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Recent advances in the multi-stream HMM/ANNhybrid approach to noise robust ASR

Astrid Hagen Andrew Morris
12/2002révisé en 04/2004à paraître dansComputer, Speech and Language

Résumé. In this article we review several successful extensions to the standard Hidden-Markov-Model/Arti�cial Neural Network (HMM/ANN) hybrid, which have recently made importantcontributions to the �eld of noise robust automatic speech recognition. The �rst extension tothe standard hybrid was the �multi-band hybrid�, in which a separate ANN is trained on eachfrequency subband, followed by some form of weighted combination of ANN state posterior pro-bability outputs prior to decoding. However, due to the inaccurate assumption of subband in-dependence, this system usually gives degraded performance, except in the case of narrow-bandnoise. All of the systems which we review overcome this independence assumption and give impro-ved performance in noise, while also improving or not signi�cantly degrading performance withclean speech. The �all-combinations multi-band� hybrid trains a separate ANN for each subbandcombination. This, however, typically requires a large number of ANNs. The �all-combinationsmulti-stream� hybrid trains an ANN expert for every combination of just a small number ofcomplementary data streams. Multiple ANN posteriors combination using maximum a-posteriori(MAP) weighting gives rise to the further successful strategy of hypothesis level combination byMAP selection. An alternative strategy for exploiting the classi�cation capacity of ANNs is the�tandem hybrid� approach in which one or more ANN classi�ers are trained with multi-conditiondata to generate discriminative and noise robust features for input to a standard ASR system. The�multi-stream tandem hybrid� trains an ANN for a number of complementary feature streams,permitting multi-stream data fusion. The �narrow-band tandem hybrid� trains an ANN for anumber of particularly narrow frequency subbands. This gives improved robustness to noises notseen during training. Of the systems presented, all of the multi-stream systems provide genericmodels for multi-modal data fusion. Test results for each system are presented and discussed.



2 IDIAP�RR 02-57Abbreviations AAC Approximate ACAC All-Combination (or �Full Combination�)ANN Arti�cial Neural NetworkASR Automatic Speech RecognitionDCT Discrete Cosine TransformEM Expectation MaximisationFA Feature AnalysisGMM Gaussian Mixture ModelHMM Hidden Markov ModelHSR Human Speech RecognitionLDA Linear Discriminant AnalysisLVASR Large Vocabulary ASRMAP Maximum A PosterioriMB Multi-BandMCE Minimum Classi�cation ErrorMD Missing DataMFCC Mel Frequency Cepstral Coe�cientsML Maximum LikelihoodMLP Multi-Layer PerceptronMS Multi-StreamMSG Modulation SpectroGramNB Narrow-BandNLDA Non-Linear Discriminant AnalysisPCA Principal Component Analysispdf Probability Density FunctionPLP Perceptual Linear PredictionRASTA RelAtive SpecTrAlRBF Radial Basis FunctionRNN Recurrent Neural NetworkSMD Soft Missing DataSNR Signal to Noise RatioSTD StandardSVM Support Vector MachineTP Transition ProbabilityWER Word Error Rate



IDIAP�RR 02-57 3Notation
T number of data frames in utterance
K total number of HMM states
qk state k (i.e. kth of K HMM states in model)
qt state hypothesized at time step t
Qt HMM state sequence (q1, . . . , qt)
Q full HMM state sequence, QT

xt feature vector at time step t
xi coe�cient i of x
xi feature vector subband or stream i of x
x(i) feature vector subband- or stream- combination (i)

|x(i)| number of subbands or streams in x(i)

Xt feature vector sequence (x1, . . . , xt)
X full feature vector sequence, XT

X(i) feature vector sequence (x(i)
1 , . . . , x

(i)
T )

β number of subbands or streams in x
B number of combinations of 0 or more streams, = 2β

b(i) event that combination x(i) is informative and rest of x is not
B(i) event that combination X(i) is informative and rest of X is not
p(x|q) likelihood of state q given feature vector x (not of x given q)
P (q|x) posterior probability of state q given feature vector x
P (q) prior probability of class (e.g. HMM state) q



4 IDIAP�RR 02-571 IntroductionMost state of the art automatic speech recognition (ASR) systems are Hidden Markov Model(HMM) based, with state distributions modelled by Gaussian Mixture Models (GMMs). The perfor-mance of HMM/GMM systems is still improving, but it has a long way to go. Most of these improve-ments are in pre- and post-processing (feature extraction, pronunciation models, language models) andmodel adaptation (to channel, noise and speaker), rather than to changes in the central HMM/GMMmodelling apparatus. HMMs are the preferred means for modelling time sequences, but an acknow-ledged weakness with the standard HMM/GMM in ASR is the assumption of independence1 betweenconsecutive data frames which are separated by only 10 ms, when strong dependence persists for50-100 ms. Feature windows spanning more than one time frame do not improve HMM/GMM per-formance (Morris et al., 2000). The main interest in the HMM/ANN model (Bourlard and Morgan,1994; Hochberg et al., 1995; Bourlard and Dupont, 1997), see Figure 1, is that Multi-Layer Perceptron(MLP) Arti�cial Neural Networks (ANNs) (Rumelhart et al., 1986; Ripley, 1996) are more able thanGMMs to capture the dynamic information in extended feature windows, with frame level performanceincreasing beyond GMM performance as window size increases up to 90 ms. Both GMMs and ANNsappend time di�erence features to static features, which somewhat increases the size of the contextwindow (from 1 to 7 windows for GMMs and from 9 to 15 for MLPs), but di�erence features are justa �xed linear function of the context window and do not enable the GMM to perform the kind ofnon-linear processing of which MLPs are capable. It is true that through the use of time di�erence fea-tures, context dependent speech units, and language models, HMM/GMMs are still competitive withHMM/ANNs2. GMMs are also more highly developed (at present) than ANNs to noise and speakeradaptation. However, under many circumstances the propensity of ANNs to model class posteriors
P (q|x)3, while GMMs model class likelihoods p(x|q), makes them more suitable than GMMs for multiexpert combination4.1.1 HMM/ANN hybridIn the HMM/ANN hybrid, which we refer to here as the �standard HMM/ANN hybrid� (see Fi-gure 1), an ANN is trained to output a posterior probability for each model state. In decoding theseprobability mass outputs are converted to scaled likelihoods, as in (1), and used to directly replacethe state likelihoods which are normally modelled by GMMs. However, there are many further waysin which the time sequence modelling power of HMMs can be combined with the superior ability ofANNs to capture speech dynamics.

p(xt|qk)

p(xt)
=

P (qk|xt)

P (qk)
(1)For classi�cation purposes the ANN used in HMM/ANN hybrids is usually an MLP with one hid-den layer of sigmoid units and an output layer of softmax units (one per class). It is trained withlabelled data to (most commonly) maximise the mutual information or �cross entropy� between inputfeatures and target output class posteriors. When HMM/ANNs are used with sub-word units such asphonemes, it is usual to restrict the size of the ANN by using just one ANN output per phoneme andto use the scaled likelihood from this output for all states of this phoneme. Furthermore, while inHMM/GMM systems the state transition probabilities (TPs) used in decoding are estimated as partof the Expectation-Maximization (EM) training procedure, in HMM/ANN systems this is not the case1Throughout this article, when we say that random variables A and B are �independent� we really mean that they areconditionally independent with respect to the message (e.g. class labels) C they encode, i.e. P (A, B|C) ∼= P (A|C)P (B|C).2HMM/ANNs also bene�t from these context constraints, but to a lesser extent.3Please refer to the Notation section where an exact de�nition is given for all symbols used throughout his article.4This is mainly because, unlike state likelihoods, the state posteriors output by ANNs are independent of input datadimension.
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Fig. 1 � Standard HMM/GMM speech recognition system (top), with feature analysis (FA) follo-wed by GMM state likelihood modelling and (Viterbi) decoder, and (bottom) a standard one-streamHMM/ANN system, with ANN state posteriors modelling.and it is common practice to use the same �xed value (e.g. 0.5) for all TPs. However, while TPscontribute less than acoustic emission probabilities to decoder performance, HMM/ANN performancecan be signi�cantly improved (especially in noise) by better TPs estimation (Morris et al., 2002) andsometimes by using one ANN output per hidden state.1.2 Multi-expert systems in ASRThe combination of multiple experts, where each expert has di�erent error characteristics, providesa generic means of improving recognition robustness to unpredictable signal distortion. Recognitioncan be improved by combining multiple data models at one or more of the processing levels as follows(see also Figure 2).1. Feature combination : concatenate data features from various sources. This is currently themost widely used form of feature combination.2. Posterior probabilities combination : combine the K estimated posterior probabilities fromeach ANN into a single set of K probabilities.3. Hypothesis combination : Performance can be further improved when multiple word se-quence hypotheses from systems with di�erent error characteristics are combined by combina-tion schemes such as ROVER (Fiscus, 1997; Evermann and Woodland, 2000) or MAP AC MS(see Section 3.3) (Morris et al., 2001a).In this paper we report on several extensions to the standard HMM/ANN hybrid which have recentlymade important contributions to the �eld of noise robust automatic speech recognition. The �rstextension to the standard hybrid was the (standard) �multi-band� (STD MB) hybrid (Bourlard et al.,1996; Hermansky et al., 1996), see Figure 35. In this model the usual single ANN expert is replaced bya separate ANN trained on each frequency subband, followed by some form of posteriors combination,prior to decoding. However, while noise in any subband is thereby isolated, for all conditions exceptnarrow-band noise this model results in signi�cantly degraded performance.MLP posteriors combination is usually by standard (weighted) sum or product (Hermansky et al.,1996; Tibrewala and Hermansky, 1997; Cerisara et al., 1998; Dupont, 2000; Kirchho� et al., 2000),by voting (Halberstadt and Glass, 1998; Cerisara, 1999b), or by MLP (Bourlard and Dupont, 1996;Hermansky et al., 1996; Mirghafori, 1999). In the case of a weighted sum from N experts, if theerrors from each expert are independent and unbiased, the expected square deviation from the targetoutputs will be reduced by a factor of N (Bishop, 1995). In practice the errors from di�erent expertsare always to some extent correlated, so that the variance reduction factor is smaller than N , but canstill be large.Analysis by the present authors has shown that the standard sum and product rules make anumber of dubious assumptions. The STD sum rule makes the �one good subband� assumption thatthe data in just one subband is 100% reliable while the data in every other subband is completely5Each ANN box in �gures throughout this article also comprises any secondary feature processing, such as log energyscaling, Mel frequency scaling, PLP (Hermansky, 1990), concatenation, DCT, time di�erences, PCA, etc.
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helloFig. 2 � Three possible levels of multi-expert combination used by the HMM/ANN hybrid ASR systemsreported in this artcile (top = feature level, middle = posterior proabilities level, bottom = hypothesislevel).uninformative. The STD product rule makes the �independence� assumption that each subband is(conditionally) independent. It also makes the �one good subband� assumption, but with suitableweight normalization this assumption can be avoided (see AAC sum rule, Section 3.1). STD MB MLPexpert combination does not permit dynamic weighting and therefore assumes that subband relativereliability never changes, but this assumption is avoided in the �narrow-band tandem� model, Section4.2.
Decoder

Filter Bank ANN

Filter Bank ANN

Weight

hello

��
��
��
��
��

����Fig. 3 � Standard multi-band HMM/ANN hybrid (STD MB), with two subbands. Combination is atthe posteriors level only.In the next section we discuss some observations concerning human speech recognition (HSR) whichprovided motivation for the original multi-band approach, because despite the poor performance ofthis early model, these �proof of existence� ideas from HSR may still provide valuable guidance in thefuture design of any kind of multi-expert ASR system.2 Multi-band processing in human speech recognitionMost of the multi-expert techniques presented in this article arose from the standard multi-bandmodel (Bourlard and Dupont, 1996; Hermansky et al., 1996; Goldberg and Riek, 2000), in which



IDIAP�RR 02-57 7each frequency subband is processed by a separate acoustic model. This approach was motivated byFletcher's work on human speech recognition (Fletcher, 1953), summarised in (Allen, 1994). Usingnonsense consonant-vowel-consonant words and two frequency bands with varying cut-o� frequency,Fletcher found that the human fullband error rate was related to the high- and low-pass error ratesby the following simple formula, which we refer to as the �product of errors rule� :
ε = ε1 · ε2 (2)where ε is the fullband error rate and ε1 and ε2 are the error rates from the lower and upper subband.This suggests that the two subband error rates are independent, and that a fullband error occursexactly when there is an error in both high- and low-pass recognition. This is equivalent to sayingthat recognition is correct whenever either high- or low-pass recognition is correct. This means thathuman phone recognition is able to make at least two guesses at the phone identity, and to infalliblydetect a correct guess when one arises. This rule identi�es great potential bene�t for any ASR systemwhich could perform independent recognition in as many separate subbands as possible, providing1. the advantage of having β guesses is not outweighed by the increased error rate for each guess2. an infallible �oracle� can be found to identify which guesses are correct.However, HSR tests since Fletcher's experiments, as well as ASR tests, now cast a strong doubt onthe potential bene�t of the STD MB model. HSR tests have now shown that1. Fletcher's product of errors rule (2) does not hold in HSR with four or more subbands (Steenekenand Houtgast, 1980; Houtgast and Steeneken, 1985; Houtgast and Verhave, 1991; Steeneken andHoutgast, 1999).2. the information carried by each combination of subbands (not just in neighbouring bands) isgreater than the sum of the information carried in each subband taken alone (Grant and Braida,1991; Steeneken and Houtgast, 1999; Lippmann, 1996; Silipo et al., 1999).A combination of high- and low-frequencies (including a gap in frequency) often results in betterrecognition than a similar increase in band-width at low-frequencies by the use of a higher cut-o�frequency (Lippmann, 1996; Silipo et al., 1999). Furthermore, in (Warren et al., 1995) it is shownthat �sentences restricted to narrow spectral slits maintain a remarkably high intelligibility over anextended range of center frequencies, and that information contained in widely separated bands canbe integrated to produce an increase in intelligibility that is much greater than simple additivity�.These �ndings in HSR are re�ected by ASR tests which have shown that the early MB systemsusually perform signi�cantly worse than a fullband system in clean speech, even when perfect �oracle�expert selection is used (Hagen, 2001). The low performance of MB ASR in clean speech is due not somuch to expert selection or weighting (which is relatively easy), but to the fact that the performanceof every subband ANN expert is well below the performance of the fullband expert. This is not thecase in HSR with just two subbands.The hypothesis that HSR processes frequency bands independently is therefore no longer sustai-nable and in MB ASR we have to ensure that we at least model the joint processing of di�erentsubband combinations. In the next section we review the �all combinations� model which overcomesthe independence assumption by training a separate classi�er ANN on every combination of frequencysubbands (or feature streams).3 All-combinations multi-band and multi-stream systemsThe �rst approach to overcoming the subband independence assumption was to pool fullbandwith subband experts (Bourlard and Dupont, 1997; Mirghafori and Morgan, 1998; Cerisara, 1999a;Mirghafori, 1999). However, while this combined system can prevent loss of performance with cleanspeech, it is not robust to wide-band noise and has no clear mathematical foundation.



8 IDIAP�RR 02-573.1 All-combinations multi-band HMM/ANN hybridIn the �all-combinations� multi-band HMM/ANN hybrid approach6 (Hagen, 2001; Morris et al.,2001b) a separate ANN is trained for every combination of subbands, see Figure 4. This overcomes theinaccurate independence assumption, while retaining all of the potential advantages of a multi-bandsystem.
Decoder

ANN

ANN

����

Filter Bank

Filter Bank ANN

priors

hello

WeightFig. 4 � All-combinations multi-band (AC MB) HMM/ANN hybrid, with two subbands. An expert istrained for every possible combination of subbands. Combination is at both the feature and posteriorslevel.The �AC sum rule� which is most commonly used for posteriors combination with the AC MBsystem having β subbands can be derived as follows. Let x(i) (i = 1, . . . ,B)7 denote the vector of datacoe�cients from subband combination (i) for some given time frame xt. Assume that each subband xi iseither 100% reliable or 100% uninformative (the �one good subband combination� assumption). De�ne
b(i) as the event that every subband in x(i) is informative and all other data in x is uninformative. Inthis case the set of events {b(i)} are mutually exclusive and exhaustive. The AC sum rule can now bederived from �rst principles as follows.

P (qk|x) = P (qk,∪ib
(i)|x) ({b(i)} exhaustive) (3)

=

B∑

i=1

P (qk, b(i)|x) (each b(i) mutually exclusive) (4)
=

B∑

i=1

P (b(i)|x)P (qk|b
(i), x) (5)

=

B∑

i=1

P (b(i)|x)P (qk|x
(i)) (de�nition of b(i)) (6)

=

B∑

i=1

wiP (qk|x
(i)) (7)Here the wi are positive weights which sum to 1 and represent the probability that each event b(i)is true, given the data in x. Di�erent approaches to how these weights can be estimated are discussedin (Hagen et al., 1999; Glotin and Berthommier, 2000; Heckmann et al., 2001).The �one good subband combination� assumption made by the AC sum rule is an improvement onthe �one good subband� assumption made by the standard MB sum rule, but it is still inaccurate. Not6sometimes also known as the �full combination� approach7B = 2β is the total number of stream combinations having from 0 up to β subbands.



IDIAP�RR 02-57 9all coe�cients in a subband need be equally informative and even noisy coe�cients can sometimesimpose strong constraints on the underlying clean data value, so they are not necessarily entirelyuninformative.With HMM/GMM systems, under certain conditions the subband combination posteriors can bederived from a single fullband model by marginalization8 (Morris et al., 2000; Hagen, 2001), althoughthe number of combination posteriors which is necessary to calculate can still be prohibitive if β islarge. With the AC MB hybrid it is necessary to train 2β separate ANN experts9, so this system islimited to a small number of subbands.However, if we assume stream independence, we obtain the following approximation to each sub-band combination posterior from the β one-band expert posteriors alone (Hagen et al., 2000; Morriset al., 2001b)
Pki = P 1−|x(i)|(qk)

∏

xj∈x(i)

P (qk|xj) (8)
P (qk|x

(i)) ∼= Pki/

B∑

j=1

Pji (9)This approximation, together with the AC sum rule (7), provides the approximated AC (AAC) sumrule. This rule can be used with the standard MB model, replacing the usual assumption that just onesubband is reliable by the assumption that just one subband combination is reliable.Results comparing the performance of the standard fullband, 4-subband standard MB and AC MBhybrid systems are presented in Figure 510. It is of interest to note that the performance of the AACsum rule is consistently better than that of the standard MB sum rule, given that the di�erence incomputational complexity is negligible.Tests in Figure 5 used the Numbers95 database (Cole et al., 1995) of continuously spoken digits.Noise conditions were clean (matched) and noisy (mismatch), with band-limited (stationary and siren)and wide-band car and factory noise from Noisex (Varga et al., 1992), each at 0 and 12 dB SNR (Hagen,2001). Stationary band-limited Gaussian noise was added to one of the subbands at a time at 0 and12 dB SNR. Throughout this article, all noise signals were arti�cially added to the sampled speechsignal.All of the results given in this section are for systems trained with clean speech. Word error rates(WERs) were calculated as average values over the di�erent noise levels. All tests were run using bothPLP and (more noise robust) J-RASTA-PLP (Hermansky et al., 1992) features. Feature sets consist of12 raw features (together with frame energy), calculated on 25 ms windows with 12.5 ms shift fromsignals sampled at 8 kHz, plus �rst and second time di�erence features.As can be seen in Figure 5, standard MB processing, employing either STD sum or STD productrules, improves performance only with narrow-band noises and non-robust features, while perfor-mance for both wide-band noise and clean speech is strongly degraded in comparison to the fullbandHMM/ANN baseline. AC MB also gives an advantage with narrow-band noise for robust features,while not signi�cantly degrading performance in clean speech. However, with wide-band noise andclean speech, none of these systems gives any signi�cant improvement over the fullband baseline.In the next section we look at the AC multi-stream (AC MS) approach. This uses the same ar-chitecture and combination rules as AC MB, but, unlike AC MB, it can improve over or equal theperformance of the fullband baseline (using noise robust features) under all noise conditions.8Closed form marginalization with respect to a subset of spectral coe�cients is only possible with GMMs whenfeatures remain in the spectral domain (e.g. not possible if DCT has been applied to obtain cepstral coe�cients).9The number of ANN experts can be reduced to some extent by assigning a zero weight to certain subband combi-nations, such as all combinations with less than a given number of subbands.10Combination weights wi and state priors P (qk) used in tests throughout this article, unless otherwise stated, are allequal. In the authors' experience, the di�erence in performance due to di�erent weighting methods is usually negligiblecompared to the di�erence due to di�erent model architectures. State priors help if they are estimated accurately, butif one or more is inaccurate (e.g. due to few state occurrences), it is better to use equal priors.
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Fig. 5 � Test results (Numbers95 connected digits data) for the fullband baseline, the standard multi-band (STD MB) hybrid (with STD sum and STD product combination), the all-combinations multi-band (AC MB) hybrid (with AC sum combination), and the approximate all-combinations hybrid (withAAC sum combination), employing either PLP features (left) or J-RASTA-PLP features (right). Alltraining was with clean speech only. WERs are given for clean speech, speech corrupted by stationaryand dynamic arti�cial narrow-band noise, and average for wide-band car and factory noise. All noiseresults averaged over 0 and 12 dB SNR. Results from (Hagen, 2001).3.2 All-combinations multi-stream hybridThe AC MB system models noise more accurately than the standard MB system, but its perfor-mance is still limited due to the inaccurate assumption of all-or-nothing reliability for each subband.An alternative approach is to leave noise removal to noise robust features, or noise estimation andsubtraction, and to apply the AC MB model to the combination of features from experts trained onmultiple representations of the full speech signal. We call this the AC multi-stream (AC MS) approach(model as Figure 4, but with �Filter Bank� replaced by �Feature Analysis�).The paradigm of using an ensemble of trained classi�ers instead of a single classi�er has beenwidely proposed in the literature (Hansen and Salamon, 1990; Jacobs et al., 1991; Jordan and Jacobs,1994; Bishop, 1995). Ghitza (1994) showed that humans seem to use not only di�erent frequencybands but also di�erent time scales to capture short-term and long-term information simultaneously.As mentioned in Section 1.2, the advantage of expert combination is greatest when each experthas di�erent error characteristics and is unbiased. Expert diversity can be obtained by variation ofone or more of the many factors involved in expert design, including : sensory mode, e.g. audio, visual(Tomlinson et al., 1996; Dupont and Luettin, 1998; Rogozan and Deléglise, 1998) ; training set ; trainingnoise environment (Tumer and Ghosh, 1996; Shire, 2000) ; sample size ; analysis technique (e.g. MFCC(Davis and Mermelstein, 1980), PLP, RASTA) ; analysis time scale (Hagen, 2001; Hermansky et al.,2000; Ellis and Reyes-Gomez, 2001; Ghitza, 1994) ; window size ; derivative window size (Wu et al.,1998; Kirchho�, 1998; Hagen et al., 2000) ; expert type (e.g. GMM, MLP, RNN) ; expert con�guration(e.g. number of mixture components in GMM ; number and size of hidden layers in MLP) ; trainingobjective (e.g. sum of square errors, cross-entropy, minimum classi�cation error).Experimental results in Figure 6 show that with clean speech the AC MSmodel leads to consistently(although not dramatically) improved results over the baseline hybrid using one stream of concatenatedfeatures. The three streams use state-of-the-art acoustic feature analysis techniques which are knownto be powerful in rather diverse conditions and thus complement each other well. Although the RASTAfeature stream when used alone performs signi�cantly worse than the others, the additional use ofeach feature stream leads to a signi�cant performance improvement.In these tests the AC MS sum rule (with equal stream weights) was used to combine three di�erent
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Fig. 6 � Test results (continuous speech from digits and numbers part of Portuguese SpeechDatcorpus, clean speech) for the all-combinations MS HMM/ANN hybrid, employing PLP (P), RASTA (R)and MSG (M) features. Results are given for single streams, for feature concatenation (R-P,P-M,R-M,R-P-M) and for posteriors combination employing STD sum (R+P+M) and product (R*P*M) rules,and AC sum rule (R-P-M AC). Results are from (Hagen and Neto, 2003).feature analysis techniques, and lead to improved results on clean speech, which was not possible withAC MB processing. In the next section we review a technique whereby the stream weights used by theAC MS sum rule are selected to maximise the a-posteriori utterance probability. This approach leadsanalytically to a simple method for combining any number of standard HMM/ANN or HMM/GMMutterance hypotheses.3.3 Combination at hypothesis levelIn maximum likelihood (ML) based adaptation a small number of parameters θ in a trained modelwith parameters (M , θ) are adapted during recognition of an utterance X to maximise the parameterlikelihood, p(X |M, θ) and the utterance Q is then selected to maximise p(Q|X, M, θ). With posteriorsbased models, such as the AC MS HMM/ANN hybrid, with AC sum rule combination (6), it is notpossible to evaluate the likelihood p(X |M, θ)11 (Hagen, 2001, 101�103), but it is possible to evaluatethe posterior utterance probability P (Q|X, M, θ) for any givenQ. In this section we review an approachby which combination weights for an AC MS hybrid system are adapted for each utterance to maximisethe posterior utterance probability P (Q|X, M, θ) over all Q and all θ.In (Morris et al., 2001a) two cases are considered. In the �rst, �staticMAP weighting�, the constraintis imposed that the same weighting must be used throughout each utterance. In this case we aree�ectively hypothesizing that each of the β streams of X are either 100% informative or uninformativethroughout each whole utterance. There are therefore just 2β possible informative subsets of X , as inthe AC sum rule (7). In the second case, �dynamic MAP weighting�, no such constraint is imposed. Inthis case the sum in (7) must run over all 2Tβ possible subsets of X . In either case we can replace theframe based variables b, q, x, in (3) to (7) by the utterance based variables B, Q, X , to obtain theutterance based equivalent to (7) :
Pw(Q|X) =

∑

i

wiP (Q|X(i)) (10)where wi = P (B(i)|X). Equation (10) has form A =
∑

i wiai where ai are �xed positive values for agiven Q, wi ≥ 0 and ∑
i wi = 1. It follows (see proof in Appendix A) that the weights which maximise11State posterior probabilities P (q|x) can be obtained from state likelihoods p(x|q) using Bayes' rule, but likelihoodscannot be obtained from posteriors.
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A are simply given by wi = 1 for i = argmaxj aj and all other weights = 012. This gives

max
w

Pw(Q|X) = max
i

P (Q|X(i)) (11)The MAP solution with static weights can therefore be obtained by �nding the MAP utterance QMAP ifor each expert i (making a note of Pi = P (Q|X(i))), then selecting Q which has the maximumprobability over all experts13.This procedure is formalised in (12) to (16).
QMAPi = arg max

Q
P (Q|X(i)) = argmax

Q
P (Q)

p(X(i)|Q)

p(X(i))
(12)

∼= arg max
Q

P (Q)
∏

t

p(x
(i)
t |qt)

p(x
(i)
t )

= arg max
Q

P (Q)
∏

t

P (qt|x
(i)
t )

P (qt)
(13)

Pi = P (QMAPi |X(i)) (14)
j = argmax

i
Pi (15)

QMAP = QMAPj (16)Static MAP AC MS weighting at the posteriors level therefore leads to a system where combina-tion is e�ectively at the hypothesis level (see Figure 7). While it was previously well established thatcombination at hypothesis level can lead to improved recognition performance (Fiscus, 1997; Ever-mann and Woodland, 2000), static MAP weighting uses the Bayes optimal MAP objective (subject tothe assumption of static weights), whereas most other hypothesis combination systems are based onintuitive ideas of alignment and voting.
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priorsFig. 7 � MAP AC MS combination model (two streams). An expert is trained for every combinationof streams. With two subbands there are four possible combinations of zero or more subbands, asshown. For β subbands there are 2β possible combinations. Although this method derives from �staticMAP weighting� for posteriors level combination, in practice this is achieved by performing standardViterbi decoding separately with each combination expert, and then selecting the hypothesis whichhas greatest MAP probability over all experts. Combination in the resulting system is at both featureand hypothesis level.12The same MAP solution also results when weights are selected to maximise the weighted posteriors product (takelogs, ignore weight normalization, and proceed with proof as for sum).13P (Q) below is modelled in the usual way as P (q1)
∏t=T

t=2
P (qt|qt−1), not as ∏t=T

t=1
P (qt).



IDIAP�RR 02-57 13The MAP solution with dynamic weights can be found by selecting, during Viterbi decoding, ateach time step t and for each qk, the single combination expert which results in the largest posteriorpartial utterance probability, P (Qt|Xt). However, test results for dynamic MAP weights (not reportedin (Morris et al., 2001a)) were not as good as for static MAP weights, probably due to an excess offree parameters, which resulted in over-�tting.Due to the symmetry between likelihoods and posteriors in (13), static MAP AC MS combinationcan be implemented either by GMMs modelling p(x
(i)
t |qk), or by ANNs modelling P (qk|x

(i)
t ). In thecase where GMMs can be marginalized over �missing streams� (i.e. where feature stream combinationis by concatenation alone) static MAP AC MS decoding can be achieved through marginalization ofthe standard full-stream GMM (see Figure 8).
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Fig. 8 � Results are compared for three systems using the same standard HMM/GMM models, trainedon clean speech, but di�erent decoding methods : Baseline (standard Viterbi) ; AC MS with �staticMAP weighting� (Viterbi for each stream combination, with marginalisation over missing streams,followed by MAP hypothesis selection) (Morris et al., 2001a) ; SMD (Viterbi with marginalisationover estimated �missing data mask�) (Barker et al., 2000). Test data is Aurora connected digits, withnoises from test set A (Hirsch and Pearce, 2000). Training is with clean data. Feature streams are Melspectral features and their �rst time di�erences15.Figure 8 compares baseline HMM/GMM, �Static MAP AC MS� and �Soft Missing Data� (SMD)recognition results, for an example where each system uses the same HMM/GMM model, (trained onclean spectral coe�cients and their �rst time di�erences), but a di�erent variety of Viterbi decoding.Here MAP AC MS performs much better than the baseline, although not as well as the SMD model.However, the AC MS system here has the triple handicap that (i) it is intended for combining cleandata streams (noise should be removed beforehand, which it is not here), (ii) when ANN expertsare used, rather than the GMMs which are used here, feature combination is not limited to simpleconcatenation (as it is here, in order to illustrate the important point that MAP AC MS can also beused with GMMs), and (iii) missing-data methods base data reliability on local SNR estimation, socannot be used with multi-condition training (SNR level would no longer be a good indicator of datamismatch), while AC MS would work better with multi-condition training.



14 IDIAP�RR 02-57In this section we have seen how the �all-combinations� approach of training a classi�er ANN forevery possible stream combination, followed by posteriors combination, provides one way of combiningmultiple data streams without the assumption that each stream is independent, or that just one streamis reliable. However, this approach is only well suited to situations where the number of streams to becombined is not much greater than three, and stream reliability is all-or-nothing rather than graded.In the next section we review two recent �tandem� HMM/ANN ASR systems which also exploit theclassi�cation capacity of ANNs and avoid the assumption of stream independence, while training onlyone classi�er ANN per subband or stream.4 Tandem HMM/ANN systemsIn �tandem� HMM/ANN ASR systems only one classi�er ANN is trained per subband or stream.Training is with multi-condition data and instead of interpreting the ANN outputs as class posteriorprobabilities, they are exploited as discriminative and noise robust �non-linear discriminant analysis�(NLDA) features16 (Fontaine et al., 1997) for input to a standard HMM/GMM or HMM/ANN system.The two tandem systems presented in this section have performed well in noise robust ASR tests. Theyare really nothing more than special forms of enhanced feature processing, and are therefore comple-mentary to the above �all-combinations� multi-stream systems, which exploit the di�erent advantagesof expert combination.With both of these tandem systems, ANN classi�er outputs are always in the interval [0,1] andtend to be close to 0 or 1. This data therefore has a highly skewed bimodal distribution and is notwell modelled by either ANNs or GMMs. More evenly distributed discriminative feature data with agreater dynamic range can be obtained either simply by omitting the �nal squashing non-linearity inthe trained ANN, or by training the network with an extra hidden layer, and then taking the outputfrom this hidden layer as discriminative features, instead of from the output layer.Two forms of tandem HMM/ANN system are described below.4.1 Multi-stream tandem HMM/ANNThe �multi-stream tandem hybrid� (MS-tandem) (Ellis and Reyes-Gomez, 2001) trains a separateANN for a number of complementary feature streams, using multi-condition data. Principal componentanalysis17 (PCA) is then used to orthogonalize the concatenated pre-squashed ANN outputs, whichare then used as features for input to a standard HMM/GMM (see Figure 9).Two MS-tandem systems were tested on the Aurora 2.0 task of connected digit recognition in noise(Hirsch and Pearce, 2000), test-A (matched noise types in training and testing) : (i) a single streamtandem employing 13 PLP features (together with their �rst and second time di�erence features) asinput to theMLP-ANN (which uses 9 frames of context, 480 hidden units, and 24 output nodes), resultsin Figure 10. (ii) a two stream tandem system (13 PLP features and 28 MSG features (Greenberg andKingsbury, 1997), MLP details as in (i)), results in Figures 10 and 11. The baseline system for all ofthese experiments constituted a standard HMM/GMM employing GMMs trained on multi-conditionPLP features directly.In Figure 10 we see that, in all noise conditions, the MS-tandem system gives improved recognitionover the single stream tandem, and the single stream tandem improves over the HMM/GMM baseline(using the same features).The MS-tandem system is very well suited to the Aurora test-A (matched noise conditions), seeFigure 11. However, the advantage of this approach has been found to be much reduced both whendi�erent noise types are encountered in testing, and in large vocabulary ASR (LVASR) (Hermanskyet al., 2000). The �narrow-band� tandem in the next section is more robust to mismatched noiseconditions.16i.e. as a non-linear generalisation of linear discriminant analysis (LDA) (Duda and Hart, 1973; Fukunaga, 1990;Haeb-Umbach and Ney, 1992), which is commonly used for feature data enhancement.17All PCA features are retained, as performance fell with reduction in data dimension.
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Fig. 10 � Test results (Aurora 2.0 connected digits data, test A = matched noise) for the HMM/GMMbaseline, one-stream tandem (standard tandem) and multi-stream tandem HMM/ANN, under varyingnoise levels (WER scores are averaged over the 4 noise types). The �rst two systems employ PLPfeatures. The multi-stream system uses PLP and MSG features. All systems were trained on multi-condition speech data. Results are from (Ellis, 2002).
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Fig. 11 � Test results comparing performance of systems from foremost speech research labs (Aurora2.0 connected digits data, test A = matched noise). Figures are averaged over all noise conditions(MS-tandem system on left). Results from (Ellis and Reyes-Gomez, 2001).4.2 Narrow-band tandem HMM/ANNThe �narrow-band tandem hybrid� (NB-tandem) system (Dupont and Ris, 2001), applies a separateNLDA preprocessing to each of a number of narrow frequency subbands. Each narrow-band ANN istrained using a small number of Bark scaled spectral features for clean data to which varying amountsof white noise have been added. This system operates on the principle that as the frequency rangeseen by each ANN is very narrow, the spectral shape of the noise is not detectable, so the type ofnoise encountered during recognition should not make any di�erence. In this system each narrow-bandANN was given an extra small hidden layer and NLDA features were taken as the output from thislayer. The concatenated NLDA output from these trained narrow-band ANNs was input as features toa standard HMM/ANN hybrid (see Figure 12).
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Fig. 12 � Narrow-band tandem (NB-tandem) HMM/ANN hybrid. This can be regarded as a standardHMM/ANN system in which the FA module comprises several parallel subband feature analysers which�rst extract standard features and then post-process these using ANNs which were trained on datacorrupted with white-noise at di�erent SNRs. FA outputs are taken from the second hidden layer ofthese ANNs.



IDIAP�RR 02-57 17Tests were made with the Aurora 2.0 connected digits database18. Two con�gurations of the NB-tandem system were set up : (i) a parameter-heavier version, with the multi-band MLPs having 1000units in the �rst and 30 units in the second hidden layer. The combining MLP has 127 HMM statesand uses 1000 units in its hidden layer and 3 frames of context. (ii) a lighter version employingapproximately the same number of parameters as the baseline system by only employing 150 units inthe �rst hidden layer of the multi-band MLPs, and only 500 hidden units in the �rst layer of the multi-band MLPs, only 500 hidden units and just one frame of input for the combining MLP. The baselineHMM/ANN was trained on clean data. Both baseline and NB-tandem systems used J-RASTA-PLPfeatures.
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Fig. 13 � Test results (Aurora 2.0 connected digits data, test A = matched noise) for the HMM/ANNbaseline (trained on clean speech) and two (a parameter-heavy (Con�guration 1) and a parameter-light (Con�guration 2)) narrow-band tandem (NB-tandem) HMM/ANN hybrids. All systems usedJ-RASTA-PLP features. Results from Table 1 in (Dupont and Ris, 2001).Figure 13 (Dupont and Ris, 2001) shows that this multi-band tandem system employing robustJ-RASTA-PLP features, with performance peaking at seven subbands, lead to a 50% relative errorreduction over the baseline system under all noise conditions, including clean speech, even though itsacoustic models were trained in noise.5 DiscussionMulti-expert combination has deep roots in the theory of statistical estimation. We have certainlynot even attempted to cover the broad range of techniques which could be said to belong to this �eld.The HMM/ANN hybrid models presented were the most successful models that were developed within18The baseline system used for these tests is not the Aurora standard HMM/GMM, but an HMM/ANN. It wasalso trained on clean rather than multi-condition data. The results in Figure 13 are therefore not directly comparablewith those in Figures 10 or 11.



18 IDIAP�RR 02-57the framework of the two European Community projects, SPHEAR19 and RESPITE20. Closely relatedcontemporary developments include (Cerisara, 1999a; Janin et al., 1999; Mirghafori, 1999; Dupont,2000; Glotin, 2000; Jancovic and Ming, 2001; Shire, 2001). More distantly related work exploiting ANNsin ASR includes (Niles and Silverman, 1990; Bengio et al., 1992; Robinson, 1994). Other promisingHMM/GMM based approaches to noise robust ASR include �missing data� (Green et al., 1995; Barkeret al., 2001) and noise modelling approaches (Droppo et al., 2002) amongst many others.It could be argued that all of the HMM/ANN systems reviewed have their conceptual roots in theearly multi-band models (Bourlard and Dupont, 1996) which played the role of devil's advocate inmaking the clearly untenable assumption of (conditional) subband independence21. All of the mo-dels presented get around this independence assumption, but each model has its own strengths andweaknesses, which we summarise below.5.1 Strengths and weaknesses of each systemAll-combinations multi-band (AC MB)While avoiding the assumption of subband independence, the AC MB model still assumes that eachsubband is either 100% reliable or 100% uninformative. As each data coe�cient within a frequencysubband can be independently clean or corrupted, the potential inaccuracy of this assumption increaseswith the width of each subband. Narrower subbands would be more accurate, but the number ofsubband combinations increases exponentially with the number of subbands..All-combinations multi-stream (AC MS)The AC MS model identi�es each �subband� in the AC MB model with a separate representationof the fullband speech signal. In this approach any attempt to isolate noisy frequency subbandshas been dropped, so all acoustic features are implicitly assumed to be clean, or to have matchingnoise conditions. The strength of this approach is that data from multiple �sensors� can be combinedwithout assuming that the data from each sensor is independent (dependent streams are best processedtogether, but the number of free model parameters can be reduced, so improving performance, whengenuinely independent streams are processed separately).Noise-weighting of individual coe�cients is currently not possible in ANN based systems. Reliabilityweighting of individual subbands is possible but not of great importance for AC MB or AC MS systems,because their performance has been found to depend much more on the method used for expertcombination than the method used for weight estimation.AC MS with hypothesis level combinationStatic MAP weighting with the AC MS sum rule gave rise to hypothesis level MAP combination.This is a simple and principled rule which tests have shown can be e�ective for expert combination.However, insofar as it assumes that for each utterance the expert for just one stream combination isreliable and all others should be ignored, it does not permit the pooling of expert �opinions� whichcan also improve estimation performance.Multi-stream tandem (MS-tandem)The �tandem� approach, whereby ANNs are used for NLDA feature processing prior to input toa standard HMM/GMM or HMM/ANN system, also enables multi-stream combination while avoidingthe assumption of stream independence. As with AC MS, the MS-tandem model is best suited forpreprocessing streams which are already noise free, or have matching train/test noise conditions. Thismodel was found to have world beating performance for the Aurora small vocabulary test undermatched noise conditions, though not under mismatched conditions or with LVASR.Narrow-band tandem (NB-tandem)The NB-tandem model pre-processes narrow subbands so that any noise encountered during recog-nition will resemble the white noise used for training. On the other hand, if the bands are too narrow,19http ://www.dcs.shef.ac.uk/∼pdg/sphear/sphear.htm20http ://www.dcs.shef.ac.uk/research/groups/spandh/projects/respite21The assumption of class-conditional independence is far less inaccurate than would be an assumption of full inde-pendence.



IDIAP�RR 02-57 19speech will also resemble white noise and the posteriors �features� will carry no speech information.The test results presented here show that this system can give a strong advantage under mismatchednoise conditions (none of the test noises resembled white noise), even when the original input featuresare relatively noise robust.5.2 New directionsAll of the hybrid systems presented are multi-stage systems whose performance will improve eachtime one of its component modules is improved. Due to the complexity of these systems, a largenumber of issues arise concerning their future development, the most important of which we discussin this section.Posteriors versus likelihoods estimationThe advocacy of ANNs as opposed to GMMs, although originally based on empirical evidence thatANNs using MLPs perform better than GMMs as classi�ers22, should be viewed more accurately as theadvocacy of posteriors- over likelihoods based modelling, rather than of MLPs over GMMs. MinimumBayes risk (i.e. minimum error) classi�cation will always require posterior probability maximizationand although the �class� to be recognised in ASR is the whole word sequence, so long as decodingis based on the initial recognition of sub-word speech units, and these are modelled by HMM states,then posterior probabilities are required for HMM states. While it is true that class posteriors can beobtained by applying Bayes rule to likelihoods modelled by GMMs trained with MCE, it is simpler tomodel class posteriors directly using ANNs, and by the principle of Occam's razor, simpler is better.ANNs versus GMMsOne of the main criticisms of the use of ANNs for noise robust ASR is that uncertainty aboutthe value of individual coe�cients input to an ANN cannot be treated �in a theoretically soundprobabilistic manner�. However, classi�er GMMs and MLPs have the same theoretical status as semi-parametric models for estimating class posterior probabilities. If the value of some of the acousticfeatures is uncertain (hence probabilistic), then Bayes optimum posteriors estimates are given by theexpected value of the classi�er outputs (Morris et al., 1998) whatever model is used. While it is truethat this expectation integral is currently feasible for GMMs and not for MLPs, there is no reason whysome other type of ANN could not be used for this purpose in future (Morris et al., 2000).Noise removal from waveformMicrophone sampling frequency should be su�cient so as not to discard information which couldbe used for the separation of target speech from other interfering sounds (8 kHz, though given fortelephone speech, is highly suboptimal). Classical noise removal techniques can be very e�ective andshould not be overlooked (especially when the auditory system gives us obvious clues, such as the factthat ears tend to occur in pairs). Microphone arrays and Wiener �lters can be very e�ective for noiseestimation (McCowan and Sridharan, 2001).Spectral noise removal versus noise modellingNoise estimation techniques are also often applied after frequency analysis. For the purpose ofnoise modelling in ASR this estimated noise is modelled rather than removed. This has the advantageof potentially retaining any knowledge about the accuracy of the noise estimate, while this importantknowledge is normally lost after noise removal. However, when secondary feature processing is in use(such as DCT, PCA, LDA, quantization, or posteriors estimation or NLDA by ANN), it will usually bethe best option to remove the estimated noise while still in the spectral domain, before it is spreadover all of the secondary features. In this case it has been found that it is a good rule not to correctobservations which you are not very sure need correcting (�partial imputation�), and for values whichare to be corrected, various methods exist which give better results than simple spectral subtraction.Multiple signal representations22GMM fans may counter that the real reason ANNs were explored was more to do with wishful thinking aboutthe mystical capabilities of �brain-like neural networks�, that MLPs are not brain-like at all, and GMMs have a muchbetter foundation in statistical modelling theory. As usual with many disputes, the truth probably lies somewhere inbetween.



20 IDIAP�RR 02-57Recognition can always be enhanced by combining multiple complementary signal representations.Such representations may arise from multiple sources of biometric data (typically facial image andspeech signal for ASR, though on-line signature, iris, �ngerprint and perhaps olfactory data wouldalso be of use in speaker identi�cation), as well as feature analysis at di�erent spatial, temporal orfrequency scales. Stream combination may be at the feature, state posteriors and/or utterance level.Multi-condition trainingTraining with multi-condition data can greatly improve performance under matched conditions, butthe wider the range of conditions used in training the �atter the distribution of data in each phoneticclass, which can lead to lower performance under any one condition. The NB-tandem system (Section4.2), which uses training in white noise, was the only system to signi�cantly improve performancein clean speech (at least in the one test reported). The adverse �attening e�ect of multi-conditiontraining may be o�set to some extent by a reduction in over-�tting to uninformative detail, but theparticular success of the NB-tandem approach may also be explained as follows. Log compressed datavalues at the spectral peaks for each HMM state class are far less a�ected by noise than values inspectral valleys. Training with multiple levels of white noise systematically ��oods� all spectral valleyswith high variance data, while peaks retain low variance. This will directly lead to �at �don't care�within-class probability density functions (pdfs) for all in-valley (ergo noise prone) data coe�cients,whereas real noises, having non �at spectra, will tend to also �atten spectral peaks.The systematic identi�cation of �don't care� coe�cients is an interesting topic for future attention,because the possibility of such coe�cients is generally overlooked in multivariate pdf estimation, eventhough many scenarios come to mind in which class membership is best expressed as a union ofincomplete, rather than complete, conjunctions of feature attributes (e.g. class 1 : x1 = a and x2 = b ;class 2 : x2 = c ; class 3 : x1 = d or x2 = e).Variety of classi�er architecturesWith multi-expert systems, although individual expert performance is preferably accurate, it ismore important that each classi�er is unbiased and has complementary error characteristics. Everyclassi�er reported here was an MLP. A classi�er which often outperforms the MLP (especially withlimited training data) is the support vector machine23 (SVM), which was only recently developed foruse with high dimensional data (Collobert and Bengio, 2001). However, high performance classi�erstend to have similar error characteristics. From this point of view the Gaussian RBF (�Radial BasisFunction�) ANN classi�er (Bishop, 1995) may be a more interesting candidate, precisely because ittends not to perform as well as the MLP (Morris et al., 2000). Another suitably strange candidatemay be a classi�er based on the �product mixture of Gaussians� model (Hinton and Brown, 2001) (ifthis can get over its complexity problems).New combination rules and weighting schemesMulti-stream system performance is much more sensitive to changes in system architecture and/orcombination rules than to di�erent weighting strategies. It is conceivable that new schemes for poste-riors combination could be leveraged from the idea which lies behind the �probabilistic union model�,which up until now has only been applied in a somewhat ad hoc way to subband likelihoods combi-nation (Jancovic and Ming, 2001). The AC sum rule requires that the indicator events b(i) in (6) areboth mutually exclusive and exhaustive, while the union model (being based on an inclusive ratherthan an exclusive OR of indicator events) would only require that they were exhaustive.Asynchronous decodingWhen combining evidence from data streams which are not frame synchronous, rather than renderthem synchronous by interpolation, performance can sometimes be gained by allowing asynchrony(Cerisara, 1999a; Mirghafori and Morgan, 1999; Cerisara et al., 2000; Bengio, 2003). This increasesthe size of the search space, but not necessarily beyond practical limits, providing the time lag betweenstreams is limited.One-stage multi-expert training23SVM outputs do not have a direct interpretation as probabilities and have to be transformed so that they are allpositive and sum to one, but this can be easily arranged.



IDIAP�RR 02-57 21All of the multi-expert systems reported are multi stage processes involving at least three processingstages. Discriminative feature analysis, state probabilities (likelihoods or posteriors) modelling andweighted expert combination all require training. While training is normally done on a modularbasis, e�orts have been made to improve performance by one-stage training (Cerisara, 1999b; Sharma,1999). So far this has not lead to signi�cant performance improvements compared to the improvementsachieved by the systems we have reported which use modular training. However, some models are morenaturally suited than others to one-stage training. It may be worth experimenting with �gated mixtureof experts� models, in either their simple (Jacobs et al., 1991) or hierarchical (Jordan and Jacobs,1994) form. These are interesting brain-like models (synaptic gating occurs extensively throughout thebrain) which could be used as one stage classi�ers. They have been extensively developed theoreticallybut not yet been tested in speech recognition.Robust ASR is a complex problem which cannot be solved in one step. Each of the separate steps ofnoise estimation, through discriminative feature analysis, model adaptation, posteriors or likelihoodsestimation, and expert combination, to decoding, must select the model which is best suited bothto this processing stage and to the speci�c ASR application. The models presented make a numberof new additions to our toolbox, most notably in the areas of robustness to mismatched noise, andmulti-modal feature combination.6 ConclusionWe have reviewed a number of models for multi-modal data fusion in which combination takesplace at one or more of the levels of input features, state posteriors or utterance hypothesis. Thetheoretical advantages and limitations of each system were discussed.All of the results presented were on connected digits recognition under clean or matched noiseconditions. Most tests compare against an HMM/ANN baseline whose performance compares to astate-of-the-art HMM/GMM. Test results comparing these systems directly against each other or on aglobal scale were regrettably lacking at the time of publication.In the one test available where an MS HMM/ANN system's performance is compared on a globalscale (connected digits recognition under matched noise conditions, Figure 11) the MS-tandem systemcomes out on top. While this result was later found not to extend to the mismatched noise case, theNB-tandem appears to overcome the problem of noise mismatch.Most of the models reviewed were HMM/ANN based, but as likelihoods can always be convertedto posteriors using Bayes' rule, all of the equations on which these models are based can be exploitedequally by likelihoods based (i.e. HMM/GMM) and posteriors based (i.e. HMM/ANN) systems. We arenow in the position that MLPs are better suited than GMMs to posteriors estimation, while GMMsare better suited than MLPs to adaptive noise (and speaker) modelling. This means that until theday when ANNs are developed that can compete with GMMs for ease of model adaptation, we mustcompromise between systems using (i) inferior feature level noise compensation, followed by superiorposteriors modelling, and (ii) superior noise model adaptation with inferior likelihood based models.We hope that by collecting together and presenting this range of multi-expert HMM/ANN models,some of which are very recent and will not be familiar to many readers, we will encourage others tofurther test their e�ectiveness in a wider range of noise conditions, and large vocabulary recognitiontasks, and to overcome some of the limitations which we have identi�ed.
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IDIAP�RR 02-57 23A Proof that MAP sum weights select maximum posteriorThe weighted sum P (Q|X) =
∑

i wiP (Q|X(i)) has the form A =
∑i=M

i=1 wiai, where ai are �xedvalues. We can �nd w to maximise this, subject to the constraints ∑
i wi = 1 and wi ≥ 0, as follows.First, without loss of generality, label ai (which are all positive) in order of decreasing magnitude.

A = w1amax + w2a2 + . . . + (1 − w1 − . . .)amin (17)Di�erentiating with respect to each free parameter wj (j = 1, . . . , (M − 1)), gives
dA

dwj

= aj − amin (18)But aj − amin ≥ 0, so A is always increasing with each wj , and increases fastest with increase in w1.From this it follows that A is maximised when w1 = 1 and all other wi = 0. Therefore
max

w
A = max

w

∑

i

wiai = amax = max
i

P (Q|X(i)) (19)
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