
Ferreira, W., Baldassarre, M.T., Soares, S. Codex: A metamodel ontology to guide the execution of coding experiments
(2018) Computer Standards and Interfaces, 59, pp. 35-44.

DOI: 10.1016/j.csi.2018.02.003

Computer Standards & Interfaces

Codex: A metamodel ontology to guide the execution of coding experiments

Waldemar Ferreira

a , ∗ , Maria Teresa Baldassarre

b , Sergio Soares a , c

a Federal University of Pernambuco – CIn, Av. Prof. Moraes Rego, Recife 1235, Brazil
b University of Bari – DIB, Piazza Umberto I, 1, Bari, Italy
c SENAI Innovation Institute for ICT, Av. Norte Miguel Arraes, 539, Recife, Brazil

a r t i c l e i n f o

Keywords:

Metamodel

Experiment

Software engineering

Coding experiment

Ontology

a b s t r a c t

Background: Experiments have been conducted in many domains of software engineering (SE). Objective: This

paper presents a metamodel, the Codex metamodel, containing standard concepts found in any coding experi-

ment. We classify coding experiments as any SE experiment where participants have to carry out coding activities

(construct, test, debug, and forth). Method: The paper presents results of an exploratory study that proposes a

metamodel for the domain of coding experiments. Besides, we present how our metamodel specifies a real coding

experiment. Results: Our metamodel for coding experiments was modeled with few elements, and it can precisely

describe all coding activities. Conclusions: Our metamodel facilitates the development of a tool to support exe-

cuting a coding experiment.

1

a

c

d

b

b

M

i

e

e

v

s

a

f

c

a

a

i

e

i

s

s

d

m

t

t

s

c

o

fi

w

a

w

t

a

S

m

d

a

a

s

p

t

i

c
. Introduction

In software engineering (SE), a key issue is how to develop software

nd deliver it faster, better, and cheaper. Many solutions have been dis-

ussed in SE contexts for decades, such as spiral development [1] , agile

evelopment [2] , and DevOps [3] . These solutions have brought many

enefits to SE. However, few empirical studies support them [4] .

Since the 80’s, the SE community has been discussing how to provide

etter support to empirical research, in particular to experiments [5] .

any researchers have proposed several approaches to aid experiments

n SE [6–8] . In this work, we focus only on approaches able to support

xperiment specification [9–11] .

Despite all the benefits provided by current approaches to support

xperiment specification, they fall into same limitations. Aiming at pro-

iding support for any SE experiment, they lack features to precisely

pecify specificities in a specific SE area. To illustrate, we can take

s examples two SE experiments, one on HCI (Human–computer Inter-

ace) [12] and evaluating two coding techniques [13] . The former fo-

uses on user interactions, and the relevant variables are mouse clicks

nd screen records. In the following experiment, the relevant variables

re changed lines of code and time spent to develop them. In both exper-

ments, a precise specification of such information is pertinent to plan,

xecute, or even replicate them. With the current approaches to spec-

fying experiments, all the variables mentioned above are listed in the

ame format (usually in natural language). It can lead to an inevitable

emantic loss [14] .
∗ Corresponding author.

E-mail address: wpfn@cin.ufpe.br (W. Ferreira).

l
An alternative to precisely specifying experiments involving software

evelopment are languages tailored only to describe software develop-

ent processes, such as BPMN [15] , BPEL [16] , and SPEM [17] . In fact,

hese languages enable researchers to precisely specify all experiment

asks involving coding activities (code, artifacts, tests, documents, and

o forth.). However, they fail in specifying relevant information con-

erning the experiment domain such as variables and measurements. In

ther words, they lack what approaches that support experiment speci-

cations have.

Despite the importance of each solution for SE experiments or soft-

are developments, there is no standardized modeling language avail-

ble for describing experiments in software development. In this paper,

e address the research question of which concepts are in common with

hese two areas (SE experiment or software development) and how they

re related to each other. To this end, we investigate languages to specify

E experiments and popular languages to specify the software develop-

ent process. Our contribution is a metamodel specifying only essential

ata to execute or replicate coding experiments. Therefore, our solution

llows (partial or full) automation of some experiment procedures (such

s environment configuration and data collection).

In a previous work, we proposed a meta-ontology to specify domain-

pecific ontologies for SE experiments [18] . As a proof of concept, we

roposed an ontology that was specific for coding experiments. This on-

ology merged all common concepts in approaches to specifying exper-

ments and software development. However, we noticed that each spe-

ific ontology became easily verbose and redundant. To mitigate this

imitation, we simplified the ontology. We call this new approach as

https://doi.org/10.1016/j.csi.2018.02.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csi.2018.02.003&domain=pdf
mailto:wpfn@cin.ufpe.br

W. Ferreira et al.

Table 1

Models for SE experiment scoping and planning phases.

Reference Year Paradigm

ESEML Cartaxo et al. [11] 2012 DSL

ExpDSL Freire et al. [21] 2013 DSL

Exper Ontology Garcia et al. [9] 2008 Ontology

eSEE Travassos et al. [10] 2004 Ontology

C

p

a

o

(

l

d

t

p

r

t

2

S

f

2

t

M

D

t

t

w

P

D

i

t

r

v

T

o

s

c

a

p

t

e

p

o

t

k

p

g

n

o

w

e

T

t

a

t

M

a

s

(

o

m

v

I

o

w

2

t

t

e

t

(

a

p

i

r

t

3

o

p

m

c

m

a

3

w

S

l

e

a

a

m

c

c

t

c

T

c

a

oding Experiment metamodel (Codex metamodel). We decided to pro-

ose a metamodel instead of ontology since our approach focuses on

 specific solution domain. Therefore, the models in compliance with

ur metamodel can be used by Integrated Development Environments

IDEs) to configure and monitor coding activities [19] easier, lead to

ess intrusive coding experiments, and more integrated experiments in

ay to day tasks, as recommended by Wohlin [20] .

The rest of the paper is composed as follows. Section 2 presents

he related work. Section 3 presents the research design. Sections 4 –6

resents our metamodel proposition. Section 7 discusses our evaluation

esults. Section 9 summarizes the paper and offers suggestions for fur-

her research.

. Related work

We classified the related work into two categories: (i) models for

E experiments and (ii) models for software development process. The

ollowing sections present relevant literature falling into each category.

.1. Experiment models

In this section, we only summarize our finding focusing on charac-

eristics of interesting in our discussion. Table 1 presents the identified

DE approaches.

ESEML (Empirical Software Engineering Modeling Language) is a

SL and tool to specify experiment plans in SE. The authors describe

he DSL following a model also called ESEML. According to the authors,

he language enables a researcher to represent all relevant information,

hile the tool allows an automated generation of experimental plans in

DF [11] .

ExpDSL (Experiment Domain-Specific Language) also comprises a

LS and tool. However, besides supporting experiment procedure spec-

fication, the tool also monitors the experiment execution. The model

o specify experiments in ExpDSL has four views. The process view is

esponsible for defining the activities, artifacts, and roles. The metric

iew describes the metrics collected during the experiment execution.

he experimental plan view describes information such as the factors

r the statistical design. Finally, the questionnaire view represents all

urveys to collect quantitative and qualitative data from participants.

ExperOntology (Experiment Ontology) is an ontology whose con-

epts were created to accommodate SE experiment representation. It

ims to facilitate the reviewing and understanding of experimental lab

ackages. The ontology comprises two levels of details. The first refers

o the most general controlled experiment concepts (similar to ExpDSL’s

xperimental plan view). The second level focuses only in laboratory

ackage. Similar to ESEML and ExpDSL, there is a tool based on this

ntology to support SE experiment execution [22] . eSEE (Experimen-

al Software Engineering Environment) is an infrastructure to manage

nowledge about SE experiment definition, planning, execution, and

ackaging. There are two critical components in this infrastructure: the

lossary and ontologies. The first aims at establishing a standard termi-

ology in experimental SE area. Ontologies represent the formalization

f the knowledge expressed in the glossary’s list of terms. Moreover, this

ork has tool support [10] .

All approaches presented in this section focus on describing gen-

ral experiment characteristics, such as variables, hypothesis, goals, etc.
hey do not have any mechanism to specify domain-specific characteris-

ics of coding experiments in detail, such as artifact dependency, code,

nd tests. A precise specification of such characteristics is fundamen-

al to provide automatic support for coding experiments. For instance,

üller and Höfer [23] carried out an experiment comparing experts

nd novices when using test-driven development. The previously pre-

ented approaches only are able to specify part of observed variables

time spent in each task and changed files). However, some essential

bserved variables are the number of executed test methods, and how

any of them passed or failed during the experiment execution. Such

ariables are specified by the general-purpose approaches as plain text.

t is difficult to provide an automatic support to this experiment. On

ther hand, this variable can be precisely specified by our solution as

e present in Section 6.2 .

.2. Software process modeling languages

García-Borgoñon et al. [24] performed a systematic mapping study

o identify Software Process Modeling Languages (SPML). The au-

hors identified more than 40 languages. We highlight only languages

lectable to specify coding experiment characteristics:

• Business Process Modeling Notation (BPMN) is a standardized no-

tation for creating visual models of business or organizational pro-

cesses [15] .
• Software Process Engineering Metamodel (SPEM) is defined as a pro-

file (UML) by the Object Management Group [17] .
• Business Process Execution Language (BPEL) is an OASIS stan-

dard [16] . This language is an executable language for specifying

actions within business processes with web services.

All these languages were adopted by various enterprises to specify

heir development process. However, regarding the experiment process

as described by Wohlin et al. [6]), these languages may be considered

s a nemesis to the approaches presented in Section 2.1 . The SPMLs are

owerful enough to specify precisely all domain-specific characteristics

n coding experiments. However, they lack means to specify information

elated to some experiment concepts, such as observed variables and

reatments.

. Research design

Considering the previous section, we conclude that there is a lack

f standard specification for SE experiments and software development

rocesses. Aiming at fulfilling this gap, we analyzed coding experi-

ents in literature and models for SE experiments and development pro-

esses Borges et al. [25] . Following up from this result, (1) we elicited

eaning and developed knowledge into concepts used within both areas

nd (2) we identified patterns combining the identified concepts.

.1. Methods

To address the first point, we gathered coding experiments and

e analyzed each of them, together with the solutions presented in

ection 2 . Our goal in this phase consisted in looking for how such so-

utions are being used. As a result, we generated a set of clusters which

ncapsulated all identified general concepts and their relationships. To

ddress the second point, we adopted an approach based on Muehlen

nd Recker [26] . In this work, the authors obtained a significant set of

odels to analysis. Their first step as to create an Excel spread sheet

ounting the type of constructs in use per model. Each occurrence of a

onstruct was marked as 1, otherwise 0. This coding allowed the authors

o treat the individual models as binary strings for further analysis. In

oding effort, the authors kept track of the data sources for each model.

he resulting tables provided the basis for the application of statisti-

al techniques such as cluster analysis, frequency analysis, covariance

nalysis and distribution analysis.

W. Ferreira et al.

s

s

c

a

c

p

c

f

a

a

a

t

A

l

D

m

t

w

c

i

w

g

A

t

i

d

a

o

t

4

e

c

m

s

p

fi

p

a

m

s

b

o

Fig. 1. Overview of Codex metamodel.

T

m

a

a

p

(

4

i

i

s

v

t

o

p

s

t

e

p

t

n

a

i

m

B

5

i

p

e

i

t

N

p

n

p

a

g

b

e

r

t

P
Our approach was similar to Zur et al., firstly we created a spread

heet, and we recorded each information relevant to provide automatic

upport to the experiment. We also recorded the relationships among

oncepts. We encoded their usage with 1 or 0 (as Zur et al.). After, we

pplied a hierarchical clustering on the produced data to identify con-

epts that frequently or rarely occur together. Based on these results, we

ropose the Codex metamodel.

In data mining and statistics, hierarchical clustering is a method of

luster analysis which seeks to build a hierarchy of clusters. Strategies

or hierarchical clustering generally fall into two types: Agglomerative

nd Divise. Since we are starting from coding experiment’s raw data, we

dopted Agglometative clustering. This technique follows a “bottom up ”

pproach: each observation starts in its own cluster, and pairs of clus-

ers are merged as one moves up the hierarchy. For instance, Wang and

risholm [27] conducted an experiment where subjects had to modify

egacy code. In the paper the authors wrote:

“... For each task in the experiment, the following steps were carried out:

ownload and unpack a compressed directory containing the Java code to be

odified. This step was performed prior to the first maintainability task for

he coffee-machine design change tasks (c1c4), because these change tasks

ere related... ”. This whole sentence was recorded and a cluster was

reated for it.

In another paper, Santos et al. [28] investigated the use of God Class

n Java Projects. In this paper the authors wrote: “... Six small programs

ere used in the experiment. All of them implement familiar applications or

ames in Java... ′′. This sentence was also recorded along with its cluster.

fter creating a cluster to all relevant information, we agglomerated

hem according to their similarities. In this case, we agglomerated them

n a unique cluster named artifacts .

Depending on the research perspective, research results may have

ifferent interpretations. Our work targets the perspective of planning

nd carrying out a simple coding experiment. However, we believe that

ur results are relevant to other research perspectives, such as replica-

ions, family of experiments, and meta-studies as well.

. Modeling approach

After analyzing coding experiments in literature together with mod-

ls for SE experiments and development processes, we identified eight

oncept clusters:

1. standards in empirical studies : concepts shared by any empirical

study [29] ;

2. goal : any information describing results or possible outcomes;

3. variables : all variables involved (controlled or observed) in the ex-

periment process [6] ;

4. subject description : experiment sample concepts;

5. design of experiment (DoE): concepts regarding the chosen DoE;

6. tasks and activities : any information describing experiment tasks;

7. artifacts and instruments : any objects used to carry out an experiment

or any measurement instruments;

8. validity evaluation : any information about threats to experimental va-

lidity. More information about our clustering process can be found

in Ferreira et al. [30] .

All previously cited concepts must be specified in any experi-

ent [31] . However, despite their importance in SE experiments, only

ome of them provide useful information for automation in coding ex-

eriment procedures. After analyzing each cluster content, we identi-

ed three clusters describing useful information for coding experiment

rocedure automation: variables, artifacts and instruments , and tasks and

ctivities .

Initially, our metamodel incorporated all concepts in each previously

entioned cluster. They were organized in the same hierarchy level. The

preadsheet with concepts relationships pointed out few relationships

etween artifacts and instruments and tasks and activities clusters. On the

ther hand, these clusters are largely related with the variables cluster.
his information was crucial when proposing each sub-package in our

etamodel.

The following sections present the Codex metamodel concepts and

rchitecture. Besides, we motivate each metamodeling decision using

n illustrative running example. Finally, we take the opportunity to

oint out a mutual synergy between our solution and other solutions

 Section 2).

.1. Codex metamodel overview

Fig. 1 gives an overview of Codex metamodel. The most basic entity

n Codex metamodel is Coding Experiment . It compiles all main concepts

dentified by our analysis. As said before, we observed that all relation-

hips between artifacts and instruments and tasks and activities clusters are

ia the variables cluster. Therefore, we created a package comprising Ar-

ifacts and Instruments concepts, the artifact package (Section 5), and an-

ther package specifically for tasks and activities concepts, task description

ackage (Section 6). All concepts in variables clusters were defined in-

ide the two aforementioned packages, and they build a bridge between

hese packages. In Fig. 1 , the aux package does not define any particular

xperiment concept. It supports model concepts in other packages. This

ackage contains the abstract class Nameable , which has only one at-

ribute name . Therefore, any nameable concept in our metamodel does

ot have to define an attribute called name . It only has to extend Name-

ble class. Another abstract class is Identifiable (for classes with unique

dentification) and Describable (for classes with a description). Other

etamodels adopt this metamodeling pattern, such as SPEM [17] and

PEL [16] .

. Artifact package

When carrying out a coding experiment, a fundamental information

s the artifact definition (such as source codes and tests). In a coding ex-

eriment, artifacts represent any article required to carry out a coding

xperiment activity. Fig. 2 presents our artifact concept representation

n Codex metamodel. As shown in Fig. 2 , our metamodel classifies ar-

ifacts as Artifact Container, Simple Artifact , and Abstract Questionnaire .

ext, we present the first two artifact types (Artifact Container and Sim-

le Artifact). Due to its complexity to describe all elements in a question-

aire, we have separated this concept in a specific package, questionnaire

ackage. Section 5.1 details it.

The abstract class Artifact Container represents a grouping of other

rtifacts (child artifacts). There are two means to assemble artifacts to-

ether, as a Simple Container or a Project . The Simple Container assem-

les child artifacts without any meta-information. For instance, in Stotts

t al. [32] , participants had access to a zip file containing all archives

equired to carry out each coding task. A Simple Container is enough

o model such cases. Another artifact arrangement is the abstract class

roject . This class assembles child artifacts according to their coding

W. Ferreira et al.

Fig. 2. Overview of artifact metamodel.

p

N

f

a

R

m

c

l

r

a

r

t

p

c

[

m

s

a

f

c

f

5

a

t

t

q

n

r

s

t

s

a

m

r

N

A

i

a

i

e

t

roject characteristics in an IDE. This class has two attributes: default-

ame , it suggests an experiment project name; facet , it identifies each

acet required to configure the subject IDE environment. Some facet ex-

mples are languages (Java, C, Python, and others), frameworks (Junit,

ails, Cucumber, and others), and infrastructures (Web development,

obile development, and others).

The abstract class Simple Artifact represents any atomic artifact. This

lass has two attributes: content which serializes the artifact content fol-

owing base64 scheme [33] and directory structure which describes any

equired structure (folder hierarchy) for an artifact. In Fig. 2 , we see our

rtifact classification. This classification depicts every possible artifact

ole in an experiment. Our artifact classification is outlined according

o Cattaneo et al. [34] and Silva and Oliveira [35] :

• Source Code comprises a collection of computer instructions, written

using a human-readable programming language, usually as ordinary

text. The attribute language identifies the source code’s programming

language (including tests).
• Library represents any artifact required to compile Source Codes . Usu-

ally, such artifacts are a set of low-level routines used by a compiler

to invoke some run-time environment behaviors.
• Document is an artifact to inform any crucial arrangement about the

experiment. For instance, Santos et al. [28] made a task description

available for each participant.
• Other File is any other artifact needed in any experiment task. For in-

stance, in Stotts et al. [32] , the researchers provided a configuration

file to each participant to start the experiment server.

Each source code class can seem like a compilation unit. In princi-

le, a compilation unit is a section of text that can be submitted to the

ompiler, to create one or more modules of a program Cormen et al.

36] . We prefer to model this concept as a source code since there are

any programming paradigms where this definition is not valid (for in-

tance, logical paradigm). Moreover, we did not describe this concept in

 fine-grained description, since this description changes based on dif-

erent programming paradigms. For instance, while OO programs have

lasses, methods, and attributes, logical programs only have clauses and

acts.
.1. Questionnaire package

As anticipated in the previous section, a questionnaire is a particular

rtifact type. Questionnaires are one of the most common data collec-

ion means [6] . Questionnaires can both be provided in paper or elec-

ronic formatb(such as e-mail or on-line). We proposed three types of

uestionnaires:

• Physical Questionnaire. Questionnaires that must be printed and

manually filled out by participants.
• Virtual Questionnaire. Questionnaires that are completed in web

pages (such as, Google Forms and Survey Monkeys).
• Logical Questionnaire. In this type of questionnaire, each element

of the questionnaire must be described in detail. Fig. 3 summarizes

our metamodeling approach for basic questionnaire elements. Our

metamodel follows survey guidelines in SE [37,38] .

Punter et al. [37] define a questionnaire as a set of questions orga-

ized in a systematic way for the purpose of eliciting information from

espondents. Moreover, questionnaires are classified as structured, semi-

tructured, or checklist [37] . To model this variability, we proposed

he abstract class Abstract Component . Any Abstract Component subclass

hares some characteristic, such as a label. Unlike other solutions (such

s ExpDSL [21] and eSEE [10] , a questionnaire component can have

ore than one label. Allowing many labels for a same component allows

esearchers to specify their questionnaire in different languages [39] .

ext, we explain each subclass in Abstract Component .

The first Abstract Component type is Block . It comprises a set of other

bstract Components . Block organizes and modulates questionnaires. For

nstance, Santos et al. [28] used questionnaire blocks to group questions

bout demography and user experience.

The most fundamental Abstract Component type is Question . Accord-

ng to Azanza et al. [40] , there are more than ten question types. How-

ver, in our analysis, we observed two question types represent all ques-

ions in coding experiment questionnaires. Question types are:

• Text Answer . Such questions are designed to encourage a full, mean-

ingful answer using subject’s knowledge and feelings. The attribute

isTextBox specifies if a response should be in few words (a text field)

or a full paragraph (text box).

W. Ferreira et al.

Fig. 3. Questionnaire metamodel overview.

t

t

s

t

a

A

m

i

p

5

n

p

t

m

(

a

t

m

p

u

t

f

n

r

t

s

s

c

t

q

s

t

Q

F

Fig. 4. Coding task overview.

t

m

fi

m

e

e

6

B

w

d

i

i

I

c

t

i

i

• Multiple Choice Question . In such question, participants have to

choose their answer within a list of possible answers. The abstract

class Choice specifies every possible answer.

Our metamodel also allows some question Constraints . The first ques-

ion constraint is Dependent Question . This constraint in a question means

hat the question requires specific answers from other questions. For in-

tance, we can cite the Crime and Safety Survey Questionnaire [41] . If

he respondent is a female, she is given a Sexual Victimization Block

part from the Base Questionnaire. The second question constraint is

ppendable Questions , which represents questions that can be answered

any times. For instance, in Santos et al. [28] , the participants had to

dentify classes with too much responsibilities, and for each class the

articipant had to answer a set of questions.

.2. Synergy with other solutions

Some authors proposed metamodels only to specify Artifacts. Catta-

eo et al. [34] cover Web page artifacts, and Silva and Oliveira [35] pro-

osed an artifact metamodel to represent artifact parts and their rela-

ionships. These works are a convenient way to specify coding experi-

ent artifacts. Such approaches inspired our concept of Simple Artifact

 Section 5). Some SPMLs also propose an artifact specification. BMPN

nd SPEM classify artifacts according to their roles (input and output ar-

ifacts). The SPEM is the most accurate artifact representation with Frag-

entDefinition and WorkProductDefinition [17] . These definitions sup-

orted our concept of Artifact Content and Simple Artifact.

Concerning models that support SE experiments (Section 2.1), they

sually specify artifacts as parameters or controlled variables. However,

he ExpDSL and eSEE have entities to specify coding experiment arti-

acts. In ExpDSL, there is an entity called Artifact, which comprises a

ame, a description, and a type (input, output or input/output). This

epresentation is similar to artifact specification in BMPN and SPEM. On

he other hand, the eSEE proposed a complete sub-ontology to specify

oftware artifacts [10] . It details a software artifact in a fine-grained de-

cription, differentiating interfaces, functions, and attributes. We have

hosen not to follow this coding artifact description since this descrip-

ion is too bound with OO and imperative software paradigm.

To the best of our knowledge, there is no specific metamodel for

uestionnaires. However, some models to support SE experiments have

ome packages to specify questionnaires (Section 2.1). In ExperOn-

ology, two classes (Questionnaire and Form) specify questionnaires.

uestionnaire specifies demography data collection instruments and

orm represents other questionnaires for nondemography data collec-
ion [42] . eSEE designs questionnaires in a sub-ontology for qualitative

ethods. Finally, ExpDSL proposes a view only for questionnaire speci-

cation. We tailored our metamodel to minimize variations among these

odels. Moreover, Codex metamodel is compliant with all these mod-

ls. A simple M2M transformation can map our entities into other model

ntities.

. Coding task package

According to the Software Engineering Body of Knowledge (SWE-

OK) [43] , a coding or programming activity may vary from designing,

riting, testing, debugging, and maintaining a system. Besides, activity

uration also may differ in coding experiments. For instance, a coding

nspection may be carried out on one occasion. On the other hand, writ-

ng an entire system can be executed during a much longer time span.

n such cases, researchers cannot participate in all experiment and data

ollection activities.

Any coding task specification has to accommodate all possible con-

exts presented before. Aiming at such goal, we propose Task package

nto Codex metamodel (Fig. 4). We defined one abstract class represent-

ng coding tasks and three sub-packages to describe them:

• Task Order Package defines how coding tasks are ordered and orga-

nized in coding experiment.
• Task Constraint Package specifies constraints on coding tasks, for in-

stance, maximum amount of time spent performing a coding task.
• Task Data Tracking Package blueprints what data has been collected

in each task.

The next sections detail each previously presented sub-package.

Fig. 5. Task order package overview.

6

F

t

e

e

t

m

i

e

t

t

m

i

s

6

d

O

e

i

6

d

s

s

t

6

c

i

t

i

m

o

a

S

d

i

p

p

c

a

t

M

n

m

s

p

7

t

m

d

m

p

o

m

.1. Task order package

This sub-package specifies task description, order, and organization.

ig. 5 presents a metamodel overview. The first abstract class is Execu-

ionGroup . This class identifies which tasks have to be executed in each

xperiment trial. For instance, an experimental design AB has two Ex-

cutionGroup , one indicating tasks treatment A and another indicating

asks with treatment B .

In our metamodel, task order specification is a BPEL and BPMN meta-

odel simplification [15,16] . Therefore, there are two action types: Cod-

ng Task and Composed Task. Coding Task specifies atomic tasks in coding

xperiments. This class has an association called depends . This associa-

ion identifies if a Coding Task requires artifacts or results from other

asks.

When participants have to perform more than one task, experi-

enters have to specify a Composed Task . This abstract class, in fact,

s only an abstraction. We proposed two concrete classes for this ab-

traction:

• Ordered Execution : In this composition, tasks follow a predetermined

execution sequence. This task composition is the most common com-

position type;
• Random Execution : This class represents executions without any pre-

determined order. Random Task executions are desirable to avoid

some experiment threats [6] .

.2. Task data tracking package

In any experiment, data tracking is fundamental to control indepen-

ent variables, as well as, to observe results in dependent variables [6] .

ur metamodel allows tracking specification in most common coding

xperiment data sources. Fig. 6 presents an overview of Task Data Track-

ng package.

Our metamodel specifies two data tracking means:

• DataFromAction : When data sources are participant actions. Usually,

in coding experiments, two data types are tracked from participant

actions: time stamp or involved artifacts. In our metamodel, Track

Enum enumeration represents such data tracking types: Time and

Artifact. Tracking Actions have another enumeration, Moment Enum .

This enumeration specifies which action has to be tracked:
• Editing File : Editing action in any (or a set of) Artifacts.
• Executing File : When participants execute any (or a set of) Arti-

facts.
• Executing Test : Similar to Executing File, when the participant

executes test (or set of tests).
• IDE Activity : Tracking any activity at coding development envi-

ronment.
• Completed Task : Data is tracked only at the end of a task.

• DataFromQuestionnaire : When participants provide responses to

questionnaires. The attribute allocation specifies when a question-

naire has to be administered. Moreover, each DataFromQuestionnaire

is associated to at least one Artifact Questionnaire . We detail Artifact

Questionnaire in coding experiments at Section 5.1 .

.3. Task constraints

There are some examples in literature, where some indepen-

ent variables in coding experiments may be specified as task con-

traints [13,28,44] . In our metamodel, the abstract class Task Con-

traints specifies such constraints (Fig. 7). In our analysis, we identified

hree common constraints in coding experiment tasks:

• Time Constraint . Time window constraint applied in any task in a

coding experiment. It also specifies task deadlines.
• IDE Constraint . Constraint employed within the coding experiment

environment. In the current version, our metamodel only specifies

required or forbidden Eclipse plug-ins. However, some metamodel

extensions can include more constraints.
• Test Constraint . Defining success on a task is not easy. In some ex-

amples in literature, researchers define a set of tests to ensure task

success. Our metamodel implemented such scenarios with Test Con-

straint . This constraint is associated with a Source Coding (or a set of)

identifying tests. Then, a participant only finishes a task when all

tests pass.

.4. Synergy with other solutions

As stated previously, BPMN and BPEL are our task definition and

omposition pillars. In principle, Abstract Task is equivalent to Activity

n BPMN. And, BPEL does not have any task representation. However,

here is a standard extension, BPEL4People [45] where Abstract Task

s equivalent WS-HumanTask . Regarding the models to specify experi-

ents, only ExpDSL and eSEE allow task definition and order. More-

ver, similar to SPMLs, they are equivalent to Abstract Task . However,

 surprising finding is a lack of random task order specification in both

PML and models to specify experiments.

Regarding data tracking, measurement is a central role in many stan-

ards and models such as ISO 15504 and ISO 12207 [46–48] , includ-

ng SPML and models to specify experiments. From the methodological

erspective, software measurement is backed by a broad range of pro-

osals, like the Goal Question Metric (GQM) method [49] , the Practi-

al Software & Systems Measurement (PSM) methodology [50,60,61] ,

nd the ISO 15539 [17] and IEEE 1061-1998 [51] standards. However,

hese is no clear link between these standards and experiment concepts.

odels to specify experiments (ESEML, ExpDSL, and ExpOntology) do

ot make a clear distinction between the observed variables and their

easurements. Only eSEE specifies such information in Study Structure

ub-ontology [10] . Furthermore, our measurement definition is a sim-

lification of eSEE definition.

. Metamodel assessment

The main goal of this section is to assess our metamodel with respect

o the modeling of coding experiments from the perspective of experi-

enters. To demonstrate the expressiveness of our metamodel, we have

eveloped a tool to model coding experiments according to our meta-

odel, Codex Modelling Tool . As stated in the introduction, this tool is

art of a platform that supports execution of coding experiments. More-

ver, the Codex metamodel implements the concepts of coding experi-

ents at core.

Fig. 6. Overview of task data tracking package.

Fig. 7. Task constraints overview.

7

l

a

t

a

n

c

y

m

a

t

i

8

S

S

u

8

t

t

n

s

m

m

p

1 https://github.com/netuh/DecodePlatformPlugin .
.1. Assessment method

We selected three experiments as examples of coding experiments in

iterature.

• Santos et al. [28] . In this experiment, researchers designed a con-

trolled experiment for investigating the concept of God Class, which

is a class or methods with high complexity. According to Fowler and

Beck [52] , who introduce the concept, a God Class is a class that tries

to do a lot (i.e., it has many responsibilities and instance variables).

Moreover, Ratiu et al. [53] suggests a God Class detection technique

considering the classes that use various data from the nearby classes

having a high complexity or low cohesion between methods. Based

on this concept, the objectives of Santos et al. [28] , this study is to

find empirical support to evaluate the impact of a tool in supporting

god class detection;
• Accioly et al. [54] . This experiment was conducted with students

simulating a test execution environment. While executing test suites,

they collected time and reported change requests. This data was col-

lected by an Eclipse plugin developed by the authors.
• Vokáč et al. [13] . In this experiment, the researchers replicated the

experiment performed by Prechelt et al. [55] , which investigated the

question whether it is useful (with respect to maintenance) to design

programs using design patterns, even if the actual design problem is

simpler than the one solved by the pattern. The replication sought

to increase experimental realism by using a real programming envi-

ronment instead of pen and paper, and by using paid professionals

from multiple consultancy companies as subjects.

It is important to mention that our selection also considered the

vailability of documentation about experiment planning and conduc-
ion. The specifications of these experiments following our metamodel

re available on-line. 1

We adopted one criterion for evaluating our metamodel, complete-

ess. This criterion analyzes whether all concepts of coding experiments

an be expressed in the Codex metamodel. For the completeness anal-

sis, we investigated whether different aspects of the selected experi-

ents can be properly specified using our metamodel. The following

spects from coding experiments were assessed during the specifica-

ion process: Tasks, Artifacts , and Measurements (the clusters presented

n Section 4).

. Results

In this section, we present and discuss the results of our study.

ection 8.1 examines our findings regarding each cluster. Finally,

ection 8.2 presents a discussion about our study and how it can be

sed by other researchers.

.1. Analysis of each cluster

The modeling of controlled experiments in our study revealed that

he investigated metamodel satisfactorily addressed most of the evalua-

ion criteria. On the other hand, it also exposed improvement opportu-

ities for specific elements and aspects of the Codex metamodel.

This section presents results about the completeness criteria. We con-

idered different experimental aspects that were modeled using Codex

etamodel. We show and discuss how to model experiments in our

etamodel. Also, we describe how the achieved results can be used to

ropose improvements for our metamodel.

https://github.com/netuh/DecodePlatformPlugin

Fig. 8. Example of artifact specification.

8

f

o

o

q

J

O

e

s

o

[

n

a

w

q

m

e

S

8

w

S

t

p

o

H

e

e

t

a

t

1

a

d

T

p

Fig. 9. Task specification in case study.

Fig. 10. Task specification with test constraints.

A

I

p

8

D

r

i

c

t

n

o

b

r

k

(

m

w

.1.1. Artifacts

Our metamodel allowed to define all the artifacts required to per-

orm coding activities in each selected experiment. Fig. 8 presents an

verview of the model for artifacts in Santos et al. [28] . Two types

f artifacts were involved in this experiment, developing projects and

uestionnaires. Fig. 8.1 presents a Project (Section 5). In this case, a

ava Project which comprises each required source code (each java file).

riginally, the researchers stored on-line all experiment artifacts. How-

ver, with a Codex model, it was no longer necessary as the Codex model

tores this information together with all information required to carry

ut an experiment. The same approach was adopted by Vokáč et al.

13] to specify their artifacts.

Another artifact present in all selected experiments was question-

aires. Similar to previous mentioned Java artifacts, questionnaires

re also included in Codex. Moreover, this model contains data about

ho and when to apply each questionnaire. Fig. 8.2 presents how the

uestionnaires in Santos et al. [28] may be specified in our meta-

odel. In this case, a Document represents each questionnaire. How-

ver, researchers can specify each questionnaire element (according to

ection 5.1).

.1.2. Tasks

As we presented for artifacts, many relevant aspects of coding tasks

ere also defined in our metamodel. Fig. 9 presents how the tasks in

antos et al. [28] are modeled in our metamodel. We decided to present

he tasks in Santos et al. [28] , since, in this experiment, part of the

articipants had to inspect three projects without any tool support and

ther three with a tool. These two set of tasks were executed in sequence.

owever, the three inspections with or without the tool were randomly

xecuted. In Vokáč et al. [13] and Accioly et al. [54] , all tasks were

xecuted in sequence.

As can be seen in Fig. 9 , the derivation execution has two sequential

asks representing each trial in experiment design (Sequential Group 1

nd Sequential Group 2). For the sake of simplicity, Fig. 9 only details

he Sequential Group 1 . However, all comments about Sequential Group

 are valid for Sequential Group 2 . Moreover, each group was specified

s an OrderedExecution ; each OrderedComposition comprised two Ran-

omExecution . Finally, each RandomExecution included a set of Coding

asks , connected with corresponding Project artifacts (Section 5).

Only Accioly et al. [54] had constraints to task execution. Fig. 10

resents how such constraints are modeled considering our metamodel.
s we can see, researchers can attach a test suite to a task, Test Constraint .

t means that the task may be considered as finished only when such tests

ass.

.1.3. Measurements

In Codex metamodel, we can define measurements for each task.

uring the data collection procedure definition (process element), the

esearcher can choose to collect data related to dependent variables us-

ng our metamodel in different ways, such as: (i) collecting artifacts

reated or changed during the experiment that should be analyzed by

he researcher; (ii) requiring participants to inform the specific data (e.g.

umber of defects found) during their tasks execution in the experiment;

r (iii) including a field in a questionnaire (through cross-reference) to

e answered by the participants during the execution of the experiment.

Considering our example Santos et al. [28] , Fig. 9 presents how a

esearcher can specify measurements in tasks. In this experiment, two

inds of data have to be collected, (i) time spent to finish each task and

ii) quantity of actions executed by each participant. The first measure-

ent was specified by a DataFromAction , with Time at track field and

ith IDE_Activity at moment field (details in Section 6.2). Similarly, for

W. Ferreira et al.

t

a

c

t

m

t

f

r

8

r

s

w

o

t

t

m

e

t

e

p

c

V

o

s

t

r

l

a

a

t

r

c

t

e

t

o

p

a

T

i

c

o

t

p

o

t

9

f

p

r

p

C

i

fi

m

s

e

i

t

i

n

p

e

T

a

w

r

A

a

a

C

p

S

t

R

he second measurement, the corresponding DataFromAction has Time

t track field, and Final Task at moment field.

The other two experiments (Accioly et al. [54] and Vokáč et al. [13])

ollect almost the same kind of variables. However, they also collect

he artifacts produced during the experiment execution. Therefore, their

odels have an extra element: DataFromAction which is attached to Ar-

ifacts and Completed Task . As so, once the tasks are completed, all arti-

acts (produced and changed) during the task execution are part of the

esults.

.2. Discussions and lessons learned

In this section, we present and discuss lessons learned related to the

esults of our study.

Appropriateness Evaluation . In our study, we have tried to address

uch criterion by specifying three different experiments, among which

e modeled one replication Baldassarre et al. [56] . Given this variability

f experiments, we have modeled experiments: with diverse experimen-

al designs and executed by different research groups. This variety of

he chosen experiments supports us to conclude that the Codex meta-

odel provided an appropriated characterization for the set of modeled

xperiments. However, we recognize that it is crucial to model an ex-

ensive amount of additional experiments to enlarge the variability of

xperiments that can be expressed by our metamodel.

Experiment Replication . In spite there are various guidelines for re-

orting experiments, the fact that they have not been formalized ac-

ording them limits their replicability Baldassarre et al. [56] , Juristo and

egas [57] . In collaborative experimental research, results from previ-

us studies are needed to transfer knowledge between the involved re-

earchers. In this context, our metamodel provides a mean to formalize

he laboratory package for coding experiments and their correspondent

eplicas. It is one of the tangential contributions of our approach. We be-

ieve that it could facilitate information communication and exchange

mong experimenters, contributing to fill the gap related to providing

 complete experiment definition. We modeled one experiment replica-

ion, and we observed that when modeling a replica, a researcher can

euse almost all original experiment specification. The changes are lo-

alized and related to the following actions: to add or change artifacts,

asks, and/or measurements. We intend to systematically evaluate and

xplore the Codex metamodel benefits regarding replications in our fu-

ure work.

Execution Environment . The experiment knowledge formalized with

ur metamodel is used in our approach Ferreira [58] as input to an ex-

erimentation support environment. The environment allows executing

n experiment as a workflow that guides the tasks of each participant.

he environment supports some experiment functionalities:

• Experiment documentation – As said before, other approaches are

most appropriated to document an experiment in SE [30] . However,

our metamodel allows a precise description of many relevant char-

acteristics in an experiment plan. This description should provide a

formal way to store the plan of several kinds of experiments in soft-

ware engineering to increase the documentation precision. For our

execution environment, the experiment definition in Codex meta-

model itself represents this functionality.
• Participant guiding – We developed a tool to aid participants in

their experiment execution. The environment guides participants

through each task that have to be performed by them. The partici-

pants have to finish one task after another (sequentially). The exper-

iment’s Codex model specifies the task order.
• Data collection – Each participant produces data that are relevant

for the experiment. This data is automatically collected by the envi-

ronment, such as changed files, or project execution, test passes and

failed, and so on. Besides, the environment may provide a means

for participants to answer questionnaires (according to their specifi-

cation). Moreover, the environment is responsible for automatically

collecting the spent time for executing each experimental task.
• Gathering of feedback – It is fundamental to gather feedback from

participants during experiment execution. A questionnaire is a

known instrument to collect feedback. The participants are asked

to answer online feedback questionnaires according to the Codex

questionnaire definition.

Limitations . Regarding the models to specify extensive experiments

n SE. Our metamodel is able to specify all characteristics identified in

luster. However, we should conduct interviews with researchers from

ther companies and universities to try to understand their views about

hese models, as well as in other fields, and carry out experiments in

ractice. For instance, an information relevant to be specified is that

nly code without errors or faults cannot be accepted when finishing a

ask.

. Conclusion

Our study has initially identified the need for a unified metamodel

or coding experiments since other alternatives do not have enough ex-

ressiveness. After a detailed analysis of these alternatives together with

eference to real coding experiments that have been conducted and re-

orted in literature, we have proposed a specific metamodel option:

odex metamodel. This metamodel provides a precise panorama focus-

ng on coding experiment execution. Moreover, this metamodel identi-

es core elements that enable an automatic support to coding experi-

ent execution. A customized model following our metamodel empha-

izes variables, tasks, and artifacts involved when carrying out a coding

xperiment. Furthermore, it may foster coding experiments since exper-

mentation is a cost-intensive empirical method. Therefore, by facili-

ating the experiment execution, researchers can focus more efforts in

mproving the samples, allowing more reliable conclusions [59] . As of

ow we have specifically applied the model to coding experiments with

ositive results. We do not exclude that in the future the model will be

xpanded to other domains as well.

As future work, we intend to develop a tool based on our metamodel.

his tool has to configure the subject environment for task execution,

s well as, collect data according to experiment specification. Finally,

e are going to replicate our case study within this tool to evaluate its

elevance in supporting coding experiments.

cknowledgments

This work is the result of a bilateral agreement between Cin/UFPE

nd UNIBA. This work was supported by CNPQ , grants 141066/2013-0

nd 205613/2014-4 . Moreover, it is partially supported by INES , grants

NPq/465614/2014-0 , FACEPE/APQ/0388-1.03/14 . Sergio Soares is

artially supported by CNPq, grant 304499/2016-1 .

upplementary material

Supplementary material associated with this article can be found, in

he online version, at 10.1016/j.csi.2018.02.003 .

eferences

[1] B. Boehm , W.J. Hansen , Spiral Development: Experience, Principles, and Refine-
ments, Technical Report, DTIC Document, 2000 .

[2] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham, M. Fowler,
J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick, R. C. Martin, S.
Mellor, K. Schwaber, J. Sutherland, D. Thomas, Manifesto for Agile Software Devel-
opment, 2001.

[3] M. Httermann , Devops for Developers, first ed., Apress, Berkely, CA, USA, 2012 .
[4] T. Dybå, T. Dingsøyr, Empirical studies of agile software development:

a systematic review, Inf. Softw. Technol. 50 (9–10) (2008) 833–859,
doi: 10.1016/j.infsof.2008.01.006 .

[5] V. Basili, R. Selby, D. Hutchens, Experimentation in software engineering, IEEE
Trans. Softw. Eng. SE-12 (7) (1986) 733–743, doi: 10.1109/TSE.1986.6312975 .

[6] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, A. Wesslén, Exper-
imentation in Software Engineering, Springer-Verlag, Berlin, Heidelberg, 2012,
doi: 10.1007/978-3-642-29044-2 .

https://doi.org/10.13039/501100003593
https://doi.org/10.13039/501100007257
https://doi.org/10.1016/j.csi.2018.02.003
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0001
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0001
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0001
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0002
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0002
https://doi.org/10.1016/j.infsof.2008.01.006
https://doi.org/10.1109/TSE.1986.6312975
https://doi.org/10.1007/978-3-642-29044-2

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[7] N. Juristo , A.M. Moreno , Basics of Software Engineering Experimentation, first ed.,
Springer Publishing Company, Incorporated, 2010 .

[8] V. Basili , The Experimental Paradigm in Software Engineering, in: Lecture Notes in
Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 706 LNCS, Springer, 2015, pp. 3–12 .

[9] R. Garcia , H. Erika Nina , E. Barbosa , J. Maldonado , An ontology for controlled ex-
periments on software engineering, in: Proceedings of 20th International Confer-
ence on Software Engineering and Knowledge Engineering, SEKE, 2008, pp. 685–
690 .

10] G. Travassos, P. Dos Santos, P. Mian, A. Dias Neto, J. Biolchini, An environment
to support large scale experimentation in software engineering, in: Proceedings of
the IEEE International Conference on Engineering of Complex Computer Systems,
ICECCS, 2008, pp. 193–202, doi: 10.1109/ICECCS.2008.30 .

11] B. Cartaxo, I. Costa, D. Abrantes, A. Santos, S. Soares, V. Garcia, Eseml – empiri-
cal software engineering modeling language, in: Proceedings of ACM Workshop on
Domain-Specific Modeling, DSM, 2012, pp. 55–60, doi: 10.1145/2420918.2420933 .

12] I. Benbasat, A. Dexter, P. Masulis, An experimental study of the human/computer
interface, Commun. ACM 24 (11) (1981) 752–762, doi: 10.1145/358790.358795 .

13] M. Vokáč, W. Tichy, D.I. Sjøberg, E. Arisholm, M. Aldrin, A controlled experiment
comparing the maintainability of programs designed with and without design pat-
ternsa replication in a real programming environment, Empir. Softw. Eng. 9 (3)
(2004) 149–195, doi: 10.1023/B:EMSE.0000027778.69251.1f .

14] D. Davidson , G. Harman , Semantics of Natural Language, 40, Springer Science &
Business Media, 2012 .

15] M. Chinosi, A. Trombetta, Bpmn: an introduction to the standard, Comput. Stand.
Interfaces 34 (1) (2012) 124–134, doi: 10.1016/j.csi.2011.06.002 .

16] S. Weerawarana , F. Curbera , F. Leymann , T. Storey , D.F. Ferguson , Web Ser-
vices Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL,
WS-Reliable Messaging and More, Prentice Hall PTR, Upper Saddle River, NJ, USA,
2005 .

17] S. OMG, O. Notation, Software & Systems Process Engineering Meta-model Specifi-
cation, OMG Std., Rev. 2(2008).

18] W. Ferreira, M.T. Baldassarre, S. Soares, G. Visaggio, Toward a meta-ontology for
accurate ontologies to specify domain specific experiments in software engineering,
in: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Arti-
ficial Intelligence and Lecture Notes in Bioinformatics), 9459, 2015, pp. 455–470,
doi: 10.1007/978-3-319-26844 .

19] C. Calero, F. Ruiz, M. Piattini, Ontologies for Software Engineering and Software
Technology, Springer, Berlin, Heidelberg, 2006, doi: 10.1007/3-540-34518-3 .

20] C. Wohlin , Empirical software engineering research with industry: top 10 challenges,
in: Proceedings of the 1st International Workshop on Conducting Empirical Studies
in Industry, CESI ’14, IEEE Press, Piscataway, NJ, USA, 2013, pp. 43–46 .

21] M. Freire , P. Accioly , G. Sizílio , E. Campos Neto , U. Kulesza , E. Aranha , P. Borba ,
A model-driven approach to specifying and monitoring controlled experiments in
software engineering, in: Proceedings of the Product-Focused Software Process Im-
provement, PROFES, Springer, Berlin, Heidelberg, 2013, pp. 65–79 .

22] L. Scatalon , R. Garcia , R. Correia , Packaging controlled experiments using an evo-
lutionary approach based on ontology, in: Proceedings of the 23rd International
Conference on Software Engineering and Knowledge Engineering, SEKE, 2011,
pp. 408–413 .

23] M.M. Müller, A. Höfer, The effect of experience on the test-driven development pro-
cess, Empir. Softw. Eng. 12 (6) (2007) 593–615, doi: 10.1007/s10664-007-9048-2 .

24] L. García-Borgoñon, M. Barcelona, J. García-García, M. Alba, M.J. Escalona, Soft-
ware process modeling languages: a systematic literature review, Inf. Softw. Tech-
nol. 56 (2) (2014) 103–116, doi: 10.1016/j.infsof.2013.10.001 .

25] A. Borges, W. Ferreira, E. Barreiros, A. Almeida, L. Fonseca, E. Teixeira, D. Silva,
A. Alencar, S. Soares, Support mechanisms to conduct empirical studies in software
engineering: a systematic mapping study, in: Proceedings of the 19th International
Conference on Evaluation and Assessment in Software Engineering, EASE, ACM,
2015, pp. 22:1–22:14, doi: 10.1145/2745802.2745823 .

26] M.Z. Muehlen, J. Recker, How much language is enough? Theoretical and
practical use of the business process modeling notation, in: Proceedings of
the 20th International Conference on Advanced Information Systems Engi-
neering, CAiSE ’08, Springer-Verlag, Berlin, Heidelberg, 2008, pp. 465–479,
doi: 10.1007/978-3-540-69534-9_35 .

27] A. Wang, E. Arisholm, The effect of task order on the maintainability
of object-oriented software, Inf. Softw. Technol. 51 (2) (2009) 293–305,
doi: 10.1016/j.infsof.2008.03.005 .

28] J. Santos, M. De Mendonúa, C. Silva, An exploratory study to investigate the impact
of conceptualization in god class detection, in: Proceedings of ACM International
Conference Proceeding Series, 2013, pp. 48–59, doi: 10.1145/2460999.2461007 .

29] A. Donovan , R. Laudan , Scrutinizing Science: Empirical Studies of Scientific Change,
193, Springer Science & Business Media, 2012 .

30] W. Ferreira, M.T. Baldassarre, S. Soares, B. Cartaxo, G. Visaggio, A compara-
tive study of model-driven approaches for scoping and planning experiments, in:
Proceedings of the 21st International Conference on Evaluation and Assessment
in Software Engineering, EASE’17, ACM, New York, NY, USA, 2017, pp. 78–87,
doi: 10.1145/3084226.3084258 .

31] A. Jedlitschka, M. Ciolkowski, D. Pfahl, Reporting Experiments in Software Engi-
neering, Springer, London, 2008, doi: 10.1007/978-1-84800-044-5_8 .

32] D. Stotts , L. Williams , N. Nagappan , P. Baheti , D. Jen , A. Jackson , Virtual Teaming:
Experiments and Experiences with Distributed Pair Programming, Lecture Notes in
Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 2753, Springer, 2003, pp. 129–141 .

33] N. Borenstein , Mime: a portable and robust multimedia format for internet mail,
Multimed. Syst. 1 (1) (1993) 29–36 .
34] F. Cattaneo, E. Di Nitto, A. Fuggetta, L. Lavazza, G. Valetto, Managing software
artifacts on the web with labyrinth, in: Proceedings of International Conference on
Software Engineering, 2000, pp. 746–749, doi: 10.1109/ICSE.2000.870486 .

35] M. Silva, T. Oliveira, Towards detailed software artifact specification with spemarti,
in: Proceedings of International Conference on Software Engineering, 2011, pp. 213–
217, doi: 10.1145/1987875.1987912 .

36] T.H. Cormen , C. Stein , R.L. Rivest , C.E. Leiserson , Introduction to Algorithms, second
ed., McGraw-Hill Higher Education, 2001 .

37] T. Punter, M. Ciolkowski, B. Freimut, I. John, Conducting on-line surveys in soft-
ware engineering, in: Proceedings of the International Symposium on Empirical Soft-
ware Engineering, ISESE, Institute of Electrical and Electronics Engineers Inc., 2003,
pp. 80–88, doi: 10.1109/ISESE.2003.1237967 .

38] S.L. Pfleeger, B.A. Kitchenham, Principles of survey research: part 1: turn-
ing lemons into lemonade, SIGSOFT Softw. Eng. Notes 26 (6) (2001) 16–18,
doi: 10.1145/505532.505535 .

39] G. Kersten, M. Kersten, W. Rakowski, Software and culture: beyond the inter-
nationalization of the interface, J. Global Inf. Manag. 10 (4) (2002) 86–101,
doi: 10.4018/jgim.2002100105 .

40] M. Azanza , D. Batory , O. Díaz , S. Trujillo , Domain-specific composition of model
deltas, in: Proceedings of the Third International Conference on Theory and Prac-
tice of Model Transformations, ICMT, Springer-Verlag, Berlin, Heidelberg, 2010,
pp. 16–30 .

41] J.F. Devoe , K. Peter , P. Kaufman , A. Miller , M. Noonan , T.D. Snyder , K. Baum , Indi-
cators of School Crime and Safety, National Center for Education Statistics, 2004 .

[42] R.W. Root, S. Draper, Questionnaires as a software evaluation tool, in: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, CHI, ACM, 1983,
pp. 83–87, doi: 10.1145/800045.801586 .

[43] I.C. Society , P. Bourque , R.E. Fairley , Guide to the Software Engineering body of
Knowledge (SWEBOK(r)): Version 3.0, third ed., IEEE Computer Society Press, Los
Alamitos, CA, USA, 2014 .

[44] A. Ko, T. LaToza, M. Burnett, A practical guide to controlled experiments of software
engineering tools with human participants, Empir. Softw. Eng. 20 (1) (2013) 110–
141, doi: 10.1007/s10664-013-9279-3 .

[45] A. Agrawal, M. Amend, M. Das, M. Ford, C. Keller, M. Kloppmann, D. König, F.
Leymann, R. Müller, G. Pfau, et al., Ws-bpel Extension for People (bpel4people),
Version 1.0, Web address: http://download.boulder.ibm.com/ibmdl/pub/software/
dw/specs/wsbpel4people/BPEL4People_v1.pdf . (2007).

[46] I. ISO, IEC 15504-2: Information Technology-process Assessment. Part 2: Performing
an Assessment, 2004.

[47] C. Pardo , F. Pino , F. García , F.R. Romero , M. Piattini , M.T. Baldassarre , Hprocesstool:
a support tool in the harmonization of multiple reference models, in: Proceedings of
the 2011 International Conference on Computational Science and its Applications,
ICCSA’11, Volume Part V, Springer-Verlag, Berlin, Heidelberg, 2011, pp. 370–382 .

[48] F. Pino, M. Baldassarre, M. Piattini, G. Visaggio, D. Caivano, Mapping soft-
ware acquisition practices from ISO 12207 and CMMI, in: Proceedings of Com-
munications in Computer and Information Science, 69, 2010, pp. 234–247,
doi: 10.1007/978-3-642-14819-4_17 .

[49] V.R. Basili, H.D. Rombach, The tame project: towards improvement-oriented
software environments, IEEE Trans. Softw. Eng. 14 (6) (1988) 758–773,
doi: 10.1109/32.6156 .

[50] J. McGarry , Practical Software Measurement: Objective Information for Decision
Makers, Addison-Wesley Professional, 2002 .

[51] S. S. E. S. Committee, et al., IEEE std 1061-1998 IEEE Standard for a Software Quality
Metrics Methodology, 1998.

[52] M. Fowler , K. Beck , Refactoring: Improving the Design of Existing Code, Addis-
on-Wesley Professional, 1999 .

[53] D. Ratiu , R. Marinescu , S. Ducasse , T. G ı rba , Evolution-enriched detection of god
classes, in: Proceedings of the 2nd CAVIS, 2004, pp. 3–7 .

[54] P. Accioly, P. Borba, R. Bonifacio, Comparing two black-box testing strategies for
software product lines, in: Proceedings of the 2012 Sixth Brazilian Symposium on
Software Components, Architectures and Reuse, SBCARS ’12, IEEE Computer Soci-
ety, 2012, pp. 1–10, doi: 10.1109/SBCARS.2012.17 .

[55] L. Prechelt, B. Unger, W. Tichy, P. Brssler, L. Votta, A controlled experiment in
maintenance comparing design patterns to simpler solutions, IEEE Trans. Softw. Eng.
27 (12) (2001) 1134–1144, doi: 10.1109/32.988711 .

[56] M.T. Baldassarre, J. Carver, O. Dieste, N. Juristo, Replication types: towards a
shared taxonomy, in: Proceedings of the 18th International Conference on Evalu-
ation and Assessment in Software Engineering, EASE, ACM, 2014, pp. 18:1–18:4,
doi: 10.1145/2601248.2601299 .

[57] N. Juristo, S. Vegas, Using differences among replications of software engineering
experiments to gain knowledge, in: Proceedings of the 2009 3rd International Sym-
posium on Empirical Software Engineering and Measurement, ESEM, IEEE Computer
Society, 2009, pp. 356–366, doi: 10.1109/ESEM.2009.5314236 .

[58] W. Ferreira, Together we are stronger: facilitating the conduction of distributed
human-oriented experiments, in: Proceedings of the 18th International Conference
on Evaluation and Assessment in Software Engineering, EASE ’14, ACM, 2014,
pp. 56:1–56:4, doi: 10.1145/2601248.2613083 .

[59] M. Jørgensen, T. Dybå, K. Liestøl, D.I. Sjøberg, Incorrect results in software engi-
neering experiments: how to improve research practices, J. Syst. Softw. 116 (2016)
133–145, doi: 10.1016/j.jss.2015.03.065 .

[60] D. Caivano , Continuous software process improvement through statistical process
control, in: Proceedings of the European Conference on Software Maintenance and
Reengineering, CSMR, 2005, pp. 288–293 .

[61] M.T. Baldassarre, D. Caivano, G. Visaggio, Software renewal projects estimation us-
ing dynamic calibration, IEEE International Conference on Software Maintenance,
ICSM (2003) 105–115, doi: 10.1109/ICSM.2003.1235411 .

http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0006
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0006
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0006
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0007
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0007
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0008
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0008
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0008
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0008
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0008
https://doi.org/10.1109/ICECCS.2008.30
https://doi.org/10.1145/2420918.2420933
https://doi.org/10.1145/358790.358795
https://doi.org/10.1023/B:EMSE.0000027778.69251.1f
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0013
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0013
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0013
https://doi.org/10.1016/j.csi.2011.06.002
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0015
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0015
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0015
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0015
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0015
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0015
https://doi.org/10.1007/978-3-319-26844
https://doi.org/10.1007/3-540-34518-3
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0018
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0018
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0019
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0019
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0019
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0019
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0019
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0019
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0019
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0019
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0020
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0020
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0020
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0020
https://doi.org/10.1007/s10664-007-9048-2
https://doi.org/10.1016/j.infsof.2013.10.001
https://doi.org/10.1145/2745802.2745823
https://doi.org/10.1007/978-3-540-69534-9_35
https://doi.org/10.1016/j.infsof.2008.03.005
https://doi.org/10.1145/2460999.2461007
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0027
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0027
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0027
https://doi.org/10.1145/3084226.3084258
https://doi.org/10.1007/978-1-84800-044-5_8
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0030
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0030
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0030
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0030
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0030
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0030
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0030
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0031
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0031
https://doi.org/10.1109/ICSE.2000.870486
https://doi.org/10.1145/1987875.1987912
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0034
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0034
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0034
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0034
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0034
https://doi.org/10.1109/ISESE.2003.1237967
https://doi.org/10.1145/505532.505535
https://doi.org/10.4018/jgim.2002100105
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0038
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0038
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0038
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0038
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0038
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0039
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0039
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0039
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0039
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0039
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0039
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0039
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0039
https://doi.org/10.1145/800045.801586
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0041
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0041
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0041
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0041
https://doi.org/10.1007/s10664-013-9279-3
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/wsbpel4people/BPEL4People_v1.pdf
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0043
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0043
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0043
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0043
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0043
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0043
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0043
https://doi.org/10.1007/978-3-642-14819-4_17
https://doi.org/10.1109/32.6156
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0046
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0046
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0047
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0047
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0047
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0048
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0048
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0048
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0048
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0048
https://doi.org/10.1109/SBCARS.2012.17
https://doi.org/10.1109/32.988711
https://doi.org/10.1145/2601248.2601299
https://doi.org/10.1109/ESEM.2009.5314236
https://doi.org/10.1145/2601248.2613083
https://doi.org/10.1016/j.jss.2015.03.065
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0054a
http://refhub.elsevier.com/S0920-5489(17)30319-7/sbref0054a
https://doi.org/10.1109/ICSM.2003.1235411

	Codex: A metamodel ontology to guide the execution of coding experiments
	1 Introduction
	2 Related work
	2.1 Experiment models
	2.2 Software process modeling languages

	3 Research design
	3.1 Methods

	4 Modeling approach
	4.1 Codex metamodel overview

	5 Artifact package
	5.1 Questionnaire package
	5.2 Synergy with other solutions

	6 Coding task package
	6.1 Task order package
	6.2 Task data tracking package
	6.3 Task constraints
	6.4 Synergy with other solutions

	7 Metamodel assessment
	7.1 Assessment method

	8 Results
	8.1 Analysis of each cluster
	8.1.1 Artifacts
	8.1.2 Tasks
	8.1.3 Measurements

	8.2 Discussions and lessons learned

	9 Conclusion
	 Acknowledgments
	 Supplementary material
	 References

