore)

connects Nodes between them. In a queuing network, jobs flow from node
to node. There are two types of nodes, Servers and NonServerNodes. The
former provide a processing service, while the latter show the topology of
the network and represent the origin (SourceNode) and exit point (SinkNode)
of OpenWorkloads. The Server class has a specialization class, named WorkU-
nitServer, that represents resources with a fixed processing service for each
Workload that makes a request for service.

A Server provides service for different Workloads, where a Workload rep-
resents a collection of jobs that make similar ServiceRequests from Servers.
Depending on the type of queuing network (open or closed), there are two
types of Workloads:

e OpenWorkload. It represents a set of jobs which arrive from the outside
world, are serviced, and leave the system. The number of jobs belonging
to an OpenWorkload at any given time is variable. A job represented by
an OpenWorkload arrives at a SourceNode and departs at a SinkNode.

e ClosedWorkload. It represents a fixed population of jobs that circulates
among the Servers. A ClosedWorkload has a Server which acts as thinkDe-
vice and which is characterized by a think time.

A ServiceRequest associates Workloads with Servers. According to the rela-
tion from ServiceRequest to Workload and Server (one to one in both cases), a

10



ServiceRequest associates one (and only one) Server with one (and only one)
Workload. In this way, when a job which is represented by a workload arrives
at a server, the service request associated to the workload and the server
specifies how the job will be treated in that server. There are three types of
ServiceRequests (for all of them, the numberOfVisits is an optional attribute):

e WorkUnitServiceRequest. They are ServiceRequests associated to WorkU-
nitServers, so nothing about the service time has to be specified, since
it is already in the WorkUnitServer.

e TimeServiceRequest. It specifies the service time that the jobs repre-
senting the Workload associated to the ServiceRequest will have in the
associated Server.

e DemandServiceRequest. Similar to TimeServiceRequest, but service time is
now specified in terms of service demand (service time multiplied by
number of visits).

All these elements are equivalent to those in PMIF 2 (Fig. 3), apart
from the following differences (they are marked with dotted boxes in Fig. 4).
First, in PMIF 2, probabilities are specified as classes in the metamodel,
while in our approach they have become attributes (to reduce the number of
elements in the resulting models, mainly for performance reasons). Second,
ServiceRequest is no longer an association class, and we have also unified the
way to specify transitions in Workload and ServiceRequest classes (this will be
very useful when specifying the behavior). Thus, in the PMIF 2 metamodel
an element of type Transit was needed for each path in a fork; in our case, no
matter how many paths a Workload may follow, we only need two attributes:
transitTo and transitProbs. The former contains a sequence with the names of
the Nodes where the Workload can transit. The latter contains a sequence with
the probabilities of these transitions. Note that the order of the elements in
both attributes has to match.

For example, suppose that in the network shown in Fig. 1(a), the proba-
bility of a job to transit from the CPU server to DISKA is 0.4375, to DISKB is
0.5, and to leave the system is 0.0625 (example taken from [41, page 572]).
This is represented in our approach by setting the values of attributes tran-
sitTo and transitProbs of the ServiceRequest associated to the CPU server, to
the sequences {DISKA, DISKB, SINK} and {0.4375, 0.5, 0.0625} respectively.

11



Another difference between ePMIF and PMIF 2 is how service and arrival
times are specified. In PMIF 2, they are specified by attributes ArrivalRate
and ServiceTime respectively. PMIF 2 assumes that these values represent pa-
rameters of Poisson and Exponential distributions, respectively. Given that
we want to accept different probability distributions for service and arrival
times, we have defined a new type (ProbDistributions) which is an enumeration
with literals Constant, Uniform, Exponential, Normal, Gamma, Weibull, Erlang, F,
ChiSquare, Geometric, Lognormal, Pareto, Pascal and Poisson. If the distribution
is Constant, it means that the arrival /service time is constant.

The last difference between PMIF 2 and ePMIF is that we use references
instead of attributes to refer to other objects. This has the advantage that
references cannot be incorrectly specified. However, if objects are referred
to by their names, it is easy to mistakenly write a String with a name that
refers to a non-existent object. Furthermore, a change in the name of an
object would result in an inconsistent reference.

4. MDE Essentials

MDE [3] is becoming a widely accepted approach for developing complex
distributed applications. MDE advocates the use of models as the key ar-
tifacts in all phases of development, from system specification and analysis,
to design and implementation. Each model usually addresses one concern,
independently from the rest of the issues involved in the construction of the
system. Model transformations define relationships between models, either
at the same or at different level of abstraction. Thus we may have different
kinds of transformations: correspondences, refinements, abstractions, devel-
opment relations, etc. Domain Specific Languages (DSLs) are key in MDE
for representing models. The benefits of using DSLs is that they provide in-
tuitive notations, closer to the languages of the domain experts, in a compact
and precise way, and at the right level of abstraction.

A DSL is defined in terms of three basic components: abstract syntax,
concrete syntax and semantics.

The abstract syntax of a DSL is normally specified by a metamodel, which
describes the concepts of the language, the relationships between them, and
the structuring rules that constrain the model elements and their combina-
tions in order to represent the domain rules. In our case, it is the ePMIF
metamodel shown in Fig. 4.

12



The goal of the concrete syntax of a DSL is to provide users with a no-
tation close to the one they normally use, in this case to specify queuing
network models. The concrete syntax is normally defined as a mapping be-
tween the metamodel concepts and their textual or graphical representation.
For visual representations, as in our case, it is necessary to establish links
between these concepts and the visual symbols that represent them. We
chose those visual symbols which are as intuitive as possible for representing
QNM concepts (server, workload, service request, etc.). Some of them, like
the icon used to represent servers, are widely used in the QNM literature.
Others, like service requests, are new concepts that have recently appeared,
e.g, with the definition of PMIF.

The concrete syntax of xQNM will be described in Section 5.1. It has been
realized using the Eclipse Graphical Modeling Framework (GMF) [42]. GMF
provides a generative component and runtime infrastructure for developing
graphical model editors for DSLs. It automatically generates an Eclipse
plugin with a DSL diagram editor from (1) the DSL metamodel (abstract
syntax); (2) a graphical definition (concrete syntax); (3) a tooling definition
(i.e., the buttons that enable the creation of the model elements); and (4) a
mapping model relating the three previous artifacts.

Finally, the semantics of a DSL describes the precise meaning of its mod-
els, and in case of DSLs for dynamic systems, it defines their behavior. One
way of specifying the behavior of a DSL is by describing the evolution of
the modeled artifacts along a time model. In MDE, this can be done using
model transformations supporting in-place update [43]. The behavior of the
DSL is then specified in terms of the permitted actions, which are in turn
modeled by the transformation rules.

4.1. e-Motions

The environment we have used for specifying the behavior of queueing
network models, named e-Motions [6, 7], is a Domain Specific Language
supported by a graphical framework developed for Eclipse that supports the
specification, simulation, and formal analysis of real-time systems. Thanks
to the use of MDE techniques in our approach, we have been able to reuse
the e-Motions environment and integrate it in our tool architecture, as we
shall see in next section.

e-Motions extends in-place transformation rules with a quantitative model
of time and with mechanisms that allow designers to specify action-based
properties, thus facilitating the design of real-time systems. While there are

13



several approaches that propose in-place model transformation rules to deal
with the behavior of DSLs (see [44] for a brief summary of such approaches),
e-Motions provides a very intuitive and natural way to specify behavioral
semantics, close to the language of the domain expert and the right level of
abstraction [45]. These transformations are composed of a set of rules, each
of which represents a possible action of the system. Similar to Graph Gram-
mars [46], these rules are of the form [ : [NAC]* x LHS — RHS, where [ is
the rule’s label (its name); and LHS (left-hand side), RHS (right-hand side),
and NAC (negative application conditions) are model patterns that represent
certain (sub-)states of the system. The LHS and NAC patterns express the
precondition for the rule to be applied, whereas the RHS one represents its
postcondition, i.e., the effect of the corresponding action. Thus, a rule can be
applied, i.e., triggered, if an occurrence (or match) of the LHS is found in the
model and none of its NAC patterns occurs. Generally, if several matches are
found, one of them is non-deterministically selected and applied, producing a
new model where the match is substituted by the appropriate instantiation of
its RHS pattern (the rule’s realization). The model transformation proceeds
by applying the rules in a non-deterministic order, until none is applicable
— although this behavior can be usually modified by some execution control
mechanism [44].

e-Motions allows attributes to be added to rules to represent features
like duration or periodicity. OCL [47] expressions can be used to specify
values for attributes, variables, conditions, etc. e-Motions also implements
a reflective mechanism that allows to explicitly represent action executions,
which are model elements that describe actions that have been performed, or
are currently executing. They specify the type of the action (i.e., the name
of the atomic rule), the identifier of the action execution, its starting and
ending time, and the set of objects involved in the action. This provides a
useful mechanism when we want to check whether an object is participating
in an action, or if an action has already been executed, for instance.

Finally, a special kind of object, named Clock, represents the current
global time elapse. Designers are allowed to use it in their rules (using its
attribute time) to know the amount of time that the system has been working.
Further clocks can be specified by users, according to the requirements of
their systems (to model, e.g., systems with several distributed clocks).

The semantics of xQNM will be then defined by a set of rules in e-Motions,
which specify the behavior of xQNM models. Note that this is nothing but
the generic behavior of Queueing Network Models. In fact, the behavior

14



Graphic PMIF Textual 1. Input: QNM
model

Textual PMIF

@ 2.0Model Model (Ecore) ePMIF gopodel
Tool Model .
(XML file) (
T Interface) e/ (XML file) Int:zguucs[ by
Structural e-Motions: EXGN

@ Model + @ Behavioral

behavioral
implementation
(transparent to

the user)

(Ecore) Model

ATLC Maude: ATLC
@ Rewriting

3.QNM
simulation
(transparent to
the user)
ﬁ Al 4. Output: file with
performance
(3 Performance measurements of
Results (.csv) the QNM model

Figure 5: xQNM Architecture

described in next section has been defined once, and serves for any QNM.

5. xQNM overview

Fig. 5 shows the basic elements of xQNM, and how to use them to specify
and simulate QNMs.

The concrete syntax of the language and the tool support we have built
for editing xQNM models (that is, QNMs) is described first in Section 5.1.
It corresponds to the ovals numbered 1, 2 and 3 in the figure. Section 5.2
explains how the behavior of queuing network models can be specified with e-
Motions. It provides the semantics of the xQNM language, and corresponds
to the ovals 4 and 5 in the figure.

Once we have an initial model of a QNM and the behavioral dynam-
ics of QNMs specified in e-Motions, we can simulate it. In fact, e-Motions
translates its specifications (using ATL transformations from ovals 4 and 5
to oval 6 in Fig. 5) into the corresponding formal specifications in Real-Time
Maude [48], which in turn provides semantics to the visual e-Motions spec-
ifications of the system. Maude specifications are executable, and therefore
they can be used to run simulations. Section 6 describes the simulations that
are possible with xQNM, how they are realized, and how results are returned
to the user.

15



1 PMiFEditorpmif ([ PMIFEditor.pmif_diagram &2 =g
“ |k Palette

NEEET=E

= ¥ OpenWorklozd
| ]]]D f ClosedWorkload
<] SinkNode
N [ SourceNode
% MO server
1) WorkUnitSe...
@ & WorkUnitsR
p & Timesk
@ Demendsh

JAGR. |
0
k

[£0 Problems | @ Javadoc ([ Declaration | =1 Properties &2

@ TimeSRO
Core Property Value
TY— Number Of Visits oo
Service Distr = exponential
Service Params 000
Srv T2 server CPU
Time Units = sec
Transit Probs 11104375, 0.5, 0.0625
Transit To = DISKA, DISKE, Sink
wid [* Open Workload OWL

Figure 6: xQNM Graphical Editor

5.1. A Tool for Drawing and Simulating QNMs

Our DSL is supported by a tool which provides a graphical editor for
creating queueing networks conforming to PMIF or ePMIF metamodels. It
means that it can be defined open, closed and mixed network models in the
graphical interface. At this moment, only open and closed networks can be
simulated in xQNM. This section explains the capabilities provided by this
tool.

5.1.1. QNMs graphical definition

The graphical editor of our tool has been developed using GMF. Fig. 6
contains a snapshot of our editor, with the graphical representation of the
QNM model showed in Fig. 1(a). The different kinds of network objects
(OpenWorkloads, ClosedWorkloads, Servers, WorkUnitServers, etc.) can be
selected from the menu on the right and be placed on the main panel.

The properties of objects (attributes and references) are specified in the
lower panel. To assign values to the sequences of transitions, the user has
to select the object and click on the attribute in the lower panel. A new
window where the values can be introduced is shown in Fig. 7. Probability

16



_
= Transit To — — (cal=lme | [ 11 Transit Probs . (S sl= e

Value Feature Value Feature
11104375
10,5
110.0625

I Add

Up
= |

[ ok ][ Cancd |

=
7
] 3
5 2
w

Figure 7: Assigning values to sequences

Service Distr !'= exponential -

Service Params )chiSquare - Sny 1 Server CPU =
Srv Tjgeometric Time Units

Time Units S - et ) Transit Probs 4]

Transit Probs ] S:;c;; i Transit To 3 \S':;\;ErU[EiKSBeNer DISKA

Transit To U= DISKA, DISKE. Sink Wi TTPrPT TP TR T T TT

(a) Specifying the distribution. (b) Selecting the Server associated to
the ServiceRequest.

Figure 8: Drop down lists in the lower panel.

distributions are specified as attributes of type ProbDistribution (Fig. 8(a)).
References to objects (that model for example transitions) are indicated using
drop down lists (Fig. 8(b)).

As in any GMF project, xQNM models admit two representations, each
one stored in a different file. One contains the graphical information, and
can be edited with our graphical tool. The second one is plain XML file that
contains the model elements, and can be edited with the standard Eclipse
tree-view model editor. The user can select either of them in the left panel.

5.1.2. Exporting (QNMs

Once a queuing network model is defined with the graphical editor, it
can be exported to an XML file with its ePMIF representation. The XML is
similar to the PMIF 2 XML file, with the corresponding extensions for transi-
tions and probability distributions. Thus, there are no ArrivalRate, ServiceTime
and ThinkTime attributes anymore; but ArrivalDistr, ServiceDistr and ThinkDistr.
Objects containing any of these attributes also contain one or more attributes
named Param that specify the parameters of the distributions. For instance,
let us consider the example shown in Fig. 1(a) and described in Section 3 of
an open QNM with a CPU and two disks: A and B. Distributions for service
times are supposed to be Gamma (for disk A) and Exponential (for disk B),

17



and Poisson for arrival times. Listing 1 shows the XML file that has been
exported from the definition of this open network model using our tool.

Listing 1: ePMIF XML File

<QueueingNetworkModel Name="Jain572" Description=
"Ecore XML PMIF" Date—Time="040711">
<Workload>
<OpenWorkload WorkloadName="0WL" ArrivesAt="Source"
DepartsAt="8ink" ArrivalDistr="Poisson"
TimeUnits="sec">
<Transit Probability="1.0" To="CPU"/>
<Param Value="3.0"/>
</OpenWorkload>
</Workload>
<Node>
<Server Name="CPU" Quantity="1"
SchedulingPolicy="FCFS" />
<Server Name="DISKB" Quantity="1"
SchedulingPolicy="FCFS" />
<WorkUnitServer Name="DISKA" Quantity="1"
SchedulingPolicy="FCFS" TimeUnits="sec"
ServiceDistr="Gamma">
<Param Value="0.5"/>
<Param Value="2.0"/>
</WorkUnitServer>
<SourceNode Name="Source" />
<SinkNode Name="Sink"/>
</Node>
<ServiceRequest>
<DemandServiceRequest ServiceDemand="2592.0"
TimeUnits="sec" WorkloadName="0WL"
ServerID="DISKB" NumberOfVisits="86400">
<Transit Probability="1.0" To="CPU" />
</DemandServiceRequest>
<WorkUnitServiceRequest WorkloadName="0WL"
ServerID="DISKA">
<Transit Probability="1.0" To="CPU"/>
</WorkUnitServiceRequest>
<TimeServiceRequest TimeUnits="sec"
WorkloadName="0WL" ServerID="CPU"
ServiceDistr="Exponential">
<Param Value="0.01"/>
<Transit Probability="0.4375" To="DISKA" />
<Transit Probability="0.5" To="DISKB"/>
<Transit Probability="0.0625" To="Sink"/>
</TimeServiceRequest>
</ServiceRequest>
<Arc FromNode="Source" ToNode="CPU" />
<Arc FromNode="CPU" ToNode="DISKA"/>
<Arc FromNode="CPU" ToNode="DISKB" />
<Arc FromNode="CPU" ToNode="Sink"/>
<Arc FromNode="DISKA" ToNode="CPU" />
<Arc FromNode="DISKB" ToNode="CPU"/>
</QueueingNetworkModel>

18



Our tool also supports the exportation to standard PMIF 2 XML format,
as long as the distributions are those supported by PMIF 2.

5.1.3. Importing QNMs

The xQNM tool offers the possibility to import PMIF 2 files. These files
are transformed into the corresponding ePMIF files, modifying the attributes
as required. Thus, attributes ServiceTime and ThinkTime are automatically
translated into the corresponding serviceDistr and thinkDistr attributes. New
attributes serviceParams and thinkParams are created with the values of Ser-
viceTime and ThinkTime attributes, respectively. The same happens with the
ArrivalRate attribute in PMIF 2, which is translated to an arrivalDistr attribute
(of type Poisson in this case).

It is also possible to import plain ePMIF XML files to the xQNM tool
(i.e., with no graphical information). The ATL transformation used for this is
the opposite to the one used for the exportation of ePMIF models, explained
above.

When plain XML files containing either PMIF or ePMIF models are im-
ported into our tool, a file containing the new model generated is created.
Having no graphical information about the model, this file only accepts the
visualization using the Eclipse tree-view editor. From this file, the user can
generate another file so that the model can be deployed in the graphical edi-
tor. The elements will initially appear in a random position in the graphical
editor (since no graphical information is available), and the user is then free
to arrange them as preferred.

5.2. A Generic Behavioral Model for QNMs

The generic behavioral model for open and closed QNMs is defined in
terms of a set of e-Motions rules. Note that users of the xQNM tool do not
need to be aware of such behavioral model. Mixed queuing network models
defined using the graphical user interface of xQNM cannot be simulated at
this moment.

5.2.1. QNMs structural model and Observers addition

PMIF models describe the structure of the QNM, and can be used to
specify the dynamics of QNMs in terms of job flows. However, we also
need to specify, record and manage additional information to deal with the
performance properties of the system. For these tasks we use observers.

19



H observer
T name : EString

H workloadob

T throughput : EDouble
T respTimeAcc ; Elnt

T respTimedy : EDouble
T jobsAcc ! Ent

T jobsav: EDouble

£ thrTrace | EDouble

£ respTTrace : EDouble
i jobsTrace : EDouble

1
|

H simob

E servicerequestOb

= simTime : Elnt
o batchsize : Elnt
= varindex : EInt

H serverob

T lengthQAcc : Elnt
T lengthQAv : EDouble

| & lengthQTrace : EDouble |

T served : EInt

T timeBusy : EInt

T utilization : EDouble

T waitingTAcc : Elnt

T waitingTAv : EDouble
T serviceTAcc : EInt

T serviceTAv : EDouble
T residenceTAv: EDouble
T throughput : EDouble
£ utilizTrace : EDouble

£ waitTrace : EDouble
£ servTrace : EDouble
£ residTrace : EDouble
£ thrTrace : EDouble

1.1 )svOb
wkldOb H cabject 1.1

11 | sron

Figure 9: Observers metamodel

Observers were introduced in [49, 50] as an effective means to specify the non-
functional properties of systems described by high-level DSLs. An observer
is an object whose purpose is to monitor the state of the system objects and
actions. Observers, as any other objects, have a state and a well-defined
behavior. The attributes of the observers capture their state, and are used
to store the variables that we want to monitor.

To introduce observers into the behavioral rules of xQNM (in order to
specify and measure the performance properties of QNMs), we need to specify
a metamodel for them. This is shown in Fig. 9. The idea is to combine both
metamodels (Figs. 4 and 9) so that observers can be used in our behavioral
rules. In fact, since e-Motions allows users to merge several metamodels in
the definition of a DSL, we can define the observers metamodel in a non-
intrusive way, i.e., we do not need to modify the system metamodel to add
attributes that store the values of the non-functional properties we want to
monitor.

In the observers metamodel we can see that there are three types of ob-
servers for monitoring the performance metrics of a different type of object.
We have WorkloadOb for monitoring Workloads, ServerOb to monitor Servers,
and ServiceRequestOb to monitor TServiceRequests. These three have a refer-
ence to class EQject, which points to the object they monitor. In addition,
we have the SimOb observer, which stores the simulation run parameters
introduced by the user (see Section 6.1).

The aim of WorkloadOb observers is to monitor performance properties of
workloads. The idea is to associate one observer of this type to each workload.

20



Its attributes are used to measure the average throughput (thoughputAv),
response time (respTimeAv) and jobs (jobsAv) of the associated workload. It
also contains three sequences (thrTrace, respTTrace and jobsTrace) that store
the traces with the values for throughput, response time and jobs average,
respectively, at different times of the simulation.

ServerOb observers monitor servers. They store the average queue length
in their attribute lengthQAv, and keep the traces in attribute lengthQTrace.
Attribute lengthQAcc is used to compute lengthQAv. As explained in [41], the
queue length of a server considers the jobs in the queue and the jobs being
served.

Each service request in the model will have a ServiceRequestOb observer
associated to it. Considering that a service request is the relationship between
a server and a workload that requests its service, the data monitored by this
observer represents the performance relationship between them. In this way,
when we mention workloads (or jobs belonging to them) and servers in the
explanation of the attributes, we mean the workloads (or jobs) and servers
associated to the service request. ServiceRequestOb observers have several
attributes:

e served. Number of jobs processed by the server.
e timeBusy. Time that the server has been busy (processing jobs).
e utilization. Percentage of the time that the server has been busy.

e waitingTAcc and waitingTAv. Sum and average waiting times in the queue
of the jobs processed by the server, respectively (the waiting time of a
job is the time between the arrival of the job to the server queue until
it starts being processed).

e serviceTAcc and serviceTAv. Sum and average service time of all jobs
processed by the server.

e residenceTAv. Average residence time of all jobs processed by the server
(the residence time of a job is the time between the job enters the server
queue and leaves the server).

e throughput. Number of jobs processed by the server per unit of time.

e utilizTrace, waitTrace, servTrace, residTrace and thrTrace. These attributes
keep the traces of the corresponding values throughout the simulation.

21



5.2.2. QNMs behavioral model

This section introduces the e-Motions rules that describe the behavior of
QNMs. Basically there is one rule for jobs entering the network (EnterOpen-
WLFnT), one for specifying how jobs transit between servers (TransitJobsnT),
and a third one for jobs leaving the network (ExitOpenWLF). For efficiency
reasons there are variations of these rules when there is only one server to
which the jobs can transit to (so no decisions are to be made). In addition,
two rules are in charge of specifying how the values of global observers are
updated.

These rules are briefly described here. For a complete description of all
the rules, the interested reader can consult [51]. In any case, the rules are
completely transparent to the xQNM user, they just specify the behavior of
the system, and allow to simulate it.

a) A set of jobs enter the network. Rule EnterOpenWLFnT (Fig. 10(a))
models how OpenWorkload objects enter the network, when they can transit to
more than one server. The rule has in both LHS and RHS patterns the Open-
Workload to which the job belongs (owl), the Server to which the job transits
to (server), the ServiceRequest that relates both of them (sr), and the Source
node at which jobs belonging to the OpenWorkload enter (s). There are also
the relationships between these objects (wld, arrivesAt, srv and connectedTo).

The destination server is determined by variable pos and the OCL condi-
tion in the LHS. It uses the transition probabilities. A new job entering the
system is modeled by the addition of a new identifier to the wklds sequence
of the TServiceRequest, and the addition of the current time elapse to the tS
and aS sequences. Variable duration specifies the duration of the rule: in this
example it follows a Poisson distribution (see the variable duration declaration
in the top left corner of the rule).

There is also a similar rule for OpenWorkloads whose jobs always transit
to the same Server when they enter the Source node. That rule, called En-
terOpenWLF1T [51], is a simplified version of the EnterOpenWLFnT rule that
we have developed for performance reasons (because no OCL expressions or
conditions need to be computed in this case).

b) Transition of jobs between servers. Rule TransitJobsnT (Fig. 11)
models the transition of jobs between servers (and also from a Server to a Node
of type SinkNode). Jobs can belong to either OpenWorkloads or ClosedWorkloads,
so this rule is used for both.

The LHS of rule TransitJobsnT contains all the objects needed for this

22



EnterOpenWLFnT

Tin [duratien,duration]

[/ duration : Int = eMotions.expDistr(1 / owl.arrivalParams - » first()]
ExitOpenWLF
[\ pos:Int= owltransitTo -> indexOfiserver.name] itOpen
LHS (0 Tin[0,0]
[HS

owl
wiOb

F—f wld % 8’%
3 el { \

amivalDistr = 'Poisson’

clk wkldOb

arrivesAt = owl st

2 =
1 Id
s server W f
e ——
connectedTo

WITH sr.wklds - > notEmpty()

- RHS
I (pos = 1 and owl.transitProbs - > at{pos) »= owl.trans) H

or (pos » 1 and owl.transitProbs - » at(pos) =

wlOb
owl.trans and owl.transitProbs -> at(pos -1) < owl.trans)

I RAS tgg\

throughput = owljsbsOutjobsOfsrwklds) / clktime
=,
i wld

respTimeAcc = wiOb.respTimeAcc.responseTWL(sr 5, clktime)

respTimedv = wlOk.respTimeAcc responseTWL (515, clktime) / ewl.jobsOut jobsOfsrwkds)
jobsAcc = wiOb,jobsAfer, clktime)

jobsAv = wiOb.jobsAfsr, clitime)  clictime

thrlrace = wiOb.thrTrace - > append(owl jobsOut.jobsO(sruwklds] / clktime)

@

respTTrace = wiOb.respTTrace - » append(wlOb.resoTimeAcc. VL{sr.tS, clk.time) /
frans = -1 wklds = srwkids -> appendiowl.jobsln + 1) owljebsOut jebsOfsrwkids)
iobsln = owljobsln + 1 1S = 55 -> append(clk fime) jobsTrace = wiOb.jobsTrace - > append(wiOb.jobsAlsr, clk.time) / clktime) clk
" aS = sr.a5 -> appendiclk time) 5
cl
arrivesAt T v wkldOb

s
® N owl
server _
= wld sy
connectedTo O —

wklds = Sequencef)
5 = Sequence)
jobsOut = owljobsOutjobsOlsrwklds) a5 = Sequence])

(a) EnterOpenWLFnT rule (b) ExitOpenWLF Rule

Figure 10: Rules for packets entry and leaving.

rule to be triggered: the source Server (s), the target Node (n, which is either
a Server or a SinkNode), the Workload (wl) to which jobs belong, the TSer-
viceRequests associated to the mentioned elements (srS and srT), and the Ob-
servers (srSOb and sOb) whose attributes are to be updated in the RHS of the
rule. The three sequences representing the jobs in the source TServiceRequest
(srS) are also updated in the RHS by eliminating the corresponding jobs
and adding them to the sequences of the target TServiceRequest (srT). The
attributes of the two observers are also updated.

c) Jobs leave the network. Rule ExitOpenWLF (Fig. 10(b)) models how
jobs leave the network. Consequently, it is applied only over OpenWorkloads.
When the TServiceRequest (sr) contains jobs, this rule is fired and the cor-
responding attributes in the OpenWorkload (owl) and the observer associated

23



TransitlobsnT
T in [duration,duration]
W/ duration : Int = eMotions.expDistr(1 / srS.serviceParams- >first] IRES
W pos: Int = srStransiflo - > indexOf{n.name]

s srs0k

srS0b. (}‘25
s / \
'G E‘ served = sr30k.srv(s.quantity)

throughput = srSOb.srv(s.quantity) / clictime

timeBusy = srSOb.timeBusy - duration

utilization = [srSOb.timeBusy + duration) / clktime

waitingTAcc = srSOb.waitingT(s.quantity, clictime - duration)

- Wl waitinaTAv = srSOb.waitingT(s.quantity, clk.time - duration) / srSOk.srv(s.quantity)
serviceTAcc = srS0b.serviceT(duration, s.quantity)

=T
wid @5 wld serviceTAv = siSOb.serviceT(duration, s.quantity) / srSOb.srv{s.quantity)
residenceTAv = srSOb.residenceT(duration, s.quantity, clk.time - duration, srSOb.wklds)
y st0b

15

serviceDistr = ‘Exponential
s Wl
s
wid S
s n Z y wid
-——/
connectedTo whids = srSwklds.remlcks whids = sT.wklds->union(srS.wklds->
[srS.wkids. processed(s.quantity]) 13 select(i | srS.wklds- >indexCF(i) <= s quantity))
15 = srS.tS.remJobs(s.quantity.min(srS.wkids->size())) 4 = srSa5.appendTs(s.quantity, srT.is, sTwklds, srSawkids)

a5 = srS.a5.remlobs(srS.wklds.processed(s.quantity)) a5 = srB.a5.appendAs
trans = -1 (s.quantity, srT.a5, clktime, srTwklds, srSwkids)

@
@

snvOb
Ob -

ih s n
bl mo - IO

it 5 schedPol = 'FCFS' and srSwklds - > notEmpty()

snOb
M (pos = 1 and srS.transitProbs -> at(pos) >= srS.trans) or O
[pos > 1 and srS.transitProbs -> at(pos) >= -
srS.trans and srS.fransitProbs - at{pos - 1) < srS.trans) ‘0,6\
NAC
FF 2 « TrasithobsnT lengthQAcc = =Ob.lengthQA(srS, s.quantity, cli.time)

lenqthQAv = sOblengthQA(srS, squantity, clitime) / clitime
< unfinished >

srS -> 51§

Figure 11: TransitJobsnT rule

to it (wlOb) are updated. The jobs present in the TServiceRequest (sr) are
deleted, modeling that they have left the network.

This rule updates the attributes of the observers, namely thrTrace, Re-
spTTrace and jobsTrace, every time a job leaves the system. The new values
correspond to the calculated throughput, mean response time and jobs aver-
age, which are appended to the sequences with the traces.

Similar to rule ExitOpenWLF, another rule is in charge of updating the
attributes of observers associated to ClosedWorkloads. The attributes are the
same, apart from the one for the average number of jobs, which is no longer
necessary.

Finally, another rule, UpdateTraces (not shown here for brevity), is defined
to update the attributes for traces in the other observers. They are updated
either when jobs leave the system (in OpenWorkloads) or when jobs arrive at
the centralSrv (for ClosedWorkloads).

It is important to recall that users do not need to write these rules,

24



they have been defined once and apply to all QNMs. In fact, they can be
seen as providing a behavioral semantics of QNMs by explicitly specifying
the behavior of QNMs in a language with well-defined semantics [52]. In
addition, they are all automatically configured and generated according to
the type of network defined by the user, and to the probability distributions
used.

5.2.3. Generating the behavioral rules

Once the user inserts a model within the xQNM tool either by drawing it
with the graphical interface or by importing it, it is automatically translated
to its structural and behavioral models. This is done by the ATL transfor-
mation shown in Fig. 5 from oval 2 to ovals 4 and 5.

The transformation has two main parts, the generation of the structural
model and the generation of the behavioral model. For the former, the
transformation takes the ePMIF model conforming to the ePMIF metamodel
and transforms it into an more compact representation of ePMIF that we
use internally with e-Motions. Although the first version of xQNM used
ePMIF directly, we realized that for performance reasons we could optimize
this representation to make it more compact and efficient. This was very
important for conducting the simulations. Such new representation is internal
to our tool and transparent to users, who still use ePMIF models to describe
their QNM models. That metamodel and the changes with respect to ePMIF
are described in detail in [51].

For generating the behavioral model, the transformation identifies the
type of queuing network used (open or closed) and selects the appropriate
rules among the ones presented in Section 5.2.2, which are available in a
repository. Those rules, as well as the ePMIF model are the input parameters
of the ATL transformation. The transformation also adjusts some features of
the rules according to the probability distributions used in the model, which
is reflected in the rules duration, or the performance metrics that the user
wants to monitor. Regarding the latter, only those metrics are filtered by
the ATL transformation and appear as objects attributes in the final rules
(Figure 12 shows how such parameters are specified by the user). It means
that simulations where less parameters are to be monitored are faster.

25



£ XONM Simulation X

Initial model *:
{*) = mandatory
Parameters to Calculate
Service Requests Servers Workloads
Utilization Length Queue Response Time
Throughput Throughput
Waiting Time Jobs Average

Service Time
Residence Time
Served

Simulation Settings
Simulation Time:
Tirme: seconds
[IBatch Means

Bach Size: [IN—
letead |

(1070

Figure 12: xQNM Simulation Window

6. Experimentation

6.1. Simulation in xtQNM

Once we have the behavioral dynamics of a QNM specified in e-Motions,
we are ready to simulate it. Our environment supports the translation of the
specifications (ATL transformations from ovals 4 and 5 to oval 6 in Fig. 5)
into the corresponding formal specifications in Real-Time Maude [48].

In Maude, the result of a simulation is the final configuration of objects
reached after completing the rewriting steps, which is nothing but a model.
The semantic mapping as well as the transformation process back and forth
between the e-Motions and Real-Time Maude specifications is described in
detail in [44], although it is completely transparent to the e-Motions (and so
xQNM) user. The user, consequently, is completely unaware of the Maude
rewriting engine performing the simulation.

A very important advantage of our approach is that observers are also
objects of the system, and therefore we can retrieve the values of their at-
tributes after the simulation is conducted to know how the system behaved.
In fact, this is crucial for the approach we are presenting here.

When the user wants to launch a simulation in xQNM, the window shown
in Figure 12 is displayed. Users have to specify the input queuing network
model to be simulated. Moreover, they have to specify which performance

26



measures want to obtain as output for each service request, server and work-
load. Since the behavioral rules presented in Section 5.2 are available in a
repository, the ATL transformation from oval 5 to oval 6 filters only those
attributes that the user wants to monitor. Besides, depending if the network
model is open or closed, the transformation filters the appropriate rules to be
used in the simulation. Finally, the stopping criteria has to be determined.
It can be established either by the desired simulation time or the method
of the batch means. The settings for the stopping criteria are stored in the
simOb observer (Figure 9).

One important issue of any simulation in any kind of system is the stop-
ping criteria. The simulation should stop at a certain point where the perfor-
mance parameters are accurate enough, and the system is stable. To be able
to reach that point, an important requirement is Little’s Law [41], which in
a queueing network applies as long as, in average, the number of jobs enter-
ing the system are less or equal to those leaving it. It also implies that the
average arrival rate of jobs should be lower than the service time, if we do
not want the network to overflow.

Related to the stopping criteria of a simulation, we also need to determine
its length, that is, for how long it should run. Thus, if the simulation is too
short, the results will probably be unreliable. But if the simulation is too
long, computing time and resources will be unnecessarily wasted. In most
simulations, only the performance after the system reaches a stable state is
of interest. The initial part, also called transient state or warm-up period,
should not be included in the final computations. The problem of identifying
the end of the transient state is termed as transient removal. Some of the
common heuristic methods for transient removal are: long runs, proper ini-
tialization, truncation, initial data deletion, moving average of independent
replications and batch means.

In our approach, we allow long runs and the batch means methods. We
discarded the proper initialization method because it requires starting the
simulation in a state close to the expected steady state. We cannot follow this
approach because in principle we do not know the expected steady state. The
truncation method is based on the assumption that the variability during the
steady state is less than during the transient state, which is normally true. It
considers that the data in the transient state is monotonous, i.e., continuously
increasing or decreasing. However, we found out that our simulations of
QNMs may have significant peaks during their transient states. Methods
initial data deletion and moving average of independent replications require

27



160603

120803 \

& 100503

H \

= 800504

g \

> 500504
e \_
2,008-04

0,00E+00

5 55 105 155 205 255 305 355 405 455 505 555 605 655 705 755 805 855 905 955 1005 1055 1105 1155 1205
BATCH SIZE

Figure 13: Method of the Batch Means

studying the overall average after some of the initial observations are deleted
from the sample. These methods apply over several replications, which differ
only in the seed values used in the random number generators, of a fixed
size. The problem, again, is how to determine a priori the length of the
replications. This makes them unappropriate for our proposal.

To determine when a simulation has to stop, the original method of batch
means requires running a long simulation and later dividing it up into several
parts of equal duration, which are called batches. The mean of the obser-
vations within each batch is called the batch mean. This method requires
studying the variance of these batch means as a function of the batch size.
But instead of running a very long simulation and later dividing it, what
we do is to apply the method at certain points during the simulation as it
moves forward. For that we store the values of the performance parameters
in traces, and apply this method over them every time that N new jobs leave
the system (or, in the case of closed networks, when N jobs complete a cy-
cle). We consider that a simulation has reached the steady state when the
variance of the batch means is in the order of 107*.

Fig. 13 shows a chart with the variance (Y-axis) plotted as a function of
batch sizes (X-axis), using N = 50 and x = 6. In this example, the variance
goes below 1078 between steps 905 and 955, i.e, when 955 jobs have been
processed. This means that the steady state of the system starts when 955
jobs have left the system (or completed a cycle in a closed network). Based
on the experiments we have conducted with different networks, the default
values we have currently assigned to these two variables are N = 100 and
xr = 6. Of course, these parameters can be easily configured by the user
(Figure 12).

We run independent simulations, each one being stopped when it reaches

28



SERVICE REQUESTS SERVERS

ServiceRequest  |owl, CPU ‘Server |CPU |

Utilization 0,47365 [Length queue | 162958

Throughput 47,46225

Waiting Time 0,00823 [server [oiska ]

Service Time 0,00992 [Length queue | 1,48269]

Residence Time 0,01815

served 38755 [server [oiske |
[Length queue | 2,36924|

ServiceRequest owl, DISKA

Utilization 0,41726| WORKLOADS

Throughput 20,76636

Waiting Time 0,01347 OpenWorkLoad|owl|

Service Time 0,02012| Response Time 1,37598

Residence Time 0,03359 Throughput 3,06168

Served 16850 Jobs Average 5,96572,

ServiceRequest  |owl, DISKB

Utilization 0,71737|
Throughput 23,83625
Waiting Time 0,07586
Service Time 0,03017|
Residence Time 0,10603
Served 19405

Figure 14: Results obtained for the QNM of Fig. 1(a)

its steady state as detected by the batch method. The performance values
returned by each simulation are the values of the attributes of the observers
defined for the model, at the end of the simulation. Given that we have
reached the steady state, the values are stable. To compute the final result
we take the average of these values, and the result is returned to the user.

When all the simulations have stopped and the performance results are
ready to be returned to the user, a final ATL transformation is applied to
the results. This transformation is shown between ovals 7 and 8 in Fig. 5. Its
goal is to return the data in a format that can be easily consulted, managed
and manipulated by the user. This is why we have chosen the csv (comma-
separated values) format, which is readable by most spreadsheet applications.
Figure 14 shows the results returned by our approach for our open queue
network example.

6.2. Simulation in other tools

Table 2 displays the relevant features of some packages and tools regarding
analysis and simulation of QNMs. For each one we explain how the perfor-
mance results are shown to the user, the stopping criteria used by the tool
(for tools that perform simulations) and the accuracy or confidence interval
of the results.

29



Table 2: Simulation features of some packages and tools for QN modeling and analysis

Tool Results presentation Stopping criteria Accuracy / Confidence

interval

RESQME Graphical and tabular re- Offers several methods to determine sim- User-defined confidence in-
sults, and animation of the wulation run lengths: simulated time, terval
original diagram number of departures from specified

queues or nodes, etc.

SHARPE Collection of visualization Steady state and transient computations User-defined precision
routines to analyze output level (number of digits).
results; results can be plot-
ted. Excel spreadsheets
can also be generated.

QNAP2 Screen textual output. Re- Users can simulate until some confidence User-defined confidence in-
sults can be saved in files interval is reached or a given simulation terval

time expires

QSIM Graphical interface Simulation length control Up to 95% confidence in-

terval

SPE-ED Graphical-interface Batch means, simulation length control, User-defined confidence in-

number of jobs

terval

PEPSY-QNS

Textual files

Offers several methods for identifying
steady states, including batch means

Some methods require
users to input the desired
accuracy

TANGRAM-  Textual files generated Offers several methods for identifying User-defined confidence in-
II during the simulation steady states, including batch means terval
PDQ Results shown textually, N/A (it only performs analysis) Up to six decimal digits of
by means C code (dis- precision
played in console or saved
into a file
MQNA Results are shown textu- Product-form QNs are solved ana- Up to 10 digits precision in
ally lytically, and non product-form QNs non-congested models
are solved outside MQNA (PEPS and
SMART use iterative methods)
WinPEPSY- Textual files Batch means Errors smaller than 0.15%
QNS compared to the exact so-
lution in several experi-
ments
JINQS Textual files Warm-up period specified by the user; User-defined confidence in-
there is no built-in mechanism for detect- terval
ing an approximate steady state
JMT Graphical interface. Re- Implements transient detection using the User-defined confidence in-
sults can be exported in Rb5 heuristic [53] and the MSER-5 [54] terval
XML format stationarity rule. Then it uses variable
batch sizes. It can also perform long-run
simulations for the case of models with
heavy-tail distributions
qnetworks Results returned as GNU Steady state and transient computations Exact results for product-
Octave vectors or matri- form QNs
ces, with values shown pro-
grammatically
xQNM Textual files (cvs format) Batch means or user-defined number of User defined confidence
jobs level

30



There are tools based on simulation that need to know when the steady
state of the simulation starts, i.e., the warm-up period must be specified by
the user and will typically be based on observations of pilots of the model.
An example of such tools is JINQS, where there is no built-in mechanism
for detecting when a simulation is close to a steady state. In this tool, when
the approximate warm-up period is known, the simulation method can be
optionally parameterized by this warm-up period.

Other tools implement some sophisticated methods to detect when the
steady state is reached. In this way, JMT implements transient detection
using the R5 heuristic [53] and the MSER-5 [54] stationarity rule. Then it
uses variable batch sizes and a fixed amount of memory until the confidence
intervals are generated with enough accuracy. It can also perform long-
run simulations for the case of models with heavily-tail distributions. Some
other tools also use the batch means methods, like TANGRAM-II [15], or
WinPEPSY-QNS [55], and so does ours.

Some tools offer different ways to determine the accuracy and confidence
level of the solution. For example, JINQS offers an optional parameter called
confidence interval. If none is supplied, a value of 0.05 is assumed. If the
logged measures are dependent and/or are not normally distributed, the
computed confidence interval will be inaccurate. If the replications are inde-
pendent, mean values will be approximately normal, but variances and other
measures may not be.

Normally, tools that carry out analytical methods offer a great accuracy.
This is the case of QNAP2 [9], which satisfies the confidence interval intro-
duced by the user; the PDQ Analyzer [56, 10], which offers up to six decimal
digits of precision; SHARPE [16, 57, 22|, whose output precision is deter-
mined by the option “Number of digits printed” in the output; or MQNA [58],
whose outputs have up to ten digits precision in non-congested models. As
explained in the previous section, our tool uses the batch means method in
each replication. Simulations start with a very small batch size and then
they increment it until the variance of the batch means goes below 107°.

Results are presented in very different ways depending on the tool. Many
tools display the results in plain text following some template, like QNAP2,
TANGRAM-II, JINQS, PDQ and MQNA. Others are provided with a graph-
ical user interface, which shows the results (SHARPE, JMT and WinPEPSY-
QNS). RESQME [12, 59, 60] is even capable of animating the models as the
discrete event simulations progress. Our tool outputs the results in a textual
format readable by spreadsheet applications (csv format, Figure 14).

31



Table 3: Analysis comparison. RP: Routing Probabilities, NV: Number of Visits

Tool Utilization | Throughput | Wait T. | Serv T. | Res T. | Queue L.
PDQ (RP) 0.09 03.0 0.003 0.03 0.0330 0.099
PDQ (NV) 0.72 24.0 0.056 0.03 0.0857 2.571

PEPSY (RP) 0.72 24.0 0.077 0.03 0.107 1.851
PEPSY (NV) 0.72 24.0 0.077 0.03 0.107 1.851
JMT (RP) 0.69 23.4 0.158 0.03 0.187 2.597
xQNM (RP) 0.72 23.8 0.076 0.03 0.106 2.869
Theoretical 0.72 24.0 0.077 0.03 0.107 2.571

Regarding the time that these packages and tools take to get the per-
formance metrics, analytical methods are of course much faster than simu-
lations. For example, QNAP2, PDQ, SHARPE, gnetworks or MQNA take
less than a few seconds to obtain the results. On the contrary, RESQME;,
PEPSY-QNS and WinPEPSY-QNS may take from some minutes up to sev-
eral hours to obtain the results, depending on the complexity of the input
model. Our tool also uses simulation, and thus it may take from a few seconds
to several hours depending on the size of the model.

6.3. Analysis comparison among tools

Once we have shown simulation and analysis features of some tools, in this
section we run our case study in some of them to see the differences between
them and our tool. The queuing network model is that of Figure 1(a). In
this analysis comparison, we are going to focus on the performance measures
obtained for DISK B.

For the analysis comparison, we have used WEASEL [28] and JMT [20].
WEASEL is based on PMIF and, consequently, the available elements to be
drawn and the configuration parameters for those elements are very similar
to those in xQNM. On the other hand, JMT is much more powerful in terms
of available elements and configuration parameters; it offers the possibility to
include in the model many elements not specified in PMIF: forks, joins, de-
lays, routing stations, etc. The configuration parameters for the elements are
also much larger: different load strategies for servers, many routing strate-
gies available, etc. Since we are only dealing with the PMIF capabilities, we
only use a small subset of JMT. The results for each tool run are shown in
Table 3. The references used to compare the results of the different runs to
check their accuracy were the theoretical results available in Jain’s book [41].

32



In the table, RP stands for routing probabilities and NV for number of
wisits. These correspond with the routing criteria followed in the runs. The
PDQ Analyzer, executed by means of WEASEL, does not accept routing
probabilities. Thus, when we run the experiment with routing probabilities
(because it is possible to define routing probabilities with the graphical user
interface of WEASEL, independently of the tool used afterwards to solve the
models), the results were erroneous. This is because it only considers number
of visits, so it considered that the number of visits in every server was 1.
We then changed the criteria to number of visits, and the results were all
the same as the reference apart from the waiting and residence times, which
significantly differed. WEASEL offers the possibility to solve the models with
PDQ using exact solutions, approximate solutions and canonical solutions.
Our experiment was run with the canonical solution because the other two
do not accept open networks.

The results with PEPSY-QNS [61] were also obtained by means of WEASEL.
PEPSY-QNS offers different solving methods in WEASEL, and we used
sopenpfn. We run the experiment with both number of visits and routing
probabilities and they were the same, so this tool is capable of dealing with
both. All the measures obtained with this tool coincided with the reference
except for the queue length, which was smaller.

In WEASEL, it is not possible to specify the performance metrics to be
monitored. JMT accepts probabilities as routing strategy, apart from ran-
dom, round robin, join the shortest queue, shortest R time, least utilization
and fastest service. The output presented by the JMT tool is very intuitive,
complete and easily readable. It offers statistics, including a chart, for each
metric of each server. Furthermore, the user can specify which metrics he/she
wants to monitor for which server.

The penultimate row of the table contains the results obtained with
xQNM. The accuracy of the results is very good, which shows that the be-
havioral model that defines for QNM is faithful and accurate.

6.4. Considering failures

Once we have modeled the behavior of QNMs and are able to analyze
their performance metrics, we are interested in extending their behavior in
order to consider more realistic situations. In this regard, we want to take
into account failures and repairs in networks’ servers, as they happen in real
life. Thus, after starting all the servers operative, they can fail at some point
and be inactive for a while before they are repaired and back to service. We

33



Failure
T in [duration,duration]

LHS 2] RHS

H server

T guantity : EInt
T schedPol : SchedulingPolicy
= failureDistr : ProbDistributions

&% failureParams : EDouble
= repairDistr: ProbDistributions active = true active = false
&% repairParams : EDouble failureDistr = "Gamma’
= active : EBoolean

|V duration : Int = eMoticns.gammaDistr(s. failureParams- > first(), s.failureParams- »last Hl

(a) New Server class (b) Failure rule
Repair
T in [duration,duration]
LHS 21 RHS
s s s
active = true active = falze active = true
- repairDistr = 'Exponential’
|V duration : Int = eMotions. expDistr(1/s.repairParams- >fir5t[)]

(c) Server in TransitJobsnT’s LHS (d) Repair rule

Figure 15: Extensions for considering failures.

have to consider times to failure and times to repair. These are normally
modeled with exponential distributions [32], so that analytical calculations
are possible. However, since we can include many probabilistic distributions
to model this behavior, the modeler can choose any of them.

In order to extend the behavior of our DSL for modeling and analyzing
QNMs with failures, we simply need to do two things: extend the ePMIF
metamodel and add a couple of very simple behavioral rules. Only the Server
class needs to be extended in order to include rates for failures and repairs
in servers (Fig. 15(a)). The new attribute active is true whenever the server
is operating, and false when it is not. Attributes failureDistr and repairDistr
dictate the distribution followed by the time failures and repairs happen,
respectively, while attributes failureParams and repairParams contain the pa-

34



rameters of such distributions.

Rule Failure (Fig. 15(b)) models the failure of a server. It is the only
rule that needs to be added for modeling such failures. In this case, the
distribution followed by the time to failure is Gamma. It can follow any
distribution in the ProbDistributions enumeration type (Fig. 4). In the rule’s
RHS the active attribute is turned to false, modeling the inactivity of the
server. A slight modification needs to be carried out in the LHS of rule
TransitJobsnT (Fig. 11) to launch it only if the server s is active (Fig. 15(c)).
A similar rule is included for repairing a server, which takes a server which is
inactive and activates it. Such rule is shown in Fig. 15(d), where it considers
a repair rate that follows an Exponential distribution.

We have included these modifications and have carried out some exper-
iments. We have made the times to failure and repair follow exponential
distributions with rates 10 and 5, respectively. In general, jobs take longer
in being processed and leaving the system, since they may need to wait in
queues whose server is inactive, and have to wait until it is repaired. Fur-
thermore, for the same arrival and services times of our case study [41, page
572], the network does not satisfy Little’s Law anymore, so analytical calcu-
lation becomes very hard and complex. The reason is that this example was
created so that Little’s Law was satisfied for the arrival and service times
established, and considering that servers never fail. This is, the number of
incoming and outgoing jobs per time unit (throughput) with the servers be-
ing active all the time was the same, 3, once the steady state was reached.
However, since Little’s Law is no longer satisfied in this example when server
failures are taken into account, no steady state is reached, and the perfor-
mance measures for our network depend now on the number of incoming
jobs. Simulation becomes crucial in this case. Thus, we have carried out an
experiment where 100 jobs enter (and leave after being processed) the net-
work, and have checked that the performance measures significantly change,
even for such a small number of jobs. The throughput value is now 2.22, and
it will decrease as the number of incoming jobs increases due to contention
in queues. The theoretical response time for the network without failures is
1.41, while the new response time considering failures is 2.33.

Although in the example we have considered the same failure and repair
rates for every server, each one could have been modeled to have different
rates, since every server can have its own characteristics (as it happens in
reality). Similarly, different probabilistic distributions can be used and more
realistic values for failure and repair times could also be set. This flexibility

35



is one of the benefits that can be obtained by the use of appropriate DSLs
for modeling complex systems.

7. Conclusions and Future Work

In this paper we have surveyed several tools for analyzing QNMs. We have
shown how QNMs can be interpreted in another modeling domain, in this
case the one provided by e-Motions for specifying and simulating real-time
systems. Having a representation of QN models in that domain has allowed
the easy definition of a DSL for the specification and simulation of general
QNMs, and the use of the tools available in that domain. In particular, our
proposal has provided several interesting advantages and results.

First, a generic behavioral model for QNMs has been defined by means
of six e-Motions rules. They provide a behavioral semantics for QNMs, ex-
pressed in a high-level language with precise semantics and execution facili-
ties. Such behavioral model has been easily extended with two more rules in
order to model failures and repairs in servers, which allows to analyze more
realistic situations. This also shows how simple and flexible the behavioral
model of the QNM can be changed when it is defined by means of a DSL,
incorporating new features by simply adjusting some high-level rules.

Second, we have obtained a prototype tool that allows to draw QNMs,
automatically translate them to their behavioral representation and finally
simulate them. Models can be depicted graphically in xQNM, and they can
be exported to PMIF 2 and ePMIF models. PMIF 2 models can also be
imported to our tool in order to simulate them or to represent them graphi-
cally. The tool, together with a set of examples, is available from [62]. The
use of MDE techniques has enabled a modular architecture, which can be
easily maintained and extended in future versions, since each of its parts can
be independently improved. We have also shown how the existing de-facto
standard metamodel for QNM representation and interchange can be incor-
porated into the MDE domain, and easily extended to take into consideration
more powerful and flexible possibilities and system properties.

As future work, some new features could be added in new versions of
xQNM. For example, it could return, as result, not the average of the dif-
ferent simulations, but a mixture of probability distributions (in case the
behavior of the system is composed of several independent behaviors). We
also plan on automatically distributing the simulations across several ma-
chines, by means of a concurrent and distributed solution that would use a

36



task farm approach [63], so that results would be collected faster. We are
also considering to extend the behavior of our generic behavioral model for
QNMs. For example, since we now take failures in servers into account, we
could include some rules for re-adapting the network when jobs are waiting
in queues whose server is inactive.

Acknowledgements. This work has been supported by Spanish Re-

search Project TIN2011-23795.

References

1]

2]

P. J. Denning, J. P. Buzen, The Operational Analysis of Queueing Net-
work Models, ACM Comput. Surv. 10 (1978) 225-261.

Smith, Connie U. and Lladé, Catalina M. and Puigjaner, Ramon, Perfor-
mance Model Interchange Format (PMIF 2): A comprehensive approach
to Queueing Network Model interoperability, Performance Evaluation
67 (7) (2010) 548-568.

T. Stahl, M. Volter, Model-Driven Software Development: Technology,
Engineering, Management, Wiley, 2006.

Eclipse, Graphical Modeling Framework, http://www.eclipse.org/
modeling/gmf (2008).

D. Djuric, D. Gasevic, S. Fraser, V. Devedzic, The tao of modeling
spaces, Journal of Object Technology 5 (2006) 125-147.

J. E. Rivera, F. Duran, A. Vallecillo, A Graphical Approach for Modeling
Time-Dependent Behavior of DSLs, in: Proc. of VL/HCC’09, 2009.

Atenea, The e-Motions tool, http://atenea.lcc.uma.es/E-motions
(2009).

E. D. Lazowska, J. Zahorjan, G. S. Graham, K. C. Sevcik, Quantita-
tive System Performance: Computer System Analysis Using Queueing
Network Models, Prentice-Hall, Inc., 1984.

M. Veran, D. Potier, QNAP2: A portable environment for queueing
system modelling, in: D. Potier (Ed.), Proc. of the International Con-
ference on Modelling Techniques and Tools for Performance Analysis,
2004, pp. H-24.

37



[10]

[11]
[12]

[13]
[14]

[15]

[16]

[17]

[18]

N. J. Gunther, Analyzing Computer System Performance with
Perl::PDQ, Springer, 2005.

LS Computer Technology Inc., SPE-ED, http://www.spe-ed.com (2010).

K. C. Chang, R. F. Gordon, P. G. Loewner, E. A. MacNair, The Re-
search Queuing Package Modeling Environment (RESQME), in: Proc.
of the 25th conference on Winter simulation (WSC’93), ACM, 1993, pp.
294-302.

BGS Systems, BEST/1 Product Description, BE77-010-2 (Jan. 1977).

H. Schwetman, CSIM: a C-based process-oriented simulation language,
in: Proc. of the 18th conference on Winter simulation (WSC’86), ACM,
1986, pp. 387-396.

E. de Souza e Silva, R. Leo, The TANGRAM-II Environment, in: Com-
puter Performance Evaluation. Modelling Techniques and Tools, Vol.
1786 of LNCS, Springer, 2000, pp. 366-369.

C. Hirel, R. A. Sahner, X. Zang, K. S. Trivedi, Reliability and Per-
formability Modeling Using SHARPE 2000, in: Proc. of the 11th Inter-
national Conference on Computer Performance Evaluation: Modelling
Techniques and Tools, TOOLS’00, Springer, London, UK, 2000, pp.
345-349.

T. Field, JINQS: An Extensible Library for Simulating Multiclass
Queuing Networks V1.0 User Guide, www.doc.ic.ac.uk/~ajf/Research/
manual.pdf (october 2010).

T.-C. Horng, N. Anastasiou, T. Field, W. Knottenbelt, LocTrackJINQS:
An Extensible Location-aware Simulation Tool for Multiclass Queueing
Networks, Electronic Notes in Theoretical Computer Science 275 (2011)
93 — 104.

M. Marzolla, The gnetworks Toolbox: A Software Package for Queueing
Networks Analysis, in: Proc. of Analytical and Stochastic Modeling
Techniques and Applications (ASMTA’10), Vol. 6148 of LNCS, Springer,
2010, pp. 102-116.

38



[20]

28]

[29]

M. Bertoli, G. Casale, G. Serazzi, JMT: performance engineering tools
for system modeling, SIGMETRICS Perform. Eval. Rev. 36 (4) (2009)
10-15.

M. Hlynka, List of Queueing Theory Software, http://web2.uwindsor.
ca/math/hlynka/qgsoft.html (2011).

R. A. Sahner, K. S. Trivedi, Reliability Modeling Using SHARPE, IEEE
Transactions on Reliability R-36 (2) (1987) 186-193.

A. Feldmann, W. Whitt, Fitting mixtures of exponentials to long-tail
distributions to analyze network performance models, in: Proc. of IN-

FOCOM’97, Vol. 3, 1997, pp. 1096-1104.

Smith, Connie U. and Llad6, Catalina M., Performance Model Inter-
change Format (PMIF 2.0): XML Definition and Implementation, in:
Proc. of the First International Conference on Quantitative Evaluation
of Systems, 2004, pp. 38-47.

D. Garcia, C. M. Lladé, C. U. Smith, R. Puigjaner, Performance Model
Interchange Format: Semantic Validation, in: Proc. of ICSEA’06, 2006,
pp. 47-52.

C. U. Smith, L. G. Williams, A performance model interchange format,
Journal of Systems and Software 49 (1) (1999) 63-80.

P. Wiichner, H. de Meer, J. Barner, G. Bolch, A brief introduction to
MOSEL-2, in: Proc. of the 13th GI/ITG Conference on Measuring,

Modelling and Evaluation of Computer and Communication Systems,
MMB, VDE Verlag, Niirnberg, Germany, 2006, pp. 469-472.

SEALAB Quality Group, WEASEL, http://sealabtools.di.univagq.
it/toolWeasel.php (2012).

D. Gianni, A. D’Ambrogio, A language to enable distributed simulation
of extended queueing networks, Journal of Computers 2 (4) (2007) 76—
86.

O. Das, C. Murray Woodside, The fault-tolerant layered queueing net-
work model for performability of distributed systems, in: Computer Per-
formance and Dependability Symposium, 1998. IPDS ’98. Proceedings.
IEEE International, 1998, pp. 132 —141.

39



[31]

[32]

33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

T. Altiok, Performance Analysis of Manufacturing Systems, Springer,
1997.

S. Kumar, P. Kumar, Performance bounds for queueing networks and
scheduling policies, Automatic Control, IEEE Transactions on 39 (8)
(1994) 1600 —1611.

M. K. Govil, M. C. Fu, Queueing theory in manufacturing: A survey,
Journal of Manufacturing Systems 18 (3) (1999) 214 — 240.

J. Keilsen, Queues Subject to Service Interruptions, Annals of Mathe-
matical Statistics 33 (1962) 1314-1322.

A. Federgruen, L. Green, Queueing systems with service interruptions,
Oper. Res. 34 (5) (1986) 752-768.

T. Altiok, Queueing Models of a Single Processor with Failures, Perfor-
mance Evaluation 9 (1989) 93-102.

C. U. Smith, Performance engineering of software systems, Addison-
Wesley, 1990.

C. Smith, C. Llado, Performance model interchange format (pmif 2.0):
XML definition and implementation, www.perfeng.com/paperndx.htm
(Apr. 2004).

J. Rossell6, C. M. Lladé, R. Puigjaner, C. U. Smith, A web service for
solving queuing network models using PMIF, in: Proc. of WOSP’05,
ACM, 2005, pp. 187-192.

F. Budinsky, E. Merks, D. Steinberg, EMF: Eclipse Modeling Frame-
work (2nd Edition), Addison-Wesley Longman, Amsterdam, 2006.

R. Jain, The Art of Computer Systems Performance Analysis: tech-
niques for experimental design, measurement, simulation, and modeling,
Wiley, 1991.

R. Gronback, Introduction to the Eclipse Graphical Modeling Frame-
work, in: Proc. of EclipseCon’06, 2006.

40



[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

K. Czarnecki, S. Helsen, Classification of Model Transformation Ap-
proaches, in: OOPSLA’03 Workshop on Generative Techniques in the
Context of MDA, 2003.

J. E. Rivera, A. Vallecillo, F. Duran, Formal Specification and Analysis
of Domain Specific Languages using Maude, Simulation: Transactions of
the Society for Modeling and Simulation International 85 (11/12) (2009)
778-792.

J. de Lara, H. Vangheluwe, Translating Model Simulators to Analysis
Models, in: Proc. of FASE’08, no. 4961 in LNCS, Springer, 2008, pp.
77-92.

G. Rozenberg (Ed.), Handbook of Graph Grammars and Computing by
Graph Transformations, Volume 1: Foundations, World Scientific, 1997.

OMG, Object Constraint Language (OCL) Specification. Version 2.2,
Object Management Group, document formal/2010-02-01 (Feb. 2010).

M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer,
C. Talcott, All About Maude — A High-Performance Logical Framework,
Vol. 4350 of LNCS, Springer, Heidelberg, Germany, 2007.

J. Troya, J. E. Rivera, A. Vallecillo, Simulating Domain Specific Visual
Models by Observation, in: Proc. of the 2010 Spring Simulation Multi-
conference, SpringSim’10, ACM, New York, NY, 2010, pp. 128:1-8.

J. Troya, A. Vallecillo, F. Duran, S. Zschaler, Model-driven performance
analysis of rule-based domain specific visual models, Information and
Software Technology 55 (1) (2013) 88-110.

J. Troya, A. Vallecillo, Behavioral Approach for QNMs, http://atenea.
lcc.uma.es/index.php/Main_Page/Resources/E-motions/QNMs (2011).

J. E. Rivera, F. Duran, A. Vallecillo, On the behavioral semantics of
real-time domain specific visual languages, in: Proc. WRLA’10, Vol.
6381 of LNCS, Springer, 2010, pp. 174-190.

G. Fishman, Statistical analysis for queuing simulations, Management
Science 3 (20) (1973) 363-369.

41



[54]

[55]

[56]

[57]

K. P. White, Jr., M. J. Cobb, S. C. Spratt, A comparison of five
steady-state truncation heuristics for simulation, in: Proc. of the 32nd
conference on Winter simulation (WSC’00), 2000, pp. 755-760, http:
//dl.acm.org/citation.cfm?id=510378.510486.

P. Bazan, R. German, Approximate transient analysis of large stochastic
models with WinPEPSY-QNS, Computer Networks 53 (8) (2009) 1289-1301.

N. J. Gunther, PDQ, http://www.perfdynamics.com/Tools/PDQ.html
(2009).

K. S. Trivedi, SHARPE 2002: Symbolic Hierarchical Automated Reliabil-
ity and Performance Evaluator, in: International Conference on Dependable
Systems and Networks (DSN), Bethesda, MD, USA, 2002, p. 544.

L. Brenner, P. Fernandes, A. Sales, MQNA - Markovian Queueing Networks
Analyser, in: Proc. of MASCOTS’03, Orlando, FL, 2003, pp. 194-199.

E. A. MacNair, R. F. Gordon, An introduction to the RESearch Queueing
Package for modeling contention systems, SIGSIM Simul. Dig. 24 (1994) 40—
70.

A. Aggarwal, K. J. Gordon, J. F. Kurose, R. F. Gordon, E. A. MacNair, An-
imating simulations in RESQME, in: Proc. of the 21st conference on Winter
simulation (WSC’89), ACM, 1989, pp. 612-620.

G. Bolch, M. Kirschnick, The Performance Evaluation and Prediction SYstem
for Queueing NetworkS - PEPSY-QNS, Tech. Rep. TR-14-94-18, University
of Erlangen-Nuremberg, Germany (Jun. 1994).

J. Troya, A. Vallecillo, xQNM: A domain-specific language to specify and
simulate queuing network models, http://atenea.lcc.uma.es/index.php/
Main_Page/Resources/xQNM (2012).

M. Danelutto, Task farm computations in Java, in: Proc. of the 8th Interna-
tional Conference on High-Performance Computing and Networking (HPCN
Europe 2000), Vol. 1823 of LNCS, Springer, London, UK, 2000, pp. 385-394.

42



Javier Troya is a PhD student at the Department of Com-
putper Science at the University of Malaga, where he re-
ceived a MSc Degree in Computer Science in 2009. His
research interests include Model-Driven Software Develop-
ment and its industrial applications, as well as the formal
semantics of model transformation languages. For further
information, please visit http://www.lcc.uma.es/~jtc or
contact him at javiertc@lcc.uma.es.

Antonio Vallecillo is Professor of Computer Science at the
University of Malaga. His research interests include Open
Distributed Processing, Model-Based Engineering, Compo-
nentware, Software Quality, and the industrial use of for-
mal methods. For further information about his research
projects and publications, please visit http://www.lcc.uma.
es/~av or contact him at av@lcc.uma.es.

43





