
�������� ��	
�����

Tracing Conceptual Models Evolution in Data Warehouses by using the Model
Driven Architecture

Alejandro Maté, Juan Trujillo

PII: S0920-5489(14)00007-5
DOI: doi: 10.1016/j.csi.2014.01.004
Reference: CSI 2958

To appear in: Computer Standards & Interfaces

Received date: 8 May 2013
Revised date: 7 December 2013
Accepted date: 2 January 2014

Please cite this article as: Alejandro Maté, Juan Trujillo, Tracing Conceptual Models
Evolution in Data Warehouses by using the Model Driven Architecture, Computer Stan-
dards & Interfaces (2014), doi: 10.1016/j.csi.2014.01.004

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

http://dx.doi.org/10.1016/j.csi.2014.01.004
http://dx.doi.org/10.1016/j.csi.2014.01.004


AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Tracing Conceptual Models Evolution in Data

Warehouses by using the Model Driven Architecture

Alejandro Matéa,∗, Juan Trujilloa

aLucentia Research Group, Department of Software and Computing Systems, University of
Alicante, Carretera San Vicente del Raspeig s/n - 03690 San Vicente del Raspeig -

Alicante, Spain

Abstract

Developing a data warehouse is an ongoing task where new requirements are
constantly being added. A widely accepted approach for developing data ware-
houses is the hybrid approach, where requirements and data sources must be
accommodated to a reconciliated data warehouse model. During this process,
relationships between conceptual elements specified by user requirements and
those supplied by the data sources are lost, since no traceability mechanisms are
included. As a result, the designer wastes additional time and effort to update
the data warehouse whenever user requirements or data sources change. In this
paper, we propose an approach to preserve traceability at conceptual level for
data warehouses. Our approach includes a set of traces and their formalization,
in order to relate the multidimensional elements specified by user requirements
with the concepts extracted from data sources. Therefore, we can easily iden-
tify how changes should be incorporated into the data warehouse, and derive it
according to the new configuration. In order to minimize the effort required,
we define a set of general Query/View/Transformation rules to automate the
derivation of traces along with data warehouse elements. Finally, we describe
a CASE tool that supports our approach and provide a detailed case study to
show the applicability of the proposal.

Keywords: Data warehouses, traceability, conceptual models, business
intelligence, MDD, MDA, QVT

1. Introduction

Developing a data warehouse (DW) is an ongoing task where new require-
ments are constantly being added. Either as a result of the dynamic envi-
ronment, or due to new sources of information becoming available (i.e. social
media), decision makers constantly pose new requirements and questions which

∗Corresponding author. Tel: +34 96 5909581 ext. 2737; fax: +34 96 5909326
Email addresses: amate@dlsi.ua.es (Alejandro Maté), jtrujillo@dlsi.ua.es (Juan

Trujillo)

Preprint submitted to Elsevier December 7, 2013



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

need to be answered by analyzing information. This information is integrated
from several heterogeneous sources. Then, it is structured in terms of facts and
dimensions in the DW [1]. Therefore, the development of the DW is a continu-
ous and complex process that must be carefully planned in order to meet user
needs and incorporate new requirements. To this aim, three different develop-
ment approaches have been proposed: bottom-up or supply-driven, top-down
or demand-driven, and hybrid [2, 3].

The first two approaches ignore one source of information until the end of
the process, either requirements or data sources. This lack of information leads
to failure in some DW projects [2, 4] since they either (i) ignore user needs or
(ii) assume that all the necessary data is available, which is not always the case.
On the other hand, the hybrid approach makes use of both data sources and
user requirements [3], solving incompatibilities by accommodating both require-
ments and data sources in a single conceptual model before implementing the
DW. Nevertheless, the current accommodation process is performed much like
a schema redesign process: successive modifications are made to the schema,
removing, renaming, and adding new elements according to the designer’s expe-
rience. In turn, the resulting DW schema may neither match the data sources
in structure nor in naming conventions. As a result, existing traceability by
name matching is lost. Therefore, these correspondences must be identified
again when (i) validating and reviewing old requirements, (ii) posing new re-
quirements, or (iii) modifying data sources, all of which are error prone tasks.
Consequently, time and resources required are increased while the quality of the
final product is decreased [5].

In our previous works [6, 3, 7, 8], we defined a hybrid DW development ap-
proach in the context of the Model Driven Architecture (MDA) framework [9].
The idiosyncrasy of DW development favors our approach. In DW development,
data sources act as both a source of additional information as well as a limit-
ing factor. In order to implement a requirement in the final DW, the required
information must be present in the data sources, either directly or by deriving
it. Therefore, we can clearly identify the desired structure of the DW (require-
ments), and what information is supplied (data sources). The final step in this
process is to adequately relate this information in order to easily trace and incor-
porate changes, instead of arbitrarily mixing the schema, and making it difficult
to perform further analysis tasks. Additionally, unlike in software development,
the reconciling process may find elements not present in the requirements model
(due to an oversight) that provide relevant information for decision makers [8].
Thus, it is interesting to trace elements present in the data sources that do not
have a requirement counterpart, but are present in the implementation of the
DW, since they help to elicitate overlooked user requirements.

The automatic derivation is done by means of model to model transforma-
tions specified by Query/View/Transformation (QVT) [10] rules. QVT is a
language defined by the Object Management Group (OMG) and proposed as
a standard to create model to model transformations. This language can be
used to create both DW models as well as trace models. However, due to our
experience, the reconciliation task can only be done at most semi-automatically,

2



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Figure 1: Overview of the approach

since there is not enough information available to fully automate it. The set of
trace models employed in our approach are shown in Figure 1, and are further
detailed in Section 3.

In the short version of this paper [11] we developed a set of traces for preserv-
ing the traceability of requirements at conceptual level. Now, in this extended
version, we (i) provide a deeper review of the related work describing details of
the existing traceability approaches, (ii) provide a formal definition of our traces,
(iii) generalize a set of QVT transformations which allow us to derive the data
warehouse from any trace configuration specified, and (iv) provide an extended
case study which tests and shows better the application of the proposal.

The remainder of this paper is structured as follows. Section 2 presents
related work about traceability and DWs. Section 3 introduces the necessary
trace semantics in order to include traceability at the conceptual level in DWs.
Section 4 presents a set of QVT rules for automatic derivation of traces. Section
5 presents a case study to show the applicability of our proposal. Finally, Section
6 outlines the conclusions and further work to be done.

2. Related Work

In this section, we will discuss existing traceability research, its benefits and
problems, and its current status in the DW field. Traditionally, traceability has
been focused on requirements. Either coming from the traditional Requirements
Engineering (RE) [12, 13, 14, 15] or following a Model Driven Development

3



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

(MDD) approach [16, 17, 18], requirements are traced to their lower abstraction
level counterparts. Therefore, traceability helps assessing the impact of changes
in requirements and in rationale comprehension, by identifying which parts of
the implementation belong to each requirement [19]. Additionally, it also im-
proves reusability and maintainability [13]. However, the lack of standardization
makes it difficult to apply traceability to projects, since even the basic concepts
differ from author to author [16, 18]. Therefore, there is a special interest on
automating traces and providing a framework with a set of basic concepts that
can be extended.

In order to provide some degree of automation, recent works record the
relationships between elements by following two different approaches. First,
generating traces from already existing information. An advanced example is
presented in [20], where the authors combine topic modeling with prospective
traceability as the user interacts with the system. Second, making use of the
logic behind automatic transformations. In this second approach, the transfor-
mation logic generates a set of traces in addition to the new version of a model.
Traces record the relationships between elements in the source and target mod-
els, and can be analyzed in by means of algorithms that take into account their
semantics. The former approach can be applied whenever a user interacts with
an artifact, minimizing the necessity of manually adding traces. The latter can
only be applied when models are automatically transformed. However, whereas
the first approach may generate some incorrect traces, the second solution is is
based on transformation logic, thus being less error prone.

Nevertheless, tracing the counterparts of a requirement at conceptual level
is not always straight-forward, even when following a MDD approach and ex-
ploiting transformation logic. Elements are refined by the developer before be-
ing transformed into the next model, altering their characteristics or even their
structure. This process is repeated until the final version is obtained. Therefore,
in order to maintain traceability between models, the result of these operations
must be traceable.

In DW development, the different steps can be clearly identified as the DW
schema evolves through several conceptual models. However, the differences in
the language used by decision makers, and the language used by IT, makes it
difficult to reconciliate data sources and the target DW schema. This commu-
nication problem is analyzed in [21], where the authors propose to tackle this
problem by means of ontologies to improve the communication between parties.
A combination of ontologies and traceability could help to produce a seam-
lessly integration new data sources and changes into the DW. Thus, in order
to validate requirements and support incremental changes, we require to trace
the representation of an element from one model to its counterpart in the next
model.

In order to tackle this problem, different works from the RE [12, 13] and
the MDD communities [17, 18] have included traceability in software develop-
ment processes. However, aside from our previous contribution in [22], where we
defined a trace metamodel for tracing requirements to multidimensional struc-
tures, the traceability aspect has been overlooked in DW development. Some

4



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

works mention the existence of mappings between the models involved in DW
development [2, 23], but they are not formally introduced nor include any spe-
cific semantics. Others rely on name matching to preserve implicit traceability,
which cannot be applied if naming conventions and structures differ [3]. Finally,
some works related to DW lineage exist, such as [24]. Although similar, these
works are mainly aimed to trace instances of data by means of queries. This
characteristic provides a powerful tool to inspect the source of data being ana-
lyzed. Nevertheless, they do not provide support for modeling and provide an
overall view of the DW reconciliation process.

Our approach, presented in [3], applies MDD and is able to generate traces by
exploiting transformation logic. While our approach applies a specific frame-
work for DW development (MDA [9]), other development approaches [2, 23]
make use of very similar layers, combined with his own conceptual representa-
tion [25, 26, 6] for modeling DWs. By generating traces between conceptual
models, we are able to trace the different versions of an element, providing sup-
port for requirements validation, impact change and automated analysis, while
minimizing the existing drawbacks in traceability.

Furthermore, by using MDA, we cut development time, as shown in [27, 28],
where the authors define an approach to derive a Temporal DW and allow users
to generate analysis queries using a visual language. Since transformations from
the top layer to the final implementation are performed in a semi-automatic way,
the time and effort required for the development process are reduced.

In our approach, requirements are specified in a Computation Independent
Model (CIM). Then, they are automatically derived into a conceptual model
[6] at the Platform Independent Model (PIM) layer. This initial PIM model
records the conceptual elements specified by requirements. In order to keep this
model clean for further analysis, a hybrid PIM is derived by including informa-
tion coming from the data sources, obtained by means of reverse engineering
[29]. Afterwards, desired elements are marked and derived into the final PIM,
which conceptually represents the implementation of the DW. This way, the
hybrid model can be marked with multiple configurations, allowing us to derive
alternative implementations of the DW.

Summarizing, in order to maintain accurate information about the impli-
cations of each requirement and data source in the DW schema, all elements
must be traced along the successive refinements performed at the PIM layer.
Therefore, traces must maintain the semantics of their relationships, allowing
us to support automated analysis.

3. Traceability through Conceptual Models for Data Warehouses

As aforementioned, we need to be able to trace information from both re-
quirements and data sources up to the final conceptual model in order to support
incremental changes and analysis tasks. In this section, we will first introduce
our trace metamodel that provides the basic concepts used for tracing elements
along the PIM models. Then, we will motivate and introduce the relationships

5



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

in the hybrid PIM model, which are specially relevant to connect elements spec-
ified by user requirements with reverse engineered elements obtained from data
sources.

3.1. The Trace Metamodel

In order to trace conceptual elements up to the final PIM we require to
include different semantics. These semantics will allow us to differentiate the
relationships between elements, and to support further automatic operations.
To this aim, we extended the metamodel proposed in the Atlas Model Weaver
(AMW) [30]. The resulting trace metamodel, presented in Figure 2, includes
six different semantic types to cover the steps involved in a DW development
process:

First, Satisfiability links capture the relationships between elements in the
user requirements model and conceptual elements [22]. These links allow us to
trace each requirement to its multidimensional counterparts, identifying what
elements support multiple requirements, and what elements are affected when
user requirements evolve.

Second, Derived from links capture the relationships between the data sources
schema and the reverse engineered conceptual elements. These links are modeled
following a similar approach as in [22] but focusing on the reverse engineering
logic instead. As in the case of Satisfiability links, these links are out of the
scope of this paper.

Third, the set of Evolution, Overlap, Conflict and Rationalization, are em-
ployed to trace elements as they evolve through the PIM layer. These semantic
links are the focus of this paper and are formalized in Section 3.3:

• Evolution links are included to handle traceability of element changes
within the same layer. These links track the different versions of an el-
ement at each PIM model. Evolution links serve as a way to navigate
between models, allowing us to identify the refinements to DW elements.
For example, a hierarchy level specified by requirements may have its name
changed or be enriched with attributes coming from existing reports. Each
element traced by an Evolution link is considered to represent the very
same concept in different stages of the development process.

• Overlap and Conflict links relate elements obtained from requirements
with those reverse engineered from data sources. We can differentiate
between three possible situations during this process. First, the neces-
sary information for an element obtained from requirements may not be
available. In this case the element will not be related to any other ele-
ment. Second, the necessary information may be available, requiring only
a cleaning process in order to load it into the DW. In this case, elements
will be related by means of Overlap links. Third, the necessary informa-
tion may be available, but it may be necessary to transform its structure.
In this case, elements will be related by means of Conflict links. These
links are crucial for enabling traceability support, as they allow us to

6



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Figure 2: AMW Metamodel for traceability extended with semantic links for DWs

merge elements coming from data sources and requirements, and record
the semantic of their relationship.

• Rationalization links are included as means of enabling the user to
record his decisions, as well as to provide reconciliated solutions for exist-
ing conflicts.

3.2. Trace Models in Data Warehouses

The previously defined trace types are recorded in different trace models
included in our proposal, as shown in Figure 1.

The first trace model, “a”, shown in Figure 1, connects the initial PIM to
the hybrid PIM in a straight-forward way by means of Evolution traces. The
initial PIM is maintained as a clean source for transformations that combine
elements from data sources and elements specified by user requirements. This
model is included in order to support automatic operations which require to
trace information related to requirements.

After we have derived the initial PIM, we proceed to create a hybrid PIM.
First, we obtain a Platform Specific Model (PSM) from the data sources by
means of reverse engineering. The resulting model is compliant with the Com-
mon Warehouse Metamodel (CWM) specification [31]. This allows us to provide
a unified set of constructs for model transformations that generate multidimen-
sional elements [29]. These transformations allow us to further abstract the
CWM model into the conceptual level, thus hiding the complexities of the PSM

7



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Layer that are not relevant for the designer at this point, such as how informa-
tion is organized across tables.

As a result we obtain a hybrid PIM, characterized by capturing different
versions of the same concepts simultaneously. On the one hand, elements com-
ing from the initial PIM present the structure of the DW according to users’
expectations. On the other hand, elements transformed from the PSM model
present the data “as-is” in the data sources. Afterwards, the developer recon-
ciles both versions by means of traces recorded in trace model “b” (see Section
3.3). Then, the developer marks what elements he wishes to include in the final
PIM.

The derivation process generates a set of evolution traces that are recorded
in trace model “c”. These evolution traces record what elements were chosen
by the developer to be part of the final PIM. This allows us to trace back to
requirements and data sources the elements included in the DW. The exact
set of traces generated will vary depending on the relationships specified in
trace model “b”. Therefore, some of the traces in trace model “c” may include
multiple sources, and link elements from different entities.

Our set of traces allows us to easily identify (i) elements in the DW affected
by a change in the data sources, (ii) elements related to each user requirement,
or (iii) elements that did not obtain their information from data sources, for
example because it is expected to retrieve it from external sources.

After having defined the trace models that record the evolution of conceptual
elements, we will describe the reconciliation traces.

3.3. Reconciliation Traces at the Conceptual Level

Reconciliation traces represent special kinds of relationships that do not fit
into the semantics of the metamodel being instantiated. Instead, these traces
capture the relationships between elements from requirements and those from
data sources at conceptual level. In our case, these relationships are defined by
the Overlap, Conflict, and, if necessary, by Rationalization links.

As previously described, elements included in the hybrid PIM can be ob-
tained from three different sources: (i) user requirements, (ii) data sources, or
(iii) created by the developer to solve existing conflicts or create derived ele-
ments. The developer must manually identify what elements coming from user
requirements match with each element coming from the data sources. Once
identified, he records the semantic of the relationship with the corresponding
traces. After the developer has captured all the necessary relationships, he can
mark what elements he wishes to derive into the final PIM. In this way, any
change performed afterwards will be easily traceable up to the final PIM, allow-
ing us to analyze which requirements, or data sources, are also impacted by the
change.

Reconciliation traces must be manually added since, typically, there is no
knowledge about what element derived from the data sources is the counterpart
to an element specified by user requirements. User requirements are described
in business terms, while data sources follow IT naming conventions. Moreover,

8



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

data sources typically focus on transactional processes while user requirements
are oriented to describe the decision making process. Therefore, elements may
differ in name, attributes and even in the dimension hierarchy. This problem
may be partially solved depending on the amount of information provided by
user requirements and data sources. An example of this approach is applied in
Software Engineering [20], although it is out of the scope of this paper.

Thus, in order to adequately relate user requirements with data sources, we
proceed to apply the specified trace links as follows:

• Overlap links are employed whenever an element from user requirements,
and its counterparts in the data sources, obtain their values from the same
domain and their structure is equivalent. Therefore, the final concept is
conceived as the fusion between the elements provided by the data sources
with those specified by user requirements, renaming them accordingly to
the user needs. Formally defined, given two elements e1 ∈ D1, e2 ∈ D2 →
D1∩D2 6= ∅, where D1 is the source domain and D2 is the target domain.

• Conflict links are employed whenever an element coming from user re-
quirements and its counterparts in data sources refer to the same concept,
but their domain is different. Therefore, concepts can not be interchanged
without obtaining a different schema, including different ways to aggre-
gate the data. For example, a “Customer” level coming from user require-
ments includes the attributes “name” and “surname”. However, data
sources only present a single attribute for representing this information
“full name”. These attributes are conflicting, since their domains are dif-
ferent unless a transformation is applied. Moreover, if these attributes
constitute the Descriptor (identifier) of the level, the resulting schema
would present different aggregations depending if we used “name” or “full
name”. Formally defined, given two (or more) elements e1 ∈ D1, e2 ∈ D2

→ D1 ∩ D2 = ∅, where D1 is the source domain and D2 is the target
domain.

In order to address this situation there are two possible solutions. First,
we can choose one representation as the correct one. Then, we derive
the corresponding elements. In the previous example “name”, “surname”,
and “full name” would be related by means of a Conflict link. Afterwards,
we would mark the desired elements to be derived into the final PIM.
Second, we can provide one or more reconciliating elements by means of
Rationalization links.

• Rationalization links are employed whenever the developer requires to
create a new element that reconciliates an existing conflict. Using the
previous example, the developer may create a new level, “Standardized-
Customer”, including “surname” and a new attribute “addressing name”.
This new attribute could include the “full name” information, as well as
the way to address a customer. Additionally, Rationalization links may
also be applied to create derived conceptual elements.

9



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

After having explained the different semantic links included in the recon-
ciliation process, we will present the necessary QVT rules for the automatic
derivation and record of traces.

4. Automatic Derivation of Traceability Models in Data Warehouses

In this section, we will discuss the necessary transformations to automatically
generate the traces between conceptual elements and store them in trace models,
that can be updated over time. Then, we will present our CASE tool that
supports our approach, the Lucentia BI Suite.

According to our proposal for developing DWs [3, 7], we use a hybrid ap-
proach based on MDA. First, elements are derived in an initial PIM model from
requirements. Then, we successively refine this initial PIM model and reconcili-
ate it with data sources obtaining the hybrid PIM. Finally, we mark the desired
elements and derive the final PIM. These transformation are done by means of
QVT rules. QVT rules specify a transformation by checking the existence of
a defined pattern in the source model. Once the pattern is found, a QVT rule
transforms elements from the source metamodel into the target metamodel.

The process to derive the final PIM is based on two general QVT rules. Both
rules make use of two different metamodels: the conceptual DW metamodel [6],
and the trace metamodel, presented in this paper. These two metamodels are
used in four different models involved in these rules: (i) the source DW model,
in the top-left corner, (ii) the target DW model, in the top-right corner, (iii) the
reconciliation trace model, in the lower-left corner, and (iv) the trace model for
evolution traces, in the lower-right corner.

The first rule, OverlapRule, defines how overlapping elements are derived.
This rule creates an Evolution link from the hybrid to the final PIM. At the top-
left corner of Figure 3, we can find the conceptual elements from the hybrid PIM.
This rule establishes that all the elements related by an overlap relationship,
“E1” and “E2”, act as sources of the transformation. At the top-right corner,
we can find the resulting target element, “R1”. The values assigned to the
properties of this element, i.e. its name, correspond to the marked element.
At the lower-left corner, we can find the trace link relating “E1” and “E2”.
In this case, the trace link is an Overlap type link that has two trace link
ends, corresponding to the elements linked. Finally, at the lower-right corner of
the Figure, we can find the new generated trace link, which is stored in trace
model “c”. This trace is an Evolution type link, containing “E1” and “E2”
as sources, and “R1” as the target. In this way, the Evolution link allows us
to automatically identify if the target element will be affected by a change in
requirements or in the data sources.

The “C” at the center of the Figure means that the source models are checked
to evaluate if the specified pattern exists. On the other hand, the “E” spec-
ifies that the target models are enforced. Thus, each time that the described
pattern is found in the source models, the target patterns are generated in the
resulting target models. The “When” clause establishes that this rule will apply
only when an element is marked by the designer. Finally, the “Where” clause

10



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Figure 3: Generic QVT rule for deriving overlapping required elements and sources and cre-
ating their Evolution trace link

establishes other operations performed after the generation of “R1”. The most
relevant operation in this clause is the function call “doPostDerivation”. This
call performs actions such as analyzing the different attributes to be included,
in the case of levels, and establish the roll-up hierarchies, in case of dimensions.

The second rule, ConflictRule, defines how conflicting elements are derived.
This generic rule has a significant difference with the previous one: only the
marked element is considered as the one providing information for the new
generated element. Therefore, this rule establishes that only “E1”, marked by
the designer, acts as a source for the Evolution trace link.

Any element not marked by the designer is ignored in the derivation process.
However, these elements are maintained for future analysis tasks.

Both rules presented in this section allow us to obtain the final DW con-
ceptual model, while at the same time generating all the required traces in the
process. In this way, the whole trace model from the hybrid to the final PIM is
created in an automatic way and does not require user intervention.

11



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Figure 4: Generic QVT transformation for deriving a data warehouse element from conflicting
required elements and sources

4.1. Tool Support

Our approach is supported by the Lucentia BI Suite CASE tool. Our tool
is based on Eclipse and is composed by a set of plugins that allow us to model,
transform, and derive DW models. The latest version of the Lucentia BI tool
supports the elicitation of requirements from users by means of i* for DWs [22],
which is implemented in Eclipse using the Ecore framework. These requirements
are then derived into conceptual DW models at the PIM Layer [6] that can be
modified and enriched by the DW designer, as shown in Figure 5. In this
Figure, we can see one of the hierarchies packaged into its dimension package
in our multidimensional editor.

In our tool, model to model transformations are implemented by means of
ATL (ATLAS Transformation Language [32]). ATL allows us to implemented
the QVT rules specified in the previous section, and has been adopted as the
de-facto standard for implementing model to model transformations. Each ATL
transformation included in our tool generates a target DW model and a trace
metamodel that stores traceability information. However, as databases do not

12



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Figure 5: Multidimensional model editor included in the Lucentia BI Suite

always provide a model, and require an inspection in order to extract their meta-
data, we require additional code for the reverse engineering process. Therefore,
the reverse engineering process is performed in two steps. First, when using the
Modernization option, the target data sources are inspected by means of Java
code, and a CWM model file is created (sources.xmi), as shown in Figure 6.

After the CWM file has been obtained, we generate a hybrid conceptual
model using the CWM file and the initial multidimensional model as input for
an ATL transformation. The resulting hybrid model contains both elements
specified by requirements as well as elements obtained from data sources. Ele-
ments within this model are related by means of Overlap and Conflict traces,

Figure 6: CWM model obtained by reverse engineering data sources

13



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Figure 7: Trace Editor for manual addition of reconciliation traces

specified in our trace editor, shown in Figure 7. The trace editor allows the
user to load multiple source and target models and save the traces specified in
a trace model.

The traces defined can be inspected or edited again afterwards if necessary.
Furthermore, they can be used for model to model transformation or analysis
tasks, and can be seen in more detail in Figure 8.

Finally, after we have elaborated the whole set of traces, we make use of the
rules specified in the previous section in order to obtain the final data warehouse

Figure 8: Reconciliation traces included in the trace model generated

14



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

model, by using both the hybrid model and the reconciliation traces as input.

5. Case Study

In this section, we will present a case study for our traceability proposal. We
will show how traces can be used to derive different configurations of the final
PIM, which represents the DW implementation. This case study is inspired on
a real world project with another university. The case study describes the basic
process of our proposal, while making it easier to read the data source model.
All the diagrams are presented with our iconography for DWs [6], that presents
UML classes stereotyped according to multidimensional elements in DWs.

5.1. Creation of the Hybrid PIM and Intra-Model Trace Links

A university wishes to improve its educative process. In order to do so, a
DW is designed to store the necessary information for the decision making pro-
cess. The initial PIM, shown in Figure 9, is derived from user requirements,
and enriched with the expected attributes. This PIM includes 4 dimensions
and a single measure. First, we have the “Subject” dimension. A subject is
expected to include its code, a name, the number of credits, and a description
of the subject. Additionally, subjects can be aggregated by their “Type”. Next,
is the “Teacher” dimension. A teacher includes a code, a name, and his years
of experience. Furthermore, teachers can be aggregated according to their “De-
partment”, their “Faculty”, or their job “Type”. The third dimension is the
“Student” dimension, that stores information regarding students. A student
has a name and a code, assigned by the university registry. Students can be ag-
gregated either depending on their “Income” range, or on the “HoursofStudy”
they spend each week. Finally, the “AcademicPeriod” dimension, includes a

Educate

Grade

AcademicPeriod

AcademicPeriod

Code
Name

AcademicYear

Year

Teacher

Teacher

Code
Name
YearsOfExperience

Department

Name

Faculty

Name

Type

JobClass

Student

Student

Code
Name

Income

IncomeRange

Hours of Study

HourRange

Subject

Subject

Code
Credits
Description
Name

Type

Name
Code

src

dst

d

r

d

r

d

r

d

r

src

dst

src

dst

d

r

d

r

src
dst

d
r

Figure 9: PIM model obtained from user requirements

15



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

TH_SGRAD

TH_GRAD1
TH_GRAD2
TH_COEF

TH_SUBJ

TH_SUBJ

COD_SUBJ
NUM_HOURS
STA_DATE
END_DATE
VALUE
COD_FILE

TH_STY

COD_STY
DESCRIPTION

TT_TEA

TT_TEA

COD_TEA
NUMBER
F_NAME
S_NAME1
S_NAME2
IS_ACTIVE
ACCT
BANK
ADDR
INCO
UNIT_COD
COD_CONT

TT_DEP

COD_DEP
NAME
SIZE

TT_FAC

COD_FAC
NAME

TH_PER

TH_PER

PER_CODE
PER_FILE
BANK
ACCT
SEX
HGRANT
INCO
CITY
ADDR
NA_NAME

TH_PRIOD

TH_PRIOD

DESC_PERIOD
COD_PERIOD
INI_PERIOD
END_PERIOD

src

dst

d

r

src
dst

d
r d

r

src

dst src

dst

Figure 10: Datasources model obtained by reverse engineering

code and a name assigned to it. Academic periods can be aggregated into aca-
demic years. All these dimensions allow us to analyze a performance measure,
the “Grade” obtained by the students.

As opposed to this initial PIM, the model created from the data sources1

presents a higher number of attributes, different naming conventions, and fewer
aggregation paths for the dimensions. The model created from the data sources
can bee seen in Figure 10. The first dimension is “TH SUBJ”, which would
correspond to the previous “Subject” dimension. This dimension includes: a
code for the subject, as we expected, the duration in hours of the subject, a
starting date, as well as an ending date, a value which cannot be easily identified,
and a code for the file of the subject. Subjects may also be grouped by type,
as expected, according to the data sources. The next dimension is “TT TEA”,

1The data sources model has been restricted to the most relevant concepts for the case
study at hand, down from over a hundred tables

16



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Figure 11: Traces between conceptual elements, Teacher dimension

containing the information related to teachers. The information recorded for
a teacher includes his name and surname, a mark for indicating if he is active
or not, his bank information, address, three different codes, and his income.
According to the data sources, teachers can be grouped either by department
or by faculty. If we wanted to group them by their job position, we would
need additional elements. The third dimension present is “TH PER”, which
stores information about the people registered in the university. The information
stored includes a code for the person, his name, the number corresponding to its
file, and other personal information, similar to the case of teachers. According
to the data sources, this level cannot be aggregated into any other. Finally, the
academic periods are stored in “TH PRIOD”, which contains the description of
the period, its code, the initial date, and the final date of the period.

After describing both conceptual models, we can analyze the existing dif-
ferences. First, there are differences in how levels are identified. For example,
according to the model obtained, teachers and subjects are identified by their
number, instead of by their name. This leads to different aggregated measures
in the cube than initially expected, since the same subject may have different
codes when included in multiple academic plans. Moreover, some attributes are
structured in a different way. For example, “Name” in “Teacher” level is actu-
ally fragmented in three different fields. Other attributes do not even appear,
such as the subject name, which may be included in its description. Finally,
some levels are missing, such as the “Type” of a teacher or the “AcademicYear”.

All these differences can be explicitly captured by applying our approach.

17



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Figure 12: Traces between conceptual elements, Subject dimension

The process starts relating attributes between levels, by applying the definitions
specified in Section 3.3. For each attribute in the requirements PIM model, we
analyze what data source attributes provide the necessary data. Then, we apply
the definitions accordingly to levels and dimensions. The result of this process
is seen in Figure 11 for “Teacher” dimension, and in Figure 12 for “Subject”
dimension, which are the most complex ones in this schema.

In this Figure we have related user requirements with data sources at con-
ceptual level. As shown in the Figure, most of the levels specified are actually
identified by different attributes in the data sources. Furthermore, its specially
significant the case where the “Subject” level does not have any counterpart
for its descriptor in the data sources. Therefore, a correspondence between
the expected set of subjects and the data provided cannot be established un-
less the schema is modified. Finally, we can see a few attributes in the data
sources that are not expected but could be useful for the analysis. For example,
“IS ACTIVE” can determine if a teacher is still active or not.

The lack of key information regarding subjects forces to implement the DW
with the data provided as-is, until the missing information is provided.

5.2. Derivation of the Final PIM

After we have obtained the hybrid PIM, and defined the intra-model rela-
tionships, we can derive the final PIM. In order to obtain the final PIM, desired
elements are marked to be included in the final PIM. Then, they are derived

18



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Figure 13: Evolution traces relating conceptual elements from hybrid PIM (left hand) with
elements in the final PIM (right hand)

along with Evolution traces. Given the high number of traces present, perform-
ing this process manually would be time consuming and error prone. Therefore,
our specified QVT rules allow us to avoid this pitfall by performing it automat-
ically. The result is shown in Figure 13, where a handful Evolution traces are
shown, covering the three different possibilities: (i) evolution from an overlap,
(ii) evolution from a conflict, and (iii) evolution from a single element. Finally,
in Figure 14, the whole final PIM schema can be seen.

The final PIM can be further refined, by renaming or deleting elements that
were initially included for the implementation but are lacking the necessary
information to be filled. In addition, with our approach, we can perform quick
updates as changes are introduced into user requirements or data sources.

After implementing the DW, data sources are updated to include the subject
name. To analyze how this change affects us, we analyze the hybrid PIM model,
and evaluate the different levels related to “TH SUBJ”. The process shows that
level “Subject” was initially missing the necessary information to be identified,
thus it could not be implemented properly. After the update, this information is
no longer missing, and the new column can be related to the descriptor. There-
fore, now we can properly derive “Subject” instead of “TH SUBJ”, thus being
able to analyze subjects as users initially expected, instead of differentiating
them by code and obtaining different measures.

With the previous development process, this change would have required to
either (i) explicitly keep track of all the missing attributes, or (ii) perform the
whole reconciliation process again, since the hybrid PIM was transformed and
thus, it would had to be matched against the data sources after the update.

19



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Subject

TH_SUBJ

Code
Credits
COD_FILE
NUM_HOURS
STA_DATE
END_DATE

Type

Code
DESCRIPTION

TH_PRIOD

TH_PRIOD

DESC_PERIOD
COD_PERIOD
INI_PERIOD
END_PERIOD

Teacher

Teacher

Code
Name
IS_ACTIVE
UNIT_COD

Department

Name
SIZE
COD_DEP

Faculty

Name
COD_FAC

Student

Student

Code
Name

Income

IncomeRange

Educate

TH_GRAD1
TH_GRAD2
TH_COEF

srcdst

d
r

src

dst

d
rPPP

dr

src

dst

d

r

src

dst

Figure 14: Final PIM representing the data warehouse implementation

Instead, by applying our proposal, new changes can be quickly identified and
have a minor impact in the DW schema. Thus, they can be easily assessed and
incorporated into the final DW.

6. Conclusions and Future Work

In this paper, we have proposed a traceability approach in order to record
explicitly the relationships between elements at the conceptual level in DWs.
We have defined the necessary trace semantics to record these relationships,
and have formalized them in order to guide their application. Furthermore, we
have shown how trace derivation and recording can be automated. We have
also exemplified the application of the proposal by means of a case study with
another university. The great benefit of our proposal is that the reconciliation
task is only performed once per element, and is preserved for further derivations
or changes. Therefore, we avoid having to repeteadly inspect the data sources
in order to match conceptual elements coming from requirements with those
coming from data sources. In turn, we reduce the amount of time and resources
spent and improve the maintainability of the system.

The current challenges involve improving the process by semi-automating the
generation of reconciliation traces and obtaining initial Extraction/Transforma-
tion/Load processes from their definition. The semi-automation of trace genera-
tion will require an approach to guide the designer on what reverse engineering

20



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

method to use, depending on the information provided by user requirements
and data sources. Regarding the generation of ETL processes, this generation
will require to specify model transformations to transform trace models into
conceptual ETL models. To this aim, the transformations will need to consider
what subsets of traces that fit best into a single ETL process.

Our future works involve developing a set of algorithms to propagate changes
and to analyze the quality of the matching performed. In the long term, we plan
to tackle the generation of an initial subset of traces automatically, thus helping
the developer to perform the reconciliation process. The resulting algorithms
will be implemented in our tool in order to improve its usability and further
shorten the time and effort required to develop the data warehouse. Finally,
we plan to introduce visual support for analyzing the trace models, in order to
provide the designer with quick view of the relationships modeled.

Acknowledgments.

This work has been partially supported by the MESOLAP (TIN2010-14860)
and SERENIDAD (PEII-11-0327-7035) projects from the Spanish Ministry of
Education and the Junta de Comunidades de Castilla La Mancha respectively.
Alejandro Maté is funded by the Generalitat Valenciana under an ACIF grant
(ACIF/2010/298).

References

[1] R. Kimball, M. Ross, W. Thornthwaite, J. Mundy, B. Becker, The data
warehouse lifecycle toolkit, Wiley, 2011.

[2] P. Giorgini, S. Rizzi, M. Garzetti, GRAnD: A goal-oriented approach to
requirement analysis in data warehouses, Decision and Support Systems
45 (1) (2008) 4–21.

[3] J.-N. Mazón, J. Trujillo, An MDA approach for the development of data
warehouses, Decision Support Systems 45 (1) (2008) 41–58.

[4] A. Bitterer, K. Schlegel, D. Laney, Predicts 2012: Business Intelligence
Still Subject to Nontechnical Challenges (2011).
URL http://www.gartner.com/DisplayDocument?ref=

clientFriendlyUrl&id=1873915

[5] S. Winkler, J. von Pilgrim, A survey of traceability in requirements engi-
neering and model-driven development, Software and Systems Modeling 9
(2010) 529–565.

[6] S. Luján-Mora, J. Trujillo, I.-Y. Song, A UML profile for multidimensional
modeling in data warehouses, Data & Knowledge Engineering 59 (3) (2006)
725–769.

21



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

[7] J.-N. Mazón, J. Pardillo, J. Trujillo, A model-driven goal-oriented require-
ment engineering approach for data warehouses, Advances in Conceptual
Modeling–ER 2007 (2007) 255–264.

[8] J.-N. Mazón, J. Trujillo, A hybrid model driven development framework
for the multidimensional modeling of data warehouses, SIGMOD Record
38 (2) (2009) 12–17.

[9] Object Management Group (OMG), A Proposal for an MDA Foundation
Model. (2005)
URL http://www.omg.org/cgi-bin/doc?ormsc/05-04-01

[10] Object Management Group (OMG), The Meta-Object Facility 2.0
Query/View/Transformation. Final Adopted Specification. (2005)
URL http://www.omg.org/spec/QVT/

[11] A. Maté, J. Trujillo, Incorporating traceability in conceptual models for
data warehouses by using MDA, Conceptual Modeling–ER 2011 (2011)
459–466.

[12] O. Gotel, S. Morris, Macro-level Traceability Via Media Transformations
(2008) 129–134.

[13] B. Ramesh, M. Jarke, Toward reference models for requirements traceabil-
ity, IEEE Transactions on Software Engineering 27 (1) (2001) 58–93.

[14] G. Spanoudakis, A. Zisman, Software traceability: a roadmap, Handbook
of Software Engineering and Knowledge Engineering.

[15] Y. Yu, J. Jurjens, J. Mylopoulos, Traceability for the maintenance of secure
software, IEEE International Conference on Software Maintenance (2008)
297–306.

[16] N. Aizenbud-Reshef, B. Nolan, J. Rubin, Y. Shaham-Gafni, Model trace-
ability, IBM Systems Journal 45 (3) (2006) 515–526.

[17] F. Jouault, Loosely coupled traceability for atl, Proceedings of the Euro-
pean Conference on Model Driven Architecture (ECMDA) workshop on
traceability (2005) 29–37.

[18] R. Paige, G. Olsen, D. Kolovos, S. Zschaler, C. Power, Building model-
driven engineering traceability classifications, Proceedings of the European
Conference on Model Driven Architecture (ECMDA) workshop on trace-
ability (2008) 49–58.

[19] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, E. Merlo, Recovering
traceability links between code and documentation, IEEE Transactions on
Software Engineering 28 (10) (2002) 970–983.

22



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

[20] H. Asuncion, A. Asuncion, R. Taylor, Software traceability with topic mod-
eling, Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering (2010) 95–104.

[21] H. Vranesic, L. Rovan, Ontology-based data warehouse development pro-
cess, Proceedings of the 31st International Conference on Information Tech-
nology Interfaces (ITI’09) (2009) 205–210.

[22] A. Maté, J. Trujillo, A trace metamodel proposal based on the model driven
architecture framework for the traceability of user requirements in data
warehouses, Information Systems 37 (8) (2012) 753–766.

[23] P. Vassiliadis, Data Warehouse Modeling and Quality Issues, Ph.D. thesis,
Athens (2000).

[24] Y. Cui, J. Widom, Lineage tracing in a data warehousing system, Pro-
ceedings of the 16th International Conference on Data Engineering (2000)
683–684.

[25] A. Abelló, J. Samos, F. Saltor, YAM2: a multidimensional conceptual
model extending UML, Information Systems 31 (6) (2006) 541–567.

[26] M. Golfarelli, D. Maio, S. Rizzi, The dimensional fact model: a conceptual
model for data warehouses, International Journal of Cooperative Informa-
tion Systems 7 (2) (1998) 215–247.

[27] C. Neil, J. Irazábal, M. De Vincenzi, C. Pons, Graphical Query Mechanism
for Historical Data Warehouse within MDD, Proceedings of the XXIX In-
ternational Conference of the Chilean Computer Science Society (SCCC)
(2010) 183–192.

[28] C. G. Neil, C. Pons, Aplicando MDA al Diseño de un Datawarehouse Tem-
poral, Jornadas Iberoamericanas de Ingenieŕıa del Software e Ingenieŕıa del
Conocimiento (JIISIC) (2007) 181–189.

[29] J.-N. Mazón, J. Trujillo, J. Lechtenbörger, Reconciling requirement-driven
data warehouses with data sources via multidimensional normal forms,
Data & Knowledge Engineering 63 (3) (2007) 725–751.

[30] M. Del Fabro, J. Bézivin, P. Valduriez, Weaving Models with the Eclipse
AMW plugin, Eclipse Modeling Symposium, Eclipse Summit Europe
(2005).

[31] Object Management Group (OMG), Common Warehouse Metamodel.
(2003)
URL http://www.omg.org/spec/CWM/1.1/

[32] F. Jouault, I. Kurtev, Transforming models with ATL, Satellite Events at
the MoDELS 2005 Conference (2005) 128–138.

23



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Highlights

> A set of semantic traces to support conceptual traceability in data ware-
houses

> Simplifies analysis of the impact of changes and integration of data new
sources

> Includes a set of rules based on the QVT standard for deriving the data
warehouse

> We apply our proposal to create an education data mart

1


