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Abstract

The use of quality information for multilevel speaker recognition systems is ad-

dressed in this contribution. From a definition of what constitutes a quality measure,

two applications are proposed at different phases of the recognition process: scor-

ing and multi-level fusion stages. The traditional likelihood scoring stage is further

developed providing guidelines for the practical application of the proposed ideas.

Conventional user-independent multilevel Support Vector Machine (SVM) score fu-

sion is also adapted for the inclusion of quality information in the fusion process.

In particular, quality measures meeting three different goodness criteria: SNR, F0

deviations and the ITUP.563 objective speech quality assessment are used in the

speaker recognition process. Experiments carried out in the Switchboard-I database

assess the benefits of the proposed quality-guided recognition approach for both the

score computation and score fusion stages.
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1 Introduction

One of the key points addressed nowadays by automatic speaker recognition

research is the exploitation of multilevel information in the speech signal [1–

3]. This idea is based on self-observation and experience since listeners rely

on several types or levels of information in the speech signal to recognize

the speaker’s identity. In the same way, it can be observed that humans are

able to perform a number of sophisticated tasks, related to the quality of the

information available and the sources of that information, when attempting

to make a decision. For example, if a person is to make a decision about the

identity of a speaker, based on a noisy and low fidelity speech recording, it

is logical to think that the portions of the recording less corrupted by the

noise should have a higher influence in the final decision. Furthermore, if the

person has to make the decision based on the judgement of two experts, it

is highly probable that the person will assign different credibilities to each

expert depending on who they are or their previous experience.

Based on these intuitive ideas and the functional structure of common speaker

recognition systems, there are four potential stages in the recognition process

in which the quality information may be incorporated [4]: feature extraction,

model training, score computation and score fusion. Previous work in biomet-

rics has shown promising results when incorporating quality measures into the

recognition process [5,6]. In these studies, the quality information is incorpo-
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rated at the score fusion level. The fusion function is adapted to rely more

on the biometric traits that are less prone to error in noisy conditions. Other

studies concerned with quality estimations in the field of speaker recognition

include: [7] in which model quality assessment methods are studied to adapt

the model training process and [1] in which quality-based feature selection is

proposed to improve the performance of speaker recognition systems.

In addition to this previous work, new research efforts are also dedicated to

the establishment of objective quality measures of biometric traits such as

fingerprint [8] and speech signals [9,10].

In this paper we study the inclusion of quality information into speaker recog-

nition systems by developing two applications at the scoring and multi-level

fusion stages. On the one hand, the traditional likelihood scoring stage is ex-

tended to include the quality information in the score computation process. In

particular, the score computation stage of a GMM-based speaker recognition

system is adapted and tested. On the other hand, a conventional multilevel

Support Vector Machine (SVM) score fusion approach is adapted for the inclu-

sion of quality information in the fusion process. The SVM quality-based score

fusion paradigm described in [6] is adapted to cope with the specificities of

the multi-level speaker recognition process and integrated with the proposed

automatic quality measures.

The remainder of this paper is structured as follows. In section 2, we discuss the

concept of quality measures and the inclusion of quality information into the

speaker recognition process. In section 3, we design three goodness criteria.

In section 4, we propose two novel applications for the quality measures at

the score computation and fusion stages. In section 5 we detail experimental
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results. Section 6 provides a summary of the main results and conclusions.

2 The concept of quality measure

The concept of quality may be defined 1 as the degree of goodness of an

element given a certain criterion. This idea is quite similar to the underlying

concept of a probability measure. Hence, to construct a mathematical model

that quantifies the above notion, a quality measure function Qξ(·) may be

formulated in probabilistic terms as follow:

Qξ(Y ) = p(Y meets ξ) (1)

where ξ is a specific goodness criterion for the variable Y . As a result of this

formulation, the quality measure function Qξ(·) assigns a number between 0

and 1 to every event, i.e., to every possible degree of goodness of Y given

ξ. Hence, a reliable quality measure function should be able to quantify the

quality of Y with a value of 1 when Y totally satisfies ξ and with a value of 0

when Y does not meet the established goodness criterion at all.

The crucial benefits brought into the recognition process by knowing the qual-

ity of the elements involved are significant, since this information allows the

system to be dynamically adjusted. Examples include the importance given

to certain portions of the incoming speech signal during the computation of

its likelihood or even how the system relies on each of the scores produced by

the different levels of information conveyed in the speech signal.

To some extent there might be some confusion between the well known concept

1 Cambridge Klett Dictionary.
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of confidence measure, widely used in automatic speech recognition (ASR)

[11], and the discussed idea of quality measure since both provide information

that may be interpreted as how reliable a certain element involved in the

recognition process is. It is important to notice that the essence of these two

ideas is substantially different. The main purpose of a confidence measure

is to indicate how correct is the estimated probability of a model matching

some speech data [12], whereas the goal of a quality measure is to quantify

how well a certain goodness criterion is satisfied by an element of the system.

Thus, the benefit of assigning a confidence estimate to a decoding is succinctly

summarized by the phrase: ”knowing what you don’t know” [12], whereas the

benefit of estimating the quality of an element of the recognition process is

summarized by the phrase:”knowing the quality of what you have”.

In order to incorporate this general concept of quality measure into the specific

framework of speaker recognition systems, we can think of Y as any element

of the system (e.g, speech signal, scores, models, thresholds, etc.) and ξ as any

factor that affects the behavior of Y and hence the system performance (e.g,

SNR, amount of data, course of time, etc.). For example, if we are working with

data observed in noisy conditions, Y may be considered as the speech energy

signal and ξ as a criterion based on SNR. Consequently, a quality measure

may be stated as follows:

Qξ=SNR(Y ) = p(Y > noise) (2)

If we consider the noise normally distributed with mean µt and variance σt,

then the quality of the speech energy signal, Y = {yt; t = 1, . . . , T}, could be

segmentally computed by means of the resulting expression [13]:
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qξ
t = p(yt > noise)

=
∫ yt

−∞
1√

2π |σt|
exp

(
−(θ − µt)

2

2σ2
t

)
dθ (3)

The resulting quality signal, Qξ = {qξ
t ; t = 1, . . . , T} can be used by the

speaker recognition system in several useful ways such as: eliminating the

portions of the signal with low quality during the score computation or model

training, incorporating the quality information in the score computation func-

tion, etc.

3 Goodness criteria

One of the key elements in obtaining a successful quality measure is the elec-

tion of an adequate goodness criterion. Any factor affecting the behavior of

an element of the speaker recognition system is susceptible to being used for

the design of a goodness criterion.

It is useful to classify any goodness criterion based on its dependency or in-

dependency of the claimed identity. The reason for this is that identity-claim

dependent goodness criteria need training information, related to the claimed

identity, to be able to generate a quality signal. Moreover, this subset of cri-

teria may have some speaker discriminative power since speaker information

is used to train the criteria. However, on the other hand, identity-claim inde-

pendent goodness criteria do not need any training information related to the

claimed identity, and hence do not offer any discriminative power.

In the following we are going to focus on three goodness criteria. The first

one, F0 deviations from the mean, is identity-claim dependent, whereas the

remaining two, SNR and ITU P.563, are identity-claim independent.
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To perform the quality-based score computation (detailed in section 4.1), it

is necessary to obtain a quality signal at the frame level, whereas for the

quality-based score fusion (described in section 4.2) it is only necessary to

have a quality value for the whole speech utterance. In the following section

we develop the proposed quality measures at the frame level, obtaining the

overall quality of the speech utterances as the average of its corresponding

quality signal.

3.1 F0 deviations

In order to design a goodness criterion, ξF0 based on F0 deviations 2 from the

mean, µF0, a model of the F0 distribution of the claimed identity is necessary.

Due to the fact that the F0 distribution is Gaussian [14], the training speech

of each user is used for the estimation of a user-dependent unimodal gaussian

model, λF0 = {µF0, σF0}. For each test file, the quality value of each feature

vector (belonging to a voiced region of the speech signal) is defined at discrete

time instant t as

qξF0
t = p(|yF0

t − µF0| < |F0− µF0|) = 2 · [1− FF0(|yF0
t − µF0|)] (4)

where F0 ∼ N(µF0, σF0) is the pitch model of the claimed user, yF0
t is the

estimated pitch of the test segment at instant t and FF0 is the cumulative

distribution function of F0.

For the unvoiced regions of the speech signal a fixed quality value, qtunv , is set

a priori. In the following experiments this value was heuristically set to 0.5.

2 All F0 values are in a logarithmic scale.
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3.2 SNR

During the design of a goodness criterion, ξSNR, based on SNR, the speech

utterances were processed in segments of length between 5 and 20 seconds

with a minimum voice activity ratio of 10%. These segments were obtained

by dividing the speech utterance in the silence parts and merging or splitting

them until they met the constraints mentioned above. The noise embedded

in the speech signal was estimated during the silence parts of each speech

segment k, being k the index of each speech segment. The noise was considered

normally distributed with mean µk and variance σk. The quality of the speech

energy signal, Y = {yk; k = 1, . . . , K}, was computed by means of the Eq. 3.

The resulting quality signal, QξSNR = {qξSNR
t ; t = 1, . . . , T} was obtained

by assigning the same quality values to all the frames included in the speech

segment being processed.

3.3 ITU P.563 Objective speech quality assessment

Due to the fact that new research efforts are dedicated to the establishment

of objective quality measures of speech signals, it is interesting to assess their

performance for the specific purpose of aiding speaker recognition systems.

For this reason, we considered the ITU-T P.563 recommendation [10], which

describes an objective single-ended method for predicting the subjective qual-

ity of telephonic speech signals. The P.563 approach is the first recommended

method for single-ended non-intrusive measurement applications that takes

into account the full range of distortions occurring in switched telephone net-

works and that is able to predict the speech quality on a perception based scale
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MOS-LQO [15]. Since the output of the P.563 system is a value in the range

[1,5] estimating the perceived quality of the speech utterance, it is very reason-

able to consider this system as an “electronic ear” that quantifies the quality

of the speech signal regarding factors such as echo, noise, channel errors, etc.
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Fig. 1. Example of a normalized P.563 quality signal (bottom) for a SWB-I speech

segment (top).

In order to use the information provided by this approach as a goodness crite-

rion ξP.563, we made the output of the P.563 system to be compliant with our

quality measure definition, by linearly mapping it into a [0,1] range. Following

the P.563 recommendation, the speech utterances were processed in segments

of length between 5 and 20 seconds with a minimum voice activity ratio of

10%. These segments were obtained by dividing the speech utterance between

the silence parts and merging or splitting them until they were compliant
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with the constraints mentioned above. By doing this we obtained a tempo-

rary quality signal QξP.563
temp = {qξP.563

k ; k = 1, . . . , K}, where k was the segment

index. The final quality signal, QξP.563 = {qξP.563
t ; t = 1, . . . , T}, was obtained

by assigning the same quality values to all the frames included in the speech

segment being processed. Figure 1 shows an example of a quality measure,

based on P.563, in which it is easy to notice how all the frames in the same

speech segments were assigned the same quality value.

4 Application of quality measures

There are four potential stages for the inclusion of the quality information in

the recognition process [4]: feature extraction, model training, score computa-

tion and score fusion. In the present work we focus on the score computation

and score fusion stages. See Figure 2 for the general system model.

Quality
Models

SPEAKER

RECOGNITION

Feature
Extraction

Quality-guided
decision

Reference
Models

Similarity

Quality Measure

Score
Normalization

Identity
claim

Training Data

Similarity score

Model quality

Quality signal

Fig. 2. General system model for speaker recognition using quality measures.
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4.1 Quality-based score computation

The state of the art in speaker recognition systems has been widely dominated

during the past decade by the UBM-MAP adapted GMM approach working at

the short-time spectral level [16]. Recently, new approaches based on Support

Vector Machines (SVM) [17] are achieving similar performance, working at

the spectral level, and also providing complementary information useful for

the fusion of both approaches [18]. Furthermore, higher levels of information

conveyed in the speech signal have shown promising discriminative capabilities

among speakers and are a major goal of present Speaker Recognition research

efforts [1].

A common practice shared among all the above mentioned Speaker Recogni-

tion techniques is the use of a pre-processing stage in which two major tasks

are accomplished: i) the signal is enhanced according to certain criteria (e.g,

channel effects removal, noise reduction, etc.); ii) hard decisions about the

correctness of the basic constituting elements of the data are made (e.g, si-

lence removal, non-speech sound rejection, etc.), preserving those pieces of

information that satisfy certain criteria and dismissing the remaining ones.

This pre-processing approach, combined with a conventional scoring mecha-

nism, has the drawback of regarding all the preserved information as equal

in terms of importance once the signal has been pre-processed. Therefore

it omits, during the score computation process, the fact that both the in-

formation concerning speaker identity and the perturbing artifacts are not

distributed uniformly along the pre-processed signal [19].

Previous work in speech recognition has shown that some speech features are
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more important than others depending on the phonetic context [20]. To take

this fact into account, individual stream weights were learned for each HMM

state and included in the class-dependent probability estimation process. In

a similar way, the underlying idea in the quality-based score computation

(QBSC) approach suggests the incorporation of estimated quality measures

(carried out during pre-processing) as weighting factors in the score compu-

tation process.

The QBSC concept is applicable to any of the aforementioned techniques used

in Speaker Recognition systems. In the following we are going to particularize

for the case of GMM’s working at the short-term spectral level, since it is the

most widely used paradigm for speaker recognition [21].

4.1.1 Quality-based GMM score computation

For a D-dimensional feature vector, o, and a weighted linear combination of

M unimodal Gaussian densities, p(o|λ), with the parameters of the density

model denoted

λ = {wi, µi, Σi} i = 1, . . . , M (5)

the likelihood function is defined as

p(o|λ) =
∑M

i=1
wip(o|µi, Σi) (6)

Given a sequence of feature vectors, O = {o1,o2, . . . ,oT}, usually assumed

independent, and a quality signal
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Qξ =
{
qξ
1, q

ξ
2, . . . , q

ξ
T

}
(7)

computed through the speech signal Y with a specific goodness criterion ξ,

the likelihood of the model λ incorporating the quality measure as a weighting

factor is denoted

p(O|Q, λ) =
∏T

t=1
p(ot|λ)qξ

t (8)

The log-likelihood is computed as

log p(O|Q, λ) =
∑T

t=1
qξ
t log p(ot|λ) (9)

Often, the average log-likelihood is used to normalize out duration effects from

the likelihood value. This can be accomplished by dividing Eq. 9 by
∑T

t=1 qξ
t .

Since the assumption of independence between the feature vectors is not pre-

cise, this scaling factor can be consider as a rough duration compensation

[16].

If a quality measure that works in spectro-temporal regions (i.e., assigns qual-

ity values to each feature vector coefficient) is used instead of one that works in

temporal regions (same quality assigned to the entire feature vector), conven-

tional missing data approaches, such as bounded marginalization (BMG) or

bounded data imputation (BDI), can be used for the likelihood computation

[22].
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4.2 Quality-based score fusion

In order to exploit the different levels of information conveyed in the speech

signal (e.g., lexical, phonetic, spectral, etc.) [2,3] efficient score combination

methodologies are necessary [1]. This problem can be formulated as the fusion

of different machine experts.

Two theoretical frameworks for combining classifier outputs with application

to biometric authentication are described in [23] and [24]. The former is derived

from a risk analysis perspective [25] and the later is based on statistical pattern

recognition theory [26]. Both of them concluded (under some mild conditions

which deserve further attention [27]) that the weighted average is a good way

of conciliating the confidences (similarity scores) provided by the different

recognition systems involved.

Interestingly enough, the approach in [23] was further developed in [5] pro-

viding guidelines for the use of quality measures in combining classifiers. In

particular, a quality-based score fusion scheme was derived in which the out-

put of the classifiers was adapted based on the estimated quality of the input

traits. The fusion function was adapted to rely more on the traits that were

less prone to error in noisy conditions. This basic idea has also been recently

exploited using discriminative learning approaches [28,6]. In [28], polynomial

decision functions were used for combining classifiers and some quality mea-

sures were included as regularization terms in the discriminative training pro-

cess. In [6], SVM decision functions were used for combining classifiers and

quality measures were used as trade-off coefficients between different decision

functions.
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In the following, we address the specificities of the quality-based score fusion

(QBSF) applied to multilevel speaker recognition. We also propose an oper-

ational QBSF scheme using SVMs [6] that is adapted for multilevel speaker

recognition systems.

4.2.1 Quality-based score fusion for multilevel speaker recognition

In order to present a clear study of the inclusion of quality information in

the score fusion stage, we are going to focus on the combination of low-level

speaker information (i.e., spectral information) with two high-level sources

of speaker information (i.e., phonetic and lexical). Furthermore, we are only

going to study the particular case of combining spectral information with each

of the mentioned high-level information sources, hence yielding a two-level

combination.

LOW-LEVEL

RECOGNITION

Feature
Extraction

Decision
Threshold

Accepted or
Rejected

Speech
Input

Reference
Models

Similarity

Quality

Score
Normalization

HIGH-LEVEL

RECOGNITION

Feature
Extraction

Reference
Models

Similarity
Score

NormalizationIdentity

claim

Training Data

Training Data

Quality-Based
Score Fusion

Fig. 3. General system model for multilevel speaker recognition using quality mea-

sures.

Figure 3 shows the proposed QBSF model for this particular case of study.

The design of this model relies on the following premises: i) up to date,

speaker recognition systems based on low-level information (i.e., spectral in-

formation) achieve better performance than individual high-level information
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systems [1,29], and ii) artifacts degrading the performance of low-level recog-

nition systems are better identified and studied than those affecting high-level

recognition systems, hence making the design of quality measures for low-level

systems easier than those for the high-level ones.

Based on the scenario described above, we propose a QBSF approach in which

the quality information is incorporated as a trade-off between a) only using

the recognition system with the best performance (i.e., low-level system), and

b) the combination of both systems (i.e., low-level and high-level).

The proposed multilevel speaker recognition QBSF approach has been adapted

from the previously developed multimodal QBSF scheme described in [6]. The

difference lies in the terms involved in the quality-based trade-off. Whereas

in the previous multimodal case, any trait with low quality values could be

completely discarded; in the multilevel speaker recognition case the low-level

information system is never completely discarded. This is due to the fact

that low-level speaker information yields much better results than any current

high-level information system. In this way, the quality value of the speech

segment determines if the final score is computed based only on the low-level

information or on both low- and high-level information. This change in the

system model ensures that the fused score is at least as good as the score

of the best performing system (i.e. low-level system) if not better. If in the

future the systems using high-level information achieve similar performances

to those using low-level information, the previous multimodal QBSF scheme

[6] will also be applicable to the speaker recognition case.
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4.2.2 Quality-based SVM score fusion

Given R speaker recognition systems working with different information levels,

each one computes a similarity score xr, r = 1, . . . , R, between the test speech

signal S and the speaker model. Let the individual similarity scores be com-

bined into a multilevel score x = [x1, . . . , xR]T . In our particular case of study,

the multilevel score is the combination of two individual scores x = [xL, xH]T

where xL and xH are the scores of the low- and high-level systems respectively.

Let qL denote the quality signal obtained from a quality measure (i.e., SNR)

of the test speech signal S affecting the low-level recognition system. The pro-

posed operational QBSF scheme (from now on also referred to as SVMQ) is

as follows:

(1) SVMQ Training: Given a labeled training set of NTR multilevel scores,

(xi, yi), with yi ∈ {−1, 1} = {Impostor, Client}, and i = 1, . . . , NTR in-

dexing the training sample. A linear SVM-based fusion scheme of the low-

and high-level systems (SVMLH) is trained using standard procedures

[30], but computing the costs coefficients, Ci, of each training sample of

the SVM regularized cost function as follows:

Ci = C · qi,L (10)

In this way, Ci is the product between the quality information, qi,L, asso-

ciated with the training score xi and a positive constant C. As a result,

the higher the quality of the speech used for generating the training score,

the higher its contribution in training the fusion function. Additionally,

another SVM of dimension one (SVML) is trained by using the training

data from the low-level (spectral) system and the coefficients in Eq. (10).
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(2) SVMQ Authentication Phase: At this step, the two classifiers men-

tioned above, SVMLH and SVML, are already trained. When an input

speech segment S, with its quality measure qL is available, along with

a claimed identity, the system generates a multilevel similarity score

x = [xL, xH]T . Finally, the combined quality-based similarity score is

computed as follows

fSVMQ
(x) = qLfSVML

(xL) + (1− qL)fSVMLH
(x) (11)

where fSVML
(·) and fSVMLH

(·) are signed distances to the linear decision

hyperplanes provided by SVML and SVMLH respectively [30].

Figure 4 shows an example of a SVMQ linear decision hyperplane computed as

a trade-off between SVML and SVMLH for two multilevel scores with different

quality values. As indicated in Eq. 11, the higher the quality value, the higher

the contribution of the low-level system to the final fusion function.

5 Experiments

5.1 Switchboard I database

Partitions 1, 2 and 3 of the Switchboard I database (SWB-I), as defined in [1],

have been used for the performance assessment of the proposed quality-based

approaches on landline telephone data. The number of speaker models involved

is 486 (260 male + 226 female). Each target model has been trained with a

speech segment of approximately 2.5 minutes comprising one side of a 5 minute

telephonic conversation. Two different test sets have been used for the system
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Fig. 4. SVMQ fusion hyperplane as a trade-off between SVML and SVMLH for two

multilevel scores with different quality values: (a) qGMM = 0.39, (b) qGMM = 0.73.

assessment: i) one side of the conversation test segments (approx. 2.5 min.

of speech); ii) two sides of the conversation test segments (approx. 5 min. of

speech). The total number of trials obtained with each test set is 8248 (2416

target, 5832 non-target). For the QBSC experiments both test sets were used,

whereas for the QBSF experiments only the one side test segment subset was

used.

5.2 Baseline systems description

Three different speaker information levels have been selected for the experi-

ments in this paper: spectral, phonetic and lexical. The spectral level is used

in all the experiments, whereas the phonetic and lexical levels are only used

for the QBSF experiments.

The spectral level has been selected since it is the speaker information level
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that, up to date, has the best performance for speaker recognition [29]. The

phonetic level was selected because it is the high-level speaker information

source in which the closest performance to the spectral level has been reported

for the Switchboard I database [1]. Finally, the lexical level was selected to

assess the performance of the proposed QBSF between two systems, spectral

and lexical, with very different performances.

Now we are going to give a brief description of the three baseline systems and

provide references for further details.

5.2.1 Spectral system

A UBM-MAP adapted GMM system [31] with 256 mixtures and diagonal

covariance matrix was used to model the feature vectors (19 MFFC + 19

∆MFCC) obtained every 10 ms with a 20 ms Hamming window. The score

computation was performed as a likelihood ratio (LR) between the target

model and the UBM likelihoods.

The resulting scores provide a baseline result for comparison with the proposed

QBSC-GMM system. Figure 5 shows the performance of the spectral system

for the Switchboard I database, obtaining a 6.13% of Equal Error Rate (EER).

5.2.2 Phonetic system

Capturing speaker-dependent pronunciation by means of modelling phone se-

quences has shown to be a viable and effective approach to speaker recognition

[32]. The phonetic system providing the scores for the present work was devel-

oped at the SuperSID project [1] and uses a binary-tree-structured statistical

20



model for extending the phonetic context beyond of standard n-grams with-

out exponentially increasing the model complexity [33]. Figure 5 shows the

performance of the phonetic system for the Switchboard I database, obtaining

a 11.60% EER.

5.2.3 Lexical system

The n-gram (bigram) idiolect system providing the scores for the present work

was developed in the SuperSID project [1] and is based on an LR computation

between the target and background model likelihoods. The LR computation

was performed following the procedures developed in [34]. The word tran-

scripts used for the score computation were provided by the ASR Dragon

system with an 11% of Word Error Rate (WER). Figure 5 shows the per-

formance of the lexical system for the Switchboard I database, obtaining a

31.60% EER.
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Fig. 5. DET curves of the baseline systems for the Switchboard I database.
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5.3 Quality-based score computation experiments

In Figure 6 the performance assessment of both the baseline GMM Speaker

Verification system and the QBSC adaptation, with three different quality

measures, are depicted in the form of DET plots for the above described

corpora.
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Fig. 6. System performance on Switchboard I database with (a) F0, (b) P.563 and

(c) SNR quality measures.

In relation to the one-side test set of the SWB-I database, see Figure 6, a

slight improvement is obtained by means of using the QBSC adaptation of

the baseline system for all the quality-measures. This result is more noticeable

in the low false alarm and low miss probability regions of the DET curve.

Table 1 shows the baseline and QBSC adaptation performance for the EER

operational point with the three quality measures. The analysis of the EER

values for the male and female partitions show that the three quality measures

have a similar behavior across genders.

A bigger improvement is obtained for the test set comprising both sides of the

telephonic conversation, see Figure 6 and Table 2. The fact that 2 speakers
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Baseline Q-Based(F0) Q-Based(P.563) Q-Based(SNR)

Partition EER(%) EER(%) EER(%) EER(%)

Female 5.64 5.31 5.53 5.38

Male 6.31 6.09 6.03 6.03

Pooled 6.13 5.88 6.05 5.88

Table 1

Results on the Switchboard I one-side test set.

are involved in the test segments makes this set more suitable for the achieve-

ment of better results since a larger portion of the speech signal is considered

corrupted. In the special case of a quality measure capable of quantifying the

speech segments not belonging to the target speaker with a low quality value,

the QBSC adapted system may perform some kind of “speaker spotting”. This

may be the case for the selected F0-based quality criterion since it is possi-

ble to discriminate among speakers based on F0 information [14]. Therefore,

the “speaker spotting” effect of the selected F0 quality measure provides a

justification for the better performance on the test set comprising both sides

of the telephonic conversation. The performance improvement for the SNR

and P.563 goodness criteria is lower than the obtained by F0-based quality

criterion since these criteria are not able to perform the “speaker spotting”

effect mentioned above. It should be clear that any speaker discriminant qual-

ity measures (not just F0) will also lead to a performance improvement for

the specific case of test segments with more than one speaker.
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Baseline Q-Based(F0) Q-Based(P.563) Q-Based(SNR)

Partition EER(%) EER(%) EER(%) EER(%)

Female 15.52 14.52 15.56 15.41

Male 14.72 13.34 14.49 14.36

Pooled 15.09 14.01 14.95 14.73

Table 2

Results on the Switchboard I test set comprising both sides of the conversation.

5.4 Quality-based score fusion experiments

5.4.1 Experimental protocol

In order to perform a fair assessment of the fusion approaches, it is necessary

to split the available scores into training and testing sets. The reason for that is

to avoid assessing the fusion system with scores used during the training phase

of the fusion function. A 3-fold cross-validation approach, using partitions 1,

2 and 3 of the SWB-I database, was designed for that purpose. All the scores

within a partition were obtained using speaker models and test segments from

within that partition only. In this way, when the scores of one partition are

used for testing the fusion rule, the scores of the remaining two partitions

are used for training the fusion function. As mentioned in section 4.2.1, we

are going to focus on two-level system fusion: spectral-phonetic and spectral-

lexical.
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5.4.2 Results

To obtain a better understanding of the fundamental principles supporting

the use of quality measures in the fusion process, figure 7 shows a scatter plot

of the scores of the baseline systems and their corresponding F0 and P.563

quality values. The SNR quality measure is not depicted since its behavior

is very similar to the P.563 scatters. Linear regression fits were computed

separately for target and non-target scores in each of the scatter plots.
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Fig. 7. Scatter plot of the F0 (a,b,c) and P.563 (d,e,f) quality measure values vs.

the GMM-UBM, Phone-Binary Tree and N-gram word scores.

It is desirable that a quality measure meets the following properties: i) non-

target scores and their corresponding quality values should have a negative
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correlation so the bigger the quality value the smaller the score; ii) target

scores and their corresponding quality values should have a positive correlation

so the bigger the quality value the bigger the score.

Keeping these properties in mind and observing the slopes of the linear regres-

sions, two major ideas are worth noting: i) the behavior of the three quality

measures tend to be better for the low-level (spectral) system; ii) the higher

the information level (lexical > phonetic > spectral) the less affected it is by

the disturbing artifacts considered by the three quality measures. This assev-

eration is in accordance with previous research results [29], and it is one of the

main motivations for using high-level speaker information systems. Finally,

recalling the classification of the goodness criteria established in section 3,

the first row in figure 7 shows how identity-claim dependent goodness criteria

(such as ξF0 ) may have some speaker discriminative power in themselves.

In order to compare the SVM-QBSF approach with the standard SVM fu-

sion approach [30], we carried out a series of experiments comparing the sys-

tem performances, in terms of EER, as a function of the number of models

used for training. Each experiment was conducted following the procedures

described in the experimental protocol and sampling the corresponding train-

ing sets using 4 bootstrap iterations in which the scores of M models, with

M ∈ {10, 20, 40, 80, 120, 162}, were randomly chosen without replacement.

Figure 8 shows the results for the spectral-phonetic and the spectral-lexical

fusion systems. It is worth pointing out that the SVM-QBSF approach is less

sensitive to the number of models (amount of data) in the training set than

the standard SVM approach. In this sense, the quality information may be

helping the quality-based fusion system to generalize better than the stan-

dard SVM approach. Moreover, the performance of the SVM-QBSF approach
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is better than the performance of the standard SVM approach for a number

of models, M < 120, in both the spectral-phonetic and the spectral-lexical

fusion systems.
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Fig. 8. Effect of the number of training models in the SVM fusion: (a) spec-

tral-phonetic information and (b) spectral-lexical information

Figure 9 shows the performance of spectral-phonetic and the spectral-lexical

fusion systems with F0 quality measures for the particular case of M = 20.

The performance for the SNR and P.563 quality measures are very similar

to the F0 results. For both systems the SVM-QBSF approach outperforms

the standard SVM approach in all the operating points for each of the quality

measures. It is interesting to realize that for the spectral-lexical fusion systems

the standard SVM approach obtains a performance worse than the individual

spectral system. This result may be caused by a poor generalization of the fu-

sion approach based on a small training set. Hence, the SVM-QBSF approach

may be a good alternative for applications in which large training data sets are

not available or there is a severe mismatch between development and testing

data.
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Fig. 9. SVM fusion results of: (a) spectral-phonetic and (b) spectral-lexical systems

for the F0 quality measure.

In general, the three quality measures reveal similar trends in terms of perfor-

mance improvement of the fusion system. Table 3 shows that the correlation

coefficients between each pair of quality measure are considerably small. The

correlation coefficient between the SNR and the P.563 criteria is the highest.

This may be due to the fact that both quality measures are computed fol-

lowing the same segmentation strategy,(see Section 3 for more details). The

fact that the correlation coefficients are small and the improvement yielded

by each quality measure is similar, suggest that the combination of the three

quality measures may be a good practice.

Quality measures F0− SNR F0− P.563 SNR− P.563

Corr. Coefficient 0.18 0.35 0.46

Table 3

Correlation coefficients for each pair of quality measures.
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6 Conclusions

An overview of the use of quality information for automatic speaker recog-

nition systems has been reported. Two quality-based applications, at differ-

ent phases of the recognition process, have also been proposed: Quality-based

Score Computation and Quality-based Score Fusion. In the former, traditional

likelihood scoring of a GMM has been further developed providing guidelines

for the practical application of the proposed ideas. In the latter, standard SVM

fusion approach has been adapted to take into account the quality informa-

tion of the input speech. Experiments carried out on QBSC corroborate the

benefits of the proposed quality-guided recognition approach on landline data

for different quality measures. In particular, three frame-level quality mea-

sures meeting goodness criteria based on: F0 deviations, SNR and ITUP.563

recommendation have been used. Up to 7.15% of relative improvement at

the EER operational point has been obtained on the Switchboard-I database.

Experiments performed on SVM-QBSF have proved this approach to be less

sensitive to the amount of training data than the standard SVM approach,

hence demonstrating SVM-QBSF to be a robust fusion scheme for applica-

tions in which large data sets are not available for training or there is a severe

mismatch between development and testing data.
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