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Abstract

A signcryption, which is an integration of a public key encryption and a
digital signature, can provide confidentiality and authenticity simultane-
ously. Additionally, a signcryption associated with equality test allows a
third party (e.g., a cloud server) to check whether or not two ciphertexts are
encrypted from the same message without knowing the message. This appli-
cation plays an important role especially in computing on encrypted data. In
this paper, we propose the first lattice-based signcryption scheme equipped
with a solution to testing the message equality in the standard model. The
proposed signcryption scheme is proven to be secure against insider attacks
under the learning with errors assumption and the intractability of the short
integer solution problem. As a by-product, we also show that some existing
lattice-based signcryptions either is insecure or does not work correctly.

Keywords: Signcryption, equality test, standard model, learning with
errors problem, short integer solution problem, insider attacks

1. Introduction

A signcryption scheme, first proposed by Zheng [1], simulatneously plays
the roles of public key encryption and digital signature. A signcryption
scheme therefore guarantees the confidentiality and the authenticity at the
same time. On the other hand, signcryptions are designed aiming to be
more efficient than the signing-then-encrypting approach in terms of cost.
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With a rapid increasing of amount of data, there are more and more
personal users as well as organizations transferring their data to third-party
service providers for outsourcing. In order to protect their data’s sensitive
information, data are usually encrypted. This fact requires service providers
to have efficient methods of encrypted data management. Among such tools,
equality test (ET) allows service providers to check whether or not different
ciphertexts are generated on the same message even though service providers
do not know what the message actually is. This augmented property has
been realized in various public key encryption schemes (which are called
PKEET), e.g., [2], [3], [4], [5], [6] with applications to internet-based personal
health record systems [7], secure outsourced database managements [2] just
to name a few. Of course, the equality test mechanism can also be realized in
signcryptions which we call signcryption with equality test (SCET). SCET
has also found some applications such as in securing messaging services [8],
industrial Internet of Things [9].

Quantum computers are proven to be able to successfully break number-
theoretic assumptions, such as the integer factorization problem or the dis-
crete logarithm problem, which are currently the underlying hard problems
for a plenty of cryptographic primitives [10]. Under the threat, research
community has recently been paying more and more attention as well as
resources to the so-called lattice-based cryptography, which based on hard
lattice problems. With some advantages of easy implementation, provable
hardness, lattice problems (e.g., learning with errors problem (LWE), short
integer solution problem (SIS) are playing the role of underlying hard prob-
lems for numerous cryptographic primitives.

Related works. Malone-Lee and Mao [11] in 2003 presented a RSA-based
signcryption scheme in the random oracle model. In the same year, Boyen
[12] proposed a stringent security model for the schemes which he call a joint
identity-based signature/encryption (IBSE), and presented an efficient IBSE
construction, based on bilinear pairings. The work [4] by Lin et al. gave
a generic SCET construction, extended from a generic PKEET construc-
tion. Wang et al. [8] presented a concrete SCET construction, which the
authors call public key signcryption scheme with designated equality test on
ciphertexts. However, the primitive in [8] is based on bilinear groups. More
recently, Xiong et al. [9] propose the so-called heterogeneous SCET based
on pairings which is claimed to be suitable for the sophisticated heteroge-
neous network of industrial Internet of Things. So far, there has been no
any SCET construction in the lattice setting.

Regarding lattice-based signcryption constructions, there have been some
works such as [13], [14], [15], [16] and [17]. Li et al. [13] built a lattice-based
signcryption scheme that are only secure in the random oracle model (ROM).
Gérard and Merckx [14] proposed a lattice-based signcryption scheme in the
random oracle model (ROM) based on the ring learning with errors (RLWE)
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and a special version of the short integer solution (SIS) offering the indis-
tinguishability under chosen plaintext attacks (IND-CPA) and existential
unforgeability under chosen message attacks (EUF-CMA) security. Yang
et al. [15] proposed an efficient lattice-based signcryption scheme in the
standard model based on RLWE and the ideal short integer solution (ideal-
SIS) assumption. The signcryption of [15] offers the IND-CCA2 security
and and existential unforgeability under an adaptive chosen-message attack
(EUF-aCMA). Lu et al. [16] proposed a lattice-based signcryption scheme
without random oracles which is claimed to achieve the IND-CCA2 security
and EUF-CMA security basing on the hardness of LWE and SIS. Sato and
Shikata [17] constructed a lattice-based signcryption in the standard model
of which security also based on LWE and SIS. We claim that, the IND-CCA2
security of the construction by Lu et al. [16] can be easily broken even by a
CPA attack (see Section 7 below) while the work [17] has some serious flaws
described as follows.

Description and flaws of the signcryption proposed by [17]. The
work [17] exploits the gadget-based trapdoor mechanism proposed by [18],
namely, the algorithms GenTrap, Invert, SampleD (see Definition 5 and Lemma
7 below for further details). Then, for each receiver we generate the public
key pkr = Ar, and the private key skr = Tr which is a G-trapdoor for Ar

with tag H = 0 , i.e., Ar

[
Tr
I

]
= 0 (mod q), where G is the gadget matrix

specified in [18, Section 4]. The same thing pks = As, skr = Ts is done for
each sender except that H = I, i.e., As

[
Ts
I

]
= G (mod q).

For signcrypting a plaintext µ, one utilizes the Dual-Regev framework
based on the LWE problem, i.e., one computes (c0)t := stAr,t + (x0)t and
(c1)t := stU + (x1)t. Here U is a uniform matrix while the matrix Ar,t

depends on Ar and some vector tag t which relates to the public key of the
receiver pkr, to the public key of the sender and to a random small vector
re. Then one signs on the tuple (µ|pkr|ct), where ct = (c0, c1, re), to get the
signature (e, rs). To do that, one calculates a vector tag h using pks, pkr,
(µ|pkr|ct) and a random small vector rs and then signs on h using the same
way as the signature scheme in [18, Section 6.2]. Finally, the signcryption
finishes by computing c0 := c0 + rs, c1 := c1 + µ · bq/2c and outputting the
ciphertext ct = (c0, c1, re, e).

In the unsigncryption algorithm, one can use SampleD to obtain a matrix
E such that Ar,tE = U mod q which helps us to recover µ. However, in this
algorithm, one also needs to verify whether the ciphertext is valid or not
which needs to recover ct = (c0, c1, re) from ct first. The way of [17] to do
that is to run Invert on input c0 to get rs and then compute c0 = c0 − rs,
c1 = c1 − µ · bq/2c. Unfortunately, we can see that this is not correct since
Invert will actually output the sum x0 + rs instead of rs.

One more flaw is that the dimensions of some matrices and some vec-
tors in the signcryption of [17] do not match. Furthermore, the security
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proofs are quite unclear. For example, in the security proof for the strong
unforgeability against insider attacks (i.e., MU-sUF-iCMA) in [17, Theorem
2], after showing that AS ·z = 0 mod q, the authors do not prove why z 6= 0.

Our contribution and technical overview. In this paper, we propose,
for the first time, a lattice-based signcryption scheme possessing a capacity
of equality test provably secure in the standard model. Moreover, since
both [16] and [17] do not work correctly then our work without the equality
test part can be considered as a lattice-based signcryption alternative to
them. For our construction, we consider the multi-user setting and the
insider security model in which there are multiple users and some of them
could adversarially behave. We call such users the internal users or insider
attackers. Such kind of attacker is stronger than external adversaries since
they can know private information of other users in the setting. We show
that our proposed scheme offers OW-iCCA1, IND-iCCA1 and UF-iCMA
security against insider attacks relying on the hardness of decisional-LWE
and SIS problems.

Our scheme is basically inspired from the work of Sato and Shikata
[17] and the recent method of Duong et al. [5] for equality test. We have
shown above that [17] does not work correctly. Fortunately, we success-
fully fix this error simply by in the signcryption algorithm setting c0 := c0

instead of c0 := c0 + rs and outputting ct = (c0, c1, re, rs, e) instead of
ct = (c0, c1, re, e). Also, to fix the dimension-related flaw in [17], we use the
hash functions named H1, H3 to make dimensions match.

For equality test, we use an one-way hash function H and encrypt
H(µ) (but do not sign) in the same way described above for the plain-
text µ. This releases some things named c′0, c′1, r

′
e, corresponding to c0,

c1, re, for µ. Note that, the signing phase (which produces the signature
(e, rs)) now runs on input (µ|pkr|ct) with ct = (c0, c1, re, c

′
0, c
′
1, r
′
e) instead

of ct = (c0, c1, re). Therefore, the final ciphertext for the proposed SCET is
ct = (c0, c1, re, rs, c

′
0, c′1, r

′
e, e). Finally, two ciphertexts are proven to come

from the same plaintext if we can recover the same hash value H(µ) from
them without knowing the plaintext µ.

Furthermore, for the security proof, we also utilize the so-called abort-
resistant hash functions defined by [19, Section 7] provided in Lemma 12.
Also note that, the presence of B, re, r

′
e, rs helps us to simulate the responses

to the adversary’s queries.

Organisation. In Section 2, we give a background of lattices. The frame-
work of signcryption with equality test will be provided in Section 3. Section
4 is for our lattice-based signcryption construction. The security of the pro-
posed scheme will be given in Section 5. Parameter setting will be done in
Section 6. We demonstrate an attack against the IND-CPA of the signcryp-
tion construction proposed by Lu et al. [16] in Section 7. In Section 8, we
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Table 1: Some SC and SCET constructions based on hard lattice problems in the literature.

Works Assumption
Security

Level
Security
Model

with ET
Insider
Attacks

Li [13] LWE & SIS
IND-CCA2
SUF-CMA

ROM × ×

Lu [16] Not secure even with IND-CPA (see Section 7)
Sato [17] Does not work correctly

Gérard [14] RLWE & SIS
IND-CPA
EUF-CMA

ROM × ×

Yang [15]
RLWE

& ideal-SIS
IND-CCA2
EUF-aCMA

SDM × ×

This work LWE & SIS
IND-iCCA1
OW-iCCA1
SUF-iCMA

SDM X X

Category Size
Public key per user 2mn · Zq
Secret key per user 2mnk ·Dσ1

Ciphertext 3m ·Dαq + (m+ nk) ·Dσ2
+ 2(m+ `) · Zq

Table 2: Sizes of our SCET. Here a · S means a elements in the domain S. For example
3m ·Dαq indicates that there are 3m elements each of which sampled from Dαq.

make some conclusions on our work.

2. Preliminaries

Throughout this work, the norm ‖S‖ of a set of vectors S = {s1, · · · , sn}
is computed as maxi∈[n] ‖si‖.

Lattices. Given a matrix B = [b1, · · · ,bm] ∈ Rn×m of m linearly inde-
pendent vectors, the set L(B) := {

∑
i∈[m] bizi : zi ∈ Z} is called a lattice

of basis B. In this work, we focus on the so-called q-ary lattices: Λ⊥q (A) =
{e ∈ Zm : Ae = 0 (mod q)},, and Λu

q (A) := {e ∈ Zm s.t. Ae = u (mod q)},
where A

$←− Zn×m is a random matrix. Note that, if t ∈ Λu
q (A) then

Λu
q (A) = t + Λ⊥q (A).

The first minimum of a lattice L is defined as λ1(L) := minv∈L\{0} ‖v‖.
The i-th minimum of a lattice L of dimension n is denoted by and defined
as λi(L) := min{r : dim(span(L ∩ Bn(0, r))) ≥ i}, where Bn(0, r) = {x ∈
Rn : ‖x‖ ≤ r}. The SIVPγ and GapSVPγ are assumed to be the worst case
hard problems in lattices. Given A to be a basis of a lattice L(A) and a
positive real number d, the first problem requires to find a set of n linearly
independent lattice vectors S ⊂ L(A) such that ‖S‖ ≤ γλn(A), while the
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second one asks to decide if λ1(L(A)) ≤ d or λ1(L(A)) > γd.

Gaussians. Let m ≥ 1, a vector c ∈ Rm and a positive parameter s, for
x ∈ Rm define ρs,c(x) = exp(−π‖x− c‖2/s2). The continuous Gaussian
distribution on Rm with mean c and with width parameter s is proportional
to ρs,c(x). Let T = R/Z be the additive group of real numbers modulo
1. Given α > 0 and m = 1, we denote by Ψα the continuous Gaussian
distribution on T of mean 0 and width parameter s := α. Remind that, this
Gaussian distribution has standard deviation of σ = α/

√
2π.

Definition 1 (Discretized Gaussian). The discretized Gaussian distri-
bution Ψ̃αq is defined by sampling X ← Ψα then outputting bq ·Xe mod q.

In particular, we can define a Gaussian distribution over a subset of Zm,
hence over any integer lattices in Zm.

Definition 2 (Discrete Gaussian). Let m be a positive integer, Λ ⊂ Zm
be any subset, a vector c ∈ Rm and a positive parameter s, define ρs,c(Λ) :=∑

x∈Λ ρs,c(x). The discrete Gaussian distribution over Λ centered at c ∈ Zm
with width parameter s is defined by: ∀x ∈ Λ, DΛ,s,c(x) := ρs,c(x)/ρs,c(Λ).
If c = 0, we just simply write ρs, DΛ,s. If Λ = Z, we can write DΛ,s as Ds.

Note that in Definition 2, Λ can be a lattice over Zm. The following lemma
shows the min-entropy of a discrete Gaussian.

Lemma 1. [20, Lemma 2.1] Let Λ ⊂ Rn be a lattice and s ≥ 2ηε(Λ) for
some ε ∈ (0, 1). Then for any c ∈ Rn and any y ∈ Λ + c, Pr[x ← DΛ+c,s :
x = y] ≤ 2−n · 1+ε

1−ε .

Lemma 2. [21, Lemma 4.4] Let q > 2 and let A be a matrix in Zn×mq with

m > n. Let TA be a basis for Λ⊥q (A). Then, for s ≥ ‖T̃A‖ · ω(
√

log n),

Pr[x← DΛu
q (A),s : ‖x‖ > s

√
m] ≤ negl(n).

Lerning with Errors problem (LWE) and Short interger Solutions
problem (SIS). Let n and q ≥ 2 be positive integers and χ be a distribution

on Zq. Given a vector s
$←− Znq , we define an LWE distribution Ls,χ on Znq×Zq

as follows: first sample uniformly at random a
$←− Znq , then draw according

to χ an error term e, and finally output the pair (a, b = 〈a, s〉+ e (mod q)).

Definition 3 (LWE, [22]). The decisional-LWE problem (dLWEn,q,χ) asks

to distinguish a pair (a, b)← Ls,χ from a pair (a, b)
$←− Znq × Zq.

In the case that χ = Ψ̃αq, we instead use the notations dLWEn,q,α and
sLWEn,q,α, and generally mention them as the LWEn,q,α. Regarding the
hardness of LWE, we have the following result:
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Theorem 3 ([23, Theorem 2.16]). Let n, q ≥ 1 be integers and let α ∈
(0, 1) be such that αq ≥ 2

√
n. Then there exists a quantum reduction from

worst-case GapSVP
Õ(n/α)

to LWEn,q,α. If in addition q ≥ 2n/2 then there is

also a classical reduction between those problems.

Definition 4 (SIS). For an integer q, a random matrix A
$←− Zn×mq , and

a positive real number β, the short integer problem SISq,n,m,β is to find a
non-zero vector z ∈ Zm \ {0} satisfying that Az = 0 (mod q) and ‖z‖ ≤ β.

It is shown in [21] and then in [24] that for large enough q, solving SIS
is as hard as solving SIVP problem. Formally,

Lemma 4 ([24, Proposition 5.7]). For any poly-bounded m, and β =
poly(n), and for any prime q ≥ β · ω(

√
n log n) the average-case problem

SISq,n,m,β is as hard as SIVPγ in the worst-case to within certain γ =

Õ(β
√
n) factor.

The following lemma gives a condition for which the SISn,m,q,β problem
has a solution.

Lemma 5 ([21, Lemma 5.2]). For any q, A ∈ Zn×mq , and β ≥
√
mqn/m,

the SISn,m,q,β admits a solution.

Gadget-based Trapdoor. We will recall the notion of G-trapdoor and
its related algorithms.

Definition 5 (G-trapdoors,[18, Definittion 5.2]). Let n, q,m, k be pos-
itive integers and A ∈ Zn×mq , G ∈ Zn×nkq be matrices with m ≥ nk. Let
H ∈ Zn×nq be some invertible matrix. The G-trapdoor for A with tag H is

a matrix R ∈ Z(m−nk)×nk such that A
[

R
Ink

]
= HG (mod q).

The largest singular value s1(R) is used to measure the quality of a G-
trapdoor R by its. Note that, s1(R) is essentially small as claimed in the
following lemma.

Lemma 6 ([18, Lemma 2.9]). Let Dn×m
σ be a discrete Gaussian distribu-

tion with parameter σ and R← Dn×m
σ . Then with overwhelming probability

s1(R) ≤ σ · 1√
2π
· (
√
n+
√
m).

Let k = dlog2 qe, and gt = (1, 2, 4, ..., 2k−1) ∈ Zkq . We will be working

with G = In ⊗ gt ∈ Zn×nkq , where ⊗ denotes the tensor product. Further
details can be found in [18]. We will exploit the following algorithms for the
proposed SCET construction.

Lemma 7. Let q ≥ 2,m ≥ 1, k = dlog2 qe, and m = m+ nk = O(n log q).
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1. (A,R) ← GenTrap(n,m, q, σ) [18, Algorithm 1]: On input integer
n,m, q, σ, GenTrap chooses a uniform matrix A ∈ Zn×mq and a matrix

H ∈ Zn×nq , then outputs a random matrix A =
[
A|HG−AR

]
and a

G-trapdoor R ∼ Dm×nk
σ with tag H. The condition for Gaussian pa-

rameter σ is that for any ε ∈ (0, 1), σ ≥ ηε(Z), i.e., σ ≥
√

ln(2(1+1/ε))
π .

Moreover, there exists ε = ε(n) negligible for which σ ≥ ω(
√

log n).
Note also that, s1(R) ≤ σ · 1√

2π
· (
√
m+

√
nk) by Lemma 6.

2. e ← SampleD(A,R,H,u, σ) [18, Algorithm 3]: On input a matrix

A ∈ Zn×(m+nk)
q and its G-trapdoor R ∈ Zm×nk, an invertible matrix

H ∈ Zn×nq , a uniform vector u
$←− Znq and a Gaussian parameter σ,

SampleD outputs a vector e ∈ Zm+nk ∼ DΛu
q (A),σ. The condition for

σ is that σ ≥
√

7(s1(R)2 + 1) · ω(
√

log n) (see [18, Section 5.4]).

3. (s, e) ← Invert(R,A,bt = stA + et) [18, Algorithm 2]: On input a
uniform matrix A and its G-trapdoor R, and a vector b such that bt =
stA+et, Invert returns (s and e). Note that if e← DZm,αq and 1/α ≥
2
√

5(s1(R)2 + 1) · ω(
√

log n) then Invert succeeds with overwhelming
probability over the choice of e (see [18, Theorem 5.4]).

We adapt Lemma 6 in [25] for scalar tags (i.e., H = x · In for some
x ∈ Zq \ {0}) to get the following lemma which will be helpful for the
security analysis in Section 5:

Lemma 8 (Adapted from [25, Lemma 6]). For i = 0, · · · , n, let T(i)

be G-trapdoor for [A|A(i)] ∈ Zn×(m−k)
q × Zn×kq with tag H(i) = xiIn for

some xi ∈ Zq \ {0}. Then any linear combination T =
∑n

i=1 hiT
(i) with

hi ∈ Zq is a G-trapdoor for [A|
∑n

i=1 hiA
(i)] with tag H =

∑n
i=1 hiH

(i) =
(
∑n

i=1 hixi)In 6= 0.

3. Framework of Signcryption Scheme with Equality Test

There are two settings for an SCET scheme depending on the number
of users joining the scheme [26]. While in two-user setting, there are only
one receiver and only one sender, the multi-user setting involves with mul-
tiple receivers and senders. In this setting, it is supposed that the attacker
knows all public keys of all receivers and of all senders when he accesses the
communication channel between the target sender and the target receiver.
See [27, Subsection 1.3] for more details.

From now on, we suppose that in a SCET scheme, there are N receivers
and M senders. We also use r (resp., s) to represent the index of a receiver
(resp., a sender).
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3.1. Syntax

A SCET is a tuple of algorithms Setup, KGr, KGs, SC and USC, Tag, and
Test which is described as follows:

• Setup(1λ) is a probabilistic polynomial time (PPT) algorithm that
takes as input a security parameter λ to output a set of public param-
eters pp.

• KGr(pp) (resp., KGs(pp)) is a PPT algorithm that on input the set of
public parameters pp, outputs a public key pkr and a private key skr
for a receiver R (resp., a public key pks and a private key sks for a
sender S).

• SC(pkr, sks, µ) is a PPT algorithm takes as input a public key pkr of a
receiver, a private key sks of a sender and a message µ in the message
space M to output a ciphertext ct.

• USC(skr, pks, ct) is a deterministic polynomial time (DPT) algorithm
takes as input the private key skr of a receiver, a public key pks of a
sender and a ciphertext ct to output a message µ or an invalid ⊥.

• Tag(skr) is a DPT algorithm that on input a private key skr of a
receiver to output a tag tgr.

• Test(tg1, ct1, tg2, ct2) is a DPT algorithm that takes as input two pairs
of tag/ciphertext (tg1, ct1), (tg2, ct2) to output 1 if ct1 and ct2 are
generated on the same message or 0 otherwise.

3.2. Correctness

Let λ be any security parameter. For any pp← Setup(1λ), (pkr, skr)←
KGr(pp), (pks, sks)← KGs(pp), (pkr1 , skr1)← KGr(pp), (pks1 , sks1)← KGs(pp),
(pkr2 , skr2)← KGr(pp), (pks2 , sks2)← KGs(pp), tg1 ← Tag(skr1) and tg2 ←
Tag(skr2), any ciphertexts ct1 and ct2, and any message µ ∈ M, the cor-
rectness for an SCET scheme requires all the following to hold:

1. Pr[µ = USC(skr, pks,SC(pkr, sks, µ))] = 1− negl(λ).
This says that given a valid ciphertext on a message, the unsigncryp-
tion algorithm succeeds in recovering that message with overwhelming
probability.

2. If USC(skr1 , pks1 , ct1) = USC(skr2 , pks2 , ct2) 6= ⊥, then

Pr[Test(tg1, ct1, tg2, ct2) = 1] = 1− negl(λ).

This says that if two ciphertexts are from the same message then the
equality test algorithm returns 1 with overwhelming probability.
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3. If USC(skr1 , pks1 , ct1) 6= USC(skr2 , pks2 , ct2), then

Pr[Test(tg1, ct1, tg2, ct2) = 1] = negl(λ).

This says that if two ciphertexts are generated on two different mes-
sages then the equality test algorithm returns 1 with negligible prob-
ability.

3.3. Security

We categorize the security for SCET into the outsider and insider secu-
rities. In the outsider security setting, an external adversary cannot know
private information of users but public information (e.g., public system pa-
rameters and public keys). In contrast, in the insider security setting, an
internal adversary can know some private keys of other users hence he is
stronger than any external adversaries.

We also consider three types of adversary against a SCET scheme. Re-
mark that, all of them can be internal adavesaries, i.e., insider attackers.
These types of adversary and their behaviors will be detailed in the follow-
ing definitions and games.

• Type 1 adversary is supposed to know the target receiver, but does
not have the tag of the target receiver and his goal is to guess which
message between two options that is used in the signcryption algorithm
to produce the challenge ciphertext. As an insider attacker, he can
also know the target sender’s public and private keys. The Type 1
adversary corresponds to the IND-iCCA1 game.

• Type 2 adversary is supposed to know the target receiver and can
perform equality tests on any ciphertexts and his goal is to recover
the message corresponding to the challenge ciphertext. As an insider
attacker, he can also know the target sender’s public and private keys.
The Type 2 adversary corresponds to the OW-iCCA1 game.

• Type 3 adversary is supposed to know the target sender and his goal
is to try to forge at least one valid ciphertext. As an insider attacker,
he can also know the target receiver’s public and private keys. The
Type 3 adversary corresponds to the UF-iCMA game.

Definition 6 (IND-iCCA1). An SCET scheme is IND-iCCA1 secure if
the advantage of any PPT adversary A1 playing the INDCCA1A1

SCET game

is negligible: AdvIND-iCCA1
A1

(λ) := |Pr[INDCCA1A1
SCET ⇒ 1]− 1/2| ≤ negl(λ).

The INDCCA1A1
SCET game is defined as follows:

Setup. The challenger C first runs Setup(1λ) to have the set of public
parameters pp. Then C runs KGr(pp) to get (pkr, skr) for r ∈ [N ], and
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KGs(pp) to get (pks, sks) for s ∈ [M ], then sends (pp, {pkr}r∈[N ]), {pks}s∈[M ])
to the adversary A1. Let r∗ ∈ [N ] be the index of the target receiver.

Phase 1. A1 adaptively makes a polynomially bounded number of the
following queries:

• Private key query PKQ(r): If r = r∗, the challenger C rejects the
query. Otherwise, C returns the private key skr of the receiver Rr to
A1.

• Signcryption query SCQ(r, s, µ): The challenger C sends the output ct
of SC(pkr, sks, µ) back to A1.

• Unsigncryption query USQ(r, s, ct): C sends the output of USC(skr, pks,
ct) back to A1.

• Tag query TGQ(r): If r = r∗, the challenger C rejects the query.
Otherwise, C in turn sends the output tgr of Tag(skr) back to A1.

Challenge. A1 submits two messages µ∗0, µ
∗
1 together with the tar-

get sender’s keys (pks∗ , sks∗). The challenger C then chooses uniformly
at random a bit b ∈ {0, 1} and returns the challenge ciphertext ct∗ ←
SC(pkr∗ , sks∗ , µ

∗
b) to A1.

Phase 2. A1 queries the oracles again as in Phase 1 with a restriction
that A1 is not allowed to make the query PKQ(r∗) and all unsigncryption
queries USQ(r, s, ct).

Output. A1 outputs a bit b′ ∈ {0, 1}. He wins the game if b′ = b.

Definition 7 (OW-iCCA1). The scheme SCET is OW-iCCA1 secure if
the advantage of any PPT adversary A2 playing the OWCCA1A2

SCET game is

negligible: AdvOW-iCCA1
A2

(λ) := Pr[OWCCA1A2
SCET ⇒ 1] ≤ negl(λ).

The OWCCA1A2
SCET game is defined as follows:

Setup. The challenger C first runs Setup(1λ) to have the set of public
parameters pp and then runs KGr(pp) to get (pkr, skr) for r ∈ [N ], and
KGs(pp) to get (pks, sks) for s ∈ [M ], then sends (pp, {pkr}r∈[N ]), {pks}s∈[M ])
to the adversary A2. Let r∗ ∈ [N ] be the index of the target receiver.

Phase 1. A2 adaptively makes polynomially bounded number of the
following queries:

• Private key query PKQ(r): If r = r∗, C rejects the query. Otherwise,
C returns the private key skr of the receiver Rr .

• Signcryption query SCQ(r, s, µ): C returns the output ct of SC(pkr, sks, µ).

• Unsigncryption query USQ(r, s, ct): C sends the output of USC(skr, pks,
ct) back to A2.
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• Tag query TGQ(r): C returns the output tgr of Tag(skr) (even when
r = r∗).

Challenge. A2 submits the target sender’s keys (pks∗ , sks∗), C chooses
a random message µ∗ ∈ M and returns the challenge ciphertext ct∗ ←
SC(pkr∗ , sks∗ , µ

∗) to A2.
Phase 2. A2 queries the oracles again as in Phase 1 with a restriction

that A is not allowed to make the query PKQ(r∗) and all unsigncryption
queries USQ(r, s, ct).

Output. A2 outputs µ′∗. He wins the game if µ′∗ = µ∗.

Remark 1. One should be aware that there is no any reduction from IND-
iCCA1 to OW-iCCA1 because the OW-iCCA1 adversary is allowed to know
the tag of the target receiver, whilst the IND-iCCA1 is not.

Definition 8 (UF-iCMA). The scheme SCET is UF-iCMA secure if the
advantage of any PPT adversary A3 playing the UFCMAA3

SCET game is neg-

ligible: AdvUF-iCMA
A3

(λ) := Pr[UFCMAA3
SCET ⇒ 1] ≤ negl(λ).

The UFCMAA3
SCET game is defined as follows:

Setup. The challenger C first runs Setup(1λ) to have the set of public
parameters pp and then runs KGr(pp) to get (pkr, skr) for r ∈ [N ], and
KGs(pp) to get (pks, sks) for s ∈ [M ], then sends (pp, {pkr}r∈[N ]), {pks}s∈[M ])
to the adversary A3. Let s∗ ∈ [M ] be the index of the target sender.

Queries. A3 adaptively makes polynomially bounded number of the
following queries:

• Private key query PKQ(s): If s = s∗, C rejects the query. Otherwise,
C returns the private key sks of the sender Ss to A3.

• Signcryption query SCQ(r, s, µ): C returns the output ct of SC(pkr, sks, µ)
back to A3.

• Unsigncryption query USQ(r, s, ct): C returns the output of USC(skr, pks, ct).

• Tag query TGQ(r): C returns the output tgr of Tag(skr).

Forge. A3 outputs an index r∗ of some receiver and a ciphertext ct∗ on
a message µ∗, where ct∗ must not be the output of any query SCQ(r, s, µ)
in the query phase. He wins the game if USC(skr∗ , pks∗ , ct

∗) 6= ⊥. Note
that, if µ∗ is not the same as the messages queried previously, the SCET
scheme is called EUF-iCMA (i.e., existential unforgeability). If µ∗ is one of
the messages queried previously but (µ∗, ct∗) 6= (µ, ct) for all (µ, ct) that was
queried previously, then the SCET scheme is called SUF-iCMA (i.e., strong
unforgeability).
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4. Our Construction

In this section, we describe a lattice-based signcryption with equal-
ity test, named SCET. The proposed SCET signcryption consists of algo-
rithms Setup, KG, SC, USC, Tag and Test. We also consider lattice-based
collision-resistant hash functions indicated by a uniform matrix W defined
as fW(x) := Wx mod q (cf. [21]).

Setup(1n): On input a security parameter n, perform the following:

1. Set parameters n, q,m, `, N , M , α, σ1, σ2, k = dlog qe, m =
m+ nk as in Section 6.

2. Samples randomly and independently matrices C0, · · · ,Cn,C
′
0, · · · ,

C′n ∈ Zn×nkq , B,B′ ∈ Zn×mq , U,U′ ∈ Zn×`q .

3. Samples randomly vector u ∈ Znq .

4. One-way hash function H : {0, 1}` → {0, 1}`, collision-resistant
hash functions H1 : Zn×mq → Zmq , H2 is a full-rank differences
(FRD) encoding 1 and a universal hash function H3 : {0, 1}∗ →
Zmq .

5. A plaintext (message) space M = {0, 1}`.
6. Return pp = {n, q, k,m,m, `, α, σ1, σ2, N,M,M, (Ci,C

′
i)
n
i=0, H,H1,

H2, H3} as the set of public parameters.

KG(pp): On input the public parameters pp, do the following:

1. For each receiver r ∈ [N ], generate Ar,A
′
r

$←− Zn×mq , Tr,T
′
r ←

DZm×nk,σ1 and then set Ar = [Ar| − Ar · Tr] ∈ Zn×mq , A′r =

[A
′
r| −A

′
r ·T′r] ∈ Zn×mq

2. Similarly, for each sender s ∈ [M ], generate As,A
′
s

$←− Zn×mq ,

Ts,T
′
s ← DZm×nk,σ1 and then set As = [As|G−As ·Ts] ∈ Zn×mq ,

A′s = [A
′
s|G−A

′
s ·T′s] ∈ Zn×mq

3. Return pkr = (Ar,A
′
r), and skr = (Tr,T

′
r) as public key and

private key for a receiver R of index r, pks = (As,A
′
s), and

sks = (Ts,T
′
s) as public key and private key for a sender S of

index s.

SC(pkr, sks, µ): On input a receiver’s public key pkr = (Ar,A
′
r), a sender’s

private key sks = (Ts,T
′
s), a plaintext µ ∈M, perform the following:

1. re, r
′
e ← DZm,αq, t = fAr

(H1(As)) + fB(re) ∈ Znq ,
t′ = f

A
′
r
(H1(A′s)) + fB′(r

′
e) ∈ Znq .

1See [19, Section 5] for details on FRD.
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2. Ar,t = Ar+[0|H2(t)G] ∈ Zn×mq = [Ar|H2(t)G−Ar·Tr] ∈ Zn×mq ,

A′r,t = A′r + [0|H2(t′)G] ∈ Zn×mq = [A
′
r|H2(t′)G − A

′
r · T′r] ∈

Zn×mq .

3. s, s′
$←− Znq , x1,x

′
1 ← DZ`,αq.

4. c0 = stAr,t + xt0 ∈ Zmq , c1 = stU + xt1 ∈ Z`q,
c′0 = (s′)tA′r,t + (x′0)t ∈ Zmq , c′1 = (s′)tU′ + (x′1)t ∈ Z`q.

5. Set ct = (c0, c1, re, c
′
0, c
′
1, r
′
e).

6. Sign on µ|pkr|ct to get the signature (e, rs) as follows:

(a) rs ← DZm,αq.

(b) h = (h1, · · · , hn) = fAs
(H3(µ|pkr|ct)) + fB(rs) ∈ Znq .

(c) As,h = [As|C0 +
∑n

i=1 hi ·Ci] ∈ Zn×(m+nk)
q ,

(d) e ∈ Zm+nk ← SampleD(Ts.As,h,u, σ2)

7. c1 = c1 + µ · bq/2c ∈ Z`q, c′1 = c′1 +H(µ) · bq/2c ∈ Z`q.
8. Output the ciphertext ct = (c0, c1, re, rs, c

′
0, c
′
1, r
′
e, e).

USC(skr, pks, ct): On input a sender’s public key pks := (As,A
′
s), a re-

ceiver’s private key skr := (Tr,T
′
r), a ciphertext ct = (c0, c1, re, rs, c

′
0,

c′1, r
′
e, e), do the following:

1. Compute t = fAr
(H1(As))+fB(re) ∈ Znq and Ar,t = [Ar|H2(t)G−

Ar ·Tr] ∈ Zn×mq .

2. (s,x0)← Invert(Tr,Ar,t, c0).

3. Compute E ∈ Zm×` ← SampleD(Tr,Ar,t,U, σ2).

4. Compute vt = ct1 − (c0 − x0)tE = xt1 + µ · bq/2c.
5. Recover µ from v mod q.

6. c1 = c1 − µ · bq/2c mod q, c′1 = c′1 −H(µ) · bq/2c mod q, and let
ct := (c0, c1, re, c

′
0, c
′
1, r
′
e).

7. Compute h = (h1, · · · , hn) = fAs
(H3(µ|pkr|ct)) + fB(rs) ∈ Znq .

8. As,h = [As|C0 +
∑n

i=1 hi ·Ci] ∈ Zn×(m+nk)
q .

9. If As,h · e = u mod q and ‖e‖ ≤ σ2

√
m+ nk then output µ;

otherwise, output ⊥.

Tag(skr): On input a receiver’s private key skr := (Tr,T
′
r), return the tag

tgr := T′r.

Test((tgr,i, cti), (tgr,j , ctj)): On input a tag tgr,i := T′r,i, a ciphertext cti =

(c0,i, c1,i, re,i, rs,i, c
′
0,i, c

′
1,i, r

′
e,i, ei) with respect to the receiver Ri, and

a tag tgr,j := T′r,j , a ciphertext ctj = (c0,j , c1,j , re,j , rs,j , c
′
0,j , c

′
1,j , r

′
e,j , ej)

with respect to the receiver Rj , do the following:
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• For Ri, do:

1. Compute t′i = f
A
′
r,i

(H1(A′s,i)) + fB′(r
′
e,i) ∈ Znq and A′r,ti =

[A
′
r,i|H2(t′i)G−A

′
r,i ·T′r,i] ∈ Zn×mq ,

2. (s′i,x
′
0,i)← Invert(T′r,i,A

′
r,ti , c

′
0,i).

3. Compute E′ ∈ Zm×` ← SampleD(T′r,A
′
r,t,U

′, σ2).

4. Compute (v′i)
t = (c′1,i)

t − (c′0,i − x′0,i)
tEi = (x′1,i)

t + H(µi) ·
bq/2c.

5. Recover H(µi) from v′i mod q.

• For Rj : Do the same steps as above for Ri to recover H(µj).

• Output 1 if H(µi) = H(µj). Otherwise, output 0.

Theorem 9 (Correctness). The proposed SCET scheme is correct follow-
ing the conditions mentioned in Subsection 3.2 provided that H is collision-
resistant.

Proof. For any pp← Setup(1λ), (pkr, skr)← KGr(pp), (pks, sks)← KGs(pp),
(pkr1 , skr1) ← KGr(pp), (pks1 , sks1) ← KGs(pp), (pkr2 , skr2) ← KGr(pp),
(pks2 , sks2) ← KGs(pp), tg1 ← Tag(skr1) and tg2 ← Tag(skr2), any cipher-
texts ct1 and ct2, and any message µ ∈M. We need to check the following:

• First, we will prove that Pr[µ = USC(skr, pks,SC(pkr, sks, µ))] = 1 −
negl(λ). Indeed, let ct = (c0, c1, re, rs, c

′
0, c′1, r

′
e, e) be a ciphertext

outputted by SC(pkr, sks, µ). Now what we need to verify is Step 5
in the USC algorithm. To succesfully recover µ = (µ1, · · · , µ`) from
v = x1 + µ · bq/2c, we compare each component of v = (v1, · · · , v`) to
q/2. If |vi| < q/2 then µi = 0. Otherwise, µi = 1. This is thanks to
the smallness of x1 ← DZ`,αq.

• Second, we need to show that if USC(skr1 , pks1 , ct1) = USC(skr2 , pks2 , ct2) =
µ 6= ⊥, then

Pr[Test(tg1, ct1, tg2, ct2) = 1] = 1− negl(λ).

This can be done in the same way as above.

• Finally, we show that if USC(skr1 , pks1 , ct1) = µ1 6= USC(skr2 , pks2 , ct2) =
µ2, then

Pr[Test(tg1, ct1, tg2, ct2) = 1] = negl(λ).

This can be done in the same way as above with noting that if H(µ1) =
H(µ2) happens, then it must be that µ1 = µ2 due to the collision-
resistance of H.

Note that, the negligibility in the above conditions comes from that of the
trapdoor algotihms being used such as Invert, SampleD with appropriately
chosen parameters.
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5. Security Analysis

Theorem 10 (IND-iCCA1). The proposed SCET scheme is IND-iCCA1
secure under the hardness of the decisional-LWE dLWEn,2(m+`),q,αq problem

and the collision-resistance of the functions fAr(·) + fB(·) for any Ar
$←−

Zn×mq and any B
$←− Zn×mq .

Proof. We consider a sequence of games in which the first game Game
IND0 is the original one. And the last game Game IND5 is the “uniform-
based” game. We will demnostrate that Game INDi and Game IND(i+1)
are indistinguishable for i ∈ {0, · · · , 4}.

Game IND0. This is the original IND-iCCA1 game. Suppose that the
target receiver is r∗ and the target sender announced at Challenge
phase by the adversary A1 is s∗. Also, let t∗ ← fAr∗

(H1(As∗)) +

fB(r∗e), and t′∗ ← f
A
′
r∗

(H1(A′s∗)) + fB′(r
′∗
e ).

Game IND1. This game is same as Game IND0, except that if A1 makes
an unsigcryption query (r∗, s, ct) such that fAr∗

(H1(As))+fB(re) = t∗

or f
A
′
r∗

(H1(A′s)) + fB′(r
′
e) = t′∗, where t∗ and t′∗ are defined as in

Game IND0 (we name this event by Event1), then the challenger
outputs ⊥.

Game IND1 and Game IND0 are indistinguishable since the proba-
bility that the event Event1 happens is negligible due to the collision
resistance of fAr∗

(·) + fB(·), and f
A
′
r∗

(·) + fB′(·).

Game IND2. This game is same as Game IND1, except that instead
of B,B′ being uniform in Zn×mq , use GenTrap(n,m, q, σ1) to generate

(B,TB), (B′,T′B) ∈ Zn×mq × Zm×nkq .

Game IND2 and Game IND1 are indistinguishable due to the prop-
erty of GenTrap algorithm. Namely, although being genereted using
GenTrap, both B,B′ look uniform in Zn×mq .

Game IND3. This game is same as Game IND2, except that in the
Setup phase, for the target receiver r∗, the challenger generates as
follows:

1. Choose t∗, t′∗ ∈ Znq uniformly at random. The challenger uses
t∗, t′∗ to build Ar∗ ,A

′
r∗ .

2. Choose Tr∗ ,T
′
r∗ ← DZm×nk,σ1 and then set Ar∗ = [Ar∗ |−H2(t∗)G−

Ar∗ ·Tr∗ ] ∈ Zn×mq , A′r∗ = [A
′
r∗ | −H2(t′∗)G−A

′
r∗ ·T′r∗ ] ∈ Zn×mq .

3. The public key for r∗ is pkr∗ = (Ar∗ ,A
′
r∗) and the private key

key for r∗ is skr∗ = (Tr∗ ,T
′
r∗).
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Game IND3 and Game IND2 are indistinguishable since the distribu-
tion of Ar∗ ,A

′
r∗ is the same as that of Ar,A

′
r for all r 6= r∗ which are

generated in Step 1 of the KG algorithm.

Game IND4. This game is the same as Game IND3, except that in the
Challenge phase, the challenger performs the following:

1. Choose randomly b
$←− {0, 1}.

2. Ar∗,t∗ = Ar∗ + [0|H2(t∗)G] = [Ar∗ | −Ar∗ ·Tr∗ ] ∈ Zn×mq ,

A′r∗,t′∗ = A′r∗ + [0|H2(t′∗)G] = [Ar∗ | −A
′
r∗ ·T′r∗ ] ∈ Zn×mq .

3. Compute r∗e ← SampleD(TB,B, (t
∗−fAr∗

(H1(As∗))), αq), r′e
∗ ←

SampleD(T′B,B
′, (t′∗ − f

A
′
r∗

(H1(A′s∗))), αq).

4. Sample s, s′
$←− Znq , x̂0, x̂

′
0 ← DZm,αq, x1,x

′
1 ← DZ`,αq.

5. Compute ĉ0 = stAr∗ + x̂t0 ∈ Zmq , c1 = stU + xt1 ∈ Z`q, ĉ′0 =

(s′)tA
′
r∗ + (x̂′0)t ∈ Zmq , c′1 = (s′)tU′ + (x′1)t ∈ Z`q,

6. Set (c∗0)t := (ĉt0|ĉt0Tr∗), (c′∗0 )t := ((ĉ′0)t|(ĉ′0)tT′r∗).

7. Sign on µ∗b |pkr∗ |ct
∗

with ct
∗

= (c∗0, c
∗
1, r
∗
e, c
′∗
0 , c

′∗
1 , r

′∗
e ) to get the

signature (e∗, r∗s) as usuall.

8. c∗1 = c∗1 + µ∗b · bq/2c, c′∗1 = c′∗1 +H(µ∗b) · bq/2c
9. Return ct∗ = (c∗0, c

∗
1, r
∗
e, r
∗
s, c
′∗
0 , c

′∗
1 , r

′∗
e , e

∗) to A1.

Game IND4 and Game IND3 are indistinguishable as the challenger ı́s
just following the real signcryption algorithm SC with Ar∗ = [Ar∗ | −
H2(t∗)G−Ar∗ ·Tr∗ ] ∈ Zn×mq , A′r∗ = [A

′
r∗ | −H2(t′∗)G−A

′
r∗ ·T′r∗ ] ∈

Zn×mq and the distribution of r∗e, r
′∗
e is still DZm,αq by the property of

SampleD.

Game IND5. This game is the same as Game 4, except that c∗0, c
∗
1, r
∗
e, c
′∗
0 , c

′∗
1 , r

′∗
e

are chosen uniformly at random.

Below, we are going to show that Game IND5 and Game IND4 are
indistinguishable using a reduction from the hardness of the decision
LWE problem.

Reduction from LWE. Suppose that A1 can distinguish Game IND5
and Game IND4. Then we will construct an algorithm B1 that can
solve an LWE instance.

LWE Instance. B1 is given a pair (F, ct) ∈ Zn×(2m+2`)
q × Z2(m+`)

q

that can be parsed as (A|A′|U|U′, ĉt0|(ĉ′0)t|ct1|(c′1)t) ∈ Zn×(m+m+`+`)
q ×

Zm+m+`+`
q , and B1 has to decide whether
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• (i) (F, ct) is an LWE instance: ĉ0 = stA + x̂t0 ∈ Zmq , c1 = stU +

xt1 ∈ Z`q, ĉ′0 = (s′)tA′+ (x̂′0)t ∈ Zmq , c′1 = (s′)tU′+ (x′1)t ∈ Z`q, for

some s, s′
$←− Znq , x̂0, x̂

′
0 ← DZm,αq, x1,x

′
1 ← DZ`,αq; or

• (ii) (F, ct) is uniform in Zn×(2m+2`)
q × Z2(m+`)

q .

The algorithms B1 and A1 play the following game:

Setup. B1 simulates public parameters pp, public keys for M senders
and N receivers as follows:

• Pick n, q, k,m,m, `, n,N,M,α, σ1, σ2 and use hash functionsH,H1,
H2, H3. The message space is M.

• Randomly guess r∗
$←− {1, · · · , N} to be the target receiver tar-

geted by A1, and then set Ar∗ := A, A
′
r∗ := A′.

• Choose t∗, t′∗ ∈ Znq uniformly at random and choose Tr∗ ,T
′
r∗ ←

DZm×nk,σ1 and then set Ar∗ = [Ar∗ | − H2(t∗)G − Ar∗ · Tr∗ ] ∈
Zn×mq , A′r∗ = [A

′
r∗ | −H2(t′∗)G−A

′
r∗ ·T′r∗ ] ∈ Zn×mq .

• Also, use GenTrap(n,m, q, σ1) to generate (B,TB), (B′,T′B) ∈
Zn×mq × Zm×nkq .

• Sample u
$←− Znq and matrices C0, · · · , Cn, C′0, · · · , C′n

$←− Zn×mq .

• For each receiver r ∈ [N ] \ {r∗} and each sender s ∈ [M ], use the
algorithm KG to generate (Ar,Tr), (A′r,T

′
r), (As,Ts), (A′s,T

′
s) ∈

Zn×mq × Zm×nkq .

• Set pp = {n, q, k,m, ,m, `, n, α, σ1, σ2, N,M,M, (Ci,C
′
i)
n
i=0, H,H1,

H2, H3} as public parameters and pkr = (Ar,A
′
r), pks = (As,A

′
s)

as public keys corresponding to each receiver r ∈ [N ], and each
sender s ∈ [M ].

• Send pp, pks’s, pkr’s all to the adversary A1.

Phase 1. A1 adaptively makes a polynomially bounded number of
the following queries:

• Private key query PKQ(r): If r = r∗, B1 rejects the query. Oth-
erwise, B1 returns the private key skr = (Tr,T

′
r) to A1.

• Signcryption query SCQ(r, s, µ): B1 sends the output ct of SC(pkr,
sks, µ) back to A1.

• Unsigncryption query USQ(r, s, ct): IfA1 makes an unsigcryption
query (r, s, ct) such that t∗ = fAr

(H1(As)) + fB(re) and t′∗ =
f
A
′
r
(H1(A′s)) + fB′(r

′
e) then B1 outputs ⊥. Otherwise, B1 sends

the output µ/⊥ of USC(skr, pks, ct) back to A1.

• Tag query TGQ(r): If r = r∗, B1 rejects the query. Otherwise,
B1 sends the output tgr = T′r back to A1.
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Challenge. A1 submits two messages µ∗0, µ
∗
1 together with the target

sender’s keys (pks∗ , sks∗). The adversary B1 does the following:

1. Choose randomly b
$←− {0, 1}.

2. Compute r∗e ← SampleD(TB,B, (t
∗−fAr∗

(H1(As∗))), αq), r′e
∗ ←

SampleD(T′B,B
′, (t′∗ − f

A
′
r∗

(H1(A′s∗))), αq).

3. Ar∗,t∗ = Ar∗ + [0|H2(t∗)G] = [Ar∗ | −Ar∗ ·Tr∗ ] ∈ Zn×mq ,

A′r∗,t′∗ = A′r∗ + [0|H2(t′∗)G] = [Ar∗ | −A
′
r∗ ·T′r∗ ] ∈ Zn×mq .

4. Set (c∗0)t := (ĉt0|ĉt0Tr∗), (c′∗0 )t := ((ĉ′0)t|(ĉ′0)tT′r∗).

5. Sign on µ∗b |pkr∗ |ct
∗

with ct
∗

= (c∗0, c
∗
1, r
∗
e, c
′∗
0 , c

′∗
1 , r

′∗
e ) to get the

signature (e∗, r∗s) as usuall.

6. c∗1 = c∗1 + µ∗b · bq/2c, c′∗1 = c′∗1 +H(µ∗b) · bq/2c
7. Return ct∗ = (c∗0, c

∗
1, r
∗
e, r
∗
s, c
′∗
0 , c

′∗
1 , r

′∗
e , e

∗) to A1.

Phase 2. A1 queries the oracles again as in Phase 1 with a re-
striction that A1 is not allowed to make the queries PKQ(r∗) and
USQ(r∗, s∗, ct∗). Output. B1 outputs whatever A1 outputs.

Analysis. The probability that an unsigncryption query (r, s, ct) makes
t = t∗ and t′ = t′∗ is negligible as t∗ and t′∗ are chosen randomly in Setup
phase. Then, we have H2(t − t∗) and H2(t′ − t′∗) are invertible then we
can apply Invert as in the real unsigncryption algorithm USC. Obviously, if
(F, ct) is the LWE instance then the view of A1 as in Game IND4; while if

(F, ct) is uniform in Zn×(2m+2`)
q × Z2(m+`)

q then the view of A1 as in Game
IND5. Therefore, if A1 can distinguish Game IND4 and Game IND5
then B1 can solve the decision LWE problem. �

Theorem 11 (OW-iCCA1). The proposed SCET scheme is OW-iCCA1
secure provided that H is an one-way hash function, the dLWEn,2(m+`),q,αq

problem is hard and the functions fAr(·) + fB(·) are collision-resistant for

any Ar
$←− Zn×mq and any B

$←− Zn×mq . In particular, the advantage of the
OW-iCCA1 advesary is

ε ≤ εH,OW + εf,CR + εLWE ,

where εH,OW is the advantage of breaking the one-wayness of H, εf,CR is
the advantage of finding collision for any functions fAr(·) + fB(·) and εLWE

is the advantage of solving the dLWEn,2(m+`),q,αq problem.

Proof. We prove by giving a sequence of five games in which the first
game is the original OW-iCCA1 one and in the last game, the ciphertext
will be chosen randomly. Obviously, in the last game the advantage of the
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OW-iCCA1 adversary is zero. For i ∈ {0, 1, 2, 3, 4}, let Wi be the event
that the OW-iCCA1 adversary A2 wins Game OWi, we need to prove
that Pr[W0] is negligible. To do that we will show that for i ∈ {0, · · · , 4},
|Pr[Wi] − Pr[Wi+1]| is negligible, guaranteed by the one-wayness of hash
functions and especially the hardness of the decision LWE problem.

Game OW0. This is the original OW-iCCA1 game. Suppose that the tar-
get receiver is r∗ and the target sender announced at Challenge phase
by the adversary A2 is s∗. Also, assume that t∗ := fAr∗

(H1(As∗)) +

fB(r∗e), and t′∗ := f
A
′
r∗

(H1(A′s∗)) + fB′(r
′∗
e ). Note that, the adversary

A2 can get the trapdoor T′r∗ using the trapdoor query for the target
receiver r∗.

Game OW1. This game is same as Game OW0, except that in the Chal-

lenge phase, on the challenge plaintext µ∗
$←− M, the challenger

first chooses µ′
$←− M then signcrypts µ∗ in c∗1 and H(µ′) instead

of µ∗ in c′∗1 of the challenge ciphertext ct∗, i.e., c∗1 = c∗1 + µ∗ · bq/2c,
c′∗1 = c′∗1 +H(µ′) · bq/2c .

Since the view of the adverary A2 is the same in both Game OW1 and
Game OW0, except the case A2 can break the one-wayness of H, we
have

|Pr[W1]− Pr[W0]| ≤ εH,OW .

Game OW2. This game is same as Game OW1, except that if A2 makes
an unsigcryption query (r∗, s, ct) such that fAr∗

(H1(As))+fB(re) = t∗

or f
A
′
r∗

(H1(A′s)) + fB′(r
′
e) = t′∗, where t∗ and t′∗ are defined as in

Game OW0 (we name this event by Event1), then the challenger
outputs ⊥.

Since the view of the adverary A2 is the same, except once the event Event1
happens, in both Game OW2 and Game OW1, we have

|Pr[W2]− Pr[W1]| ≤ εf,CR.

Game OW3. This game is same as Game OW2, except that instead of
B,B′ being uniform in Zn×mq , the challenger uses GenTrap(n,m, q, σ1)

to generate (B,TB), (B′,T′B) ∈ Zn×mq × Zm×nkq .

Due to the fact that B,B′ generated by GenTrap are close to uniform, then
we have Pr[W3] = Pr[W2].

Game OW4. This game is same as Game OW3, except that in the Setup
phase, for the target receiver r∗, the challenger generates as follows:

20



1. Choose t∗, t′∗ ∈ Znq uniformly at random. The challenger uses
t∗, t′∗ to build Ar∗ ,A

′
r∗ .

2. Choose Tr∗ ,T
′
r∗ ← DZm×nk,σ1 and then set Ar∗ = [Ar∗ |−H2(t∗)G−

Ar∗ ·Tr∗ ] ∈ Zn×mq , A′r∗ = [A
′
r∗ | −H2(t′∗)G−A

′
r∗ ·T′r∗ ] ∈ Zn×mq .

3. The public key for r∗ is pkr∗ = (Ar∗ ,A
′
r∗) and the private key

key for r∗ is skr∗ = (Tr∗ ,T
′
r∗).

In this game, once the adversary A2 makes a trapdoor query for r∗, the
challenger still easily returns T′r∗ to A2. In Game OW4 the view
of A2 is unchanged in comparison with in Game OW3 since the
distribution of Ar∗ ,A

′
r∗ is the same as that of Ar,A

′
r for all r 6= r∗

which are generated in Step 1 of the KG algorithm. Therefore,

Pr[W4] = Pr[W3].

Game OW5. This game is same as Game OW4, except that in the Chal-
lenge phase, on the challenge message µ∗, the challenger does the
following:

1. Compute r∗e ← SampleD(TB,B, (t
∗−fAr∗

(H1(As∗))), αq), r′e
∗ ←

SampleD(T′B,B
′, (t′∗ − f

A
′
r∗

(H1(A′s∗))), αq).

2. Sample s, s′
$←− Znq , x̂0, x̂

′
0 ← DZm,αq, x1,x

′
1 ← DZ`,αq.

3. Compute ĉ0 = stAr∗ + x̂t0 ∈ Zmq , c1 = stU + xt1 ∈ Z`q, ĉ′0 =

(s′)tA
′
r∗ + (x̂′0)t ∈ Zmq , c′1 = (s′)tU′ + (x′1)t ∈ Z`q,

4. Set (c∗0)t := (ĉt0|ĉt0)Tr∗ , (c′∗0 )t := ((ĉ′0)t|(ĉ′0)t)T′r∗ .

5. Sign on µ∗b |pkr∗ |ct
∗

with ct
∗

= (c∗0, c
∗
1, r
∗
e, c
′∗
0 , c

′∗
1 , r

′∗
e ) to get the

signature (e∗, r∗s) as usuall.

6. µ′
$←−M, c∗1 = c∗1 + µ∗ · bq/2c, c′∗1 = c′∗1 +H(µ′) · bq/2c.

7. Return ct∗ = (c∗0, c
∗
1, r
∗
e, r
∗
s, c
′∗
0 , c

′∗
1 , r

′∗
e , e

∗) to A2.

We have Pr[W5] = Pr[W4] as the distributions of corresponding components
in ct∗ in Game OW5 and Game OW4 are the same.

Game OW6. This game is same as Game OW5, except that the challenge
ciphertext ct∗ = (c∗0, c

∗
1, r
∗
e, r
∗
s, c
′∗
0 , c

′∗
1 , r

′∗
e , e

∗) is chosen uniformly at
random. The advantage of A2 in this game is obviously zero, i.e.,
Pr[W6] = 0.

At this point, we show that |Pr[W6]− Pr[W5]| ≤ εLWE which is negligible
by using a reduction from the LWE assumption as in Theorem 10. �

21



Before stating the SUF-iCMA security, we recap the so-called abort-
resistant hash functions, presented in [19, Section 7.4.1]. We will exploit the
hash functions in designing answers to the adversary’s queries.

Definition 9 ([19, Definition 26]). Let H := {H : X → Y } be a family
of hash functions H from X to Y where 0 ∈ Y . For a set of Q + 1 inputs
h := (h∗,h(1), · · · ,h(Q)), the non-abort probability of h is defined as

α(h) := Pr[H(h∗) = 0 and H(h(1)) 6= 0 and · · · and H(h(Q)) 6= 0],

where the probability is over the random choice of H in H. And H is
called (Q,αmin, αmax) abort-resistant if for all h := (h∗,h(1), · · · ,h(Q)) and
h∗ /∈ {h(1), · · · ,h(Q)}, we have αmin ≤ α(h) ≤ αmax.

Particularly, we have the following result that will be applied to the security
proof for the proposed signcryption construction.

Lemma 12 ([19, Lemma 27]). let q be a prime and 0 < Q < q. Consider
the family HWat := {Hx : Znq \ {0} → Zq : x = (x1, · · · , xn) ∈ Znq \ {0}}
defined as Hx(h) = 1 +

∑n
i=1 xihi ∈ Zq where h = (h1, · · · , hn) ∈ Znq . Then

HWat is (Q, 1
q (1− Q

q ), 1
q ) abort-resistant.

Now, it is the time we state and prove the SUF-iCMA security for SCET.

Theorem 13 (SUF-iCMA). Our SCET is SUF-iCMA secure in the stan-
dard model provided that the SIS problem is intractable. In particular, as-
sume that there is an adversarial algorithm F who can win the SUF-iCMA
game making at most Q < q/2 adaptive chosen message queries. Then,
there is an algorithm G who is able to solve the SISn,2m+2nk+1,q,β problem,
with β := 2σ1 · σ2 ·

√
n+ 1 · 1√

2π
· (
√
m+

√
nk) ·

√
m+ nk..

Proof. We assume by contradiction that if there exists a forger F who can
break the SUF-iCMA security of the SCET scheme, then we can build from
F an algorithm G that can find a solution to a given SIS problem.

We will give proof for the SUF-iCMA in two cases: Case 1: The forger
F forges on an unqueried message and Case 2: The forger F who forges on
a queried message. Suppose that, F makes at most Q adaptive signcryption
queries on (r(1), s(1), µ(1)), · · · , (r(Q), s(Q), µ(Q)),.

We consider Case 1 first.
SIS Instance. Suppose that the algorithm G is given the following SIS

problem below:

F · x = 0 (mod q), where F
$←− Zn×(2m+2nk+1)

q , ‖x‖ ≤ β1, (1)

where β1 = σ2 ·
√
n+ 1 · (

√
m +

√
nk)
√
m+ nk + 1. Then, G parses F as

F := [A|W|u|A′|W′], where A,A
′ ∈ Zn×mq , u ∈ Znq , and W,W′ ∈ Zn×nkq .

The algorithms G and F play the following game:
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Setup. G simulates public parameters pp, public keys for M senders
and N receivers as follows:

• Pick n, q, k,m, `, n, α,N,M, σ1, σ2, H,H1, H2, H3,M as system param-
eters.

• Guess s∗
$←− {1, · · · ,M} to be the target sender that F would like to

forge, and then set As∗ := A, A
′
s∗ := A

′
, As∗ := [As∗ |W] ∈ Zn×mq ,

A′s∗ := [A
′
s∗ |W′] ∈ Zn×mq . Recall that m = m+ nk.

• Also, use GenTrap(n,m, q, σ1) to generate (B,TB), (B′,T′B) ∈ Zn×mq ×
Zm×mq , and choose randomly U,U′

$←− Zn×`q .

• For i ∈ {0, · · · , n}, sample Ts∗,i,T
′
s∗,i ← DZm×nk,σ1 . Let x0 := 1.

Choose x := (x1, · · · , xn)
$←− Znq \ {0} and for i ∈ {0, · · · , n}, let

Hi = xiIn and set Ci := HiG − As∗Ts∗,i (mod q) ∈ Zn×nkq , C′i :=

H′iG−A
′
s∗T

′
s∗,i (mod q) ∈ Zn×nkq . Obviously, by Lemma 12, such an

x will define an abort-resistant hash function belonging to HWat.

• For each j ∈ [Q]: repeat choosing h(j) = (h
(j)
1 , · · · , h(j)

n ) ∈ Znq uni-

formly at random until being such that (1 +
∑n

i=1 xi · h
(j)
i ) 6= 0.

• For all s ∈ [M ] \ {s∗} and all r ∈ [N ], use GenTrap(n,m, q, σ1) to
generate (Ar,Tr), (A′r,T

′
r), (As,Ts), (A′s,T

′
s) ∈ Zn×mq × Zm×nkq .

• Set pp = {n, q, k,m, `, n,N,M,α, σ1, σ2,M, (Ci,C
′
i)
n
i=0, H,H1, H2, H3}

as public parameters and pkr = (Ar,A
′
r), pks = (As,A

′
s) as public

keys corresponding to each receiver r ∈ [N ], and each sender s ∈ [M ].

• Send pp, pks’s, pkr’s all to the forger F .

Queries. F can adaptively make PKQ, SCQ and TGQ queries polynomially
many times and in any order. Accordingly, G responds to the queries made
by F as follows:

• For private key queries PKQ(s): if s = s∗, G rejects it. Otherwise, G
returns the private key sks = (Ts,T

′
s) of a sender Ss to F .

• For the j-th signcryption query SCQ(r(j), s(j), µ(j)) querie: If s(j) 6= s∗,
G sends the output ct of SC(pkr(j) , sks(j) , µ

(j)) back to F . Otherwise,
G creates a ciphertext ct on input (pkr(j) , sks∗ , µ) as follows:

1. re, r
′
e ← DZm,αq, t = fAr

(H1(As∗)) + fB(re) ∈ Znq ,
t′ = f

A
′
r
(H1(A′s∗)) + fB′(r

′
e) ∈ Znq .

2. Ar,t = Ar+[0|H2(t)G] ∈ Zn×mq = [Ar|H2(t)G−Ar·Tr] ∈ Zn×mq ,

A′r,t = A′r + [0|H2(t′)G] ∈ Zn×mq = [A
′
r|H2(t′)G − A

′
r · T′r] ∈

Zn×mq .
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3. s, s′
$←− Znq , x0,x

′
0 ← DZm,αq, x1,x

′
1 ← DZ`,αq.

4. c0 = stAr,t + xt0 ∈ Zmq , c1 = stU + xt1 ∈ Z`q,
c′0 = (s′)tA′r,t + (x′0)t ∈ Zmq , c′1 = (s′)tU′ + (x′1)t ∈ Z`q.

5. ct = (c0, c1, re, c
′
0, c
′
1, r
′
e).

6. Generate a signature on µ(j)|pkr(j) |ct:
(a) Compute rs ← SampleD(TB,B, (h

(j)−fAs∗
(H3(µ(j)|pkr|ct)))), αq).

(b) As∗,h = [As∗ |C0 +
∑n

i=1 h
(j)
i · Ci] = [As∗ |HG −As∗Ts∗ ] ∈

Zn×(m+nk)
q , with H := H0 +

∑n
i=1 hi · Hi = (1 +

∑n
i=1 xi ·

h
(j)
i )In 6= 0 and Ts∗ := Ts∗,0 +

∑n
i=1 hi ·Ts∗,i. Note that, by

Lemma 8, Ts∗ is a G-trapdoor for As∗,h with tag H.

(c) e ∈ Zm+nk ← SampleD(Ts∗ ,As∗,h,u, σ2).

(d) (e, rs) is the signature.

7. c1 = c1 + µ(j) · bq/2c, c′1 = c′1 +H(µ(j)) · bq/2c.
8. Output ct = (c0, c1, re, rs, c

′
0, c
′
1, r
′
e, e).

• For unsigncryption query USQ(r, s, ct): G simply sends the output µ/⊥
of USC(skr, pks, ct) back to F since G has (Tr,T

′
r) for all r ∈ [N ].

• For tag query TGQ(r): G simply sends the output tgr := T′r back to
F .

Forge. The forger F outputs an index r∗ of some receiver and its corre-
sponding key-pair (pkr∗ , skr∗), and a new valid ciphertext ct∗ = (c∗0, c

∗
1, r
∗
e, c
′∗
0 ,

c′∗1 , r
′∗
e , e

∗) on message µ∗, i.e., ct∗ must be not the output of any previuos
query SCQ(r, s, µ), and USC(skr∗ , pks∗ , ct

∗) 6= ⊥.
Analysis. At the moment, G proceeds the following steps:

• Compute h∗ = (h∗1, · · · , h∗n) ← fAs∗
(H3(µ∗|pkr∗ |ct∗)) + fB(rs∗) ∈ Znq

and check if H := H0+
∑n

i=1 h
∗
i ·Hi = (1+

∑n
i=1 xi ·h∗i )In = 0. If not, G

aborts the game. Otherwise, it computes As∗,h∗ = [As∗ |C0 +
∑n

i=1 h
∗
i ·

Ci] = [As∗ |W|−As∗Ts∗ ] ∈ Zn×(m+nk)
q . Note that, the probability that

G aborts the game is negligible by appropriately choosing parameters
via Lemma 12.

• From As∗,h∗ ·e∗ = u mod q and ‖e∗‖ ≤ σ2

√
m+ nk, we have [As∗ |W|−

As∗Ts∗ ] · e∗ = u (mod q), equivalently,

[As∗ |W] ·
([

Im 0 −Ts∗

0 Ink 0

]
· e∗
)

= u (mod q).

• Let x̂ :=

[
Im 0 −Ts∗

0 Ink 0

]
·e∗ 6= 0, then [A|W|u] ·

(
x̂
−1

)
= 0 (mod q).

Hence, G gets a solution x to the SIS problem (1), i.e., F · x =

24



0 (mod q), with x =
( x̂
−1
0

)
, and by Lemma 2,

‖x‖ = ‖x̂‖+ 1 ≤ s1(Ts∗) · ‖e∗‖+ 1

≤ σ1 · σ2 ·
√
n+ 1 · 1√

2π
· (
√
m+

√
nk) ·

√
m+ nk + 1.

Now, we consider Case 2. Suppose that the algorithm G is given the
following SIS problem below:

F · x = 0 (mod q), where F
$←− Zn×(2m+2nk)

q , ‖x‖ ≤ β2, (2)

where β2 := 2σ1 ·σ2 ·
√
n+ 1 · 1√

2π
· (
√
m+
√
nk) ·

√
m+ nk. Then, G parses

F as F := [A|W|A′|W′], where A,A
′ ∈ Zn×mq , and W,W′ ∈ Zn×nkq . The

algorithms G and F play the following game:
Setup. This phase is the same as the Setup phase of Case 1, except

that G does the following:

• Randomly guess s∗
$←− {1, · · · ,M} and r∗

$←− {1, · · · , N} to be the
target sender and the target receiver respectively, that F would like
to forge, and then set As∗ := A, A

′
s∗ := A

′
, As∗ := [As∗ |W] ∈ Zn×mq ,

A′s∗ := [A
′
s∗ |W′] ∈ Zn×mq . Recall that m = m+ nk.

• Repeat choosing h(j) = (h
(j)
1 , · · · , h(j)

n ) ∈ Znq uniformly at random until

(1 +
∑n

i=1 xi · h
(j0)
i ) = 0 for some j0 ∈ [Q] and (1 +

∑n
i=1 xi · h

(j)
i ) 6= 0

for each j ∈ [Q] \ {j0}. Let h(j0) to be the one corresponding to the
target query (r∗, s∗, µ∗) and let h∗ = (h∗1, · · · , h∗n)← h(j0).

• Set As∗,h∗ = [As∗ |C0 +
∑n

i=1 h
∗
i · Ci] = [As∗ |W| − As∗Ts∗ ], where

Ts∗ := Ts∗,0 +
∑n

i=1 h
∗
i ·Ts∗,i.

• Choose e∗(1) ← DZm+nk,σ2 , set u := As∗,h∗ · e∗(1) ∈ Znq and send u to
F as a uniformly random one.

Queries. For almost PKQ, SCQ and TGQ queries,G responds in the same
way as in the Queries phase of Case 1, except that with the target query
SCQ(r∗, s∗, µ∗), G responds as follows:

1. Produce ct
∗

= (c∗0, c
∗
1, r
∗
e, c
′∗
0 , c

′∗
1 , r

′∗
e ) as usual.

2. Generate a signature on µ∗|pkr∗ |ct∗:

(a) r∗s ← SampleD(TB,B,h
∗ − fAs∗

(H3(µ∗|pkr∗ |ct∗)), αq).

(b) Set (e∗(1), r∗s) to be the signature.

3. c∗1 = c∗1 + µ · bq/2c, c′∗1 = c′∗1 +H(µ) · bq/2c.
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4. Return ct∗(1) = (c∗0, c
∗
1, r
∗
e, r
∗
s, c
′∗
0 , c

′∗
1 , r

′∗
e , e

∗(1)) to F .

Forge. The forger F outputs the target receiver’s key-pair (pkr∗ , skr∗)
together with a new valid ciphertext ct∗(2) = (c∗0, c

∗
1, r
∗
e, r
∗
s, c
′∗
0 , c

′∗
1 , r

′∗
e , e

∗(2))
on the message µ∗. Note that, e∗(2) 6= e∗(1) while c∗0, c

∗
1, r
∗
e, r
∗
s, c
′∗
0 , c

′∗
1 , r

′∗
e are

unchanged due to the validity of ct∗(2) corresponding to As∗,h∗ .
Analysis. At the moment, G proceeds the following steps:

• Recall As∗,h∗ = [As∗ |C0 +
∑n

i=1 h
∗
i ·Ci] = [As∗ |W| −As∗Ts∗ ].

• From As∗,h∗ · e∗(1) = u mod q and As∗,h∗ · e∗(2) = u mod q, we have

[As∗ |W] ·
([

Im 0 −Ts∗

0 Ink 0

]
· (e∗(1) − e∗(2))

)
= 0 (mod q).

• Let x̂ :=

[
Im 0 −Ts∗

0 Ink 0

]
·(e∗(1)−e∗(2)), then [A|W]·x̂ = 0 (mod q),.

Hence, G gets a solution x to the SIS problem (2), i.e., F · x =
0 (mod q), with x =

(
x̂
0

)
, and

‖x‖ = ‖x̂‖ ≤ s1(Ts∗) · ‖e∗(1) − e∗(2)‖

≤ 2σ1 · σ2 ·
√
n+ 1 · 1√

2π
· (
√
m+

√
nk) ·

√
m+ nk,

by Lemma 2.

It remains to prove that x̂ 6= 0 with overwhelming probability. Let w :=
e∗(1) − e∗(2) 6= 0 and parse w =

(w1
w2
w3

)
. Then x̂ = (w1 − Ts∗w3,w2).

Obviously, if w2 6= 0 or w3 := (w1, · · · , wnk) = 0 then x̂ 6= 0. Otherwise,
i.e., w2 = 0 and w3 6= 0, we will show that As∗(w1 −Ts∗w3) = 0 happens
only with negligible probability. Indeed, without loss of generality, assume
that wnk 6= 0 then As∗(w1 − Ts∗w3) = 0 only if tnk ∼ DΛ⊥q (As∗ )+c,σ1

and

tnk · wnk = y for some y ∈ Λ⊥q (As∗) + c for any c in span(Λ⊥q (As∗)), where
tnk is the nk-th column of Ts∗,0. Then by Lemma 1, such a tnk exists with
negligible probability.

In conclusion, we choose the common SIS problem SISn,2m+2nk+1,q,β for
both two cases (i.e., Case 1 and Case 2) with β := max{β1, β2} which
should be β := 2σ1 · σ2 ·

√
n+ 1 · 1√

2π
· (
√
m+

√
nk) ·

√
m+ nk. �

6. Parameter Selection

• We take n as the security parameter.

• For the gadget-based trapdoor mechanism to work: Choose q ≥ 2,m ≥
1, k = dlog2 qe, and m = O(n log q).
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• Also choose q, n,m, `,Q such thatH is one-way, H1 is collision-resistant,
H3 is universal, HWat (in Lemma 12) is a family of abort-resistant hash
functions, and the functions fAr

(·) + fB(·) are collision-resistance for

any Ar
$←− Zn×mq and any B

$←− Zn×mq .

• By Theorem 3, in order for the decisional-LWE dLWEn,2(m+`),q,αq to
be hard: q > 2

√
n/α for α = 1/poly(n) ∈ (0, 1).

• For the Gaussian parameter σ1 used in KeyGen (which follows Gen-
Trap): σ1 ≥ ω(

√
log n). Note also that, all private keys for senders

and users Ts,Tr satisfy that s1(Ts), s1(Tr) ≤ σ1 · 1√
2π
· (
√
m+

√
nk)

by Lemma 6.

• For the parameter α used in Invert: We should choose α such that
1/α ≥ 2

√
5(s1(R)2 + 1) · ω(

√
log n) by Lemma 7.

• For the Gaussian parameter σ2 used in SampleD: σ2 ≥
√

7(s1(Ts)2 + 1)·
ω(
√

log n) (see [18, Section 5.4]).

• For the SISn,2m+2nk+1,q,β problem has a solution and to be hard (in
the SUF-iCMA security proof): β ≥

√
2m+ 2nk + 1 · qn/(2m+2nk+1),

q ≥ β ·ω(
√
n log n), β := 2σ1 ·σ2 ·

√
n+ 1 · 1√

2π
·(
√
m+
√
nk) ·

√
m+ nk.

7. Insecurity of the Signcryption by Lu et al. [16]

7.1. Description

The signcryption by Lu et al. [16] (called Lu-SC) exploits the basis-based
trapdoor mechanism by [28] which consists of algorithms TrapGen, ExtBasis,
SamplePre. The Lu-SC includes the following algorithms:

• Setup(1n): On input the security parameter n, performs the following:

1. Generate common parameters: q = poly(n), m = d6n log qe, L̃ =
O(
√
n log q), σ ≥ L̃ω(

√
logm), error rate α = 1/poly(n) such that

αq > 2
√
n.

2. Sample randomly and independently matrices C0, · · · ,Cτ ∈ Zn×mq .

3. A collision-resistant hash function H1 : {0, 1}∗ → {0, 1}τ , a uni-
versal hash function H2 : {0, 1}∗ → Znq .

4. A message space M = Znq .

• KeyGen(n): Do the following:

1. Use TrapGen(1n) to generate the matrix-pairs (AR,TR), (AS ,TS),
where each pair belongs to Zn×mq × Zm×mq .

2. Sample randomly matrices BR,BS , each from Zn×mq .
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3. Return

– pkR := (AR,BR), and skR := TR as public key and secret
key for a receiver R,

– pkS := (AS ,BS), and skS := TS as public key and secret key
for a sender S.

• SignCrypt(µ, skS , pkR): On input a plaintextmu ∈M, pkR := (AR,BR),
skS := TS , do the following:

1. h = (hi)i∈[τ ] = H1(µ, pkR) ∈ Zτq .

2. Fµ := [AS ||C0 +
∑τ

i=1(−1)hiCi] ∈ Zn×2m
q .

3. Compute Tµ as the short basis for Λ⊥q (Fµ) from TS using ExtBa-
sis; v← SamplePre(Fµ,Tµ,0, σ), v ∈ Z2m

q , i.e., Fµ·v = 0 (mod q).

4. t = H2(µ, pkS , pkR,v) and c := t + µ mod q. 2.

5. e← Ψ̃2m
α , b1 = [AR||C0]T · t+v ∈ Z2m

q , b2 = [BR||C1]T · t+e ∈
Z2m
q .

6. Output ciphertext CT = (c,b1,b2).

• UnSignCrypt(CT, pkS , skR): On input pkS := (AR,BR), skR := (TR),
CT := (c,b1,b2), do the following:

1. Compute t and v from b1 using ExtBasis and Invert with the help
of TR

2. Compute e = b2 − [BR||C1]T · t and check whether 0 < ‖e‖ ≤
σ
√

2m or not. If not, reject it and return ⊥
3. Compute µ = c− t mod q and h = (hi)i∈[τ ] = H1(µ, pkR)

4. Check whether t = H2(µ, pkS , pkR,v) or not. If not, reject it and
output ⊥

5. If v ∈ Z2m and 0 < ‖v‖ ≤ σ
√

2m and [AS ||C0 +
∑τ

i=1(−1)hiCi] ·
v = 0 (mod q) output µ; otherwise, output ⊥.

7.2. An Attack against IND-CPA

Recall that, in the challenge phase of the IND-CPA security, the adver-
sary submits two plaintexts µ∗0, µ

∗
1 together with the target public key pkS∗ .

The challenger then chooses uniformly at random a bit b ∈ {0, 1} and re-
turns the challenge ciphertext CT∗ ← SignCrypt(µ∗b , skS∗ , pkR∗) back to the
adversary. The adversary wins the game if he can guess correctly the bit b.

Given the challenge ciphertext CT∗ = (c∗,b∗1,b
∗
2) of a plaintext either

µ∗0 or µ∗1, the adversary is able to check the following conditions:

2Actually, in [16], the authors wrote c := t⊕ µ. However, since µ and t belong to Znq ,
we think that it should be c := t+ µ mod q.

28



• v = b1− [AR∗|C0]T · (c−µ∗b), and e = b2− [BR∗ |C1]T · (c−µ∗b) are
small,

• c − µ∗b = H2(µ∗b , pkS∗ , pkR∗ ,v),

• [AS∗ |C0+
∑τ

i=1(−1)hiCi]v = 0 mod q, where (hi)i∈[τ ] = H1(µ∗b , pkR∗).

We see that the correct b satisfies all above conditions, whilst the incorrect b
does not meet all the conditions with high probability. Then the adversary
is able to win the IND-CPA security game with high probability.

Moreover, in the case that both b = 0 and b = 1 satisfy all the conditions,
then the adversary is able to find a collision of H2.

8. Conclusions

In this work, we constructed a lattice-based signcryption scheme associ-
ated with a capacity of equality testing in the standard model. To the best
of our knowledge, this scheme is the first post-quantum signcryption with
equality test in the literature. The proposed scheme satisfies confidentiality
(IND-iCCA1 and OW-iCCA1) and the (strong) unforgeability under chosen
message attack (SUF-iCMA) against insider attacks at the same time in
which the former is based on the decisional-LWE assumption and the lat-
ter is guaranteed by the hardness of the SIS problem. We also showed that
some lattice-based signcryptions in the literature neither are secure nor work
correctly. Our main tool in the construction is the gadget-based trapdoor
technique introduced in [18]. Finding a better way to simplify the equality
test mechanism would be an interesting future task.
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