Computer Standards & Interfaces 36 (2014) 928-940

Contents lists available at ScienceDirect

Computer Standards & Interfaces

journal homepage: www.elsevier.com/locate/csi

Software reference architecture for smart environments: Perception

@ CrossMark

A. Fernandez-Montes ¥,] A. Ortega ?,].I. Sanchez-Venzala ?, L. Gonzalez-Abril

@ ETS Ing. Informatica, Universidad de Sevilla, Spain
b EU Estudios Empresariales, Universidad de Sevilla, Spain

ARTICLE INFO ABSTRACT

Article history:

Received 27 May 2012

Received in revised form 14 January 2014
Accepted 3 February 2014

Available online 19 February 2014

With the increase of intelligent devices, ubiquitous computing is spreading to all scopes of people life. Smart
home (or industrial) environments include automation and control devices to save energy, perform tasks, assist
and give comfort in order to satisfy specific preferences.

This paper focuses on the proposal for Software Reference Architecture for the development of smart applications
and their deployment in smart environments. The motivation for this Reference Architecture and its benefits are
also explained. The proposal considers three main processes in the software architecture of these applications:
perception, reasoning and acting.

This paper centres attention on the definition of the Perception process and provides an example for its
implementation and subsequent validation of the proposal.

The software presented implements the Perception process of a smart environment for a standard office, by
retrieving data from the real world and storing it for further reasoning and acting processes. The objectives of
this solution include the provision of comfort for the users and the saving of energy in lighting. Through this
verification, it is also shown that developments under this proposal produce major benefits within the software

Keywords:

Smart environment
Software architecture
Ambient intelligence
Perception

life cycle.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A smart environment (SE) can be defined as one that is able to acquire
and apply knowledge about the environment and its inhabitants in order to
improve their experience in that environment [1].

Smart home technologies are an important part of ubiquitous
computing. Mark Weiser [2] outlined the principles of Ubiquitous Com-
puting: the purpose of a computer is to help someone do something.
Nowadays, due to the popularisation of computational devices and
applications, ubiquitous computing is recognised as a revolution in the
development of smart environments.

Nevertheless, software artefacts related to ubiquitous computing, to-
gether with the wide spectrum of computational devices (and the soft-
ware needed to fulfil their missions) are too heterogeneous and hence
difficult to compare or classify. Each piece of software evolves in an isolat-
ed way or only in relation to the hardware for which it has been devel-
oped. The problem addressed in this paper involves the orchestration of
the architecture of a general software model for the development of SEs.

This Software Reference Architecture would favour the development
of a smart environment solution by increasing the reuse of components,
promoting interoperability, and defining the competences of each part
of the software.

* Corresponding author.
E-mail addresses: afdez@us.es (A. Fernandez-Montes), jortega@us.es (J.A. Ortega),
jisanchez@us.es (].I. Sanchez-Venzald), luisgon@us.es (L. Gonzalez-Abril).

http://dx.doi.org/10.1016/j.csi.2014.02.004
0920-5489/© 2014 Elsevier B.V. All rights reserved.

A good comparison for this could be the Open System Interconnec-
tion (OSI) model, which is a prescription for characterizing and
standardizing the functions of a communications system in terms of
abstraction layers.

The ambitious goal of this architecture forces it to remain very
general and to leave specific aspects until the implementation stage.

The benefits of the approach include a better understanding of the
issues that must be faced when developing each component of a
smart environment solution. The Software Reference Architecture
reduces the costs of the main cycles of software (design, development,
deployment, and maintenance) and favours the interoperability
between various solutions.

The main goal of this work is the proposal of Software Reference
Architecture for the development of SEs (see Section 3), where all
the components can interact flawlessly and reach automatism
objectives.

To this end, the architecture proposed seeks to improve the modular-
ity, reusability and extensibility of solutions, thereby allowing a more
coordinated evolution of SEs, which currently remain under individual
and isolated development. The architecture defines a middleware
framework that connects the modules and establishes the responsibility
of each module. The benefits for developers using a defined framework
or standard architecture for the domain have been thoroughly studied
by Fayad and Schmidt [28], and include: a reduction and focus of the
effort involved, a soft learning curve, integrability, maintainability, easier
validation, efficiency, and a higher level of standardization.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.csi.2014.02.004&domain=pdf
http://dx.doi.org/10.1016/j.csi.2014.02.004
mailto:afdez@us.es
mailto:jortega@us.es
mailto:jisanchez@us.es
mailto:luisgon@us.es
http://dx.doi.org/10.1016/j.csi.2014.02.004
http://www.sciencedirect.com/science/journal/09205489

A. Ferndndez-Montes et al. / Computer Standards & Interfaces 36 (2014) 928-940

As an example of the architecture usage, this paper presents the
Perception process and provides an example of implementation by
following the Software Reference Architecture proposed.

Typical components of a SE have been thoroughly studied in the
literature, although the approach of Cook and Das [20] deserves special
mention since it is currently the most widely accepted approach. Fig. 1
shows the general organization of these components. Components are
divided into four layers: a) physical; b) communication; ¢) information;
and d) decision. This approach joins hardware with software agents,
and hence very heterogeneous elements, such as a decision maker and
sensors or actuators, appear in the same component model.

All these components must collaborate in order to achieve the goals
of automatism that a SE requires. Which tasks belong to each compo-
nent and how they should collaborate constitute the main motivation
of the Software Reference Architecture proposed.

The Software Reference Architecture proposed is divided into three
main parts: Perception, Reasoning and Acting. This paper focuses on
the definition of Perception, as the first step in the general process.
Section 2 analyses related work in this area, and in Section 3, Reference
Architecture is presented and the Perception process is explained.

929

Finally, verification with a prototype of the Perception process is
shown in Section 4, and conclusions are drawn in Section 5.

2. Related work

Ambient intelligence is a trending topic, and hence a wide variety of
related research initiatives have appeared. One of the most common ap-
plications in ambient intelligence is that of SEs. Many researchers
around the world are developing projects which involve SEs.

In this section, some of the most popular projects are reviewed
and compared. The section has been divided depending on where
each project is focused: general smart environments, technologies
or architectures.

2.1. Smart environment projects

Da Costa [12] focuses on the challenges and issues that ubiquitous
computing applications have to deal with and summarizes them:
heterogeneity, scalability, dependability and security, privacy and
trust, spontaneous interoperation, mobility, context awareness, context

N Y ' 1
Decisio
T ol .
M A p U
M B
Applications (o] | | |
N N
£ N T S
N G H
T / T /
.............................. ‘“‘"“"“D"“"“O"S"“ -
Services M | U
S B
2 c Pls| |o
Prediction Database BI o ? c s
v R
e E NI S
EICOHN L
Y v
] I
N (- N/ C
BOOT ZERO E
Middieware STRAP CONF el |
Logical Logical Logical Logical
Interface Proxy Proxy Proxy
Software Software Software
Interface | | Interface Interface
Computer :
Interface | OPERATING SYSTEM
Hardware | | Hardware Hardware
Interface Interface Interface
Physical Physical | | Physical | | Physical || Physical | | Physical
Components Device Device Device Device Device

Fig. 1. The components of a SE by Cook and Das [20].

930 A. Ferndndez-Montes et al. / Computer Standards & Interfaces 36 (2014) 928-940

management, transparent user interaction and invisibility. Thus, SE
projects, as subproducts of ubiquitous computing, have to address
those challenges.

For example, the objective of the MavHome project [3] is to create a
home that acts as an intelligent agent. Its architecture organizes the
environment as an agent that can, in turn, be divided into several intel-
ligent agents which interact. The technologies within each agent are
separated into four cooperating layers: decision, information, commu-
nication, and physical. Perception is a bottom-up process, while acting
is top-down.

DomoSEC project [5], offers a home automation solution that
covers necessities in indoor domotics. DomoSEC is based on OSGi and
composed of an embedded computer that centralizes the home “intelli-
gence”, and communicates with the controlled devices.

The intention of the Aware Home project [8] is to produce an envi-
ronment capable of managing information about itself, its occupants,
and their activities. It is composed of a set of subsystems responsible
for the various technologies deployed: human-computer interaction,
machine learning, computational perception, wearable computing,
ethnography, software engineering, and sensors.

Energy Aware Smart Home [7] focuses on the integration of hetero-
geneous embedded devices and power metering plugs by middleware
called Hydra. Its purpose is to retrieve energy-consumption data
for the monitoring and analysis of energy consumed, in order to
programme, control and use home appliances efficiently.

The Place Lab project [9] is centred on capturing inhabitants' behav-
iour through a group of cabinetry components, which contain a micro-
controller, speakers, cameras, and a set of sensors. These sensors
record a complete audio-visual log of activity. Place Lab data streams
are employed to develop new context-detection algorithms and
context-aware computing applications.

Patch Panel [18] is a mechanism for the incremental addition of
modification of behaviour in existing ubiquitous computing environ-
ments (such as iRoom), for example, by adding new input modalities
or choreographing the behaviour of existing independent applications.
It provides a general facility for retargeting event flow, and enables
interactions between networked hardware and software components
to be created or modified in ubicomp environments.

EasyLiving [16] is a Microsoft project which pursues the easy aggre-
gation of I/O devices into a single and coherent environment. The
systems include middleware to facilitate distributed computing, world
modelling to provide location-based context, perception to collect infor-
mation about the world's state, and service description to support
decomposition of device control, internal logic and user interface.

Other systems, such as the Sentient Computing System [19], can
change their behaviour based on a model of the environments they
construct by using sensor data. This system strives to remove obstacles
by sharing and configuring devices for exploitation in the world model.

CASAS [6] is an adaptive smart-home system that utilizes machine-
learning techniques to discover patterns in the daily activities of
residents and to generate automation policies. Data from sensors is
analysed in order to determine activity patterns of interest for automa-
tion. Patterns are modelled continuously in a multilevel structure to
build the context. Finally, a selection of the activities to be automated
is performed.

2.2. Projects with technological improvements

Other projects are more focused in technology, and provide several
kinds of technological improvements. Some examples of this are
described below.

The ATRACO project [4] aims to support everyday activities in a
meaningful way. It uses a remote OSGi platform connected with a
residential gateway, which manages the devices, sensors and actuators
via UPnP protocol. These elements working together offer a context-
aware service for the environment.

A high-level programming language, called Visual RDK, is proposed
by Weis [10], for prototyping pervasive applications. This language gen-
erates a debugging application and a prototype application from the
same source. The main advantage of this proposal is that context is
tightly integrated into the language itself, and hence developers can
attach functionality to locations, people, or situations instead of to the
device.

However Bannach [11] focuses on the problem from another point of
view: prototyping of Activity Recognition applications. It features mech-
anisms for distributed processing and supports for mobile and wearable
devices. The CRN Toolbox is a tool set specifically optimized for the
implementation of multimodal, distributed activity and context recog-
nition systems running on Posix operating systems. It also contains a
collection of ready-to-use algorithms (signal processing, pattern
classification, and so on). Its implementation is specially optimized for
mobile devices.

2.3. Projects with relevant architectures

The major contribution of some projects lie in the architecture
proposed by them. The following projects are examples of this case.

The GAIA [13] metaoperating system extends the reach of operating
systems to manage ubiquitous computing habitats and living spaces as
integrated programmable environments. It presents a middleware in-
frastructure for active spaces. This middleware, unlike the architecture
proposed in this paper, is localized at the operative system level.

JCAF (Java Context-Awareness Framework) [14] is a Java-based
context-awareness and service-oriented infrastructure and an API for
creating context-aware applications. It groups the elements of the
architecture into four categories: Context Services, Entities and Context,
Context Clients, and Context Events. These elements communicate
between each other.

Interplay [15] is middleware software which integrates heteroge-
neous home devices to simplify their control to the user. It allows
users to use a pseudo-English interface to achieve home tasks without
difficulty. Its architecture is organized into five layers, which sends or-
ders from the user interface to an underlying middleware for device
management. Its objective is to provide advanced control of the devices.

[-Centric Services [32] from Fraunhofer FOKUS Berlin, establishes a
taxonomy of roles that are assumed by the different nodes without
distinguishing between node types. Each node, usually a software
service, provides standard interfaces for a variety of tasks. This plain
architecture is very ubiquitous-computing-oriented, by giving all the
components the consideration of nodes with different roles, but without
more structure.

Mundo [33], from Darmstadt University, establishes a structured
node classification centred on the scope of the node. This project intro-
duces major aspects, such as the communication and the association of
nodes, but it remains a low-structured node classification more than an
architecture, from a component-level point of view. MundoCore [27]
communication middleware designed for the requirements of pervasive
computing is also developed in Darmstadt University. It is low-level
software oriented, as opposed to our proposal that describes a higher-
level software architecture.

Gator Tech Smart House [31] from the University of Florida,
proposes a layered Reference Architecture, divided into four layers:
application, service, node, and physical. Each layer includes a set of
sublayers and components that form the whole architecture. It also in-
cludes OSGi as a solution for the management of devices in the service
layer. This is an architecture very similar to our approach, although we
pursue an architecture of a simpler and more abstract nature. The
main difference, between their proposal and ours, is that Gator architec-
ture does not explicitly include an acting layer and does not define a
cycle. Moreover Gator architecture does not define tasks for their Sensor
layer, meanwhile our proposal defines five main tasks for it.

A. Ferndndez-Montes et al. / Computer Standards & Interfaces 36 (2014) 928-940 931

GAS-0S [17] is the closest approximation to the software Reference
Architecture proposed in this paper. This software implements the
Gadgetware Architectural Style (GAS) approach, in which people
configure complex collections of interacting eGadgets, in a similar way
to that of a system builder in designing a software system and compo-
nents. The benefits of the ubicomp are the same as those demonstrated
by software engineering: encapsulation and composition.

As can be concluded from a detailed analysis of these projects, their
architectures remain heterogeneous, although several common charac-
teristics can be identified such as: general Perception-Reasoning-Acting
cycle (commonly mentioned and explained in the bibliography, for
example by Russel and Norvig [25]), or a certain kind of integration
and interaction between devices (the OSGi framework is frequent), or
there maybe treatment of context-related information. The projects
usually take a layered approach, but fail to follow a common structure,
and their layers, components and/or devices differ greatly and are also
very architecture-dependent.

The evolution of these systems by integrating new devices, algo-
rithms or methodologies that improve or perform new tasks involves a
complex task, due to the low level of encapsulation and modularization.
Software design is a key feature in the organization, integration, and
scalability of these numerous components.

This problem is one of the prime reasons why SEs have yet to evolve,
and why they belong more to the world of research and academia than
to industrial solutions. Solving this pushed us to propose the following
Software Reference Architecture that organizes those common tasks
which need to be accomplished in the design of a SE from a conceptual
point of view, independent of the implementation. This necessity has
already been indicated by Muhlhauser and Gurevych [26].

3. Reference Architecture
3.1. Introduction

This section explains the proposal of Software Reference Architec-
ture to develop the software layer in SEs. The proposal is based on the
goals of ubiquitous computing proposed by Weiser [2]. Taking this as a
starting point, automation in SEs can be organized as a continuous
interaction between three main processes: a) perception, b) reasoning
and c) acting (see Fig. 2).

As indicated in the Introduction, this work is centred on the Percep-
tion process of the Reference Architecture, which is explained below.

Reasoning

Fig. 2. The cycle of the automation process in a smart environment.

3.2. Perception

The Perception process should be divided in order to split complex
perception activity into several attainable tasks. The result of these
tasks must be an accurate perception of the real world (see Fig. 3).

Perception has to deal with low-level details to retrieve data from
real world and to adapt it to a knowledge base, which must agree
with the ontology of the SE. A simple information model for the SE
used in the prototype scenario is proposed in Table 1. The process
has to clear this retrieved data of any erroneous, insignificant, and
redundant values in order to build an accurate representation of the
real world, as required by the following process.

Some of these tasks have common features with ordinary pre-
processing of data such as normalization, adding attributes or replacing
missing values. Pre-processing of data for SE has been studied by several
authors. Stankovski and Trnkoczy's [34] proposal defines a table from
the data collected in order to generate inputs for following processing,
but does not cover error detection, reparation or the devices which
perform this pre-processing. On the other hand, Elnahrawy [35]
proposes two general processes

* cleaning data (considering cleaning at sensor level or cleaning at
database level) by applying probabilistic uncertainty models and
* querying data.

Moreover Wu and Clements-Croome [36] mention a Data preparation
step where data miners create relevant subsets but do not list scopes, rep-
aration or error detection proposals, like Zhang [37] which just mention
that a pre-processing step is required for integration of low-level sensor
data. The author's approach includes concepts presented by previous
proposals and generalizes them.

3.2.1. Data collector

This is the lowest-level task, and its aim is to retrieve data from phys-
ical devices within the SE. The Data Collector usually has to deal with
gateway devices of every type of sensor technique deployed in the SE.

Data can be generated by numerous kinds of sensors such as temper-
ature, pressure, optical, acoustic, mechanical, motion, vibration, flow,
position, electromagnetic, chemical, humidity, and radiation, and there-
fore a crucial question that must be addressed concerning the task of the
Data Collector is that of the unification of data types.

In fact, only a small subset of the environment properties (Table 1) is
necessary to perform a particular application or automation process
(e.g. switching lights off when nobody is at home does not need condi-
tioning information from the environment). Similarly, sensors must be
deployed in an organized manner in order to prevent the processing
of useless information.

Regarding the execution of the data processing, it is important to
consider where the processing should be performed since a number of
devices allow internal programming while others are pre-programmed.

.- e - N

Fig. 3. Tasks of the perception process.

image of Fig.�2
image of Fig.�3

932 A. Ferndndez-Montes et al. / Computer Standards & Interfaces 36 (2014) 928-940

Example

Table 1
Proposal for modelling smart environments.
Categories Fields Description
Device-related Status Current state of the devices
Location Where the devices are
Inhabitant-related Personal data Name, age, sex
Location Where the inhabitants are

Physical state

Mental state

Date, time

Environmental conditions
Inert entity location

Home limits and properties

Environment-related

Home background

Illness, injuries, and condition of inhabitants

Psychological state of the inhabitants

Temporary information

The phenomena that are currently occurring in the atmosphere
Where these entities are

The properties of the home structure and its limits

Sensor temperature measures 25 °C.
Cleaner robot is in the living room.
Diane is 45 y.o.

Mark is in the bedroom.

Roy has a cold.

David is depressed.

Current time is 13:36.

It is rainy.

The sofa is in the living room.
Bedroom window opacity is 70%.

The processing can be distributed, centralized, or even a combination of
the two if both kinds of devices are present in the environment.

Since the majority of devices are pre-programmed and cannot
extend their basic functionality (e.g. X-10 motion sensors), the design
of the SE has to be suitably adapted and developers have to adapt to
them. On the other hand, a growing number of devices have now the
ability to extend or modify their performance (e.g. Sentilla Tmotes).

Programmable devices are much more flexible, and therefore pose a
greater challenge to the designer, since they can be adapted to current
needs for a specific application or circumstance. In this case, the task
of the Data Collector must involve the use of daemons developed to
retrieve information, and also small applications running on devices,
and hence both elements have to agree on what information is sent,
the periodicity of these requests, and so on.

3.2.2. Verifier

The main purpose of the Verifier task, as its name implies, is to verify
that the data is being received by the Data Collector correctly. However
the challenge here is how the Verifier can determine whether the data is
correct or not. There is no unique solution for all possible environments,
so the verification has to be adapted to each environment by taking into
account the ontology used.

In our proposal, Verifier maintains a rule engine where verification
rules can be deployed, modified and checked in order to determine
where data is right or wrong for the current environment. The rule engine
has to offer programmers a flexible way to add, modify and delete rules,
and therefore these should be human readable. The set of rules of the
Verifier should evolve over time, as environment changes are produced.

This task has to work side by side with the Repairer when incorrect
data is received in order to fix invalid data. The mechanism of commu-
nication between the Verifier and the Repairer must be determined.
Typical implementations of this mechanism include the publication of
a repair service by the Repairer that is invoked by the Verifier.

It can be concluded that the Verifier can be seen as a filter applied
over all the data received, and it can be used to reject data for any reason
(incorrect, redundant...) by using the aforementioned rule engine and
based on the ontology model proposed in Section 3.2.5.

3.2.3. Repairer

The task of the Repairer is to fix incorrect data detected by the
Verifier. The repair applied to the data must always consider the defined
ontology and can be performed in a wide variety of ways, such as:

* Ignore data. The first option is to ignore the data, which means setting it
with an unknown value. The Ontologizer saves this value as required by
the storage system (e.g. the Weka-arff'?’ character, or the SQL null value).

* Adjust data. If a value is incorrect, but its distance from a correct value is
less than a previously specified threshold amount, then the value could
be adjusted to the nearest correct value.

* Replace data. Another option involves replacing data with previously
correct data (e.g. if temperature sensor returns 100 °C, and previous
data is 25, then the current value can be replaced with 25).

* Reject data. If current values are not suitable for repair, then the Repairer
will reject them.

Once a set of data has been received, verified and repaired, it has to
be sent to the Ontologizer to be organized and stored.

3.24. Filter

Sometimes, not all the data received from the environment is neces-
sary for the reasoning process, and hence the ontology dismisses this in-
formation. This is the objective of the filter: to prevent this superfluous
information from being sent to the Ontologizer. The implementation of
this filter, if present, should be based on the ontology defined for the
representation of the environment.

3.2.5. Ontologizer

An ontology represents the knowledge about the world (or environ-
ment) as a set of classes, properties and relationships, within a domain.
The reasoning is performed using the entities represented, and hence
data retrieved from the environment should be organized before apply-
ing artificial intelligence techniques in order to have a solid knowledge
base with which to work.

The main goal of the Ontologizer is to organize, homogenize,
synchronize and aggregate data to form a model of the real world
supported by the ontology defined for the SE.

It is necessarily an important effort for building a model of a SE
which provides data interoperability and makes possible to realize in-
ference, as suggested by Nucci [29] where an ontology framework is
used to describe all relevant information of the environment: devices,
services and context. It also tackled the further difficulty for device man-
ufacturers because of the lack of standardization in semantic technolo-
gies within these scenarios. Energy is another key aspect to take into
account for the ontology as proposed by Kofler [30], where ontology
includes information not only related to the environment, but also
about energy supply and provider.

Some other studies like Cook [3], Das [21] and Li [22] have helped in
the composition of the abstract model proposed, which has been
arranged into four main categories as explained in Table 1. This model
can help developers ascertain the main entities that need to be moni-
tored in the environment.

Device related — This category is the most obvious, and it is related
with the main elements in a SE. Ambient intelligence algorithms should
be aware of the following main fields:

Status. Algorithms must know the current states of devices installed in
the SE. Obviously this is essential for these algorithms, and one of the
prime factors for building of future predictions. Energy aware
algorithms may also need information about energy needed by
these devices to operate in order to apply any energy saving policy.
Location. Devices usually remain at a location for a long time, and
hence this information can be used by ambient intelligence
algorithms. The model must also be able to handle mobile devices,
such as motorized cleaner robots.

A. Ferndndez-Montes et al. / Computer Standards & Interfaces 36 (2014) 928-940 933

Inhabitant-related — SE algorithms must be aware of the inhabitants’
status to offer appropriate predictions for any user or for the whole
group of inhabitants. Along this line, several of the necessary fields to
infer inhabitant-aware predictions are discussed:

Personal data. This field includes all the data concerning a particular
person, such as name, age, and gender.

Location. Inhabitants can move between different spaces, so SE
systems should be able to identify and locate each inhabitant.
Physical state. This field is related with the illnesses and injuries that
an inhabitant can suffer. SE technologies must adapt to these situa-
tions and offer appropriate responses.

Mental state. The state of mind of a person can be defined as the tem-
porary psychological state. The behaviour of a depressed inhabitant
usually differs from that of a euphoric inhabitant, and hence SEs
must be consistent with these circumstances.

Environment-related — This category is probably the most diffuse
since it covers heterogeneous and difficult-to-limit fields, as discussed
in the following list:

« Date, time, season. Obviously SE behaviour differs under each tempo-
ral condition. For example, the air conditioning policy is altered
between summer and winter.

 Environmental conditions. This field is comprised of current environ-
mental conditions (sunny, cloudy, rainy, among others). A SE should
also request a weather forecast, which could be significant in the
assessment of future decisions.

Home background — This category must contain all the relevant
items regarding inert entities and their properties and qualities. This
category is the least relevant discussed, but could remain significant in
certain specific applications. Two related fields are proposed in the
following listing:

Furniture location and position. Furniture occupies space at home and
can be moved. Location (room where the furniture is located) and
position (place within the room) should be registered by the smart
home systems since it could be useful in specific applications, such
as robot movement-related algorithms, and presence detection-
related algorithms.

Home limits and properties. The texture of a floor, the colour of a wall,
and the opacity of the windows could be significant in specific cases,
such as temperature-adjustment applications.

There are yet two more issues concerning the Ontologizer: Synchro-
nization and Aggregation.

Synchronization — The Ontologizer has to synchronize data from a
world full of asynchronous devices, and events. Response time constitutes
a major factor when reasoning about events. Automation applications
usually need sets of data composed of values from multiple devices,
captured at various moments. Data from a variety of devices must be syn-
chronized for its latter aggregation, and hence this task has to define the
logic to synchronize values from multiple and very heterogeneous
sources. Implementations of the synchronization process vary depending
on the goals of each specific smart application and on its type of data.
However all implementations share certain common elements such as:

« Data buffer, which stores received data that is waiting to be paired
with other data.

= Garbage collector, which supervises the size of the buffer, and period-
ically cleans the buffer of data that cannot be paired.

Aggregation — Once data is synchronized, it is aggregated in a set of
data for a specific smart application that conforms to the SE model.
When data is aggregated, it is ready to be stored in the knowledge
base that feeds the reasoning tasks and learning process. The knowledge
base format can take the form of any of the de facto standards, such as
arff (Weka software format file for input data), or that of a relational
database.

3.3. Device Abstraction

There is a gap that needs to be covered between the modules defined
by the Reference Architecture and the physical devices. One interesting
initiative which solves this problem is Device Abstraction. This is the
result of previous work by authors within the OSAml project [23].

In Device Abstraction a device abstraction layer is provided which
describes a set of standards and conventions for controlling, configuring
and accessing the data generated from all kinds of devices related to
Ambient Intelligence. The integration of sensors and actuators is provid-
ed by following the Device Abstraction model in their control software.

This hierarchical model, shown in Figs. 4 and 5, unifies criteria in
order to facilitate the access to the devices, their functionality, and
their generated data. In this way, the methods used are independent
of the underlying protocols, and allow easier device switching. The use
of Device Abstraction is a step towards standardization of SEs.

The primary role of Device Abstraction is the classification of devices
in sensors and actuators. Sensors are categorized as either meters or de-
tectors, while actuators depend on their functionality as pulse, switch,
dimmer and movement. Each device category provides a set of specific
methods for control of the device actions.

There is still another software artefact between Device Abstraction
and the devices: the API which translates high-level methods invoked
in protocol-dependent requests. These APIs are usually provided by
device manufacturers.

3.4. Communications between processes

Reasoning processes in SEs can be separated into several tasks which
interact to achieve three main goals: a) to learn, b) to reason, and c) to
predict.

Finally, in order to close the circle, SEs must act automatically to
achieve a specific smart application. This is the main purpose of the Acting
process. The decisions and specific tasks ordered by the Reasoning pro-
cess, have to pass through three main taskmasters: a) policy manager,
b) task scheduler, and c) task runner.

In order to feed both Reasoning and Acting processes, an event-
driven architecture paradigm (EDA) is proposed, in the form of a
publishing-subscribe message system. Reasoning tasks are subscribers
of data generated by Perception processes and Reasoning tasks are
publishers of inferred knowledge. In this way, Acting tasks become
subscribers of the knowledge generated by the Reasoning process.

4. Verification with prototype

An example of the Perception process implementation, which
follows the Reference Architecture proposed in this paper, is presented
in this section as proof of its usefulness.

4.1. Prototype overview

The main objective of the application is the perception of a smart of-
fice. It retrieves data on the localization of workers, and on luminosity,
temperature, and humidity (see Fig. 6). The purpose of the retrieval of
this information is to acquire knowledge about inhabitants/workers re-
garding their habits with respect to lighting conditions, temperature,
etc. in order to make smart use of artificial lighting for energy saving
purposes.

The hardware of the development environment is composed of:

 a computer, which acts as the data receiver gateway,

« three Sentilla Tmotes (two in the office as shown in Fig. 6 and a third
in another office), as sensor devices for the collection of data on the
quantity of light, temperature, and humidity,

» an X10 motion sensor in order to determine whether the office is
occupied,

934 A. Ferndndez-Montes et al. / Computer Standards & Interfaces 36 (2014) 928-940

<<Interface>>

LogicalDevice

+getManufacturer() : String
+getVersion() : String
+getDeviceSerial() : String
+getDesciption() : String
+getName() : String
+getDevicelD() : String

<<Interface>>

Sensor

+getMagnitudeDescription() : String
+getPolliginterval() : int

1

<<Interface>> <<Interface>>

Detector Meter
= .
+getAccuracy() : double
+getRangeMax() : double
+getRangeMin() : double
<<Interface>> +getSIUnit() : Unit
PresenceDetector
+presenceDetected() : PresenceState <<Interface>>
Anemometer
<<Interface>>
. +getWindSpeed() : Speed
NoiseDetector
+noiseDetected() : NoiseState <<Interface>>
AtmosphericPressureSensor
<<Interface>>
+getAtmPressure() : AtmPressure
FallDetector
+fallDetected() : FallState <<Interface>>
BrightnessSensor
<<Interface>>
. +getLightning() : Brightness
RainDetector
+rainDetected() : RainState <<Interface>>
TemperatureSensor
<<Interface>>
. +getTemprature() : Temperature
MotionDetector
+motionDetected() : MotionState <<Interface>>
Humidity
<<Interface>>
+getHumidity() : Humidity
ContactDetector
+contactDetected() : ContactState <<Interface>>
CO2Sensor
<<Interface>>
+getCO2Level() : CO2Level
ObstacleDetector
+obstacleDetected() : ObstacleState
<<Interface>>
WaterLeakSensor

+waterLeakDetected() : WaterLeakState

Fig. 4. Device Abstraction class model for sensing.

A. Ferndndez-Montes et al. / Computer Standards & Interfaces 36 (2014) 928-940

<<Interface>>

LogicalDevice

+getManufacturer() : String
+getVersion() : String
+getDeviceSerial() : String
+getDesciption() : String
+getName() : String
+getDevicelD() : String

p

<<Interface>> <<Interface>>

IDDetector

Actuator

+getCurrentDs() : Collection<String>

<<Interface>>

Pulse

+sendPulse() : Collection<String>

<<Interface>>

<<Interface>>

Dimmer

CoolingDevice
+getCurrentDsincrementlevel() : Boolean

+decrementLevel() : Boolean
+setincrementRange(entrada
increment:int)

+getCurrentValue() : int
+getMinLevel() : int

+getMaxLevel() : int
+setMinLevel(entrada minLevel : int)
+setMaxLevel(entrada maxLevel : int)
+setCurrentValue(entrada value : int)

<<Interface>>

Graduallight

<<Interface>>
<<Interface>>

Blind

Movement

+open()
+close()
+stop()

<<Interface>>

AcousticSignal

<<Interface>>

Switch

<<Interface>>

Notifier

+disconnect() : Boolean
+connect(): Boolean

+isActivated() : Boolean <<Interface>>

LuminicSignal
<<Interface>>

PowerSupply

+isSupplyOn() : Boolean

<<Interface>> <<Interface>>

Valve WaterValve

+isClosed() : Boolean

<<Interface>>

Light

+isLightOn() : Boolean

<<Interface>>

Lock

+isLocked() : Boolean

Fig. 5. Actuation class model for Device Abstraction.

936 A. Ferndndez-Montes et al. | Computer Standards & Interfaces 36 (2014) 928-940

Fluorescent lights

Sentilla Tmote 2

Motion Sensor

(X10) (indoor) \ (X10)
[\ |
[ma
é i [
&
£]
< \ 9 L%
[[iE R]
4,3m
Blind engine Sentilla Tmote 1 / @
(outdoor)

Fig. 6. Room setup.

« [EEE 802.15.4 (ZigBee) protocol bridge connected to the computer in
order to communicate with the Sentilla Tmotes,

* X10 transceiver to communicate with actuators and the motion
Sensor.

The software of the development environment is composed of:
Sentilla Work, which is an Eclipse-based IDE for the creation, deploy-
ment, and debugging of ubiquitous applications; Weka, a tool suite
which facilitates the use of machine learning techniques; and the devel-
oped software based on the proposed Reference Architecture and on the
Device Abstraction Model as the software paradigm for the device
management software.

4.2. Prototype implementation

The software developed by the authors follows the Reference Archi-
tecture outlined in Section 3 and is focused on the Perception process
detailed in Section 3.2. This software therefore follows the tasks
proposed in the Perception process and is responsible for the low-
level interaction with devices (Data Collector task), in the form of veri-
fication, repair and filtering of the data, and of the storage of the data by
aggregating several data sources and by following the Device Abstrac-
tion Model. The software itself is distributed between various devices,
and hence a number of these tasks are performed by the central
computer while others are performed by the Sentilla Tmotes.

4.2.1. Sentilla Tmotes software

Sentilla Tmotes implement a Java Virtual Machine (JVM) called
Sentilla Point so that it can run Java applications. In order to access the
hardware capabilities of the device, Sentilla offers a Java library which
provides access to the data gathered by the sensors and other elements
such as extension ports and leads. This low-level software constitutes
the device API which is used by the software to access devices. The
Java application run by Tmotes accesses sensor data and transmit it

via the Zigbee interface. The sensors form a mesh network where
motes act as repeaters. This type of network makes it possible to cover
wide areas even though Zigbee protocol has a radio scope of a mere
10 m.

When developing this application, it was observed that the quantity
of luminosity (measured in luxes) captured by its photosynthetically
active radiation (PAR) sensor fluctuated if the fluorescent light of the
office was left switched on. The reason for this behaviour is that fluores-
cent light is constantly switching off and on but it is not perceptible by
the human eye due to its high frequency. However, this behaviour
posed a problem with the software, so it had to be tackled and included
as a part of the Repairer task (see Section 3.2.3) at this point. The
solution is quite simple: instead of retrieving just one value, n values
are retrieved and their average is computed and then sent to the central
gateway.

4.2.2. Mote Dashboard

In order to receive all the information from the Sentilla motes, an appli-
cation has been developed, which implements the appropriate interfaces
in each case: MotionDetector, TemperatureSensor, BrightnessSensor, or
HumiditySensor.

Moreover, the authors have developed software for the central sta-
tion called Mote Dashboard. This software shows the information that
is being received from the motes in real time. This application carries
out all the main tasks of the Perception process in Section 3.2. A summa-
ry of the classes and interfaces of the implementation is shown in Fig. 7:

1. Data collector. This process is responsible for managing the reception
of data from the motes, and for using the mote gateway supplied
with the development kit, and an X10 controller developed by the
authors.

2. Verifier. Three simple verifiers have been developed and perform sim-
ple tests, similar to preconditions, over data received from TSR-PAR
luminosity, humidity, and temperature sensors (e.g. luminosity > 0).

3.

A. Ferndndez-Montes et al. / Computer Standards & Interfaces 36 (2014) 928-940 937

Collector

DashBoardMain

+messageReceived()

Ontologizer

DataAggregation

DataMessage X10Controller ZigBeeBridge

DataStorage

______________________ _
Verifier L

Verifier

2\

SQLStorage WekaFileStorage

TSRPARVerifier HumidityVerifier TemperatureVerifier

DataSynchronizer

Repairer [Filter
|
Repairer | Filter
|
|
|
|
|
|
FlourescentLightRepairer I NofFiltering
|
|
|
|

|
|
|
|
|
|
|
| SensorsSynchronizer
|
|
|
|
|
|
|

Fig. 7. Summary of implementation of Mote DashBoard software.

Repairer. When the verifier task detects erroneous data, as men-
tioned above for luminosity, the Mote Dashboard software chooses
between two options:

Replace. If previously correct data was received a short time be-
fore, then specific erroneous values are replaced with previous
values. The time difference is customizable. Note that the soft-
ware developed by the authors and run in the Tmotes also repairs
wrong values retrieved by the PAR lighting sensor in the class
FluorescentLightRepairer, due to the fluorescence issue explained
earlier.

Reject. On the other hand, if previously correct data was received
only a long time before, then current erroneous data is rejected.

. Filter. In this particular case, no superfluous information is received,

and hence the Filter of this applications does not remove any data.

. Ontologizer. Finally, correct data is processed and stored by the

Ontologizer task. This performs three operations:
Synchronization. A buffer of data received from every mote in
SensorsSynchronizer is retained. When information from outdoor

and indoor motes is taken at approximately the same time, then it
is synchronized by the aggregation subtask.

» Aggregation. Once data is synchronized, it is added to the same in-
stance of the input defined in Section 4.2.4 Input and output.

« Store. Finally, the Dashboard software stores all instances in arff for-
mat and also in SQL in the relational database, since these are useful
for machine learning tools, such as Weka [24].

Mote Dashboard has other minor functionalities:

» Show information. The information received from the motes is
displayed in a Graphical User Interface (GUI) (Fig. 8), and a list of ac-
tive motes is shown in the mesh network.

* Reset. Resets the Dashboard GUI. This does not affect stored data, but
cleans buffers and GUI of all data received.

4.2.3. Database
A relational database has been chosen to store the data retrieved. It
currently uses MySQL due to its simplicity and free cost, and since the

938

= Jote Dashboard

A. Ferndndez-Montes et al. / Computer Standards & Interfaces 36 (2014) 928-940

TEMPERATURE

Mote Explorer Evert Log
1d Mensaje Fecha y hora

966 LL:04:42-172...

FO.4 \C : 0012750 6
FO.44 (Interior) MAC : 001275001 17d31ef

990 1:3 :

991 11:34:18-172....

992 11:35:29-172...

993 11:36:40-172...

94 L1:37:51-172...

995 11:39:03-172...
1

1011 157:55-172...
11:59:06-172...
12:00:16-172...
12:01:27-172...
12:02:37-172...
12:012:442172.

=

NUNRBRRRRRRRRRRRRNNRNN]

HUMIDITY

|

BEBIBIBYY

[]- 3§
Humedad Bateria TSR PAR Estado Fluorescente)
7% 2,3 344 2046 true
8% 2,35 344 2043 true
8% 2,35 343 2054 true
7% 2,3 344 2069 true
7% 2,3 344 2055 true
9% 2,3 344 2089 faise
47% 2,9v 344 209 fase
47% 25¢ M3 2108 faise
46% 25¢ 344 2091 faise
47% 25¢ 344 2128 faise
47% 25¢ M5 2162 false
47% 29¢ 346 21%0 fakse
6% Z29¢ 6 17 fakse
45% 29¢ w arn fakse
6% 2,5v 348 2304 true
45% 2,9% 39 213 fake
6% 2,9 350 2332 false
45% 2,9 349 2366 false
5% 2,9 349 2368 false
45% 2,9 350 278 false
45% 2,9 349 239 false
45% 2,9 350 239 faise
46% 2,9 350 2391 false
459 2,9¢% 350 239 false
455, 2,9% 349 2405 false
45% 2,9v 350 2414 faise
45% 29V 351 2433 false
% 29V 351 2451 faise
45% 29V 382 2458 faise
% 29V 351 2451 false
% 29V 351 2469 false
o 2,3v 351 2476 false
W 2,5 352 2478 false
43% 2,5 353 2465 false
43% 2,3V 352 2478 false
o 2,5V 353 2457 false
o 2,3 352 2483 false
43% 2,3 351 2457 faise
43% 2,5 353 2522 faise
3% 2,5 352 2497 faise
2% 2,5 353 2508 faise
43% 2,3 353 2524 faise
42% 2,3 354 2529 false
43% 2,9V 33 2524 faise
43% 2,9V 33 2524 faise
42% 29¢ 353 2536 faise
2% 29¢ 353 2524 false
1% 29¢ 354 2547 false
42% Z9¢ 53 545 fakse
% 2,9v 353 2542 false
aren Zau a2 647 Falen o

Fig. 8. Mote Dashboard GUL

specific application does not require a powerful database manager.
MySQL organization also offers a Java Database Connectivity (JDBC)
connector driver for free, which is a requirement of both the application
and of Weka.

4.2.4. Input and output
Table 2 shows the input variable X proposed and two sets of sample
input data:

Outdoor lighting. This variable represents the quantity of light re-
ceived from the outdoor Sentilla Tmote sensor. Continuous variables
from O to 1.

Indoor lighting. This variable represents the quantity of light received
from the indoor Sentilla Tmote sensor. Continuous variables from 0 to 1.
Indoor light state. This variable represents the state of the artificial lights
of the room as received from the X10 appliance module. Discrete
variables; O for lights off, and 1 for lights on.

Blind state. This variable represents the state of the blinds or curtains.
Continuous variables from 0 to 1; O for totally closed and 1 for totally
open.

Motion. This variable represents the detection of motion sent by the
MS13A X10 device. Discrete variables; 0 for no motion, 1 for motion
detected.

Action over light. This variable represents the action carried out by the
user regarding the indoor artificial lights. Discrete variables; —1 lights
switched off, 0 no action, + 1 lights switched on.

Table 2
Input sample.

« Action over blind. This variable represents the action carried out by the
user regarding the blinds/curtains. Continuous variables; — 1 means the
user closed it totally, 0 no action, + 1 means the user opened it totally.

 Threshold. Represents the current user's lighting preference. Discrete
variables;0 represents minimum room lighting, 1 represents maximum
room lighting.

4.3. Prototype and development analysis

Once the implementation of the prototype is presented, we analyse
the benefits of the approach and the Software Architecture presented. In
summary, the results are very satisfying due to the improvements
achieved following the paradigms described above. These improve-
ments and benefits were analysed in comparison to the development
of this software following general software development architectures,
such as OSGi Reference Architecture. The development team is
composed of a Software Architect, a senior programmer and a junior
programmer. Once the development was finished, another junior
programmer added certain functionality to the software. During the
development, the improvements that can be indentified include:

1. Design time savings. Once the Software Architect studied the
paradigms of the Software Architecture, then the essential issues that
had to be tackled were understood, and future development problems
were identified from the outset. For example, the synchronization and
aggregation of perceived data were solved within the design itself.

Outdoor lighting [0,1] Outdoor lighting [0,1] Outdoor light state {0,1}

Blind state [0,1]

Motion {0,1} Action over light {—1,0,1} Action over blind [—1,1] Threshold [0,1]

09 0 0 0
0.9 0.7 1 0.5

1 0 0
1 1 0.5

0.5
0.5

A. Ferndndez-Montes et al. / Computer Standards & Interfaces 36 (2014) 928-940 939

2. Development time savings. Since developers understood the archi-
tecture and could work independently from each other, both time
and cost were minimized. In this case, one developer was in charge
of programming solutions for Data Collector, Verifier and Repairer,
since the other developer focused on Filter and Ontologizer. From the
experience of the Software Architect, the developers worked more
swiftly.

3. Maintenance time decreased. Since the software was of a modular
nature, changing, modifying or improving the software artefacts
was child's play. Understanding code was also easier, since every
artefact fulfils specific responsibilities.

4. Modularity of development improved. The separation of responsibil-
ities was delivered on separation of software artefacts. This consti-
tutes one of the most obvious benefits.

5. Reusability of software artefacts. Since development was separated
by responsibilities, artefacts developed can be easily reusable for fur-
ther developments. Some of them can also be distributed as compo-
nents in order to be used by other developers such as data collectors,
verifiers of lighting, humidity or temperature measurements, or the
fluorescent light repairer.

6. Ease of extension. When another developer, not previously involved
in the original version of the software, had to make modifications and
improvements, the ease of understanding of the software architec-
ture proved very useful in order to ascertain why certain solutions
were adopted, where they were applied, and which points of the
Perception process were involved.

7. Bug detection and identification improved. Related to reduced time
of maintenance, searching for bugs in the source code was straight-
forward, since any malfunction in the software could be swiftly
matched with the corresponding tasks of the Perception process.

In short, benefits in the general cycle of software are realized since
not only developers accomplish their tasks, but goals of the develop-
ment are also achieved, which implies that this Software Architecture
is highly recommendable. Let the reader notice these improvements.

5. Conclusions

In this work, a general Reference Software Architecture for a SE is
presented, which identifies Perception, Reasoning and Acting as the
most important areas involved in SE applications.

The alternatives for the techniques used in the implementation of
the perception process are presented, explained and referenced.

The objective of this paper is to define the Software Architecture for
the Perception process as a framework for SEs. This Architecture should
be followed in order to accomplish successful solutions for the
implementation of this kind of software. This Software Architecture is
intended to produce benefits, as shown through verification with a
prototype.

Future work on this matter should advance in three ways. The
first is to describe Reasoning and Acting processes in the same way
as Perception has been described in this paper. Second, a framework
based on this Software Reference Architecture could be implement-
ed, which facilitates SE implementation solutions by providing com-
mon services and supporting several modules, as information,
communication and control systems. And third, innovative
techniques could be developed for each of these modules related to
previously described processes.

Other important areas which should be taken into account within
the framework include user interface and security. Both areas are vital
for a complete smart environment experience. Further challenges in-
volve not only enabling the SE to fit user preferences, but also applying
it to change behaviour in the individual which could, for example, arm
the community with sustainability policies for future SEs, through
teaching inhabitants to be more environmentally aware.

Acknowledgements

This research is partially supported by the projects of the Spanish

Ministry of Economy and Competitiveness ARTEMISA (TIN2009-
14378-C02-01) and Simon (TIC-8052) of the Andalusian Regional
Ministry of Economy, Innovation and Science.

References

(11

2
[3]
[4

[5

(6

(7

[8

[9

[10]
[11]
[12]

[13]

G.M. Youngblood, E.O. Heierman, L.B. Holder, DJ. Cook, Automation intelligence for
the smart environment, Proc. Int. Joint Conf. Artif. Intell. 19 (2005) 1513-1514 Law-
rence Erlbaum Associates Ltd.

M. Weiser, The computer for the 21st century, SSIGMOBILE Mob. Comput. Commun.
Rev. 3 (3) (1999) 3-11.

D. Cook, M. Youngblood, S. Das, A multi-agent approach to controlling a smart
environment, Lect. Notes Comput. Sci 4008 (2006) 165.

A. Meliones, D. Economou, I. Grammatikakis, A. Kameas, C. Goumopoulos, A context
aware connected home platform for pervasive applications, Second IEEE Interna-
tional Conference on Self-Adaptive and Self-Organizing Systems Workshops, 2008,
pp. 120-125.

M.A. Zamora-Izquierdo, J. Santa, A.F. Gbmez-Skarmeta, An integral and networked
home automation solution for indoor ambient intelligence, Pervasive Computing,
IEEE 9 (4) (2010) 66-77.

P. Rashidi, D. Cook, Keeping the resident in the loop: adapting the smart home to the
user, [EEE Trans. Syst. Man Cybern. Syst. Hum. 39 (5) (2009) 949-959.

M. Jahn, M. Jentsch, CR. Prause, F. Pramudianto, A. Al-Akkad, R. Reiners, The energy
aware smart home, 5th International Conference on Future Information Technology,
2010, pp. 1-8.

C.D. Kidd, The aware home: a living laboratory for ubiquitous computing research,
Proc. The Second International Workshop on Cooperative Buildings — CoBuild, 99,
1999, pp. 93-95.

S.S. Intille, K. Larson, J.S. Beaudin, M. Tapia, P. Kaushik,]. Nawyn, T.]. Mcleish, The
PLACELAB, a Live-In Laboratory for Pervasive Computing Research (Video),
2005.

T. Weis, M. Knoll, A. Ulbrich, G. Muhl, A. Brandle, Rapid prototyping for pervasive
applications, IEEE Pervasive Comput. 6 (2) (2007) 76-84.

D. Bannach, P. Lukowicz, O. Amft, Rapid prototyping of activity recognition
applications, [EEE Pervasive Comput. 7 (2) (2008) 22-31.

C. Da Costa, A. Yamin, C. Geyer, Toward a general software infrastructure for
ubiquitous computing, IEEE Pervasive Comput. 7 (1) (2008) 64-73.

M. Roman, C. Hess, R. Cerqueira, R.H. Campbell, A middleware infrastructure for
active spaces, IEEE Pervasive Comput. 1 (4) (2002) 74-83 (IEEE).

[14] J.E.Bardram, Design, implementation, and evaluation of the Java Context Awareness

[15]

[16]

[17]
[18]

[19]

[20]

[21]

Framework (JCAF), Context (April), Technical Report CfPC, 2005, pp. 1-14.

A. Messer, A. Kunjithapatham, M. Sheshagiri, H. Song, P. Kumar, P. Nguyen, K.H. Yi,
InterPlay: a middleware for seamless device integration and task orchestration in
a networked home, Fourth Annual IEEE International Conference on Pervasive
Computing and Communications PERCOMO6, 2(1), 2006, pp. 296-307.

B. Brumitt, B. Meyers,]. Krumm, A. Kern, S. Shafer, EasyLiving: technologies for intel-
ligent environments, Handheld and Ubiquitous Computing, 1927/2000, Springer,
2000, pp. 12-29.

A. Kameas, I. Mavrommati, Computing in tangible: using artifacts as components of
ambient intelligence environments, Intelligence (2005) 121-142.

R. Ballagas, A. Szybalski, A. Fox, Patch Panel: Enabling Control-flow Interoperability
in Ubicomp Environments, Event (London), 2004.

M. Addlesee, R. Curwen, S. Hodges, J. Newman, P. Steggles, A. Ward, A.
Hopper, Implementing a sentient computing system, Computer 34 (8)
(2001) 50-56.

D. Cook, S. Das, How smart are our environments? An updated look at the state of
the art, Pervasive Mob. Comput. 3 (2) (2007) 53-73.

S.K. Das, D.J. Cook, Designing smart environments: a paradigm based on learning
and prediction pattern recognition and machine intelligence, Lect. Notes Comput.
Sci. 3776 (2005) 80-90.

[22] J.Li,Y.Bu,S. Chen, X. Tao, J. Lu, FollowMe: on research of pluggable infrastructure for

[23]
[24]

[25]
[26]

[27]

[28]
[29]
[30]

[31]

context-awareness, 20th International Conference on Advanced Information
Networking and Applications, vol. 1, 2006, pp. 199-204, (AINA'06).
http://thewiki4opentech.com/index.php/OSAmI-ES-Device-Abstraction-HowTo .

I. Witten, E. Frank, Data Mining: Practical Machine Learning Tools and Techniques,
Morgan Kaufmann, 2005.

S. Russel, P. Norvig, Artificial Intelligence, A Modern Approach, Pearson, 1995.

M. Muhlhauser, I. Gurevych, Handbook of Research: Ubiquitous Computing
Technology for Real Time Enterprises, IGI Global, 2007.

E. Aitenbichler, J. Kangasharju, M. Miithlhduser, MundoCore: a light-weight
infrastructure for pervasive computing, Pervasive Mob. Comput. 3 (4) (2007)
332-361.

M. Fayad, D. Schmidt, Object oriented, application frameworks, Commun. ACM 40
(10) (October 1997).

M. Nucci, M. Grassi, F. Piazza, Ontology-based device configuration and manage-
ment for smart homes, Neural Nets and Surroundings, vol. 192013. 301-310.

M.J. Kofler, C. Reinisch, W. Kastner, A semantic representation of energy-related
information in future smart homes, Energy Build. 47 (2012) 169-179.

S. Helal, W. Mann, H. El-Zabadani, J. King, Y. Kaddoura, E. Jansen, The Gator Tech
Smart House: a programmable pervasive space, Computer (2005) 50-60.

http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0135
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0135
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0135
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0010
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0010
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0015
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0015
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0140
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0140
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0140
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0140
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0145
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0145
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0145
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0150
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0150
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0155
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0155
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0155
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0160
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0160
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0160
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0035
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0035
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0035
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0040
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0040
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0045
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0045
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0050
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0050
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0165
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0165
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0170
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0170
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0175
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0175
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0175
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0175
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0180
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0180
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0180
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0185
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0185
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0080
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0080
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0190
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0190
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0190
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0090
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0090
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0195
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0195
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0195
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0200
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0200
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0200
http://thewiki4opentech.com/index.php/OSAmI-ES-Device-Abstraction-HowTo
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0100
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0100
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0210
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0215
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0215
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0115
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0115
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0115
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0220
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0220
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0225
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0225
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0130
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0130
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0230
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0230

940 A. Ferndndez-Montes et al. / Computer Standards & Interfaces 36 (2014) 928-940

[32] S. Steglich, R.N. Vaidya, O. Gimpeliovskaja, S. Arbanowski, F.S. Fokus, S. Sameshima,
et al,, [-Centric Services Based on Super Distributed Objects Symposium on Autono-
mous Decentralized Systems, 2003.

[33] A.Hartl, E. Aitenbichler, G. Austaller, A. Heinemann, T. Limberger, E. Braun, M. Max,
Engineering Multimedia-aware Personalized Ubiquitous Services, 2002.

[34] V. Stankovski,]. Trnkoczy, Application of Decision Trees to Smart Homes, Springer,
2006.

[35] E. Elnahrawy, B. Nath, Cleaning and querying noisy sensors, Proceedings of the 2nd
ACM International Conference on Wireless sensor Networks and Applications, 2003.

[36] S. Wu, D. Clements-Croome, Understanding the indoor environment through
mining sensory data, a case study, J. Energy Build. 39 (2007).

[37] S. Zhang, S. McClean, Using Duration to Learn Activities of Daily Living in a
Smart Home Environment, Pervasive Computing Technologies for Healthcare
(PervasiveHealth)2010. 1-8.

http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0235
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0235
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0235
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0240
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0240
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0245
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0245
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0250
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0250
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0255
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0255
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0260
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0260
http://refhub.elsevier.com/S0920-5489(14)00030-0/rf0260

	Software reference architecture for smart environments: Perception
	1. Introduction
	2. Related work
	2.1. Smart environment projects
	2.2. Projects with technological improvements
	2.3. Projects with relevant architectures

	3. Reference Architecture
	3.1. Introduction
	3.2. Perception
	3.2.1. Data collector
	3.2.2. Verifier
	3.2.3. Repairer
	3.2.4. Filter
	3.2.5. Ontologizer

	3.3. Device Abstraction
	3.4. Communications between processes

	4. Verification with prototype
	4.1. Prototype overview
	4.2. Prototype implementation
	4.2.1. Sentilla Tmotes software
	4.2.2. Mote Dashboard
	4.2.3. Database
	4.2.4. Input and output

	4.3. Prototype and development analysis

	5. Conclusions
	Acknowledgements
	References

