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Résumé. In this article we review several successful extensions to the standard Hidden-Markov-
Model/Artificial Neural Network (HMM/ANN) hybrid, which have recently made important
contributions to the field of noise robust automatic speech recognition. The first extension to
the standard hybrid was the “multi-band hybrid”, in which a separate ANN is trained on each
frequency subband, followed by some form of weighted combination of ANN state posterior pro-
bability outputs prior to decoding. However, due to the inaccurate assumption of subband in-
dependence, this system usually gives degraded performance, except in the case of narrow-band
noise. All of the systems which we review overcome this independence assumption and give impro-
ved performance in noise, while also improving or not significantly degrading performance with
clean speech. The “all-combinations multi-band” hybrid trains a separate ANN for each subband
combination. This, however, typically requires a large number of ANNs. The “all-combinations
multi-stream” hybrid trains an ANN expert for every combination of just a small number of
complementary data streams. Multiple ANN posteriors combination using maximum a-posteriori
(MAP) weighting gives rise to the further successful strategy of hypothesis level combination by
MAP selection. An alternative strategy for exploiting the classification capacity of ANNs is the
“tandem hybrid” approach in which one or more ANN classifiers are trained with multi-condition
data to generate discriminative and noise robust features for input to a standard ASR system. The
“multi-stream tandem hybrid” trains an ANN for a number of complementary feature streams,
permitting multi-stream data fusion. The “narrow-band tandem hybrid” trains an ANN for a
number of particularly narrow frequency subbands. This gives improved robustness to noises not
seen during training. Of the systems presented, all of the multi-stream systems provide generic
models for multi-modal data fusion. Test results for each system are presented and discussed.
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Notation

T
K
gk
qt

p(@®
B()
p(zlq)
P(q|z)
P(q)

number of data frames in utterance
total number of HMM states

state k (i.e. kth of K HMM states in model)

state hypothesized at time step ¢

HMM state sequence (¢, - -, qt)

full HMM state sequence, Qr

feature vector at time step t

coefficient 7 of z

feature vector subband or stream i of z

feature vector subband- or stream- combination ()

number of subbands or streams in z(¥

feature vector sequence (x1,...,x¢)

full feature vector sequence, X

feature vector sequence (:cgl), . ,ng))

number of subbands or streams in x

number of combinations of 0 or more streams, = 2°

event that combination z(9 is informative and rest of  is not
event that combination X (9 is informative and rest of X is not
likelihood of state ¢ given feature vector z (not of x given q)
posterior probability of state ¢ given feature vector x

prior probability of class (e.g. HMM state) ¢




4 IDIAP-RR 02-57

1 Introduction

Most state of the art automatic speech recognition (ASR) systems are Hidden Markov Model
(HMM) based, with state distributions modelled by Gaussian Mixture Models (GMMs). The perfor-
mance of HMM/GMM systems is still improving, but it has a long way to go. Most of these improve-
ments are in pre- and post-processing (feature extraction, pronunciation models, language models) and
model adaptation (to channel, noise and speaker), rather than to changes in the central HMM/GMM
modelling apparatus. HMMs are the preferred means for modelling time sequences, but an acknow-
ledged weakness with the standard HMM/GMM in ASR is the assumption of independence! between
consecutive data frames which are separated by only 10 ms, when strong dependence persists for
50-100 ms. Feature windows spanning more than one time frame do not improve HMM/GMM per-
formance (Morris et al., 2000). The main interest in the HMM/ANN model (Bourlard and Morgan,
1994; Hochberg et al., 1995; Bourlard and Dupont, 1997), see Figure 1, is that Multi-Layer Perceptron
(MLP) Artificial Neural Networks (ANNs) (Rumelhart et al., 1986; Ripley, 1996) are more able than
GMMs to capture the dynamic information in extended feature windows, with frame level performance
increasing beyond GMM performance as window size increases up to 90 ms. Both GMMs and ANNs
append time difference features to static features, which somewhat increases the size of the context
window (from 1 to 7 windows for GMMs and from 9 to 15 for MLPs), but difference features are just
a fixed linear function of the context window and do not enable the GMM to perform the kind of
non-linear processing of which MLPs are capable. It is true that through the use of time difference fea-
tures, context dependent speech units, and language models, HMM/GMMs are still competitive with
HMM/ANNs2, GMMs are also more highly developed (at present) than ANNs to noise and speaker
adaptation. However, under many circumstances the propensity of ANNs to model class posteriors
P(q|x)?, while GMMs model class likelihoods p(x|q), makes them more suitable than GMMs for multi
expert combination?.

1.1 HMM/ANN hybrid

In the HMM/ANN hybrid, which we refer to here as the “standard HMM/ANN hybrid” (see Fi-
gure 1), an ANN is trained to output a posterior probability for each model state. In decoding these
probability mass outputs are converted to scaled likelihoods, as in (1), and used to directly replace
the state likelihoods which are normally modelled by GMMs. However, there are many further ways
in which the time sequence modelling power of HMMs can be combined with the superior ability of
ANNSs to capture speech dynamics.

p(xt) P(qr)

For classification purposes the ANN used in HMM/ANN hybrids is usually an MLP with one hid-
den layer of sigmoid units and an output layer of softmax units (one per class). It is trained with
labelled data to (most commonly) maximise the mutual information or “cross entropy” between input
features and target output class posteriors. When HMM/ANNS are used with sub-word units such as
phonemes, it is usual to restrict the size of the ANN by using just one ANN output per phoneme and
to use the scaled likelihood from this output for all states of this phoneme. Furthermore, while in
HMM/GMM systems the state transition probabilities (TPs) used in decoding are estimated as part
of the Expectation-Maximization (EM) training procedure, in HMM /ANN systems this is not the case

p(xelar) _ Plaklae) (1)

IThroughout this article, when we say that random variables A and B are “independent” we really mean that they are
conditionally independent with respect to the message (e.g. class labels) C they encode, i.e. P(A, B|C) = P(A|C)P(B|C).

2HMM/ANNSs also benefit from these context constraints, but to a lesser extent.

3Please refer to the Notation section where an exact definition is given for all symbols used throughout his article.

4This is mainly because, unlike state likelihoods, the state posteriors output by ANNs are independent of input data
dimension.
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GH%)—» FA |—»| GMM »| Decoder —»( hello)
GH#)—» FA ANN »| Decoder —»( hello)

Fia. 1 — Standard HMM/GMM speech recognition system (top), with feature analysis (FA) follo-
wed by GMM state likelihood modelling and (Viterbi) decoder, and (bottom) a standard one-stream
HMM/ANN system, with ANN state posteriors modelling.

and it is common practice to use the same fixed value (e.g. 0.5) for all TPs. However, while TPs
contribute less than acoustic emission probabilities to decoder performance, HMM/ANN performance
can be significantly improved (especially in noise) by better TPs estimation (Morris et al., 2002) and
sometimes by using one ANN output per hidden state.

1.2 Multi-expert systems in ASR

The combination of multiple experts, where each expert has different error characteristics, provides
a generic means of improving recognition robustness to unpredictable signal distortion. Recognition
can be improved by combining multiple data models at one or more of the processing levels as follows
(see also Figure 2).

1. Feature combination : concatenate data features from various sources. This is currently the
most widely used form of feature combination.

2. Posterior probabilities combination : combine the K estimated posterior probabilities from
each ANN into a single set of K probabilities.

3. Hypothesis combination : Performance can be further improved when multiple word se-
quence hypotheses from systems with different error characteristics are combined by combina-
tion schemes such as ROVER (Fiscus, 1997; Evermann and Woodland, 2000) or MAP AC MS
(see Section 3.3) (Morris et al., 2001a).

In this paper we report on several extensions to the standard HMM /ANN hybrid which have recently
made important contributions to the field of noise robust automatic speech recognition. The first
extension to the standard hybrid was the (standard) “multi-band” (STD MB) hybrid (Bourlard et al.,
1996; Hermansky et al., 1996), see Figure 35. In this model the usual single ANN expert is replaced by
a separate ANN trained on each frequency subband, followed by some form of posteriors combination,
prior to decoding. However, while noise in any subband is thereby isolated, for all conditions except
narrow-band noise this model results in significantly degraded performance.

MLP posteriors combination is usually by standard (weighted) sum or product (Hermansky et al.,
1996; Tibrewala and Hermansky, 1997; Cerisara et al., 1998; Dupont, 2000; Kirchhoff et al., 2000),
by voting (Halberstadt and Glass, 1998; Cerisara, 1999b), or by MLP (Bourlard and Dupont, 1996;
Hermansky et al., 1996; Mirghafori, 1999). In the case of a weighted sum from N experts, if the
errors from each expert are independent and unbiased, the expected square deviation from the target
outputs will be reduced by a factor of N (Bishop, 1995). In practice the errors from different experts
are always to some extent correlated, so that the variance reduction factor is smaller than N, but can
still be large.

Analysis by the present authors has shown that the standard sum and product rules make a
number of dubious assumptions. The STD sum rule makes the “one good subband” assumption that
the data in just one subband is 100% reliable while the data in every other subband is completely

5Each ANN box in figures throughout this article also comprises any secondary feature processing, such as log energy
scaling, Mel frequency scaling, PLP (Hermansky, 1990), concatenation, DCT, time differences, PCA, etc.
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F1a. 2 — Three possible levels of multi-expert combination used by the HMM /ANN hybrid ASR systems
reported in this artcile (top = feature level, middle = posterior proabilities level, bottom = hypothesis
level).

uninformative. The STD product rule makes the “independence” assumption that each subband is
(conditionally) independent. It also makes the “one good subband” assumption, but with suitable
weight normalization this assumption can be avoided (see AAC sum rule, Section 3.1). STD MB MLP
expert combination does not permit dynamic weighting and therefore assumes that subband relative
reliability never changes, but this assumption is avoided in the “narrow-band tandem” model, Section
4.2.

Filter Bank ANN

*' b —=| Decoder hello
I JRE=1CD

Filter Bank ANN T

Weight <—8

F1a. 3 — Standard multi-band HMM/ANN hybrid (STD MB), with two subbands. Combination is at
the posteriors level only.

Y

In the next section we discuss some observations concerning human speech recognition (HSR) which
provided motivation for the original multi-band approach, because despite the poor performance of
this early model, these “proof of existence” ideas from HSR may still provide valuable guidance in the
future design of any kind of multi-expert ASR system.

2 Multi-band processing in human speech recognition

Most of the multi-expert techniques presented in this article arose from the standard multi-band
model (Bourlard and Dupont, 1996; Hermansky et al., 1996; Goldberg and Riek, 2000), in which
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each frequency subband is processed by a separate acoustic model. This approach was motivated by
Fletcher’s work on human speech recognition (Fletcher, 1953), summarised in (Allen, 1994). Using
nonsense consonant-vowel-consonant words and two frequency bands with varying cut-off frequency,
Fletcher found that the human fullband error rate was related to the high- and low-pass error rates
by the following simple formula, which we refer to as the “product of errors rule” :

E=E1"&2 (2)

where € is the fullband error rate and €; and €5 are the error rates from the lower and upper subband.
This suggests that the two subband error rates are independent, and that a fullband error occurs
exactly when there is an error in both high- and low-pass recognition. This is equivalent to saying
that recognition is correct whenever either high- or low-pass recognition is correct. This means that
human phone recognition is able to make at least two guesses at the phone identity, and to infallibly
detect a correct guess when one arises. This rule identifies great potential benefit for any ASR system
which could perform independent recognition in as many separate subbands as possible, providing

1. the advantage of having [ guesses is not outweighed by the increased error rate for each guess

2. an infallible “oracle” can be found to identify which guesses are correct.

However, HSR tests since Fletcher’s experiments, as well as ASR tests, now cast a strong doubt on
the potential benefit of the STD MB model. HSR tests have now shown that

1. Fletcher’s product of errors rule (2) does not hold in HSR with four or more subbands (Steeneken
and Houtgast, 1980; Houtgast and Steeneken, 1985; Houtgast and Verhave, 1991; Steeneken and
Houtgast, 1999).

2. the information carried by each combination of subbands (not just in neighbouring bands) is
greater than the sum of the information carried in each subband taken alone (Grant and Braida,
1991; Steeneken and Houtgast, 1999; Lippmann, 1996; Silipo et al., 1999).

A combination of high- and low-frequencies (including a gap in frequency) often results in better
recognition than a similar increase in band-width at low-frequencies by the use of a higher cut-off
frequency (Lippmann, 1996; Silipo et al., 1999). Furthermore, in (Warren et al., 1995) it is shown
that “sentences restricted to narrow spectral slits maintain a remarkably high intelligibility over an
extended range of center frequencies, and that information contained in widely separated bands can
be integrated to produce an increase in intelligibility that is much greater than simple additivity”.

These findings in HSR are reflected by ASR tests which have shown that the early MB systems
usually perform significantly worse than a fullband system in clean speech, even when perfect “oracle”
expert selection is used (Hagen, 2001). The low performance of MB ASR in clean speech is due not so
much to expert selection or weighting (which is relatively easy), but to the fact that the performance
of every subband ANN expert is well below the performance of the fullband expert. This is not the
case in HSR with just two subbands.

The hypothesis that HSR processes frequency bands independently is therefore no longer sustai-
nable and in MB ASR we have to ensure that we at least model the joint processing of different
subband combinations. In the next section we review the “all combinations” model which overcomes
the independence assumption by training a separate classifier ANN on every combination of frequency
subbands (or feature streams).

3 All-combinations multi-band and multi-stream systems

The first approach to overcoming the subband independence assumption was to pool fullband
with subband experts (Bourlard and Dupont, 1997; Mirghafori and Morgan, 1998; Cerisara, 1999a;
Mirghafori, 1999). However, while this combined system can prevent loss of performance with clean
speech, it is not robust to wide-band noise and has no clear mathematical foundation.
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3.1 All-combinations multi-band HMM/ANN hybrid

In the “all-combinations” multi-band HMM/ANN hybrid approach® (Hagen, 2001; Morris et al.,
2001b) a separate ANN is trained for every combination of subbands, see Figure 4. This overcomes the
inaccurate independence assumption, while retaining all of the potential advantages of a multi-band

system.
> ANN
[ ANN

— Filter Bank Ly
W i ‘

| Filter Bank

/ﬁ—)—» Decoder %(hello)

ANN B

priors

» Weight =)

F1a. 4 — All-combinations multi-band (AC MB) HMM/ANN hybrid, with two subbands. An expert is
trained for every possible combination of subbands. Combination is at both the feature and posteriors
level.

The “AC sum rule” which is most commonly used for posteriors combination with the AC MB
system having 3 subbands can be derived as follows. Let (%) (i=1,...,B)" denote the vector of data
coefficients from subband combination (i) for some given time frame z;. Assume that each subband ? is
either 100% reliable or 100% uninformative (the “one good subband combination” assumption). Define
b() as the event that every subband in (" is informative and all other data in z is uninformative. In
this case the set of events {b(")} are mutually exclusive and exhaustive. The AC sum rule can now be
derived from first principles as follows.

P(gilz) = P(qr,UibD|z) ({6} exhaustive) (3)
B
= ZP(qk,b(i”x) (each b mutually exclusive) (4)
i=1
B . .
= > POYa)P(gib", z) (5)
i=1
B . .
= > POW2)P(g|z") (definition of b)) (6)
i=1

B
= Z w; P(qr|=) (7)

Here the w; are positive weights which sum to 1 and represent the probability that each event b()
is true, given the data in z. Different approaches to how these weights can be estimated are discussed
in (Hagen et al., 1999; Glotin and Berthommier, 2000; Heckmann et al., 2001).

The “one good subband combination” assumption made by the AC sum rule is an improvement on
the “one good subband” assumption made by the standard MB sum rule, but it is still inaccurate. Not

6sometimes also known as the “full combination” approach

7B = 2P is the total number of stream combinations having from 0 up to 3 subbands.
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all coefficients in a subband need be equally informative and even noisy coefficients can sometimes
impose strong constraints on the underlying clean data value, so they are not necessarily entirely
uninformative.

With HMM/GMM systems, under certain conditions the subband combination posteriors can be
derived from a single fullband model by marginalization® (Morris et al., 2000; Hagen, 2001), although
the number of combination posteriors which is necessary to calculate can still be prohibitive if 3 is
large. With the AC MB hybrid it is necessary to train 2° separate ANN experts®, so this system is
limited to a small number of subbands.

However, if we assume stream independence, we obtain the following approximation to each sub-
band combination posterior from the 5 one-band expert posteriors alone (Hagen et al., 2000; Morris
et al., 2001b)

1a®

Py =P ) I Plarlz)) (8)
Ijem(i)
B

P(q|z™) = P/ ZPji (9)
j=1

This approximation, together with the AC sum rule (7), provides the approximated AC (AAC) sum
rule. This rule can be used with the standard MB model, replacing the usual assumption that just one
subband is reliable by the assumption that just one subband combination is reliable.

Results comparing the performance of the standard fullband, 4-subband standard MB and AC MB
hybrid systems are presented in Figure 5'°. It is of interest to note that the performance of the AAC
sum rule is consistently better than that of the standard MB sum rule, given that the difference in
computational complexity is negligible.

Tests in Figure 5 used the Numbers95 database (Cole et al., 1995) of continuously spoken digits.
Noise conditions were clean (matched) and noisy (mismatch), with band-limited (stationary and siren)
and wide-band car and factory noise from Noisex (Varga et al., 1992), each at 0 and 12 dB SNR, (Hagen,
2001). Stationary band-limited Gaussian noise was added to one of the subbands at a time at 0 and
12 dB SNR. Throughout this article, all noise signals were artificially added to the sampled speech
signal.

All of the results given in this section are for systems trained with clean speech. Word error rates
(WERs) were calculated as average values over the different noise levels. All tests were run using both
PLP and (more noise robust) J-RASTA-PLP (Hermansky et al., 1992) features. Feature sets consist of
12 raw features (together with frame energy), calculated on 25 ms windows with 12.5 ms shift from
signals sampled at 8 kHz, plus first and second time difference features.

As can be seen in Figure 5, standard MB processing, employing either STD sum or STD product
rules, improves performance only with narrow-band noises and non-robust features, while perfor-
mance for both wide-band noise and clean speech is strongly degraded in comparison to the fullband
HMM/ANN baseline. AC MB also gives an advantage with narrow-band noise for robust features,
while not significantly degrading performance in clean speech. However, with wide-band noise and
clean speech, none of these systems gives any significant improvement over the fullband baseline.

In the next section we look at the AC multi-stream (AC MS) approach. This uses the same ar-
chitecture and combination rules as AC MB, but, unlike AC MB, it can improve over or equal the
performance of the fullband baseline (using noise robust features) under all noise conditions.

8Closed form marginalization with respect to a subset of spectral coefficients is only possible with GMMs when
features remain in the spectral domain (e.g. not possible if DCT has been applied to obtain cepstral coefficients).

9The number of ANN experts can be reduced to some extent by assigning a zero weight to certain subband combi-
nations, such as all combinations with less than a given number of subbands.

10Combination weights w; and state priors P(q) used in tests throughout this article, unless otherwise stated, are all
equal. In the authors’ experience, the difference in performance due to different weighting methods is usually negligible
compared to the difference due to different model architectures. State priors help if they are estimated accurately, but
if one or more is inaccurate (e.g. due to few state occurrences), it is better to use equal priors.
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F1G. 5 — Test results (Numbers95 connected digits data) for the fullband baseline, the standard multi-
band (STD MB) hybrid (with STD sum and STD product combination), the all-combinations multi-
band (AC MB) hybrid (with AC sum combination), and the approximate all-combinations hybrid (with
AAC sum combination), employing either PLP features (left) or J-RASTA-PLP features (right). All
training was with clean speech only. WERSs are given for clean speech, speech corrupted by stationary
and dynamic artificial narrow-band noise, and average for wide-band car and factory noise. All noise

results averaged over 0 and 12 dB SNR. Results from (Hagen, 2001).

3.2 All-combinations multi-stream hybrid

The AC MB system models noise more accurately than the standard MB system, but its perfor-
mance is still limited due to the inaccurate assumption of all-or-nothing reliability for each subband.
An alternative approach is to leave noise removal to noise robust features, or noise estimation and
subtraction, and to apply the AC MB model to the combination of features from experts trained on
multiple representations of the full speech signal. We call this the AC multi-stream (AC MS) approach
(model as Figure 4, but with “Filter Bank” replaced by “Feature Analysis”).

The paradigm of using an ensemble of trained classifiers instead of a single classifier has been
widely proposed in the literature (Hansen and Salamon, 1990; Jacobs et al., 1991; Jordan and Jacobs,
1994; Bishop, 1995). Ghitza (1994) showed that humans seem to use not only different frequency
bands but also different time scales to capture short-term and long-term information simultaneously.

As mentioned in Section 1.2, the advantage of expert combination is greatest when each expert
has different error characteristics and is unbiased. Expert diversity can be obtained by variation of
one or more of the many factors involved in expert design, including : sensory mode, e.g. audio, visual
(Tomlinson et al., 1996; Dupont and Luettin, 1998; Rogozan and Deléglise, 1998) ; training set ; training
noise environment (Tumer and Ghosh, 1996; Shire, 2000) ; sample size ; analysis technique (e.g. MFCC
(Davis and Mermelstein, 1980), PLP, RASTA) ; analysis time scale (Hagen, 2001; Hermansky et al.,
2000; Ellis and Reyes-Gomez, 2001; Ghitza, 1994) ; window size ; derivative window size (Wu et al.,
1998; Kirchhoff, 1998; Hagen et al., 2000) ; expert type (e.g. GMM, MLP, RNN) ; expert configuration
(e.g. number of mixture components in GMM ; number and size of hidden layers in MLP) ; training
objective (e.g. sum of square errors, cross-entropy, minimum classification error).

Experimental results in Figure 6 show that with clean speech the AC MS model leads to consistently
(although not dramatically) improved results over the baseline hybrid using one stream of concatenated
features. The three streams use state-of-the-art acoustic feature analysis techniques which are known
to be powerful in rather diverse conditions and thus complement each other well. Although the RASTA
feature stream when used alone performs significantly worse than the others, the additional use of
each feature stream leads to a significant performance improvement.

In these tests the AC MS sum rule (with equal stream weights) was used to combine three different
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6 R-P
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Feature Streams

Fia. 6 — Test results (continuous speech from digits and numbers part of Portuguese SpeechDat
corpus, clean speech) for the all-combinations MS HMM /ANN hybrid, employing PLP (P), RASTA (R)
and MSG (M) features. Results are given for single streams, for feature concatenation (R-P,P-M,R-
M,R-P-M) and for posteriors combination employing STD sum (R+P+M) and product (R*P*M) rules,
and AC sum rule (R-P-M AC). Results are from (Hagen and Neto, 2003).

feature analysis techniques, and lead to improved results on clean speech, which was not possible with
AC MB processing. In the next section we review a technique whereby the stream weights used by the
AC MS sum rule are selected to maximise the a-posteriori utterance probability. This approach leads
analytically to a simple method for combining any number of standard HMM/ANN or HMM/GMM
utterance hypotheses.

3.3 Combination at hypothesis level

In maximum likelihood (ML) based adaptation a small number of parameters 6 in a trained model
with parameters (M, 0) are adapted during recognition of an utterance X to maximise the parameter
likelihood, p(X|M, #) and the utterance @ is then selected to maximise p(Q|X, M, #). With posteriors
based models, such as the AC MS HMM/ANN hybrid, with AC sum rule combination (6), it is not
possible to evaluate the likelihood p(X|M, ) (Hagen, 2001, 101-103), but it is possible to evaluate
the posterior utterance probability P(Q|X, M, 9) for any given @. In this section we review an approach
by which combination weights for an AC MS hybrid system are adapted for each utterance to maximise
the posterior utterance probability P(Q|X, M, #) over all Q and all 6.

In (Morris et al., 2001a) two cases are considered. In the first, “static MAP weighting”, the constraint
is imposed that the same weighting must be used throughout each utterance. In this case we are
effectively hypothesizing that each of the 8 streams of X are either 100% informative or uninformative
throughout each whole utterance. There are therefore just 27 possible informative subsets of X, as in
the AC sum rule (7). In the second case, “dynamic MAP weighting”, no such constraint is imposed. In
this case the sum in (7) must run over all 279 possible subsets of X. In either case we can replace the
frame based variables b, ¢, x, in (3) to (7) by the utterance based variables B, @, X, to obtain the
utterance based equivalent to (7) :

Pu(Q|X) = ZwiP(Q|X(“) (10)

where w; = P(B(®|X). Equation (10) has form A = 3_, w;a; where a; are fixed positive values for a
given @, w; > 0 and ), w; = 1. It follows (see proof in Appendix A) that the weights which maximise

State posterior probabilities P(g|z) can be obtained from state likelihoods p(x|q) using Bayes’ rule, but likelihoods
cannot be obtained from posteriors.
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A are simply given by w; = 1 for i = argmax; a; and all other weights = 0'2. This gives
max P, (Q|X) = max P(Q|X®) (11)

The MAP solution with static weights can therefore be obtained by finding the MAP utterance QAP
for each expert i (making a note of P; = P(Q|X)), then selecting @ which has the maximum
probability over all experts'3.

This procedure is formalised in (12) to (16).

(4)
QMAP:  _ argmgxP(Q|X(i)) = argmgxP(Q)% (12)
N i) _ P(giay”)
>~ arg mgx P(Q) H W = arg mgx P(Q) 1:[ W (13)
P, = P(QMAP: | x () (14)
j = argmax P; (15)
QMAP _ QMAPj (16)

Static MAP AC MS weighting at the posteriors level therefore leads to a system where combina-
tion is effectively at the hypothesis level (see Figure 7). While it was previously well established that
combination at hypothesis level can lead to improved recognition performance (Fiscus, 1997; Ever-
mann and Woodland, 2000), static MAP weighting uses the Bayes optimal MAP objective (subject to
the assumption of static weights), whereas most other hypothesis combination systems are based on
intuitive ideas of alignment and voting.

[

EA ANN —| Decoder

ANN — Decoder

FA ANN — = Decoder

v (e

B

priors ——®| Decoder

Fia. 7 - MAP AC MS combination model (two streams). An expert is trained for every combination
of streams. With two subbands there are four possible combinations of zero or more subbands, as
shown. For 3 subbands there are 2% possible combinations. Although this method derives from “static
MAP weighting” for posteriors level combination, in practice this is achieved by performing standard
Viterbi decoding separately with each combination expert, and then selecting the hypothesis which
has greatest MAP probability over all experts. Combination in the resulting system is at both feature
and hypothesis level.

12The same MAP solution also results when weights are selected to maximise the weighted posteriors product (take
logs, ignore weight normalization, and proceed with proof as for sum).

13P(Q) below is modelled in the usual way as P(q1) Hzg P(qt|gt—1), not as HZlT P(qe).
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The MAP solution with dynamic weights can be found by selecting, during Viterbi decoding, at
each time step ¢ and for each ¢, the single combination expert which results in the largest posterior
partial utterance probability, P(Q:|X;). However, test results for dynamic MAP weights (not reported
in (Morris et al., 2001a)) were not as good as for static MAP weights, probably due to an excess of
free parameters, which resulted in over-fitting.

Due to the symmetry between likelihoods and posteriors in (13), static MAP AC MS combination
can be implemented either by GMMs modelling p(xgi)|qk), or by ANNs modelling P(qk|x§i)). In the
case where GMMs can be marginalized over “missing streams” (i.e. where feature stream combination
is by concatenation alone) static MAP AC MS decoding can be achieved through marginalization of
the standard full-stream GMM (see Figure 8).

100

Baseline B
MAP AC MS
SMD 1

90

80

70

60

50

WER

40

30

20

10

0dB 10 dB 20dB clean
SNR

F1a. 8 — Results are compared for three systems using the same standard HMM/GMM models, trained
on clean speech, but different decoding methods : Baseline (standard Viterbi); AC MS with “static
MAP weighting” (Viterbi for each stream combination, with marginalisation over missing streams,
followed by MAP hypothesis selection) (Morris et al., 2001a); SMD (Viterbi with marginalisation
over estimated “missing data mask”) (Barker et al., 2000). Test data is Aurora connected digits, with
noises from test set A (Hirsch and Pearce, 2000). Training is with clean data. Feature streams are Mel

spectral features and their first time differences!®.

Figure 8 compares baseline HMM/GMM, “Static MAP AC MS” and “Soft Missing Data” (SMD)
recognition results, for an example where each system uses the same HMM/GMM model, (trained on
clean spectral coefficients and their first time differences), but a different variety of Viterbi decoding.
Here MAP AC MS performs much better than the baseline, although not as well as the SMD model.
However, the AC MS system here has the triple handicap that (i) it is intended for combining clean
data streams (noise should be removed beforehand, which it is not here), (i) when ANN experts
are used, rather than the GMMs which are used here, feature combination is not limited to simple
concatenation (as it is here, in order to illustrate the important point that MAP AC MS can also be
used with GMMs), and (iii) missing-data methods base data reliability on local SNR estimation, so
cannot be used with multi-condition training (SNR level would no longer be a good indicator of data
mismatch), while AC MS would work better with multi-condition training.
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In this section we have seen how the “all-combinations” approach of training a classifier ANN for
every possible stream combination, followed by posteriors combination, provides one way of combining
multiple data streams without the assumption that each stream is independent, or that just one stream
is reliable. However, this approach is only well suited to situations where the number of streams to be
combined is not much greater than three, and stream reliability is all-or-nothing rather than graded.
In the next section we review two recent “tandem” HMM/ANN ASR systems which also exploit the
classification capacity of ANNs and avoid the assumption of stream independence, while training only
one classifier ANN per subband or stream.

4 Tandem aMM/ANN systems

In “tandem” HMM/ANN ASR systems only one classifier ANN is trained per subband or stream.
Training is with multi-condition data and instead of interpreting the ANN outputs as class posterior
probabilities, they are exploited as discriminative and noise robust “non-linear discriminant analysis”
(NLDA) features'S (Fontaine et al., 1997) for input to a standard HMM/GMM or HMM/ANN system.
The two tandem systems presented in this section have performed well in noise robust ASR tests. They
are really nothing more than special forms of enhanced feature processing, and are therefore comple-
mentary to the above “all-combinations” multi-stream systems, which exploit the different advantages
of expert combination.

With both of these tandem systems, ANN classifier outputs are always in the interval [0,1] and
tend to be close to 0 or 1. This data therefore has a highly skewed bimodal distribution and is not
well modelled by either ANNs or GMMs. More evenly distributed discriminative feature data with a
greater dynamic range can be obtained either simply by omitting the final squashing non-linearity in
the trained ANN, or by training the network with an extra hidden layer, and then taking the output
from this hidden layer as discriminative features, instead of from the output layer.

Two forms of tandem HMM/ANN system are described below.

4.1 Multi-stream tandem HMM /ANN

The “multi-stream tandem hybrid” (MS-tandem) (Ellis and Reyes-Gomez, 2001) trains a separate
ANN for a number of complementary feature streams, using multi-condition data. Principal component
analysis'” (PCA) is then used to orthogonalize the concatenated pre-squashed ANN outputs, which
are then used as features for input to a standard HMM/GMM (see Figure 9).

Two MS-tandem systems were tested on the Aurora 2.0 task of connected digit recognition in noise
(Hirsch and Pearce, 2000), test-A (matched noise types in training and testing) : (i) a single stream
tandem employing 13 PLP features (together with their first and second time difference features) as
input to the MLP-ANN (which uses 9 frames of context, 480 hidden units, and 24 output nodes), results
in Figure 10. (ii) a two stream tandem system (13 PLP features and 28 MSG features (Greenberg and
Kingsbury, 1997), MLP details as in (i)), results in Figures 10 and 11. The baseline system for all of
these experiments constituted a standard HMM/GMM employing GMMs trained on multi-condition
PLP features directly.

In Figure 10 we see that, in all noise conditions, the MS-tandem system gives improved recognition
over the single stream tandem, and the single stream tandem improves over the HMM/GMM baseline
(using the same features).

The MS-tandem system is very well suited to the Aurora test-A (matched noise conditions), see
Figure 11. However, the advantage of this approach has been found to be much reduced both when
different noise types are encountered in testing, and in large vocabulary ASR (LVASR) (Hermansky
et al., 2000). The “narrow-band” tandem in the next section is more robust to mismatched noise
conditions.

16i.e. as a non-linear generalisation of linear discriminant analysis (LDA) (Duda and Hart, 1973; Fukunaga, 1990;

Haeb-Umbach and Ney, 1992), which is commonly used for feature data enhancement.
17All PCA features are retained, as performance fell with reduction in data dimension.
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\i

O’ %4)—» FA GMM »| Decoder »( heuoj

Fia. 9 — Multi-stream tandem (HMM/ANN) hybrid (MS-tandem). This can be regarded as a standard
HMM/GMM system in which the FA module comprises several parallel and complementary feature
analysers, each post-processed by an ANN before being concatenated and subjected to PCA orthogo-
nalisation.

40
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Multi-Stream Tandem

IIH B me |

0dB 10dB 20 dB clean
SNR

F1a. 10 — Test results (Aurora 2.0 connected digits data, test A = matched noise) for the HMM/GMM
baseline, one-stream tandem (standard tandem) and multi-stream tandem HMM /ANN, under varying
noise levels (WER scores are averaged over the 4 noise types). The first two systems employ PLP
features. The multi-stream system uses PLP and MSG features. All systems were trained on multi-
condition speech data. Results are from (Ellis, 2002).
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Eurospeech 2001 Aurora Results:
Multicondition training
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F1G. 11 — Test results comparing performance of systems from foremost speech research labs (Aurora
2.0 connected digits data, test A = matched noise). Figures are averaged over all noise conditions
(MS-tandem system on left). Results from (Ellis and Reyes-Gomez, 2001).

4.2 Narrow-band tandem HMM/ANN

The “narrow-band tandem hybrid” (NB-tandem) system (Dupont and Ris, 2001), applies a separate
NLDA preprocessing to each of a number of narrow frequency subbands. Each narrow-band ANN is
trained using a small number of Bark scaled spectral features for clean data to which varying amounts
of white noise have been added. This system operates on the principle that as the frequency range
seen by each ANN is very narrow, the spectral shape of the noise is not detectable, so the type of
noise encountered during recognition should not make any difference. In this system each narrow-band
ANN was given an extra small hidden layer and NLDA features were taken as the output from this
layer. The concatenated NLDA output from these trained narrow-band ANNs was input as features to
a standard HMM /ANN hybrid (see Figure 12).

White noise added to
narrowband data
during training

Filter Bank
L
.

; |

Filter Bank ANN

NLDA features

Y

(RS gy N ey

F1a. 12 — Narrow-band tandem (NB-tandem) HMM/ANN hybrid. This can be regarded as a standard
HMM /ANN system in which the FA module comprises several parallel subband feature analysers which
first extract standard features and then post-process these using ANNs which were trained on data
corrupted with white-noise at different SNRs. FA outputs are taken from the second hidden layer of
these ANNs.
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Tests were made with the Aurora 2.0 connected digits database!®. Two configurations of the NB-
tandem system were set up : (i) a parameter-heavier version, with the multi-band MLPs having 1000
units in the first and 30 units in the second hidden layer. The combining MLP has 127 HMM states
and uses 1000 units in its hidden layer and 3 frames of context. (ii) a lighter version employing
approximately the same number of parameters as the baseline system by only employing 150 units in
the first hidden layer of the multi-band MLPs, and only 500 hidden units in the first layer of the multi-
band MLPs, only 500 hidden units and just one frame of input for the combining MLP. The baseline
HMM/ANN was trained on clean data. Both baseline and NB-tandem systems used J-RASTA-PLP
features.

60

Baseline
Configuration 2 |
Configuration 1

0dB 10dB 20 dB clean
SNR

F1G. 13 — Test results (Aurora 2.0 connected digits data, test A = matched noise) for the HMM/ANN
baseline (trained on clean speech) and two (a parameter-heavy (Configuration 1) and a parameter-
light (Configuration 2)) narrow-band tandem (NB-tandem) HMM/ANN hybrids. All systems used
J-RASTA-PLP features. Results from Table 1 in (Dupont and Ris, 2001).

Figure 13 (Dupont and Ris, 2001) shows that this multi-band tandem system employing robust
J-RASTA-PLP features, with performance peaking at seven subbands, lead to a 50% relative error
reduction over the baseline system under all noise conditions, including clean speech, even though its
acoustic models were trained in noise.

5 Discussion

Multi-expert combination has deep roots in the theory of statistical estimation. We have certainly
not even attempted to cover the broad range of techniques which could be said to belong to this field.
The HMM/ANN hybrid models presented were the most successful models that were developed within

18 The baseline system used for these tests is not the Aurora standard HMM/GMM, but an HMM/ANN. Tt was
also trained on clean rather than multi-condition data. The results in Figure 13 are therefore not directly comparable
with those in Figures 10 or 11.
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the framework of the two European Community projects, SPHEAR'® and RESPITE?C. Closely related
contemporary developments include (Cerisara, 1999a; Janin et al., 1999; Mirghafori, 1999; Dupont,
2000; Glotin, 2000; Jancovic and Ming, 2001; Shire, 2001). More distantly related work exploiting ANNs
in ASR includes (Niles and Silverman, 1990; Bengio et al., 1992; Robinson, 1994). Other promising
HMM/GMM based approaches to noise robust ASR include “missing data” (Green et al., 1995; Barker
et al., 2001) and noise modelling approaches (Droppo et al., 2002) amongst many others.

It could be argued that all of the HMM/ANN systems reviewed have their conceptual roots in the
early multi-band models (Bourlard and Dupont, 1996) which played the role of devil’s advocate in
making the clearly untenable assumption of (conditional) subband independence?'. All of the mo-
dels presented get around this independence assumption, but each model has its own strengths and
weaknesses, which we summarise below.

5.1 Strengths and weaknesses of each system

All-combinations multi-band (AC MB)

While avoiding the assumption of subband independence, the AC MB model still assumes that each
subband is either 100% reliable or 100% uninformative. As each data coefficient within a frequency
subband can be independently clean or corrupted, the potential inaccuracy of this assumption increases
with the width of each subband. Narrower subbands would be more accurate, but the number of
subband combinations increases exponentially with the number of subbands..

All-combinations multi-stream (AC MS)

The AC MS model identifies each “subband” in the AC MB model with a separate representation
of the fullband speech signal. In this approach any attempt to isolate noisy frequency subbands
has been dropped, so all acoustic features are implicitly assumed to be clean, or to have matching
noise conditions. The strength of this approach is that data from multiple “sensors” can be combined
without assuming that the data from each sensor is independent (dependent streams are best processed
together, but the number of free model parameters can be reduced, so improving performance, when
genuinely independent streams are processed separately).

Noise-weighting of individual coefficients is currently not possible in ANN based systems. Reliability
weighting of individual subbands is possible but not of great importance for AC MB or AC MS systems,
because their performance has been found to depend much more on the method used for expert
combination than the method used for weight estimation.

AC MS with hypothesis level combination

Static MAP weighting with the AC MS sum rule gave rise to hypothesis level MAP combination.
This is a simple and principled rule which tests have shown can be effective for expert combination.
However, insofar as it assumes that for each utterance the expert for just one stream combination is
reliable and all others should be ignored, it does not permit the pooling of expert “opinions” which
can also improve estimation performance.

Multi-stream tandem (MS-tandem)

The “tandem” approach, whereby ANNs are used for NLDA feature processing prior to input to
a standard HMM/GMM or HMM/ANN system, also enables multi-stream combination while avoiding
the assumption of stream independence. As with AC MS, the MS-tandem model is best suited for
preprocessing streams which are already noise free, or have matching train/test noise conditions. This
model was found to have world beating performance for the Aurora small vocabulary test under
matched noise conditions, though not under mismatched conditions or with LVASR.

Narrow-band tandem (NB-tandem)

The NB-tandem model pre-processes narrow subbands so that any noise encountered during recog-
nition will resemble the white noise used for training. On the other hand, if the bands are too narrow,

9http ://www.dcs.shef.ac.uk/~pdg/sphear/sphear.htm

20http ://www.dcs.shef.ac.uk/research /groups/spandh/projects/respite

21The assumption of class-conditional independence is far less inaccurate than would be an assumption of full inde-
pendence.
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speech will also resemble white noise and the posteriors “features” will carry no speech information.
The test results presented here show that this system can give a strong advantage under mismatched
noise conditions (none of the test noises resembled white noise), even when the original input features
are relatively noise robust.

5.2 New directions

All of the hybrid systems presented are multi-stage systems whose performance will improve each
time one of its component modules is improved. Due to the complexity of these systems, a large
number of issues arise concerning their future development, the most important of which we discuss
in this section.

Posteriors versus likelihoods estimation

The advocacy of ANNs as opposed to GMMs, although originally based on empirical evidence that
ANNSs using MLPs perform better than GMMs as classifiers?2, should be viewed more accurately as the
advocacy of posteriors- over likelihoods based modelling, rather than of MLPs over GMMs. Minimum
Bayes risk (i.e. minimum error) classification will always require posterior probability maximization
and although the “class” to be recognised in ASR is the whole word sequence, so long as decoding
is based on the initial recognition of sub-word speech units, and these are modelled by HMM states,
then posterior probabilities are required for HMM states. While it is true that class posteriors can be
obtained by applying Bayes rule to likelihoods modelled by GMMs trained with MCE, it is simpler to
model class posteriors directly using ANNs, and by the principle of Occam’s razor, simpler is better.

ANNSs versus GMMs

One of the main criticisms of the use of ANNs for noise robust ASR is that uncertainty about
the value of individual coefficients input to an ANN cannot be treated “in a theoretically sound
probabilistic manner”. However, classifier GMMs and MLPs have the same theoretical status as semi-
parametric models for estimating class posterior probabilities. If the value of some of the acoustic
features is uncertain (hence probabilistic), then Bayes optimum posteriors estimates are given by the
expected value of the classifier outputs (Morris et al., 1998) whatever model is used. While it is true
that this expectation integral is currently feasible for GMMs and not for MLPs, there is no reason why
some other type of ANN could not be used for this purpose in future (Morris et al., 2000).

Noise removal from waveform

Microphone sampling frequency should be sufficient so as not to discard information which could
be used for the separation of target speech from other interfering sounds (8 kHz, though given for
telephone speech, is highly suboptimal). Classical noise removal techniques can be very effective and
should not be overlooked (especially when the auditory system gives us obvious clues, such as the fact
that ears tend to occur in pairs). Microphone arrays and Wiener filters can be very effective for noise
estimation (McCowan and Sridharan, 2001).

Spectral noise removal versus noise modelling

Noise estimation techniques are also often applied after frequency analysis. For the purpose of
noise modelling in ASR this estimated noise is modelled rather than removed. This has the advantage
of potentially retaining any knowledge about the accuracy of the noise estimate, while this important
knowledge is normally lost after noise removal. However, when secondary feature processing is in use
(such as DCT, PCA, LDA, quantization, or posteriors estimation or NLDA by ANN), it will usually be
the best option to remove the estimated noise while still in the spectral domain, before it is spread
over all of the secondary features. In this case it has been found that it is a good rule not to correct
observations which you are not very sure need correcting (“partial imputation”), and for values which
are to be corrected, various methods exist which give better results than simple spectral subtraction.

Multiple signal representations

22GMM fans may counter that the real reason ANNs were explored was more to do with wishful thinking about
the mystical capabilities of “brain-like neural networks”, that MLPs are not brain-like at all, and GMMs have a much
better foundation in statistical modelling theory. As usual with many disputes, the truth probably lies somewhere in
between.
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Recognition can always be enhanced by combining multiple complementary signal representations.
Such representations may arise from multiple sources of biometric data (typically facial image and
speech signal for ASR, though on-line signature, iris, fingerprint and perhaps olfactory data would
also be of use in speaker identification), as well as feature analysis at different spatial, temporal or
frequency scales. Stream combination may be at the feature, state posteriors and/or utterance level.

Multi-condition training

Training with multi-condition data can greatly improve performance under matched conditions, but
the wider the range of conditions used in training the flatter the distribution of data in each phonetic
class, which can lead to lower performance under any one condition. The NB-tandem system (Section
4.2), which uses training in white noise, was the only system to significantly improve performance
in clean speech (at least in the one test reported). The adverse flattening effect of multi-condition
training may be offset to some extent by a reduction in over-fitting to uninformative detail, but the
particular success of the NB-tandem approach may also be explained as follows. Log compressed data
values at the spectral peaks for each HMM state class are far less affected by noise than values in
spectral valleys. Training with multiple levels of white noise systematically “floods” all spectral valleys
with high variance data, while peaks retain low variance. This will directly lead to flat “don’t care”
within-class probability density functions (pdfs) for all in-valley (ergo noise prone) data coefficients,
whereas real noises, having non flat spectra, will tend to also flatten spectral peaks.

The systematic identification of “don’t care” coefficients is an interesting topic for future attention,
because the possibility of such coefficients is generally overlooked in multivariate pdf estimation, even
though many scenarios come to mind in which class membership is best expressed as a union of
incomplete, rather than complete, conjunctions of feature attributes (e.g. class 1 : 21 = a and x5 = b;
class 2 : wo = ¢; class 3 : 1 =d or x5 = e).

Variety of classifier architectures

With multi-expert systems, although individual expert performance is preferably accurate, it is
more important that each classifier is unbiased and has complementary error characteristics. Every
classifier reported here was an MLP. A classifier which often outperforms the MLP (especially with
limited training data) is the support vector machine?® (SVM), which was only recently developed for
use with high dimensional data (Collobert and Bengio, 2001). However, high performance classifiers
tend to have similar error characteristics. From this point of view the Gaussian RBF (“Radial Basis
Function”) ANN classifier (Bishop, 1995) may be a more interesting candidate, precisely because it
tends not to perform as well as the MLP (Morris et al., 2000). Another suitably strange candidate
may be a classifier based on the “product mixture of Gaussians” model (Hinton and Brown, 2001) (if
this can get over its complexity problems).

New combination rules and weighting schemes

Multi-stream system performance is much more sensitive to changes in system architecture and/or
combination rules than to different weighting strategies. It is conceivable that new schemes for poste-
riors combination could be leveraged from the idea which lies behind the “probabilistic union model”,
which up until now has only been applied in a somewhat ad hoc way to subband likelihoods combi-
nation (Jancovic and Ming, 2001). The AC sum rule requires that the indicator events b(*) in (6) are
both mutually exclusive and exhaustive, while the union model (being based on an inclusive rather
than an exclusive OR of indicator events) would only require that they were exhaustive.

Asynchronous decoding

When combining evidence from data streams which are not frame synchronous, rather than render
them synchronous by interpolation, performance can sometimes be gained by allowing asynchrony
(Cerisara, 1999a; Mirghafori and Morgan, 1999; Cerisara et al., 2000; Bengio, 2003). This increases
the size of the search space, but not necessarily beyond practical limits, providing the time lag between
streams is limited.

One-stage multi-expert training

23SVM outputs do not have a direct interpretation as probabilities and have to be transformed so that they are all
positive and sum to one, but this can be easily arranged.
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All of the multi-expert systems reported are multi stage processes involving at least three processing
stages. Discriminative feature analysis, state probabilities (likelihoods or posteriors) modelling and
weighted expert combination all require training. While training is normally done on a modular
basis, efforts have been made to improve performance by one-stage training (Cerisara, 1999b; Sharma,
1999). So far this has not lead to significant performance improvements compared to the improvements
achieved by the systems we have reported which use modular training. However, some models are more
naturally suited than others to one-stage training. It may be worth experimenting with “gated mixture
of experts” models, in either their simple (Jacobs et al., 1991) or hierarchical (Jordan and Jacobs,
1994) form. These are interesting brain-like models (synaptic gating occurs extensively throughout the
brain) which could be used as one stage classifiers. They have been extensively developed theoretically
but not yet been tested in speech recognition.

Robust ASR is a complex problem which cannot be solved in one step. Each of the separate steps of
noise estimation, through discriminative feature analysis, model adaptation, posteriors or likelihoods
estimation, and expert combination, to decoding, must select the model which is best suited both
to this processing stage and to the specific ASR application. The models presented make a number
of new additions to our toolbox, most notably in the areas of robustness to mismatched noise, and
multi-modal feature combination.

6 Conclusion

We have reviewed a number of models for multi-modal data fusion in which combination takes
place at one or more of the levels of input features, state posteriors or utterance hypothesis. The
theoretical advantages and limitations of each system were discussed.

All of the results presented were on connected digits recognition under clean or matched noise
conditions. Most tests compare against an HMM/ANN baseline whose performance compares to a
state-of-the-art HMM /GMM. Test results comparing these systems directly against each other or on a
global scale were regrettably lacking at the time of publication.

In the one test available where an MS HMM /ANN system’s performance is compared on a global
scale (connected digits recognition under matched noise conditions, Figure 11) the MS-tandem system
comes out on top. While this result was later found not to extend to the mismatched noise case, the
NB-tandem appears to overcome the problem of noise mismatch.

Most of the models reviewed were HMM/ANN based, but as likelihoods can always be converted
to posteriors using Bayes’ rule, all of the equations on which these models are based can be exploited
equally by likelihoods based (i.e. HMM/GMM) and posteriors based (i.e. HMM/ANN) systems. We are
now in the position that MLPs are better suited than GMMs to posteriors estimation, while GMMs
are better suited than MLPs to adaptive noise (and speaker) modelling. This means that until the
day when ANNs are developed that can compete with GMMs for ease of model adaptation, we must
compromise between systems using (i) inferior feature level noise compensation, followed by superior
posteriors modelling, and (ii) superior noise model adaptation with inferior likelihood based models.

We hope that by collecting together and presenting this range of multi-expert HMM /ANN models,
some of which are very recent and will not be familiar to many readers, we will encourage others to
further test their effectiveness in a wider range of noise conditions, and large vocabulary recognition
tasks, and to overcome some of the limitations which we have identified.
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A Proof that mar sum weights select maximum posterior

The weighted sum P(Q|X) = >, w;P(Q|X ™) has the form A = Zifj w;a;, where a; are fixed

2
values. We can find w to maximise this, subject to the constraints >, w; = 1 and w; > 0, as follows.

First, without loss of generality, label a; (which are all positive) in order of decreasing magnitude.

A =wiamax + waas + ...+ (1 —w1 —..)amin (17)
Differentiating with respect to each free parameter w; (j =1,...,(M — 1)), gives
dA
dw. = @5 — Qmin (18)
J

But a; — apin > 0, so A is always increasing with each w;, and increases fastest with increase in w;.
From this it follows that A is maximised when w; = 1 and all other w; = 0. Therefore

max A = maXZwiai = Qmax = mMax P(Q|X(i)> (19)
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