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Abstract 

The Gaussian Mixture Model - Universal Background Model (GMM-UBM) system is one of the 

predominant approaches for text-independent speaker verification, because both the target speaker 

model and the impostor model (UBM) have generalization ability to handle “unseen” acoustic 

patterns. However, since GMM-UBM uses a common anti-model, namely UBM, for all target 

speakers, it tends to be weak in rejecting impostors’ voices that are similar to the target speaker’s 

voice. To overcome this limitation, we propose a discriminative feedback adaptation (DFA) 

framework that reinforces the discriminability between the target speaker model and the 

anti-model, while preserving the generalization ability of the GMM-UBM approach. This is 

achieved by adapting the UBM to a target speaker dependent anti-model based on a minimum 

verification squared-error criterion, rather than estimating the model from scratch by applying the 

conventional discriminative training schemes. The results of experiments conducted on the 

NIST2001-SRE database show that DFA substantially improves the performance of the 

conventional GMM-UBM approach. 
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1. Introduction 

In essence, speaker verification is a hypothesis testing problem that can be solved by using a 

log-likelihood ratio (LLR) test [1]. Given an input utterance U, the goal is to determine whether or 

not U was spoken by the target speaker. Let us consider the following two hypotheses: 

H0: U was spoken by the target speaker, 

H1: U was not spoken by the target speaker. 

The LLR test can be expressed as 
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where θ is a decision threshold; λ0 is the target speaker model; and λ1 is the so-called anti-model or 

impostor model. Both λ0 and λ1 are usually represented by Gaussian mixture models (GMMs) [1]. 

The current state of the art GMM-UBM approach for text-independent speaker verification uses 

the UBM-MAP technique [2] to generate λ0 and λ1. This approach pools all speech data from a 

large number of background speakers to form a universal background model (UBM) [2] as λ1 via 

the expectation-maximization (EM) algorithm [3]. It then adapts the UBM to λ0 via the maximum 

a posteriori (MAP) estimation [4] technique. GMM-UBM is effective because its generalization 

ability allows λ0 to handle acoustic patterns not covered by the limited training data of the target 

speaker. However, since λ0 and λ1 are trained according to separate criteria, the optimization 

procedure can not distinguish a target speaker from background speakers optimally. In particular, 

since GMM-UBM uses a common UBM λ1 for all target speakers, it tends to be weak in rejecting 

impostors’ voices that are similar to the target speaker’s voice. Moreover, as λ0 is derived from λ1, 

both models may correspond to a similar probability distribution.  

2 



One possible way to improve the performance of GMM-UBM is to use discriminative 

training methods, such as the minimum classification error (MCE) method [5] and the maximum 

mutual information (MMI) method [6]. In [7], a minimum verification error (MVE) training 

method is developed by adapting MCE training to the binary classification problem, in which the 

parameters of λ0 and λ1 are estimated using the generalized probabilistic descent (GPD) approach 

[8]. However, as the MVE training method requires a large number of positive and negative 

samples to estimate a model’s parameters, it tends to over-train the model if the amount of training 

data is insufficient. In addition, it is difficult to select the optimal stopping point in GPD-based 

training. 

To resolve the limitation of MVE training, we propose a framework called discriminative 

feedback adaptation (DFA), which improves the discrimination ability of GMM-UBM while 

preserving its generalization ability. The rationale behind DFA is that only mis-verified training 

samples are considered in the discriminative training process, rather than all the training samples 

used in the conventional MVE method. More specifically, DFA regards the UBM and the target 

speaker model obtained by the GMM-UBM approach as initial models, and then reinforces the 

discriminability between the models by using the mis-verified training samples. Since the 

reinforcement is based on model adaptation rather than training from scratch, it does not destroy 

the generalization ability of the two models, even if they are updated iteratively until convergence. 

However, recognizing that a small number of mis-verified training samples may not be able to 

adapt a large number of model parameters, to implement DFA, we propose two adaptation 

techniques: a linear regression-based minimum verification squared-error (LR-MVSE) adaptation 

method and an eigenspace-based minimum verification squared-error (E-MVSE) adaptation 

method. LR-MVSE is motivated by the minimum classification error linear regression (MCELR) 

techniques [9-12], which have been studied in the context of automatic speech recognition; while 
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E-MVSE is motivated by the MCE/eigenvoice technique [13], which has been studied in the 

context of speaker identification. 

The remainder of this paper is organized as follows. In Section 2, we introduce the proposed 

DFA framework. Sections 3 and 4 describe, respectively, the proposed LR-MVSE and E-MVSE 

adaptation techniques used to implement DFA. Section 5 presents simplified versions of 

LR-MVSE and E-MVSE. Section 6 details the experimental results. Then, in Section 7, we 

summarize our conclusions. 

 

2. Discriminative Feedback Adaptation 

Fig. 1 shows a block diagram of the proposed discriminative feedback adaptation (DFA) 

framework, which is divided into two phases. The first phase, indicated by the dashed line, utilizes 

the conventional GMM-UBM approach. The initial target speaker model and the UBM obtained in 

the first phase serve as the initial models for DFA in the second phase. The basic strategy of DFA 

is to reinforce the discriminability between the initial target speaker model and the UBM for 

ambiguous data that is mis-verified by the GMM-UBM approach. The reinforcement strategy is 

based on two concepts. First, since the GMM-UBM approach uses a single anti-model, UBM, for 

all target speakers, it tends to be weak in rejecting impostors’ voices that are similar to the target 

speaker’s voice. To resolve this problem, DFA tries to generate a discriminative anti-model 

exclusively for each target speaker by using the negative training samples from the cohort [14] of 

each target speaker to adapt both λ0 and λ1. Since the models may affect each other, the DFA 

framework also uses the positive training samples from the target speaker to avoid increasing the 

miss probability while reducing the false alarm probability. The resulting λ0 and λ1 are then 

updated iteratively. Second, since the DFA framework only uses mis-verified positive and negative 

training samples as adaptation data in each iteration, it actually fine-tunes the parameters of both λ0 

and λ1 based on a small amount of adaptation data. It thus preserves the generalization ability of 
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the GMM-UBM approach while reinforcing the discrimination between H0 and H1. To implement 

the above concepts, we developed the following algorithms. 
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Figure 1: The proposed discriminative feedback adaptation framework, where the dashed line area 

utilizes the standard GMM-UBM training approach. 

 

2.1. Minimum verification squared-error (MVSE) adaptation strategy 

We modify the minimum verification error (MVE) training method [7] to fit our requirement that 

only mis-verified training samples should be considered. This is called the minimum verification 

squared-error (MVSE) adaptation strategy. The goal of DFA is to minimize the overall expected 

loss D, defined as 

,1100 ll xxD +=                                   (2) 

where x0 and x1 reflect which type of error is of more concern in a practical application; and li is a 

loss function that describes the average false rejection loss (i = 0) or false acceptance loss (i = 1), 

defined as 
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where N0 and N1 are the numbers of training utterances from the target speaker and the cohort, 

respectively; and d(U) is a mis-verification measure defined as 
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where L(U) is the LLR defined in Eq. (1).  

To reflect the requirement that only mis-verified training utterances should be considered, we 

define a function s(⋅) to represent the verification error as an adjustable quantity as follows: 
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where a is a scalar and b is a bias for controlling the convergence speed of DFA. The input 

utterance U is considered incorrectly verified if d(U) > b. Therefore, s(d(U)) is a response 

squared-error value. Fig. 2 contrasts the curve of the s function with that of the well-known 

sigmoid function. If d(U)  b, the response value s(d(U)) = 0, i.e., the utterance U is verified 

correctly; hence, it will not be used for model adaptation. If d(U) > b, the steeper slope of the s 

function for a larger value of d(U) results in a larger gradient to update the model’s parameters. In 

contrast, as the value of d(U) increases, the sigmoid function used in MVE [7] will become flat, 

and the obtained gradient will approximate zero. As a result, the mis-verified utterance U will not 

contribute to model adaptation. Another difference between the proposed DFA framework and the 

conventional MVE training method is that the latter always updates the model’s parameters if the 

value of the sigmoid function is not 0 or 1; thus, it may over-train the well-trained models obtained 

from the GMM-UBM method with the correctly-verified training utterances. 

≤
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Figure 2: The s function compared to the sigmoid function. 

 

2.2. Fast scoring for DFA 

To speed up DFA, we use a fast scoring approach [2] to compute the LLR. Given an utterance 

, the computation of LLR for a GMM with M Gaussian mixture components can be 

written as 
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where  and  are the m-th Gaussian mixture components of the target speaker model and 

the anti-model, respectively; and 

m,0g m,1g

mα  is the mixture weight, m = 1,…, M. Note that the target 

speaker model has the same mixture weights as the anti-model. For each frame ot, we determine 

the top C scoring mixture indices, Ci(t), i = 1,…, C, in the UBM, where C << M; hence, it requires 

M + C Gaussian computations in the first iteration, and 2C Gaussian computations per iteration 

thereafter. In this study, the value of C is set at 5 [2]. 
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3. Linear Regression-based MVSE (LR-MVSE) Adaptation 

Recognizing that a small amount of adaptation data selected from the mis-verified training samples 

may not be able to adapt a large number of model parameters, we propose using a linear regression 

method to implement MVSE adaptation. We call it linear regression-based MVSE (LR-MVSE) 

adaptation. Our strategy is motivated by the minimum classification error linear regression 

(MCELR) techniques [9-12], which have been studied in the context of automatic speech 

recognition. We assume that the initial target speaker model  and anti-model  have M 

Gaussian mixtures  and , respectively, where  and  

are r–dimensional mean vectors obtained with the GMM-UBM method; and  is an r×r 

covariance matrix of the UBM, m = 1,…, M. Note that, in this study, we only adapt the mean 

vectors of GMMs. After adaptation, the new mean vectors of the target speaker model or the 

anti-model take the following form: 
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where Wj, j = 0 (for the target speaker model) or 1 (for the anti-model), is an r×(r+1) 

transformation matrix; and . Given initial transformation matrices  = 

[0 I], where 0 is an r×1 zero vector and I is an r×r identity matrix, the parameter W
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where the superscript “(k)” denotes the k-th iteration, and δ is the step size. In addition, 
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where 
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where the target speaker model  with mixtures  and the anti-model  with mixtures 

, m = 1,…, M, are obtained by LR-MVSE adaptation in k iterations, and  
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If we assume that all covariance matrices  of the UBM, m = 1,…, M, are diagonal, Eq. (11) 

can be rewritten as 
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4. Eigenspace-based MVSE (E-MVSE) Adaptation 

Alternatively, we can use the eigenspace method to implement MVSE adaptation. We call it 

eigenspace-based MVSE (E-MVSE) adaptation. E-MVSE is motivated by the MCE/eigenvoice 

technique [13], which has been studied in the context of speaker identification. In this case, we 

also assume that only the mean vectors of GMMs are adapted. Let  and  be (rM)×1 

supervectors [15, 16] obtained by concatenating all the mean vectors of the initial target speaker 

model  and anti-model (a clone of the UBM) , where  
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j = 0 or 1. Following the eigenvoice approach, we use the principal component analysis (PCA) 

technique [17] to construct a speaker eigenspace E = span{e1, e2,…, eZ} based on R supervectors 

derived from R pre-trained background speaker GMMs, where 1−≤ RZ . According to the 

orthogonality principle [18], we can decompose  into )0(
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where η is the sample mean vector of R supervectors. The second term in Eq. (14) represents the 

results of projecting  onto the eigenspace E. Note that, in most cases, , 

since the initial target speaker model and anti-model are not included in the background speaker 
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Since both  and  are orthogonal to E,  and  can be represented, respectively, by 

the initial coordinates  and  in a target speaker 
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coordinate is not included in a coordinate vector ∈ EE =
jλ  with a basis {e1, e2,…, eZ}, j = 0 or 1. 

Our goal is to find the best coordinates  in  and 

 in  such that the reconstructed models can optimally distinguish the 

target speaker’s voice from the non-target speakers’ voices. The reconstructed mean vectors of the 

target speaker model or the anti-model take the following form:  
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where , , and  represent the m-th subvectors of , , and , respectively, and 

correspond to the mean vector of the m-th Gaussian mixture component of the target speaker 

model (j = 0) and the anti-model (j = 1), m = 1,…, M. The coordinates, , j = 0, 1, z = 1,.., Z+1, 

can be iteratively optimized using 
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where δ is the step size. In addition, 
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If we assume that all covariance matrices  of the UBM, m = 1,…, M, are diagonal, Eqs. (22) 

and (23) can be rewritten, respectively, as 
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where , , and , m = 1,…, M, r)( 1rmη )( 1, rmze )( 1, rmj
⊥e 1 = 1,…, r, represent the r1-th elements of the 

m-th subvectors , , and , respectively.  mη mz ,e ⊥
mj ,e

 

5. Simplified Versions of LR-MVSE and E-MVSE 

As far as reliability is concerned, a target speaker model trained with the GMM-UBM approach 

may be effective in characterizing the target speaker’s voice. In contrast, a UBM generated from a 

number of background speakers may not be able to represent the imposters with respect to each 

specific target speaker. In other words, it may not be able to distinguish between imposters and the 

target speaker. Thus, it is more important to reinforce discriminability in the UBM than in the 

target speaker model. Moreover, in our experience, the training samples of target speakers are 

seldom mis-verified; i.e., nearly all the mis-verified training samples are from the cohort. 

Accordingly, to adapt the UBM to the target speaker dependent anti-model, it might be sufficient 

to use only negative training samples in our DFA framework. In this case, the training goal can be 
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simplified to one of minimizing the average false acceptance (false alarm) loss l1 defined in Eq. (3). 

For LR-MVSE adaptation, the parameter  is iteratively optimized using 1W
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 is computed by Eq. (10). For E-MVSE adaptation, the coordinates, , z = 1,.., Z +1, 

are iteratively optimized using 
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and )(
,1

)(
k
zw

UL
∂
∂  is computed by Eq. (21). When N0 ≈  N1, the training times of the simplified 

versions of LR-MVSE and E-MVSE are about one-quarter of the training times of the respective 

original versions. 

 

6. Experiments 

6.1. Experimental setup 

In our experiments, we used the NIST 2001 cellular speaker recognition evaluation 

(NIST2001-SRE) database [19], and divided it into two subsets: an evaluation set and a 

development set. The evaluation set contained 74 male and 100 female speakers. On average, each 
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speaker had approximately 2 minutes of training utterances and 10 test segments. The development 

set contained 38 males and 22 females as background speakers that did not overlap with the 

speakers in the evaluation set. To scale up the number of background speakers, we also included 

139 male and 191 female speakers extracted from the NIST2002-SRE corpus [19]. Thus, we 

collected the training utterances of 177 male and 213 female background speakers to build two 

gender-dependent UBMs, each containing 1,024 mixture components. To train each target 

speaker’s GMM, we only adapted the mean vectors from the speaker’s corresponding 

gender-dependent UBM in the GMM-UBM method. Then, for each male or female target speaker, 

we chose the B closest speakers from the 177 male or 213 female background speakers, 

respectively, as a cohort based on the degree of closeness measured in terms of the pairwise 

distance defined by [1] 

,
)λ|(
)λ|(

log
)λ|(
)λ|(log)λ,λ(dist

ij

jj

ji

ii
ji Up

Up
Up
Up

+=                       (30) 

where λi and λj are speaker GMMs trained using the i-th speaker’s utterances, Ui, and the j-th 

speaker’s utterances, Uj, respectively. For each cohort speaker, we extracted J 3-second speech 

segments from his/her training utterances as negative training samples of a target speaker. Thus, 

each target speaker had J×B negative training samples in total. All the 3-second segments extracted 

from each target speaker’s training utterances served as positive training samples in LR-MVSE or 

E-MVSE adaptation.  

To remove silence/noise frames, we processed all the speech data with a Voice Activity 

Detector (VAD) [20]. Then, using a 32-ms Hamming-windowed frame with 10-ms shifts, we 

converted each utterance into a stream of 30-dimensional feature vectors, each consisting of 15 

Mel-frequency cepstral coefficients (MFCCs) [3] and their first time derivatives. To compensate 

for channel mismatch effects, we applied feature warping [21] after MFCC extraction. 

14 



In the experiments, a and b in the s function defined in Eq. (5) were set at 3 and 0.01, 

respectively. For E-MVSE adaptation, we generated two gender-dependent Z-dimensional 

eigenspaces using the GMMs of the 177 male and 213 female background speakers, respectively, 

with Z set to 70 or 140. The LR-MVSE and E-MVSE adaptation procedures were trained until they 

almost converged, i.e., until the number of mis-verified training samples approximated zero. For 

the overall expected loss D defined in Eq. (2), x0 and x1 were set as CMiss × PTarget and CFalseAlarm × 

(1 - PTarget), respectively, according to the NIST Detection Cost Function (DCF) [19]: 

),1( TargetFalseAlarmFalseAlarmTargetMissMissDET PPCPPCC −××+××=                (31) 

where PMiss and PFalseAlarm are the miss (false rejection) probability and the false alarm (false 

acceptance) probability, respectively; CMiss and CFalseAlarm are the respective relative costs of the 

detection errors; and PTarget is the a priori probability of the target speaker. Following the 

NIST2001-SRE protocol, CMiss, CFalseAlarm, and PTarget were set at 10, 1, and 0.01, respectively.  

 

6.2. Experimental results 

To evaluate the performance of the DFA framework, we used the Detection Error Tradeoff (DET) 

curve [22] and the NIST DCF; the latter reflects the performance at a single operating point on the 

former. We implemented the proposed DFA framework in three ways: 

a) LR-MVSE adaptation (“MAP + LR-MVSE”),  

b) E-MVSE adaptation with the first 70 eigenvectors (“MAP + E-MVSE70”), and  

c) E-MVSE adaptation with the first 140 eigenvectors (“MAP + E-MVSE140”). 

For the performance comparison, we used two baseline systems: 

a) GMM-UBM (“MAP”) and 

b) conventional MVE (MCE) training with the sigmoid function (“MAP + MVE”).  

The target speaker GMM and the UBM obtained from the GMM-UBM method served as the 

initial models for the proposed DFA-related methods and the conventional MVE method.  
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Fig. 3 plots the minimum DCFs against the total number of negative training samples per 

target speaker for each adaptation method. The experiments involved 2,025 target speaker trials 

and 20,250 impostor trials of the evaluation set. We considered different numbers of negative 

training samples, but not different numbers of positive training samples because the same target 

speaker data had been used to train the initial target speaker model in the GMM-UBM method. 

From the figure, we observe that “MAP + E-MVSE70” achieves the lowest minDCF in cases 

where the adaptation data only includes 6 or 12 negative training samples per target speaker; while 

“MAP + LR-MVSE” achieves the lowest minDCF in cases where the adaptation data includes 36 

or 60 negative training samples per target speaker. As expected, a small amount of adaptation data 

favors the methods in which a smaller number of model parameters must be estimated. Note that 

the larger the number of negative training samples used, the lower the minDCF that can be 

achieved. 

 

 

Figure 3: The minimum DCFs versus the number (J×B) of 3-second negative training samples 

per target speaker. 
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Fig. 4 shows the DET curves obtained by evaluating the above systems for the case with 60 

negative training samples per target speaker. It is clear that the performances of the three proposed 

methods, “MAP + LR-MVSE”, “MAP + E-MVSE70”, and “MAP + E-MVSE140”, are 

comparable; and they all outperform the conventional methods “MAP” and “MAP + MVE”. 

Interestingly, the performance of “MAP + MVE” is not always better than that of “MAP”. This is 

because MVE tends to over-train the models obtained from the GMM-UBM method, and it is 

difficult to select the optimal stopping point in MVE training.  

 

 

Figure 4: Experiment results in DET curves. The circles indicate the minimum DCFs. 

 

In the above experiments, we found that nearly all the mis-verified training samples in each 

adaptation iteration were negative training samples. Fig. 5 shows the number of mis-verified 

training samples versus the number of iterations in LR-MVSE adaptation for an example target 

speaker (ID number “5609”). Thus, we further compared the simplified versions of the LR-MVSE 

and E-MVSE methods with the respective original versions. Fig. 6 shows the DET curves for the 
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case of 60 negative training samples per target speaker. It is clear that the simplified versions 

perform comparably to the respective original versions. This confirms our assumption that 

reinforcing the discriminability in the UBM is more beneficial than reinforcing the discriminability 

in the target speaker model. 

 

 

Figure 5: The number of mis-verified training samples versus the number of iterations in 

LR-MVSE adaptation for an example target speaker (ID number “5609”) having 60 negative 

training samples and 33 positive training samples. The 0-th (initial) iteration represents the 

result obtained with the standard GMM-UBM method. 

 

Table 1 summarizes the minimum DCFs of each system shown in Figs. 4 and 6. We observe 

that “MAP + LR-MVSE” achieves a 14.35% relative DCF reduction over the baseline 

GMM-UBM system (“MAP”) and a 9.22% relative DCF reduction over the “MAP + MVE” 

method. “MAP + simLR-MVSE” even performs slightly better than the original version “MAP + 

LR-MVSE”, but the difference is not statistically significant. Table 2 compares the correlation of 

correct and incorrect decisions between “MAP” and “MAP + LR-MVSE” for the minimum DCF 

[23]. Using McNemar’s test [24] with a significance level = 0.005, the resulting P-value is smaller 
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than 0.005; therefore, we conclude that “MAP + LR-MVSE” performs significantly better than 

“MAP”. 

 

 

(a) LR-MVSE vs. the simplified version of LR-MVSE (simLR-MVSE)  

 

 

(b) E-MVSE70 vs. the simplified version of E-MVSE70 (simE-MVSE70) 
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(c) E-MVSE140 vs. the simplified version of E-MVSE140 (simE-MVSE140) 

Figure 6: The DET curves of the LR-MVSE and E-MVSE systems and their simplified versions. 

The circles indicate the minimum DCFs. 

 

Table 1. Summary of the minimum DCFs in Figures 4 and 6. 

Methods minDCF
MAP 0.0460
MAP + MVE 0.0434
MAP + LR-MVSE 0.0394
MAP + E-MVSE70 0.0413
MAP + E-MVSE140 0.0415
MAP + simLR-MVSE 0.0390
MAP + simE-MVSE70 0.0420
MAP + simE-MVSE140 0.0416
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Table 2. Correlations of errors made by “MAP + LR-MVSE” and “MAP”, where P and N denote 

the positive (target speaker) trial and the negative (impostor) trial, respectively. There are 2,025 P 

and 20,250 N in total. 

MAP 
Trials 

Correct Incorrect 
Correct 1,296P + 19,918N 119P + 142N 

MAP + LR-MVSE 
Incorrect 77P + 50N 533P + 140N 

 

 

7. Conclusion 

We have proposed a discriminative feedback adaptation (DFA) framework to improve the state of 

the art GMM-UBM speaker verification approach. The framework not only preserves the 

generalization ability of the GMM-UBM approach, but also reinforces the discrimination between 

H0 and H1. Our method is based on the minimum verification squared-error (MVSE) adaptation 

strategy, which is modified from the MVE training method so that only mis-verified training 

utterances are considered. Because a small number of mis-verified training samples may not be 

able to adapt a large number of model parameters, to implement DFA, we developed two 

adaptation techniques: the linear regression-based minimum verification squared-error (LR-MVSE) 

method and the eigenspace-based minimum verification squared-error (E-MVSE) method. In 

addition, we use a fast LLR scoring approach and the simplified version of LR-MVSE or E-MVSE 

to improve the efficiency and effectiveness of the DFA framework. The results of experiments 

conducted on the NIST2001-SRE database show that the proposed DFA framework can 

substantially improve the performance of the conventional GMM-UBM approach. 

 

21 



8. References 

[1] D. A. Reynolds, “Speaker Identification and Verification Using Gaussian Mixture Speaker 

Models”, Speech Communication, vol.17, pp. 91-108, 1995. 

[2] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker Verification Using Adapted 

Gaussian Mixture Models”, Digital Signal Processing, vol. 10, pp. 19-41, 2000. 

[3] X. Huang, A. Acero, and H. W. Hon, Spoken Language Processing: A Guide to Theory, 

Algorithm, and System Development, Prentice Hall, New Jersey, 2001. 

[4] J. L. Gauvain and C. H. Lee, “Maximum a Posteriori Estimation for Multivariate Gaussian 

Mixture Observation of Markov Chains”, IEEE Trans. on Speech and Audio Processing, vol. 2, 

no. 2, pp. 291-298, 1994. 

[5] B. H. Juang, W. Chou, and C. H. Lee, “Minimum Classification Error Rate Methods for 

Speech Recognition”, IEEE Trans. on Speech and Audio Processing, vol. 5, pp. 257-265, 1997. 

[6] C. Y. Ma and E. Chang, “Comparison of Discriminative Training Methods for Speaker 

Verification”, in Proc. ICASSP2003. 

[7] A. E. Rosenberg, O. Siohan, and S. Parthasarathy, “Speaker Verification Using Minimum 

Verification Error Training”, in Proc. ICASSP1998. 

[8] W. Chou and B. H. Juang, Pattern Recognition in Speech and Language Processing, CRC 

Press, 2003. 

[9] R. Chengalvarayan, “Speaker Adaptation Using Discriminative Linear Regression on 

Time-Varying Mean Parameters in Trended HMM”, IEEE Signal Processing Letters, vol. 5, no. 

3, pp. 63-65, 1998. 

[10] J. Wu and Q. Huo, “Supervised Adaptation of MCE-Trained CDHMMs Using Minimum 

Classification Error Linear Regression”, in Proc. ICASSP2002. 

[11] X. D. He and W. Chou, “Minimum Classification Error Linear Regression for Acoustic 

Model Adaptation of Continuous Density HMMs”, in Proc. ICASSP2003. 

22 



[12] X. D. He and W. Chou, “Minimum Classification Error (MCE) Model Adaptation of 

Continuous Density HMMs”, in Proc. Eurospeech2003. 

[13] F. Valente and C. Wellekens, “Minimum Classification Error/Eigenvoices Training for 

Speaker Identification”, in Proc. ICASSP2003. 

[14] A. E. Rosenberg, J. DeLong, C. H. Lee, B. H. Juang, and F. K. Soong, “The Use of Cohort 

Normalized Scores for Speaker Verification”, in Proc. ICSLP1992. 

[15] R. Kuhn, J. C. Junqua, P. Nguyen, and N. Niedzielski, “Rapid Speaker Adaptation in 

Eigenvoice Space”, IEEE Trans. on Speech and Audio Processing, vol. 8, no. 6, pp. 695-707, 

2000. 

[16] O. Thyes, R. Kuhn, P. Nguyen, and J.-C. Junqua, “Speaker Identification and Verification 

Using Eigenvoices” , in Proc. ICSLP2000. 

[17] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd. ed., John Wiley & Sons, 

New York, 2001. 

[18] G. Strang, Linear Algebra and Its Applications, 4th. ed., Brooks/Cole, 2005. 

[19] http://www.nist.gov/speech/tests/spk/index.htm 

[20] The VIMAS speech codec. http://www.vimas.com 

[21] J. Pelecanos and S. Sridharan, “Feature Warping for Robust Speaker Verification”, in Proc. 

Odyssey2001. 

[22] A. Martin, G. Doddington, T. Kamm, M. Ordowski, and M. Przybocki, “The DET Curve in 

Assessment of Detection Task Performance”, in Proc. Eurospeech1997. 

[23] D. A. van Leeuwen, A. F. Martin, M. A. Przybocki, and J. S. Bouten, “NIST and NFI-TNO 

Evaluations of Automatic Speaker Recognition”, Computer Speech and Language, vol. 20, pp. 

128-158, 2006. 

[24] L. Gillick and S. J. Cox, “Some Statistical Issues in the Comparison of Speech Recognition 

Algorithms”, in Proc. ICASSP1989. 

23 


	1. Introduction
	2. Discriminative Feedback Adaptation
	2.1.  Minimum verification squared-error (MVSE) adaptation strategy
	2.2.  Fast scoring for DFA

	3. Linear Regression-based MVSE (LR-MVSE) Adaptation
	4. Eigenspace-based MVSE (E-MVSE) Adaptation
	5. Simplified Versions of LR-MVSE and E-MVSE
	6. Experiments
	6.1.  Experimental setup
	6.2.  Experimental results

	7. Conclusion
	8. References

