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Abstract

This paper summarizes the collaboration of the LIA and CLIPS laboratories on
speaker diarization of broadcast news during the spring NIST Rich Transcription
2003 evaluation campaign (NIST-RT'03S). The speaker diarization task consists in
segmenting a conversation into homogeneous segments which are then grouped into
speaker classes.
Two approaches are described and compared for speaker diarization. The �rst

one relies on a classical two-step speaker diarization strategy based on detection of
speaker turns followed by a clustering process, while the second one uses an inte-
grated strategy where both segment boundaries and speaker tying of the segments
are extracted simultaneously and challenged during the whole process. These two
methods are used to investigate various strategies for the fusion of diarization results.
Furthermore, segmentation into acoustic macro-classes is proposed and evaluated

as a prior step to speaker diarization. The objective is to take advantage of the
a-priori acoustic information in the diarization process. Along with enriching the
resulting segmentation with information about speaker gender, channel quality or
background sound, this approach brings gains in speaker diarization performance
thanks to the diversity of acoustic conditions found in broadcast news.
The last part of this paper describes some ongoing works carried out by the CLIPS

and LIA laboratories and presents some results obtained since 2002 on speaker di-
arization for various corpora.
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1 Introduction

The design of e�cient indexing algorithms to facilitate the retrieval of relevant
information is vital to provide easy access to multimedia documents. Until re-
cently, indexing audio-speci�c documents such as radio broadcast news or the
audio channel of video materials mostly consisted in running automatic speech
recognizers (ASR) on the audio channel in order to extract syntactic or higher
level information. Text-based information retrieval approaches were then ap-
plied to the transcription issued from speech recognition. The transcription
task alone represented one of the main challenges of speech processing during
the past decade (see the DARPA workshop proceedings at [1]) and no spe-
ci�c e�ort was dedicated to other information embedded in the audio channel.
Progress made in broadcast news transcription [2,3] shifts the focus to a new
task, denoted "Rich Transcription" [4], where syntactic information is only
one element among various types of information. At the �rst level, acoustic-
based information like speaker turns, the number of speakers, speaker gender,
speaker identity, other sounds (music, laughs) as well as speech bandwidth
or characteristics (studio quality or telephone speech, clean speech or speech
over music) can be extracted and added to syntactic information. At the sec-
ond level, information directly linked to the spontaneous nature of speech,
like dis�uencies (hesitations, repetitions, etc.) or emotion is also relevant for
rich transcription. On a higher level, linguistic or pragmatic information such
as named entity or topic extraction for instance is particularly interesting for
seamless navigation or multimedia information retrieval. Finally, some types
of information extraction relevant to document structure do not fall exactly
into one category; for example, the detection of sentence boundaries can be
based on acoustic cues but also on linguistic ones.
This paper concerns information extraction on the �rst level described above.
It is mainly dedicated to the detection of speaker information, such as speaker
turns, speaker gender, and speaker identity. These speaker-related tasks corre-
spond to speaker segmentation and clustering, also denoted speaker diarization
in the NIST-RT evaluation terminology.
The speaker diarization task consists in segmenting a conversation involving
multiple speakers into homogeneous parts which contain the voice of only one
speaker, and grouping together all the segments that correspond to the same
speaker. The �rst part of the process is also called speaker change detection
while the second one is known as the clustering process. Generally, no prior
information is available regarding the number of speakers involved or their
daniel.moraru@imag.fr (Daniel Moraru),
corinne.fredouille@lia.univ-avignon.fr (Corinne Fredouille),
jean-francois.bonastre@lia.univ-avignon.fr (Jean-François Bonastre),
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identities. Estimating the number of speakers is one of the main di�culties
for the speaker diarization task. To summarize, this task consists in:
� �nding the speaker turns,
� grouping the speaker-homogeneous segments into clusters,
� estimating the number of speakers involved in the document.
Classical approaches for speaker diarization [5�8] deal with these three points
successively: �rst �nding the speaker turns using by example the symmet-
ric Kullback Leibler (KL2), the Generalized Likelihood Ratio (GLR), or the
Bayesian Information Criterion (BIC) distance approaches, then grouping the
segments during a hierarchical clustering phase, and �nally estimating the
number of speakers a posteriori. If this strategy presents some advantages like
dealing with quite long and pure segments for the clustering, it also has some
drawbacks. For example, knowledge issued from the clustering (like speaker-
voice models) could be very useful for segment boundary estimate as well as
to facilitate the detection of other speakers. Contrasting with this step-by-step
strategy, an integrated approach in which the three steps involved in speaker
diarization are performed simultaneously, allows to use all the information cur-
rently available for each of the subtasks [9,10]. The main disadvantage of the
integrated approach lies in the need to learn robust speaker models using very
short segments (rather than a cluster of segments as in classical approaches),
even though the speaker models get re�ned along the process. Mixed strate-
gies are also proposed [6,11,12], where classical step-by-step segmentation and
clustering are �rst applied and then re�ned using a "re-segmentation" process
during which the segment boundaries, the segment clustering and sometimes
the number of speakers are challenged jointly.
In addition to the intrinsic speaker diarization subtasks presented above (de-
noted p1 in the list below), various problems need to be solved in order to
segment an audio document into speakers, depending on the environment or
the nature of the document:
� to identify the speaker turns and the speaker clusters, and to estimate the
number of speakers involved in the document, without any a-priori infor-
mation (p1);

� to be able to process speech documents as well as documents containing
music, silence, and other sounds (p2);

� to be able to process spontaneous speech with overlapping voices of speakers,
dis�uencies, etc. (p3).

The NIST'02 speaker recognition evaluation provided an overview of the per-
formance that can be obtained for:
� conversational telephone speech, involving two speakers and a single acoustic
class of signals ;
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� broadcast news data which often includes various qualities or types of signal
(such as studio/telephone speech, music, speech over music, etc.) ;

� meeting room data in which speech is more spontaneous than in the previous
cases, and presents several distortions due to distant microphones (e.g. table
microphone) and noisy environment.

Table 1 shows the various classes of problems encountered in each situation
(p1, p2, and p3). The increasing di�culty of the tasks is obviously due to their
novelty (the last two tasks were introduced for the 2002 evaluation campaign)
but also and mainly to the accumulation of problems described in the previous
paragraph.

Since 2001, two members of the ELISA Consortium, CLIPS and LIA, have
been collaborating in order to participate in the yearly evaluation campaigns
for the task of speaker segmentation/diarization: NIST'01 [13] (LIA only),
NIST'02 [14], NIST-RT'03S [4], and NIST-RT'04S [15]. Since speaker diariza-
tion may also be useful for indexing and segmenting videos, CLIPS has also
participated in experiments in the last three TREC VIDEO evaluations [16]
since 2002 [17,18].

The ELISA Consortium was originally created by ENST, EPFL, IDIAP, IRISA
and LIA in 1998 with the aim of promoting scienti�c exchange between mem-
bers, developing a common state-of-the-art speaker veri�cation system and
participating in the yearly NIST speaker recognition evaluation campaigns.
With the years, the composition of the Consortium has changed and today
CLIPS, DDL, ENST, IRISA, LIA, LIUM and the Friburg University are mem-
bers. Since 1998, the members of the Consortium have participated in the
NIST evaluation campaigns in speaker veri�cation; a comparative study of
the various systems presented in the 1999, 2000 and 2001 campaigns can be
found in [19,20].

This paper presents an overview of this long-term collaboration by investigat-
ing two main issues. Firstly, the relative advantages of the classical step-by-step
approach as well as of a more original integrated strategy are discussed (this
part of the work can be linked to the "p1" point mentioned above: the intrinsic
tasks of speaker diarization). Several fusion strategies that use the advantages
of both approaches are also proposed. The second issue addressed in this paper
concerns the nature of the audio documents to be segmented (issue denoted as
"p2"). This part of the work is more precisely dedicated to speaker diarization
of broadcast news data. The interest of applying an acoustic macro-class seg-
mentation process before speaker segmentation (in order to divide the audio
�le into bandwidth- or gender-homogeneous parts) are discussed.

This paper is organized as follows: section 2 is devoted to the description of
systems. The acoustic macro-class segmentation process and the two speaker
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diarization techniques are described successively. Section 3 focuses on the fu-
sion of the two approaches. Performance of the various systems are presented
and discussed in section 4. All the experimental protocols and data are taken
from the NIST-RT'03S development and evaluation corpora (except for some
results on meeting data reported in section 5, issued from the NIST-RT'04S
meeting data evaluation [15,21]). Section 5 presents ongoing work on meeting
data and integration of a-priori knowledge into a speaker diarization system.
Finally, concluding remarks are made in section 6.

2 Speaker diarization approaches

Two di�erent speaker diarization systems are proposed in this paper and de-
scribed in the next sections. They were developed individually by the CLIPS
and LIA laboratories in the framework of the ELISA consortium [22,12]. The
CLIPS system relies on a classical step-by-step strategy. It involves a distance
based detector strategy [23] followed by a hierarchical clustering. This ap-
proach will be denoted as step-by-step strategy in the rest of this paper. The
second system developed by the LIA follows an integrated strategy. It is based
on a HMM and will be denoted as integrated strategy in this paper.

As illustrated in �gure 1, both of them use an acoustic macro-class segmenta-
tion as a preliminary phase. During this acoustic segmentation, the signal is
�rst divided into four acoustic classes according to di�erent conditions based
on gender and wide/narrow band detection. Then, the (CLIPS and LIA) di-
arization systems are individually applied on each isolated acoustic class. Fi-
nally, the four resulting segmentation outputs are merged and consolidated
through a re-segmentation phase. The separate application of the speaker di-
arization systems on each acoustic class assumes that a particular speaker is
associated with one of them only. Nevertheless, the re-segmentation process
allows to question the relationship between a speaker and a unique acoustic
class.

Both diarization approaches and acoustic segmentation were developed inde-
pendently before to investigate di�erent strategies for combining the systems.
The settings of each of them, as acoustic features or learning methods, di�er
and came from experiments conducted over a common development corpus
(see section 4.1).
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Acoustic segmentation - 

Male Wide Female Wide Male  Narrow Female  Narrow  

Merging & re-segmentation 

Speaker diarization  Speaker diarization  Speaker diarization  Speaker diarization  

Fig. 1. Overview of the speaker diarization strategy
2.1 Acoustic macro-class segmentation

Segmenting an audio signal into acoustic classes was mainly introduced to
assist automatic speech recognition (ASR) systems within the special context
of broadcast news transcription [24�26]. Indeed, one of the �rst objectives
of acoustic segmentation was to provide ASR systems with an acoustic event
classi�cation to discard non-speech signal (silence, music, advertisements) and
to adapt ASR acoustic models to some particular acoustic environments, like
speech over music, telephone speech or speaker gender. Many papers were
dedicated to this particular issue and to the evaluation of acoustic segmen-
tation in the context of the ASR task. However, acoustic segmentation may
be useful for other tasks linked to broadcast news corpora, although this is
rarely discussed in the literature. In this sense, one of the aims of this work is
to investigate the impact of acoustic segmentation when it is applied as prior
segmentation for speaker diarization.
Speech/non-speech detection is useful for the speaker diarization task in or-
der to avoid music and silence portions being automatically labeled as new
speakers. This is particularly true in the context of the NIST-RT evaluation
in which both miss and false alarm speech errors are taken into account for
the speaker diarization scoring.
Moreover, an acoustic segmentation system can be designed to provide a �ner
classi�cation. For example, gender and frequency band detections may intro-
duce a-priori knowledge in the diarization process. In this paper, the prior
acoustic segmentation is done at three di�erent levels:
� Speech / non-speech.
� Clean speech / Speech over music / Telephone speech (narrow band).
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� Male / Female speech.

2.1.1 Hierarchical approach
The system relies on a hierarchical segmentation performed in three successive
steps using Viterbi decoding as illustrated in �gure 2:
� During the �rst step, a speech / non-speech segmentation is performed using
two models. The �rst model, MixS, represents all the speech conditions
while the second one, NS, represents the non-speech conditions. Basically,
the segmentation process relies on a frame-by-frame best model search. A
set of morphological rules is then applied to aggregate frames and to label
segments. These rules mainly aim at constraining the duration of segments,
by �xing for instance minimum lengths for both speech and non-speech
segments. This strategy was preferred to a Viterbi decoding, which tends to
misclassify non-speech segments.

� During the second step, a segmentation based on 3 classes, clean speech (S
model), speech over music (SM model) and telephone speech (T model),
is performed only on the speech segments detected during the previous
segmentation step. All the models involved during this step are gender-
independent. The segmentation process is a Viterbi decoding applied on
an ergodic HMM, composed of three states (S, T, and SM models). The
transition probabilities of this ergodic HMM are learnt on the 1996 HUB 4
broadcast news corpus.

� The last step is gender detection. According to the label assigned during
the previous step, each segment will be identi�ed as female or male speech
by the use of models dependent on both gender and acoustic classes. GT-Fe
and GT-Ma models represent female and male telephone speech respec-
tively, GS-Fe and GS-Ma represent female and male clean speech, while
GSM-Fe and GSM-Ma represent female and male speech over music. Two
additional models, GDS-Fe and GDS-Ma, representing female and male
speech recorded under degraded conditions are also used to re�ne the �nal
segmentation. The segmentation process described in the previous step is
applied here again.

2.1.2 System speci�cations
The signal is characterized by 39 acoustic features computed every 10 ms on
25 ms Hamming-windowed frames: 12 Mel Frequency Cepstral Coe�cients
(MFCC) augmented by the normalized log-energy, followed by the delta and
delta-delta coe�cients. The choice of parameters was mainly guided by the
literature [24].
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Gender Detection 

GT - Fe GT - Ma 

Gender Detection 
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Fig. 2. Hierarchical acoustic segmentation
All the models mentioned in the previous section are diagonal GMMs, trained
on the 1996 HUB 4 broadcast news corpus. The NS and MixS models are
characterized by 1 and 512 Gaussian components respectively, while the other
models are characterized by 1024 Gaussian components. All these parameters
have been chosen empirically following a set of experiments not reported here.

2.2 Step-by-step speaker diarization

The CLIPS system is a state-of-the-art system based on speaker change detec-
tion followed by a hierarchical clustering. The number of speakers involved in
the conversation is automatically estimated. The system uses the same acous-
tic macro-class segmentation as the LIA system. The CLIPS diarization is
applied individually on every acoustic class as explained in section 2 and the
results are merged at the end. The next subsections will provide a detailed
description of every module of the system.

2.2.1 Step One: Speaker Change Detection
The goal of speaker change detection is to cut the audio recording into seg-
ments containing only the speech of one single speaker. The purpose of speaker
change detection is to �nd some audio signal discontinuities that will help us
distinguish between two consecutive speakers. Those segments will be used
as input data for the clustering module. A distance based approach [23,8])
is used. The Generalized Likelihood Ratio (GLR) is used in our case. Given
two acoustic sequences X and Y we ask whether they were produced by the
same gaussian model (the same speaker) MXY or by two di�erent models
(two di�erent speakers) MX and MY . This question can be answered using
the following GLR ratio, where:
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RGLR(X;Y ) = logL(XjMX) + logL(Y jMY )� logL(XY jMXY ) (1)

A high value of RGLR means that the "two-model hypothesis" is more likely
than the "one-model hypothesis". The numerator of RGLR is the log-likelihood
of the "two-model hypothesis" and the denominator is the log-likelihood of
the "one-model hypothesis". A GLR curve is extracted from 1.75-second ad-
jacent windows that move along the audio signal. The window size must be
small enough to contain only one speaker and large enough to obtain a reliable
model. The two windows advance frame by frame. Mono-Gaussian models with
diagonal covariance matrices are used to build the GLR curve. The maximum
peaks of the curve are the most likely speaker change points. A threshold is
then applied on the GLR curve to �nd speaker changes. The threshold is tuned
so that over-segmentation (more speaker changes detected) is provided, as we
prefer to detect more segments (which can be further merged by the cluster-
ing process) rather than miss speaker changes (which will never be recovered
later). The threshold is computed using the mean value of the current curve.
Thus, it does not create any adaptation problems from one �le to another.
Another system was presented at the NIST'02 speaker recognition evaluation
with a-priori segmentation using �xed length segments (0.75 second). It gave
approximately the same performance while being 3 times slower due to the
uniform segmentation that leads to far more segments as input of the clustering
module.

2.2.2 Step Two: Clustering
Now that we have detected the speaker changes, the segments obtained must
be grouped (clustered) by speaker. The CLIPS clustering uses a hierarchical
bottom-up algorithm. A clustering algorithm generally relies on two important
things: the distance between classes and the stop criterion. The distance used
is the GLR distance and the stop criterion is the estimated number of speak-
ers. The GLR distance is the GLR ratio (already mentioned in the previous
section) computed between classes rather than consecutive windows. Another
di�erence is that the models used are no longer mono-gaussian as in speaker
change detection but Gaussian Mixture Models (GMMs).
First, a diagonal 32 GMM background model is trained on the entire �le using
a classical EM algorithm. We need a background model to compensate for the
lack of data for each speaker. The advantage of using a background model
trained on the current �le is that it is always suited for the current task. A
more complex background model (e.g 512 GMM diagonal) trained on external
data could perform better but makes the speaker diarization system to be
data dependent (the system would work only on the type of data used to
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train the background model). The size of the model is a good compromise
between complexity and performance: beyond 32 gaussian component we only
gain about 0.5% absolute segmentation error but we increase the execution
time.

Segment models are then trained using a linear MAP adaptation of the back-
ground model (means only). GLR distances are then computed between mod-
els and the closest segments are merged at each step of the algorithm until N
segments are left (corresponding to N speakers detected in the conversation).

The number of speakers N is estimated as described in the next section.
The clustering is done individually on each acoustic macro-class (namely
male/wide, female/wide, male/narrow and female/narrow) and the results are
merged in the end.

2.2.3 Step Three: Estimating the number of speakers

The algorithm that estimates the number of speakers is based on penalized
Bayesian Information Criterion (BIC) [27].

At �rst, the number of speakers is limited to between 1 and 25. The upper
limit usually depends on the recording size.

We select the number of speakers (Nsp) that maximizes:

BIC(M) = logL(XjM)� �m2 NsplogNX (2)

where M is the model composed of the Nsp speaker models, NX is the total
number of speech frames involved, m is a parameter that depends on the
complexity of the speaker models and � is a tuning parameter empirically set
at 0.6. In our case (32 diagonal GMM) m is equal to 64 (2 times 32) times the
number of acoustic features. The �rst term is the overall log-likelihood of the
data. The second term is used to penalize the complexity of the model. We
need the second term because the log-likelihood of the data increases with the
number of models (speakers) involved in the calculation of L(XjM).

Let Xi andMi be the data and the model of speaker i respectively. The model
is obtained by MAP adaptation of the background model over the speaker data
as in the previous section. If we make the hypothesis that data Xi depends
only on the speaker modelMi then we can prove that the overall log-likelihood
of the data becomes:
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L(XjM) =
NspY
i=1

L(XijMi) (3)

Results concerning the estimation of the number of speakers will be presented
in section 4.

2.2.4 System speci�cations
The signal is characterized by 16 Mel frequency cepstral features (MFCC)
computed every 10ms on 20ms windows using 56 �lter banks. Then we add
the energy parameter. The choice of the number of �lters is due to the fact that
we work on wide-band data (broadcast news). No frame removal nor coe�-
cient normalization is applied. The parameterization is the same for all system
modules of this step-by-step diarization system, but is di�erent than that of
the "integrated" speaker diarization system and the acoustic segmentation,
which were all developped separately in di�erent places.

2.3 Integrated speaker diarization

The LIA system is based on an evolutive Hidden Markov Modeling (E-HMM)
of the conversation [28,9,22,12]. The HMM is ergodic; all speaker changes are
potentially available. Each state of the HMM characterizes a speaker and the
transitions model the changes between speakers (Figure 3). In this iterative
approach, both the segmentation and the speaker models are used at each
step and are re-evaluated in the next step. During the diarization process,
the speakers are detected and added one by one at each iteration. This is the
reason why we have named this diarization method integrated approach.

S0

S1

S2

0 1 2 1 0 2S S S S S S0S
t

Fig. 3. Integrated approach : evolutive HMM modeling of the conversation and seg-
mentation. Example given for 3 speakers (S0, S1, S2).
The speaker diarization system relies on the acoustic macro-class segmen-
tation described in section 2.1. It is applied separately on each of the
acoustic classes detected (e.g. male/wide, female/wide, male/narrow and fe-
male/narrow). Finally, the separate speaker diarizations are merged followed
by a re-segmentation process, described in section 2.4.
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2.3.1 Speaker diarization process
During the diarization, the HMM is generated using an iterative process which
detects and adds a new state (i.e. a new speaker) at each iteration. The speaker
detection process is performed in four steps (�gure 4). An example for a two
speaker show is given in the �gure 5:

new speaker model:  
selecting, new Markov Model 

Adapting speaker models: 
MAP adaptation, likelihood, Viterbi 

Validation of speaker models 
Assessing the stop criterions 

Are the last 2 segmentations equal 
Yes 

new speaker model:  1 

2 

3 

4 

No

Fig. 4. Integrated approach: di�erent steps of the process
Step 1-Initialization
A �rst speaker model S0 is trained on the whole test utterance. The segmen-
tation is modeled by a one-state HMM and the whole signal is assigned to
speaker S0. S0 represents the speaker set of the test record.
Step 2-Adding a new speaker
A new speaker is extracted from the segments currently labeled S0 representing
the speakers that are not detected yet. The new speaker model is trained using
the 3-second region of S0 that maximize the likelihood ratio between model S0
and a Universal Background Model (UBM [29], see section 2.3.2). The length
of the initial region must be su�cient to initialize a robust speaker model
while containing one speaker only. This strategy selects the closest data to
speaker model S0. The 3-second length is chosen empirically.
A corresponding state, labeled Sx (x is the number of iterations), is added
to the previous HMM. The transition probabilities are updated according to
a set of rules (more details are given in section 2.3.2). Finally, the selected
3 seconds of test are moved from label S0 to label Sx in the segmentation
hypothesis.
Various selection strategies have been tested, involving either the speaker or
UBM models. The selection method described here produces the best accuracy
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in terms of purity of the segments and of speaker diarization error.
Step 3-Adapting speaker models
This phase allows to detect the segments belonging to new speaker Sx and
to question the other speakers. First, all the speaker models are adapted ac-
cording to the current segmentation. Then, Viterbi decoding produces a new
segmentation. The adaptation and decoding tasks are performed while the
segmentation di�ers between two successive adaptation/decoding phases. Two
segmentations are di�erent when at least a feature is labeled by a di�erent
speaker.
Step 4- Speaker model validation and assessment of the stop criterion
The likelihood of the previous solution and the likelihood of the current solu-
tion are computed using the current HMM model (for example, the solution
with two speakers detected and the current solution with three speakers de-
tected). The stop criterion is reached when no gain in terms of likelihood is
observed or when no more speech is left to initialize a new speaker.
During the development, experiments shows that two heuristics help to mini-
mize the speaker diarization error:
� The �rst one removes the current speaker if the length of its segments is
less than 4 seconds. Moreover, the 3-second region used for it initialization
is not employed again in the step 2 and the process continues with the
segmentation of the previous iteration.

� The second one discards the previous speakers from the segmentation if the
length of their segments is lower than the current one. This rule, which
forces the detection of the longest speaker �rst, is closely related to the
evaluation metric used in NIST campaigns where it is more important to
�nd the longest speaker segments than the shortest ones.

2.3.2 System speci�cations
The system speci�cations are set empirically on a development corpus (see
section 4.1). The next paragraphs give some details on the parameterization
of the signal, the speaker model adaptation and the HMM.
Parameterization
The signal is characterized by 20th order Mel cepstral features (MFCC) com-
puted at a 10ms frame rate using a 20ms window and the normalized energy.
No coe�cient normalization is applied; indeed the cepstral mean subtraction
(CMS) or the sliding CMS decreases the diarization accuracy.
Speaker models
Speaker models and adaptation techniques used in the E-HMM are similar to
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Fig. 5. Integrated approach: diarization example for a two speaker show

those generally used for automatic speaker recognition. Speaker models are
based on Gaussian Mixture Models (GMM) derived from a UBM. Means only
are adapted by a MAP technique. The GMMs are composed of 128 Gaussian
components with diagonal covariance matrices.

The UBM is trained with a classical EM algorithm based on the ML principle
on a subset of 1996 HUB 4 broadcast news corpus. The UBM learning set
is composed of both male and female data and both wide- and narrow-band
data. Variance �ooring is applied during the training so that variance for each
Gaussian is no less than 0:5� the variance of the corresponding UBM Gaus-
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sian. The sliding Cepstral Mean Subtraction (CMS) is applied on each training
data set before learning ; the sliding window is 3 seconds long. The CMS is
performed to remove the in�uence of the various channels (due to the high
number of speakers and records in the UBM corpus). Moreover, preliminary
experiments had shown an improvement of the speaker diarization accuracy
when the UBM features were normalized.

The adaptation scheme is based on a variant of MAP developed by the LIA
[9]. The relative weights of the UBM and the estimate data result from a
combination of the UBM and estimated speaker gaussian weights (respectively
wUBMi ; wEi for the gaussian i) and a-priori weights (respectively �; 1��). The
mean i of the speaker model is obtained by:

�i = � wUBMi
� wUBMi + (1� �) wEi �UBMi + (1� �) wEi

� wUBMi + (1� �) wEi �Ei (4)

Experimentally, � is �xed to 0:2 for the UBM. This setting corresponds to
the value that minimizes the speaker diarization error over the development
corpus.

HMM
The HMM emission probabilities - for each 0.3 second of the input stream and
each HMM state - are estimated by computing the mean of log likelihood.
A 0.3-second score rate (the systems are generally based on a frame score
rate) allows to smooth out local speaker changes and modi�es the intrinsic
exponential duration law of the states. Taken a decision every 0.3-second could
be also seen as an uniform segmentation.

The HMM transition probabilities are �xed according to the following rules :

� Each transition probability, ai;i (from state Si to state Si) is equal to an
a-priori value �.

� Each transition probability, ai;j (from state Si to state Sj) is equal to:

ai;j = (1� �)
(n� 1) (5)

with i 6= j and n is the number of states (i.e. speakers).

In this paper, the � value is set at 0:6. This setting corresponds to the value
that minimizes the speaker diarization error over the development corpus.
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2.4 Speaker re-segmentation

The use of a re-segmentation phase at the end of a clustering process was
earlier proposed, for example in [30,31,11,32]. The two main methods are based
on GMM/HMM models and make decisions at the frame level:
� thanks to Viterbi decoding [30,31];
� or over scores computed in a sliding window [11,32].
The process can be run iteratively but [11] has shown that it degrades the
performance.
The ELISA re-segmentation stage is also based on a Viterbi decoding (similar
to the "Adapting speaker models step", described in 2.3.1). Firstly, the four
gender- and channel-dependent segmentations are merged by simply pooling
the segmentations (there is no overlap between sub-segmentations). Secondly,
the speaker-model adaptation and Viterbi decoding are performed iteratively.
At the end of each iteration, the speakers with less than 4 seconds of signal
are removed.
During the re-segmentation process, the parameters are similar to those used
for the E-HMM clustering process, except for the model training method. In
this case, the classical mean-only MAP adaptation is performed to obtain
speaker models [33,29] instead of the variant MAP technique proposed by
the LIA and described in section 2.3.2. The adaptation rate of the means
is controlled by the relevant factor [29] which is experimentally set at 16.
Moreover a tiny gain is obtained over the development corpus when the HMM
emission probability score rate is reduced from 0.3 second to 0.2 second since
this reduction helps to re�ne the boundaries of the output segmentation.

3 Fusion of systems

Since the NIST 2002 evaluation, CLIPS and LIA have investigated di�erent
strategies for combining the systems. In this paper, only strategies for broad-
cast news data are described 1 . Basically, the aim of these strategies is to ben-
e�t from the advantages of both speaker diarization approaches, described in
previous sections. Two kinds of strategy are proposed: �rstly an hybridization
strategy and secondly merging various diarizations. The latter is a new way
of combining results coming from multiple and unlimited diarization systems.

1 The reader is invited to look at [22] for telephone strategy.
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3.1 Hybridization strategy ("piped" system)

The purpose of this hybridization strategy is to use the results of one system to
initialize a second one. In this paper, the speakers detected by the step-by-step
system (number of speakers and associated audio segments) are inserted in the
re-segmentation module of the integrated system (the models are trained using
the information provided by the clustering phase) as illustrated in �gure 6.
This solution associates the advantages of longer and (quite) pure segments,
provided by the step-by-step approach, with the HMM modeling and decoding
power of the integrated strategy.

LIA re-segmentation
t

S0

S1

t

S0

S1

CLIPS segmentation

Fig. 6. Example of a piped system

3.2 Merging strategy ("fusion" system)

The aim of the "fusion" system consists of using the diarizations issued from
as many experts as possible. For example, in this paper the total number of
experts is four (see �gure 7): the step-by-step system, the integrated system,
a variant of the integrated system, and the "piped" system (seen before). The
merging strategy relies on a frame-based decision which consists of grouping
the labels proposed by each of the systems at the frame level. An example (for
four systems denoted A, B, C and D) is illustrated below:
� Frame i: System A gives the speaker label A1, System B gives B4, System
C gives C1 and System D gives D1. A1B4C1D1 is then the merged label.

� Frame i+1 : Systme A gives A2, System B gives B4, System C gives C1 and
System D gives D1. A2B4C1B1 is then the merged label.

This label merging method generates (before re-segmentation) a large set of
potential speakers. The re-segmentation module of the integrated system can
be applied on the merged diarization. Between each adaptation / decoding
phase, the potential speakers for whom total time is shorter than 3 seconds are
deleted. Indeed, 3 seconds of signal correspond to the minimal length needed
to learn a speaker model. The data of these deleted speakers will further
be dispatched between the remaining speakers during the next adaptation /
decoding phase.
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Fig. 7. Example of a merging system
4 Experiments and results

The experiments were carried out in the framework of the NIST-RT'03S
speaker diarization evaluation on American broadcast news [4].

4.1 Development and evaluation corpora

Following the NIST-RT'03S evaluation campaign, two corpora are available
for the speaker diarization task. One of them is used for the development of
the systems, which are validated on the second one during a blind evaluation.
The development corpus is extracted from the HUB-4 evaluation campaign
corpus. It is composed of six broadcast news shows of about 10 minutes each,
recorded in 1998 from channels MNB, CNN, NBC, PRI, VOA and ABC. The
evaluation corpus is composed of three 30-minute shows recorded in 2001 from
channels PRI, VOA and MNB, each containing between 10 and 27 speakers.
In this paper, these development and evaluation corpora are named re-
spectively RT'03S-Dev and RT'03S-Eva. Two additional corpora are used
during the experiments. Both of them are derived from RT'03S-Dev and
RT'03S-Eva by discarding all the advertisement portions manually before
being processed 2 . They are named ELISA-Dev (derived from RT'03S-Dev)
and ELISA-Eva (derived from RT'03S-Eva) and serve the same role as the
2 Advertisements, present in the audio documents, are never scored. Nevertheless,
their presence during the segmentation process may disturb the systems since they
involve additional speakers, entirely unrelevant in the output segmentation.
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original corpora, i.e. system development and evaluation purposes. The use
of these additional corpora during experiments may explain that some results
presented in this paper do not correspond exactly to the o�cial NIST-RT'03S
results.

In order to evaluate the accuracy of the acoustic macro-class segmentation,
a reference segmentation including the di�erent targeted acoustic class
(speech/non-speech, gender labels, and telephone/non telephone speech)
was necessary. Since NIST does not provide any o�cial reference for the
bandwidth classi�cation, the authors have marked their own. Both the
boundaries and labels were manually identi�ed. This reference segmentation
will be referred to as Hand S/NS-Gender-T/NT later in this paper.

Moreover, it is worth noting that due to the small size of the di�erent corpora,
all the results presented in this paper have to be considered with caution.

4.2 Evaluation metric

The speaker diarization performance is evaluated by comparing the hypothesis
segmentation, given by the system, with the reference segmentation provided
by NIST. This reference segmentation was generated by hand according to a
set of rules described in [4,34].
The evaluation metric is based on the NIST speaker diarization metric de�ned
in the NIST-RT'03S evaluation plan [4]. It is called the diarization metric, and
expressed in terms of Diarization Error Rate (DER). It takes three kinds of
error into account (named SE,MisE, FaE respectively in the next sections):
� A speaker error de�ned below (SE).
� A missed speaker error relative to a misclassi�cation of speech segments as
non-speech segments (MisE).

� A false alarm speaker error relative to a misclassi�cation of non-speech
segments as speech segments (FaE).

To compute the speaker error, the scoring algorithm optimally maps the ref-
erence speakers to the hypothesis speakers. Each reference speaker is mapped
onto one hypothesis speaker at most and conversely each hypothesis speaker
is mapped onto one reference speaker at most. The mapping maximizes the
overlap in duration between all pairs of reference and hypothesis speakers.
The speaker error is �nally expressed as the duration of non-matching zones
between reference and hypothesis segments.
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Concerning the gender- and bandwidth-misclassi�cation errors, they are mea-
sured at a frame level by comparing the hypothesis classi�cation with the
reference segmentation proposed by the authors Hand S/NS-Gender-T/NT.

4.3 Acoustic macro-class segmentation experiments

This section presents the evaluation protocol used to measure the impact of
the acoustic macro-class segmentation when combined with speaker diariza-
tion and discusses the experimental results obtained in this framework. Di�er-
ent levels of acoustic segmentation granularity are evaluated on both speaker
diarization systems:
� Speech/non-speech classi�cation only (S/NS ). This segmentation corre-
sponds to the �rst level of the acoustic macro-class segmentation described
in section 2.1;

� segmentation based on speech/non-speech and gender detection (S/NS-
Gender). This segmentation is obtained by merging all the labels GS-XX,
GSM-XX, GDS-XX and GT-XX yielded by the acoustic macro-class seg-
mentation (see �gure 2) in a single XX label where XX represents either
Ma or Fe.

� segmentation based on speech/non-speech, gender and telephone/non-
telephone speech detection (S/NS-Gender-T/NT). NT segmentation is ob-
tained by merging all the GS-XX, GSM-XX, and GDS-XX (see �gure 2) in
a single NT-XX label where XX represents either Ma or Fe.

� segmentation based on speech/non-speech, gender and telephone/clean
speech/speech over music/degraded speech (S/NS-Gender-T/S/MS/DS). In
this segmentation, all the labels yielded by the third level of the acoustic
macro-class segmentation system are used (see �gure 2).

For comparison purposes, speaker diarization results based on the reference
acoustic macro-class segmentation, Hand S/NS-Gender-T/NT, are also
presented.

4.3.1 Intrinsic performance of acoustic macro-class segmentation
Table 3 provides the performance of the a-prior acoustic macro-class segmen-
tation on both RT'03S-Dev and RT'03S-Eva corpora. Some details about the
amount of data for each targeted class are reported in table 4.
The speech/non-speech segmentation error is around 4.9% (in terms of dura-
tion) compared to 4.4% for the best system during the NIST-RT'03S eval-
uation campaign [35]. The gender detection error goes from 1.5% for the
RT'03S-Dev set at 5.5% for the RT'03S-Eva set. As said in the description
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of the corpora, the reference segmentation provided by NIST does not in-
clude telephone/non telephone information. Therefore, the accuracy of the
acoustic segmentation system for the telephone and non-telephone classi�ca-
tion is evaluated using reference boundaries marked by the authors (Hand
S/NS-Gender-T/NT ): less than 0.1% for the RT'03S-Dev corpus and 3% for
RT'03S-Eva.

4.3.2 Performance of speaker diarization
This section presents the experimental results obtained when applying di�er-
ent levels of acoustic macro-class segmentation prior to the speaker diarization
systems (integrated and step-by-step methods). Experiments are conducted on
ELISA-Dev and ELISA-Eva corpora.
Table 5 provides the results obtained individually by each speaker diariza-
tion system before applying the re-segmentation step described in section 2.4
whereas table 6 provides the results obtained after the re-segmentation step.
Three kinds of observation may be pointed out through these results, expressed
in terms of missed speaker error rate (MiE), false alarm speaker error rate
(FaE), speaker error rate (SE) and diarization error rate (DER):
� (a) concerning the corpora (ELISA-Dev and ELISA-Eva), a large variation
in terms of performance may be observed between the speaker diarization
systems depending on the corpus used. Indeed, the performance of the in-
tegrated system drastically decreases on ELISA-Eva corpus compared with
ELISA-Dev (e.g. from 14.8% to 27.3% for S/NS-Gender-T/NT acoustic seg-
mentation) while the step-by-step system performance remains quite steady
whatever the corpus used.

� (b) concerning the acoustic macro-class segmentation, a gain in perfor-
mance 3 for both speaker diarization systems can be observed when they
are combined with manual acoustic segmentation. Similarly, a large improve-
ment of the integrated approach results is obtained with the speech/non-
speech, gender and telephone/non-telephone segmentations (S/NS-Gender-
T/NT), especially on ELISA-Eva corpus, without (from 26.9% to 18.1%)
and with (from 26.5% to 14.1%) the re-segmentation phase. On ELISA-Dev
corpus, this improvement is more visible after the re-segmentation phase
(from 15.5% to 12.8%) than before the re-segmentation for which only a
small drop is observed (from 15.4% to 15.1%). On the other hand, even
if some improvement can be noticed for the step-by-step system, the gain
is minor. In fact, it is really visible after the re-segmentation phase (from
18.8% to 17.4% on ELISA-Dev and from 15.4% to 13.7% on ELISA-Eva).
Finally, no improvement is seen (and in some cases, even a performance

3 Best DER are reached using manual macro-class acoustic segmentation. Never-
theless, this is due to the MiE and FaE rates reduced to 0.
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loss occurs) when the most detailed acoustic segmentation (S/NS-Gender-
T/S/MS/DS) is involved. It can be noticed that this loss of performance
becomes especially big without the re-segmentation phase.

� (c) applying the re-segmentation step leads to the best performance in most
of the cases. This demonstrates its interest while coupled with both speaker
diarization strategies.

Comparing all the di�erent levels of segmentation granularity (note (b)), the
S/NS-Gender-T/NT segmentation seems the most helpful for the speaker di-
arization task, especially for the integrated approach. This point is particularly
visible for the ELISA-Eva corpus for which 20% of speech time (shared among
2 shows over the 3 available in the corpus) is telephone speech against 7.7%
only for ELISA-Dev corpus (mainly present in 1 show over the 6 available).

The di�erence of behaviors in terms of performance (note (b)) between the
two speaker diarization systems may be directly linked to the strategies in-
volved for each of them. It seems reasonable that the step-by-step approach
especially the speaker turn detection step intrinsically behaves as an acoustic
class segmentation system, detecting speaker turns as well as acoustic event
changes before the clustering phase. In this sense, the a-priori acoustic macro-
class segmentation becomes useless to improve performance. Obviously this
is not true for speech/non-speech detection since the speaker turn detection
phase cannot discard non-speech segments automatically without additional
processing.

Unexpectedly, the most detailed segmentation, S/NS-Gender-T/S/MS/DS ,
does not lead to performance gain and may conversely degrade it in most
of the cases. This can be explained by the fact that some speakers may be
present under di�erent acoustic classes (speech over music followed by speech
only, classical for news presenters, or in both clean and degraded speech classes
depending on the location of interviews for instance). Since speaker diarization
systems are applied independently on each acoustic class, the same speaker
may be split under di�erent labels, leading to an increase in speaker error
rates. In the same way, increasing the number of acoustic classes induces much
smaller segments, which may disturb speaker diarization systems. However,
these e�ects are partially overcome thanks to the re-segmentation phase, which
may explain that the loss of performance due to S/NS-Gender-T/S/MS/DS
segmentation is minor after applying the re-segmentation phase.

Finally, combining both speaker diarization systems with manual acoustic seg-
mentation outperforms all the automatic ones. However, since the diarization
error rate takes both speaker and speech/non-speech error rates into account,
the results cannot be compared directly in this case (manual segmentation does
not yield any speech/non-speech error rate). Regarding speaker error rate only,
the best speaker diarization system (after re-segmentation) based on an auto-
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matic acoustic segmentation on ELISA-Dev corpus gets 7.6% against 9.2% for
manual segmentation. As a result, the speaker diarization system based on an
automatic segmentation outperforms (from a pure speaker diarization point
of view) the one based on a manual segmentation. In fact, the analysis of the
results showed that some segmentation errors, due to some segments falsely
split into two di�erent classes (telephone/non telephone for instance) by the
automatic acoustic segmentation system, may be automatically corrected by
the re-segmentation step.

4.4 NIST-RT'03S results

This section presents the results obtained during the NIST-RT'03S evaluation
campaign, on the RT'03S-Dev and RT'03S-Eva corpora, for both speaker
diarization approaches as well as the "fusion" systems, described in sections
3.1 and 3.2. It can be underlined that:
� the "merging" strategy-based system (ELISA1), submitted as ELISA pri-
mary system, obtained the second lower diarization error rate compared to
the other NIST-RT'03S-participant primary systems [35].

� the "hybridization" strategy-based system (ELISA2) (i.e. the CLIPS system
followed by the re-segmentation phase), submitted as a secondary ELISA
system, outperformed the best primary system [36,37] and obtained the
lowest speaker diarization error rate.

Table 7 summarizes the performance achieved by the di�erent proposed sys-
tems during the NIST-RT'03S. It shows that:
� even though the �ve systems are based on the same acoustic macro-class
segmentation, the Miss Speech and False Alarm Speech errors are di�erent.
This is due to the LIA and ELISA system behavior, which work at 0.2 second
block level 4 (all the segment boundaries are aligned on a 0.2 second scale)
whereas CLIPS system works at a frame level. It gives small di�erences in
the boundary positions of the segments.

� The LIA E-HMM based primary system (LIA1) improves performance com-
pared with the CLIPS classical approach (CLIPS1) (16.9% DER compared
to 19.3%). But the second LIA system (LIA2) based upon a linear model
adaptation descibed in [9] obtained only 24.7% DER. This di�erence in
terms of performance illustrates the di�culty of adapting a large statistical
model in borderline conditions (only few seconds of adaptation data).

� the integrated (E-HMM) method may clearly bene�t from some better seg-
ment boundaries and longer segments issued from a classical turn detection

4 see sections 2.3.2 and 2.4 for details on the 0.3 second block level (for segmentation
phase) and 0.2 second (for re-segmentation) signi�cation.
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approach like the CLIPS one, as demonstrated by the a large gain of perfor-
mance (from 16.9% to 12.9% DER) reached by the ELISA2 system. Indeed
the re-segmentation phase improves the accuracy of the CLIPS diarization
and it allows to reduce the diarization error by 33% (relative).

� the strategy involved in ELISA1 system performs better than ELISA2 over
two recordings while a drastic loss is observed on the last recording. The loss
on that particular recording is a good example of the limitation of the merg-
ing technique explained in section 3.2: one of the systems disagreed with the
others. This resulted in too many speakers detected and, most important,
in the split of a long true speaker into two hypothetic speakers, involving
a large error rate. This observation illustrates the remark done in section
4.1, in which it is noted that some caution has to be taken with the result
discussion due to the small size of the di�erent corpora. In other words, the
generalization problem is underlined here with only three di�erent shows
available for testing.

� for the CLIPS system, complementary experiments showed that automati-
cally estimating the number of speakers during the clustering process gen-
erates only about 4% more of absolute diarization error than the optimal
number of speakers. The CLIPS algorithm missed only 7% of the real speak-
ers involved in the �les (4 speakers out of 57 total speakers). It is important
to note here that we call "optimal number of speakers" the number of speak-
ers that minimizes the diarization error and not the real number of speakers
involved in the conversation. The optimal number is usually smaller than
the real number due to the fact that there are a lot of speakers, especially in
broadcast news data, that do not speak enough to train a reliable statistical
model (e.g: 4 seconds during a 30-minute �le). To illustrate this point, table
8 presents the speaker diarization error using respectively the optimal, the
estimated and the real number of speakers obtained on two speech corpora.

Moreover, we observed that the label merging method of the four systems
generates about 150 potential speakers per show. This speakers correspond
generally to:

� potential speakers that have a large amount of data assigned (>10 seconds).
These speakers can be considered as correct hypothesized speakers;

� potential speakers generated by few systems, for example the speakers as-
sociated with only one short segment (�10 seconds). These hypothesized
speakers can be suppressed (the weight of these speakers on the �nal scor-
ing is marginal);

� potential speakers that have a small amount of data scattered between mul-
tiple small segments and that can be considered as zones of indecision.

We observed also that after the �rst iteration of the re-segmentation, the
number of speakers is already drastically reduced (from 150 to about 50)
since speakers associated with indecision zones do not catch any data during
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the Viterbi decoding and are automatically removed. However, the merging
strategy cannot generally solve the wrong behavior of initial systems that can
split a "true" speaker into two hypothesized speakers, each tied to a long
segment. Suppose all systems agree on a long segment except for one which
splits this segment into two parts. This would produce two potential speakers
(associated with long duration segments) after the merging phase and since we
do not do any clustering before re-segmentation, we have generally a "true"
speaker split into two hypothesized speakers.

5 Ongoing works

5.1 Application to other data

Though this paper was mainly dedicated to speaker diarization experiments
on broadcast news data, our speaker diarization systems were successfully ap-
plied to other data types during the last NIST evaluations. Table 9 presents
a summary of our results obtained since 2002 on di�erent kinds of data. In
2002, beside the diarization of broadcast news documents, two other tasks were
proposed on telephone speech conversations and on meeting room recordings.
Performance shown on the �rst line of the table illustrates the increasing di�-
culty of the tasks. For telephone conversations, only two persons are involved
and there are few overlapping segments. For broadcast news, there are ob-
viously more speakers on the audio documents, but this is mostly prepared
speech with a large part of "studio quality" voice. The hardest task de�nitely
corresponds to meeting data with very spontaneous speech, recovering voices,
dis�uencies, distant speakers (in case of table microphones) and background
noise. The second line shows the best performance obtained in spring 2003 on
broadcast news data with the system described in this paper, and illustrates
the progress made from 2002 to spring 2003 on this data. During the NIST
2004 spring rich transcription evaluation [21], the novelty was that we had to
process multiple speech channels coming from multiple sensors located in a
smart meeting space. We proposed a very straightforward strategy to merge
the multiple channel segmentation outputs and obtained the best speaker di-
arization performance for this task [21].

5.2 Integration of a-priori knowledge

One of the main assumptions in most of the papers [32,9] concerning the
speaker diarization task is that no a-priori information is available on the test
data. This means for instance, that the number and the identity of the speakers
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involved in conversation are not known. A consequence of this hypothesis is
that no reference speaker data is supposed to be available before segmenting
an audio signal for instance.
However, this limitation may not be so necessary [38] for some applications
and conditions for which we can reasonably hope to have a-priori information.
For instance, the type of conversation is generally known (broadcast news,
telephone or meeting conversation), which gives us information on speech
quality and average speaker turn length. We may also know about the real
number of speakers involved in conversation. For instance, we know there are
two speakers in telephone conversation while a list of participants might be
available for meeting data. In some cases reference data might be available for
the speakers involved in the conversation. For example, we could ask every
participant to introduce themselves at the beginning of meetings. A synthesis
of what kind of information we might expect for each type of audio document
is presented in Table 10.

Some results concerning the knowledge of the real number of speakers were
already presented in section 2.2.3. From those results only it was di�cult to
conclude if the knowledge of the number of speakers is useful information or
not since the conclusion is di�erent for the two speech corpora.
In the case of broadcast news data we can easily obtain reference data of one
particular speaker. This speaker is the news show presenter. From previously
broadcasted shows, it is thus possible to obtain enough data to train a presen-
ter speaker model directly by EM. We have shown in [38] that using a simple
speaker tracking system for this particular speaker, up to 3% absolute diariza-
tion error reduction can be obtained (experiments done on the ESTER 5 radio
broadcast corpus, see [38] for more experimental details).
The possibility of having reference data for all speakers is speci�c to telephone
and meeting data. The main interest in having data available for all speakers,
other than a signi�cant error reduction (up to 10% absolute for the RT03-Eva
corpus, see [38] for experimental details) is the execution time consideration.
Our step-by-step speaker diarization approach takes about four times real-
time for a 30 minutes �le. When reference data is available for all speakers,
the speaker diarization is a simple assignment of every segment to the most
likely speaker. In this case the speaker diarization takes about 0.1 times real-
time. Every speaker model is derived from a background model using the few
seconds available for each speaker.
In conclusion, with the current modeling technique including in our systems,
the real number of speakers is useful only as a reference number for the esti-
5 www.afcp-parole.org/ester/
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mated number of speakers, whereas reference data for the speakers involved
in conversation is always useful. Further experiments should be done on tele-
phone and meeting data concerning the case when reference data is available
for all speakers.

6 Conclusion

This paper summarizes the collaboration of the LIA and CLIPS laboratories,
two members of the ELISA consortium, in the area of speaker diarization. The
work presented in this paper was done in the framework of the NIST Rich
Transcription 2003 spring evaluation campaign (NIST-RT'03S) and addressed
two main points.
Firstly, two main approaches for speaker diarization were proposed and com-
pared. The �rst one relies on a classical strategy based on speaker-turn detec-
tion followed by a clustering process, while the second one relies on an inte-
grated strategy where segment boundaries and speaker tying of the segments
are extracted simultaneously and challenged during the whole process. The
integrated method (E-HMM) shows a higher modeling power (16.9% diariza-
tion error compared to 19.3% for the step-by-step approach). Nevertheless, the
classical step-by-step approach seems to obtain more consistent results across
the �les and conditions than the integrated one. Despite the di�erences be-
tween the two approaches, the results obtained during the NIST 2003 spring
evaluation showed the interest of using both techniques. This was con�rmed
by the results obtained using a fusion of both systems where the integrated
approach is applied after the CLIPS step-by-step segmentation system. The
fusion system obtained an error rate of 12.9% as compared to 19.3% for the
CLIPS system used on its own. The fusion system also showed a relative 33%
error-reduction compared to the performance of the integrated system taken
alone (from 16.9% to 12.9%). The integrated (E-HMM) method clearly ben-
e�ts from the better segment boundaries and longer segments issued from
the classical CLIPS approach. This fusion system achieved the lowest speaker
diarization error rate during the NIST-RT'03S evaluation campaign. More in-
vestigation is needed for a better understanding of the nature of the errors
made by the systems, which is not a trivial task as the speaker diarization
performance metrics is complicated.
The second main issue addressed in this work concerns the nature of the au-
dio documents to segment. This paper focuses on the case of audio broadcast
news documents. An acoustic macro-class segmentation was proposed, as a-
prior step for speaker segmentation systems. The speaker segmentation system
is run independently on each acoustic sub-class and the resulting segmenta-
tions are merged thanks to a re-segmentation algorithm (in this paper, the
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re-segmentation process consists of one iteration of the integrated E-HMM al-
gorithm). For a speech/non-speech, gender and bandwidth (studio/telephone
speech) pre-segmentation, a signi�cant gain was observed in the case of the
integrated approach. A slight gain was also observed for the step-by-step ap-
proach, which seems more robust to channel or environment variations. More-
over, �ner macro-class segmentation (including speech over music detection)
led to a loss in performance, partially due to the assumption (�xed during
the speaker segmentation process) that the same speaker could not appear in
more than one acoustic macro-class.
Finally, some ongoing work has been presented, which demonstrates that the
approaches proposed are able to deal with new types of data like meeting
room recordings. Indeed, multiple microphones are often available in the case
of meeting rooms and taking these multiple (and low quality) recordings of
the same conversation into account constitutes a new challenge for speaker
diarization. The systems presented in this paper were adapted to the meet-
ing task and obtained during the NIST-RT'03S campaign a state-of-the-art
result with 22.8% diarization error rate. A strategy for fusing segmentations
issued from several microphones was also proposed but no signi�cative win
was observed compared with results obtained using the best microphone. The
interest of a-priori knowledge concerning the potential number of speakers
nor the speakers was also presented. Particularly, using knowledge from well-
known speakers authorizes a 3% absolute win during experiments on ESTER
database and knowing all the potential speakers allows to speed up very sig-
ni�cantly the diarization process. This preliminary work on using available
apriori information opens up interesting possibilities for further work.
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Table 1
Increasing di�culty of the tasks. Best results for the speaker diarization task in the
NIST'02 speaker recognition evaluation.

Task Telephone Broadcast News Meeting
Diarization error rate 5.7 26.4 30.1
Problems involved p1 (but with a �xed p1+p2 p1+p2+p3

number of speakers)

Table 2
Description of the di�erent corpora, in terms of number of a shows, size average,
and speaker number average. (* As advertisements are not manually transcribed,
the exact number of speakers is unknown )
Corpus Number of shows Size average (in sec.) Speaker Nb average
RT'03S-Dev 6 568 >13*
RT'03S-Eva 3 1534 >20
Elisa-Dev 6 574 13
Elisa-Eva 3 1773 20

Table 3
Acoustic macro-class segmentation error rates on the RT'03S-Dev and RT'03S-Eva
sets.

Misclassi�cation error rate (in %)
Corpus Speech Non-speech Gender Tel./Non Tel.
RT'03S-Dev 2.3 2.2 1.5 0.09
RT'03S-Eva 1.1 3.8 5.5 3.0

Table 4
Amount of data for each targeted acoustic class: speech/non speech classes, female
and male speech classes, telephone and non-telephone speech class.

Data amount (in sec.) of each acoustic class in the corpus
Corpus speech non-speech female male Telephone non-telephone
RT'03S-Dev 3090 321 730 2360 220 2870
RT'03S-Eva 4127 478 1271 2856 530 3597
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Table 5
Error rates, expressed in terms of missed speaker (MiE), false alarm speaker (FaE),
speaker (SE) and diarization speaker (DER) error rates (in %), obtained by each
speaker diarization system before applying the re-segmentation step when combined
with di�erent levels of acoustic macro-class segmentation. Experiments conducted
on ELISA-Dev and ELISA-Eva corpora.

Step-by-step system
ELISA-Dev ELISA-Eva

Acoustic segmentation MiE FaE SE DER MiE FaE SE DER

Hand S/NS-Gender-T/NT 0.0 0.0 14.0 14.0 0.0 0.0 10.2 10.2
S/NS 2.8 2.4 14.5 19.7 2.1 3.0 12.2 17.3
S/NS-Gender 2.8 2.4 13.5 18.7 2.1 3.0 13.6 18.7
S/NS-Gender-T/NT 2.8 2.4 13.9 19.1 2.1 3.0 13.3 18.4
S/NS-Gender-T/S/MS/DS 2.8 2.4 19.5 24.7 2.1 3.0 22.5 27.6

Integrated system
ELISA-Dev ELISA-Eva

Acoustic segmentation MiE FaE SE DER MiE FaE SE DER

Hand S/NS-Gender-T/NT 0.0 0.0 10.7 10.7 0.0 0.0 12.0 12.0
S/NS 2.8 2.4 10.2 15.4 2.1 3.0 21.8 26.9
S/NS-Gender 2.8 2.4 9.6 14.8 2.1 3.0 22.2 27.3
S/NS-Gender-T/NT 2.8 2.4 9.9 15.1 2.1 3.0 13.0 18.1
S/NS-Gender-T/S/MS/DS 2.8 2.4 18.0 23.2 2.1 3.0 23.0 28.1
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Table 6
Error rates, expressed in terms of missed speaker (MiE), false alarm speaker (FaE),
speaker (SE) and diarization speaker (DER) error rates (in %), obtained by each
speaker diarization system after applying the re-segmentation step when combined
with di�erent levels of acoustic macro-class segmentation. Experiments conducted
on ELISA-Dev and ELISA-Eva corpora.

Step-by-step system
ELISA-Dev ELISA-Eva

Acoustic segmentation MiE FaE SE DER MiE FaE SE DER

Hand S/NS-Gender-T/NT 0.0 0.0 13.7 13.7 0.0 0.0 10.5 10.5
S/NS 2.8 2.4 13.6 18.8 2.1 3.0 10.3 15.4
S/NS-Gender 2.8 2.4 12.5 17.7 2.1 3.0 10.0 15.1
S/NS-Gender-T/NT 2.8 2.4 12.2 17.4 2.1 3.0 8.6 13.7
S/NS-Gender-T/S/MS/DS 2.8 2.4 12.3 17.5 2.1 3.0 9.4 14.5

Integrated system
ELISA-Dev ELISA-Eva

Acoustic segmentation MiE FaE SE DER MiE FaE SE DER

Hand S/NS-Gender-T/NT 0.0 0.0 9.2 9.2 0.0 0.0 10.8 10.8
S/NS 2.8 2.4 10.3 15.5 2.1 3.0 21.4 26.5
S/NS-Gender 2.8 2.4 7.8 13.0 2.1 3.0 19.8 24.9
S/NS-Gender-T/NT 2.8 2.4 7.6 12.8 2.1 3.0 9.0 14.1
S/NS-Gender-T/S/MS/DS 2.8 2.4 9.8 15.0 2.1 3.0 9.0 14.1

Table 7
Experimental results on NIST-RT'03S data.
Di�erent error rates (in %) Miss Speech FA Speech Speaker Diarization
CLIPS (CLIPS1) 2.0 2.9 14.3 19.3
CLIPS + re-seg. (ELISA2) 1.1 3.8 8.0 12.9
LIA (LIA1) 1.1 3.8 12.0 16.9
LIA variant (LIA2) 1.1 3.8 19.8 24.7
merging strategy (ELISA1) 1.1 3.8 9.3 14.2
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Table 8
Speaker diarization error rate using di�erent estimates of the number of speak-
ers. The error rate is extracted from the CLIPS NIST-RT'03S results. NOpt: op-
timal number, the number of speakers that gives the minimal error (total=46 on
RT03Dev). NEst: estimated number of speakers (total=47 on RT'03S-Dev). NReal
real number of speakers (total=69 on RT'03S-Dev).

Corpus NOpt NEst NReal
RT'03S-Dev 14.5 19.7 24.8
RT'03S-Eva 14.0 17.1 16.3

Table 9
ELISA Results since 2002 (diarization error rate) given various corpora

Corpus / Year Telephone Broadcast Meeting Meeting
News (head mic.) (table mic.)

2002 5.7 30.3 34.7 36.9
spring 2003 X 12.9 X X
spring 2004 X X X 22.4

Table 10
a-priori information available for each audio document type

Information Telephone Meeting Broadcast News
N Speakers 2 Possibly Known Unknown

Reference Data Possibly Possibly Possibly
Available (2 Spk) (1:N Spk) (Few Spk Only)
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