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Abstract

We describe an evaluation of spoken dialogue strategies designed using hierarchical reinforcement learning agents. The
dialogue strategies were learnt in a simulated environment and tested in a laboratory setting with 32 users. These dialogues
were used to evaluate three types of machine dialogue behaviour: hand-coded, fully-learnt and semi-learnt. These exper-
iments also served to evaluate the realism of simulated dialogues using two proposed metrics contrasted with ‘Precision-
Recall’. The learnt dialogue behaviours used the Semi-Markov Decision Process (SMDP) model, and we report the first
evaluation of this model in a realistic conversational environment. Experimental results in the travel planning domain pro-
vide evidence to support the following claims: (a) hierarchical semi-learnt dialogue agents are a better alternative (with
higher overall performance) than deterministic or fully-learnt behaviour; (b) spoken dialogue strategies learnt with highly
coherent user behaviour and conservative recognition error rates (keyword error rate of 20%) can outperform a reasonable
hand-coded strategy; and (c) hierarchical reinforcement learning dialogue agents are feasible and promising for the (semi)
automatic design of optimized dialogue behaviours in larger-scale systems.
� 2009 Elsevier Ltd. All rights reserved.

Keywords: Spoken dialogue systems; Hierarchical reinforcement learning; Human–machine dialogue simulation; Dialogue strategies;
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1. Introduction

A spoken dialogue system can be defined as consisting of four interlinked modules: speech understanding,
dialogue management, response generation, and a knowledge base. In a human–machine dialogue, a user’s
spoken utterance is received as a speech waveform, which may have been distorted, by the speech understand-
ing module which extracts a user dialogue act from the speech signal. The dialogue act is entered into the
machine’s knowledge base, and the machine then updates its dialogue state using information extracted from
the knowledge base. The machine dialogue state is used by the dialogue manager to choose a machine dialogue
0885-2308/$ - see front matter � 2009 Elsevier Ltd. All rights reserved.
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act which is then used by the response generation module to produce a corresponding machine speech signal in
reply to the user. This is a cyclical process, illustrated in Fig. 1, which continues until one of the participants in
the conversation (human or machine) ends the dialogue.

In this paper we are primarily concerned with the dialogue manager. Given the current state of the dia-
logue, the principal role of the dialogue manager is to choose an action, which will result in a change of dia-
logue state. The strategy followed by the dialogue manager, sometimes referred to as the policy, should be
designed to enable successful, efficient and natural conversations. This is a challenging goal, and in most
fielded spoken dialogue systems the dialogue manager is handcrafted by a human designer. This hand-crafted
approach is limited since it is not always easy to specify the optimal action at each state of the dialogue, a
dialogue behaviour for the entire user population which is generic and static is usually assumed, and designing
such strategies is labour-intensive, especially for large systems.

Since the mid-1990s a number of researchers have explored the development of automatic algorithms that
can specify a dialogue strategy. In particular, reinforcement learning approaches (Sutton and Barto, 1998)
have been used to optimize a machine’s dialogue behaviour (Levin and Pieraccini, 1997; Walker et al.,
1998; Levin et al., 2000; Young, 2000). In this scenario, a conversation is regarded as a sequence of dialogue
states, with the machine receiving a reward for executing an action inducing a state transition in the conver-
sational environment, as illustrated in Fig. 2.

A reinforcement learning dialogue agent aims to learn its behaviour from interaction with an environment,
where situations are mapped to actions by maximizing a long-term reward signal. Briefly, the standard rein-
forcement learning paradigm works by using the formalism of Markov Decision Processes (MDPs) (Kaelbling
et al., 1996; Sutton and Barto, 1998; Russell and Norvig, 2003). An MDP is characterized by a set of states S, a
set of actions A, a state transition function, and a reward or performance function that rewards the agent for
each selected action. Solving the MDP means finding a mapping from the current state st to an action at cor-
responding to a dialogue policy p�ðstÞ:
Fig. 1. A pipeline architecture of speech-based human–machine communication, where dialogue state sm
t is used by the dialogue manager

to choose action am
t . Modelling the dialogue strategy at the semantic level allows us to omit the speech signal and word levels.

Fig. 2. A dialogue of length T described in terms of a state sequence st, with state transitions induced by actions at.
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p�ðstÞ ¼ arg max
at2A

Q�ðst; atÞ: ð1Þ
The Q function specifies the cumulative rewards for each state–action pair. An alternative but more compu-
tationally intensive model for sequential decision-making under uncertainty is the partially observed MDP
(POMDP). In a POMDP the dialogue state is not known with certainty (as opposed to an MDP), and solving
it means finding a mapping from belief states to actions (Roy et al., 2000; Williams and Young, 2007).

Most previous work on dialogue strategy learning has aimed at obtaining a single global solution (Levin
et al., 2000; Walker, 2000; Young, 2000; Singh et al., 2002; Scheffler and Young, 2002; Pietquin, 2004; Wil-
liams, 2006; Young et al., 2007). The optimization of dialogue strategies has been carried out using two main
approaches: corpus-based approaches (Walker, 2000; Litman et al., 2000) which make use of an experimen-
tally collected set of dialogues for training the dialogue strategy (or some aspects of it); and simulation-based
approaches (Scheffler and Young, 2002; Frampton, 2008; Rieser, 2008; Henderson et al., 2008) in which a sim-
ulation environment including a user model is employed to generate simulated dialogues for training.

A dialogue strategy may not require complete world knowledge, nor is it always necessary for the whole
action set to be available at each state. In this paper we address such issues using a hierarchical sequential deci-

sion making approach, in which dialogue states can be described at different levels of granularity, and an action
can execute behaviour using either a single dialogue act or a composite sub-dialogue. This approach offers sev-
eral benefits. First, modularity helps to solve sub-problems that may be easier to solve than the whole prob-
lem. Second, sub-problems may include only relevant dialogue knowledge in the states and relevant actions,
thus reducing significantly the size of possible solutions: consequently they can be found faster. Finally, there
is the possibility to reuse sub-solutions when dealing with new problems. These properties are crucial for learn-
ing the behaviour of large-scale spoken dialogue systems in which there may be a large set of state variables or
a large number of actions. The cost of this approach is that optimal solutions may not be guaranteed; how-
ever, this suboptimality may be well worth the gains in terms of scalability to large systems.

This paper has two main contributions. First, we have developed and evaluated a heuristic simulation envi-
ronment used to learn dialogue strategies in an automatic way. Second, we have developed and evaluated hier-
archical spoken dialogue behaviours learnt using a Semi-Markov Decision Process (SMDP) to address the
problem of scalable dialogue optimization, described in more detail in Cuayáhuitl (2009). We have compared
these hierarchical, or ‘semi-learnt’ behaviours, with both hand-crafted and fully-learnt behaviours and we
have found that the semi-learnt behaviours are more suited to deployment. Our evaluations have been carried
out in tests with real users in the context of a spoken dialogue system in the travel planning domain.

The rest of the paper is organized as follows: Section 2 describes the dialogue simulation environment. Sec-
tion 3 briefly describes the hierarchical reinforcement learning dialogue agents. Section 4 describes the travel
planning spoken dialogue system. Section 5 reports an evaluation of machine dialogue behaviours. Section 6
provides a quantitative evaluation of the simulated environment. Finally, sections 7 and 8 discuss and sum-
marize our findings.

2. A heuristic dialogue simulation environment

A simulation environment for human–machine conversations involves modelling the dynamics of every-
thing that is outside the dialogue manager. This section presents a heuristic simulation approach for generat-
ing human–machine conversations based on dialogue acts. The proposed approach generates both coherent
and distorted conversations, useful for testing and learning dialogue strategies for information-seeking
mixed-initiative spoken dialogue systems. This approach does not require data for training the models in
the simulation environment (this is useful in scenarios where dialogue data does not exist), as it uses heuristics
to simulate the dynamics of task-oriented conversations based on dialogue acts. It employs two main simula-
tion models—simulated user behaviour and ASR error simulation—which are shown at the bottom of Fig. 3.
The first simulation model (on the right of the figure) generates coherent user responses, i.e. responses that
make sense to humans. Here it was assumed that real users behave in a coherent fashion, based on user dia-
logue acts that are consistent according to a user Knowledge Base (KB) that keeps the history of the conver-
sation. This is a strong assumption and its validity is addressed later. The second model distorts coherent user
dialogue acts due to imperfect speech recognition and understanding. The distorted user responses and data-



Fig. 3. The agent–environment interaction for simulating human–machine conversations, useful for learning or testing dialogue strategies
for spoken dialogue systems.
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base results update the machine’s KB so that the dialogue strategy can choose actions accordingly. The pro-
posed dialogue simulator uses an ontology to represent the conversant’s knowledge base.

Fig. 3 shows the agent–environment interaction for human–machine dialogue simulation. The interaction is
as follows: the machine is in a given dialogue state sm

t , and emits dialogue act am
t by following dialogue strategy

p sm
t

� �
. A distorted machine dialogue act ~am

t (machine response1) is fed into the user’s KB to observe the user
dialogue state su

t , from which an action au
t is taken (user response). This user response is distorted with ASR

errors into ~au
t , and is fed into the machine’s KB. The machine action may require interaction with simulated

database behaviour by sending queries and retrieving database results dt. Then the next machine state sm
tþ1 is

observed from the machine’s current KB. Once the machine is in a new state, it takes another dialogue act, and
so on until the end of the conversation.

2.1. Modelling conversational behaviour

A human–machine dialogue can be modelled by the perceptions and actions of both conversants. Fig. 4
shows the dynamics of communication at the dialogue act level. The conversants use two sources of knowledge
at different levels of granularity: knowledge-rich states kt (also referred to as ‘‘knowledge base”) to represent all
possible perceptions about the conversation, and knowledge-compact states st to represent a compact version
of the current dialogue state. The latter are used for action selection.

Algorithm 1 specifies the high-level steps for simulating a task-oriented human–machine dialogue. Briefly,
the algorithm starts initializing parameters for the knowledge bases (ontologies of dialogue entities) of both
conversants. The algorithm invokes three simulated behaviours: the machine’s dialogue strategy pm

t , the user’s
dialogue strategy pu

t , and the distorter of machine/user dialogue acts d. A conversant at a time interacts with
its partner as follows: (a) observes the current knowledge-compact state, (b) selects an appropriate dialogue
act type, (c) generates a dialogue act with the current dialogue act type in context, (d) distorts such dialogue
act to simulate misrecognitions or misunderstandings, (e) updates its knowledge-rich state with the undis-
torted dialogue act, and (f) updates the knowledge-rich state of its partner with the distorted dialogue act. This
process iterates until one of the conversants terminates the dialogue.
1 The reason for distorting machine responses was to model user confusions.



Fig. 4. Dynamics of human–machine communication at the dialogue act level (this diagram does not follow the conventions of dynamic
Bayesian networks). A conversant in a knowledge-rich state kt, observes a knowledge-compact state st, and takes dialogue act at in order to
feed it to its knowledge-rich state and convey it to its partner, received distortedly as ~at. The current knowledge kt, action at and partner
response determine the next knowledge-rich state ktþ1, and so on until the end of the dialogue.
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Algorithm 1: Simulator of task-oriented human–machine conversations

1: function HUMANMACHINEDIALOGUESIMULATOR( )
2: km

0  initialize machine knowledge-rich state
3: ku

0  initialize user knowledge-rich state
4: t initialize time-step to 0
5: repeat
6: sm

t  observe machine dialogue state from km
t

7: am
t  choose machine dialogue act type following pm sm

t

� �
8: Generate machine dialogue act � dialogue act type am

t in context
9: ~am

t  get distorted dialogue act from d am
t ; k

m
t

� �
10: Update km

t with am
t and update ku

t with ~am
t

11: su
t  observe user dialogue state from ku

t

12: au
t  choose user dialogue act type following pu su

t

� �
13: Generate user dialogue act � dialogue act type au

t in context
14: ~au

t  get distorted dialogue act from d au
t ; k

u
t

� �
15: Update ku

t with au and update km with ~au
t

16: t t þ 1
17: until one of the conversants terminates the conversation
18: end function
Enumerating all possible machine or user dialogue acts usually results in large sets. Therefore, our
approach assumes that action selection of both conversants is based on dialogue act types rather than dialogue
acts. This is beneficial because for task-oriented conversations a small set of dialogue act types can be
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employed. Table 1 shows the core dialogue act types that define the behaviour of our human–machine
simulated conversations. The user dialogue act types are a subset of the ones used by Georgila et al.
(2005), and the set of machine dialogue act types are an extension of the ones used by Walker and Passonneau
(2001). Based on this, the agent selects dialogue act types following dialogue strategy pm, and the user selects
dialogue act types following dialogue strategy pu. Once an action has been chosen, it takes context into
account so that conversations can be generated at the dialogue act level. Context is given by the dialogue state,
which specifies the slot in focus, slots to fill or confirm, etc. A sample machine action for requesting the slot
date is ‘‘am

t ¼ reqðdateÞ” and a corresponding sample user response is ‘‘au
t ¼ proðdate ¼ 01dec2007; time ¼

morningÞ”.
Based on this, the user takes actions following dialogue strategy pu defined by:
pu su
t

� �
¼

pro; if last machine action am is a request or offer;

con; if last action am is a correct explicit confirmation or incorrect

explicit confirmation ðthe latter with some probability; e:g: 0:2Þ;
rep; if last action am is an apology or incorrect confirmation;

sil; otherwise

8>>>>>><
>>>>>>:

ð2Þ
and the machine takes actions a following dialogue strategy pm sm
t

� �
defined by:
a ¼

ope; if first time step;

req; if unknown slot in focus;

sicþ req; if unknown slot in focus and Single Slot to Confirm ðSSCÞ;
micþ req; if unknown slot in focus and Multiple Slots to Confirm ðMSCÞ;
apoþ req; if slot in focus with low confidence level;

sec; if slot in focus with medium confidence level and SSC;

mec; if slot in focus with medium confidence level and MSC;

acc; if slot in focus with high confidence level;

dbqþ sta; if null database result and confirmed non-terminal slots;

preþ ofr; if database result with few uninformed tuples;

apoþ ofr; if terminal slot with low confidence level;

ofr; if unconfirmed terminal slot and db tuples presented before;

ack; if unacknowledged dialogue goal and confirmed terminal slot;

rel; if empty database result and confirmed non-terminal slots;

clo; otherwise:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð3Þ
Although the strategy pu may not include all possible realistic behaviours, it yields coherent behaviour, and
its evaluation is addressed later. Finally, the hand-crafted strategy pm acts as the baseline strategy in our exper-
iments using reinforcement learning agents as described in the next sections.

2.2. Speech recognition error simulation

Due to the fact that current Automatic Speech Recognition (ASR) technology is far from perfect, errors
have to be modelled in the simulated environment. This simulation model operated with a two-stage
approach. First, slot values of user dialogue acts were distorted with probability pðuserÞ ¼ 0:2 in order to
model machine confusions; applying equal amounts of insertions, substitutions and deletions. Second, slot val-
ues were assigned with random confidence levels; they were assigned the well known three-tiered confidence
levels (low, medium, high) to indicate their speech recognition confidence. In addition, slot values of machine
dialogue acts were distorted with probability pðagentÞ ¼ 0:1 in order to model user confusions.



Table 1
Dialogue Act Types (DATs) for task-oriented human–machine spoken dialogues. Abbreviations: IC = implicit confirmation and
EC = explicit confirmation.

Agent ID DAT Sample utterance

User pro provide I want a flight from Edinburgh to London
rep reprovide I said a flight to London from Edinburgh
con confirm Yes, please
sil silence [remain in silence]

Machine req request And, what is your destination city?
apo apology I am sorry, I didn’t understand that
sic single_IC A flight to London
mic multiple_IC A flight from Edinburgh to London
sec single_EC I think you said London, is that correct?
mec multiple_EC I heard from Paris to London, is that right?
acc accept_slot [move to next ascending slot with lowest value]
dbq db_query [performs a database query]
ofr offer Would you like A, B or C?
sta status Please wait while I query the database
pre present The cost of this flight is 120 pounds
rel relax Try again with some different information
ack acknowledgement All right, this flight has been booked
ope opening Welcome to the travel planning system
clo closing Thank you for calling, good bye

Fig. 5. Dialogue state for the flight booking spoken dialogue strategy. Each variable X i with domain values D0 has five possible values,
variable X 7 has six possible values, and variable X 8 has 3 possible values, resulting in 56 � 6� 3 ¼ 281250 states.
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2.3. An illustrative decision-making problem

Consider that you have the task of designing a spoken dialogue strategy for a flight booking system. In such
a system the user can say things such as ‘a flight from London to Prague for the twenty second of October in the

morning travelling with KLM’—alternatively, the user may provide the information across several shorter
utterances. A dialogue strategy is a mapping from dialogue states to actions and specifies the system’s way
of behaving. The dialogue state (used to describe the current situation in the conversation) is defined by a vec-
tor of state variables as illustrated in Fig. 5. This decision-making problem has 281,250 states

Q
X i2X jX ij

� �
. A

sample dialogue using this state space is shown in Table 2. Table 3 shows the same sample dialogue but includ-
ing dialogue acts generated as described in the previous two sub-sections. The mapping from states to actions
can be done either manually, or using flat reinforcement learning methods, or using hierarchical reinforcement



Table 2
Sample human–machine dialogue in the flight booking domain, where the dialogue state is formed by the state variables shown in Fig. 5,
and a set of actions is available per state. At this point action-selection is arbitrary (before learning).

Agent Dialogue state Action Sample utterance

SYS 0,0,0,0,0,0,0,1 req Tell me your flight information
USR A flight from Edinburgh to Paris

SYS 3,2,0,0,0,0,0,1 acc
3,2,0,0,0,0,2,1 mic+req OK, a flight from Edinburgh to Rome, when do you want to travel?

USR I said ‘to Paris’

SYS 4,3,0,0,0,0,2,1 sic+req OK, a flight to Paris, when do you want to fly?
USR December first, flying with British Airways

SYS 4,4,1,0,2,0,2,1 apo+req I’m sorry, when do you want to travel?
USR On the first of December

SYS 4,4,3,0,2,0,2,1 acc
4,4,3,0,2,0,3,1 mic+req Travelling on the first of December with

British Airways, at what time do you prefer your flight?
USR In the morning

SYS 4,4,4,1,4,0,3,1 apo+req Sorry, at what time do you prefer to fly?
USR In the morning

SYS 4,4,4,3,4,0,3,1 sec Did you say in the morning?
USR Yes please

SYS 4,4,4,4,4,0,5,1 dbq+sta Please wait while I retrieve information. . .

USR

SYS 4,4,4,4,4,0,5,2 pre+ofr All right, flights from Edinburgh to Paris on the first of December. . .[present information]
Would you like choice 1, choice 2 or choice 3?

USR The second one please

SYS 4,4,4,4,4,2,5,2 sec Did you say choice two?
USR That’s right

SYS 4,4,4,4,4,4,5,2 [terminal state]

Notes: This example is used for illustration purposes and shows basic behaviour of more complex interactions. Abbreviations:
req = request, acc = accept w/high confidence, mic = multiple implicit confirmation, sic = single implicit confirmation, apo = apology,
sec = single explicit confirmation, dbq = database query, sta = status of dialogue, pre = present information, and ofr = offer choices.
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learning methods as described in the rest of this paper. The benefits of reinforcement learning include auto-
matic design and optimal behaviour according to a performance measure, while hierarchical methods aim
to have a more practical application for systems with large state–action spaces.
3. Hierarchical reinforcement learning dialogue agents

A critical problem in flat Reinforcement Learning (RL) is scalability since it operates with a single policy
that behaves by executing only primitive actions. The size of state spaces grows exponentially with the number
of state variables incorporated into the environment state—the ‘curse of dimensionality’. As a result, RL
agents find solutions only very slowly. Temporal abstraction addresses these problems by incorporating hier-
archical structures into RL agents. This is attractive for dialogue systems for several reasons. First, human
decision-making activity occurs in sequential courses of action, where decisions do not happen at each step,
but rather in temporally extended activities following their own policies until termination (Barto and Mahad-
evan, 2003). Second, hierarchical decision makers can solve more complex problems than flat ones (Dietterich,
2000). Third, task-oriented dialogues have shown evidence of following hierarchical structures (Grosz and Sid-
ner, 1986; Litman and Allen, 1987). This section presents two forms of hierarchical dialogue control and a case
study that is evaluated in the rest of the paper.



Table 3
Sample dialogue in the flight booking system. Although simulations are only based on dialogue acts, an equivalent wording is given for a
better understanding. This dialogue shows a sample speech recognition error after the first user utterance.

Agent Dialogue act Wording

SYS req(dep_city) Tell me your flight information
USR pro(dep_city=edinburgh, des_city=paris) I would like a flight from Edinburgh to Paris

ASR [I would like a flight from Edinburgh to Rome]

SYS mic(dep_city=edinburgh, des_city=rome)+req(date) OK,
a flight from Edinburgh to Rome, when do you want to
travel?

USR rep(des_city=paris) I said ‘to Paris’

SYS sic(des_city=paris)+req(date) OK, a flight to Paris, when do you want to fly?
USR pro(date=01dec, airline=british_airways) December first,

flying with British Airways

SYS apo(date)+req(date) I’m sorry, when do you want to travel?
USR pro(date=01dec) On the first of December

SYS mic(date=01dec, airline=british_airways)+req(time) Travelling on the first of December with British Airways, at
what time do you prefer your flight?

USR pro(time=morning) In the morning

SYS apo(time)+req(time) Sorry, at what time do you prefer your flight?
USR rep(time=morning) In the morning

SYS sec(time=morning) Did you say in the morning?
USR con(time=yes) Yes please

SYS dbq(db_query)+sta(db) Please wait while I retrieve information. . .
USR

SYS pre(db_result)+ofr(flight) All right, flights from Edinburgh to Paris on the first of
December in the morning travelling with British Airways:
[present information]
Would you like choice 1, choice 2 or choice 3?

USR pro(flight=choice2) The second one please

SYS sec(flight=choice2) Did you say choice two?
USR con(flight=yes) That’s right

Note: more complex information presentation is beyond the scope of this work.
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3.1. Dialogue control using Semi-Markov Decision Processes

We formulate spoken dialogue control as a discrete Semi-Markov Decision Process (SMDP), following
Dietterich (2000). A discrete-time SMDP M ¼ hS;A; T ;Ri is characterized by a set of states S; a set of actions
A; a transition function T that specifies the next state s0 given the current state s and action a with probability
P ðs0; sjs; aÞ; and a reward function Rðs0; sjs; aÞ that specifies the reward given to the agent for choosing action a
when the environment makes a transition from state s to state s0. The random variable s denotes the number of
time-steps taken to execute action a in state s. The SMDP model allows temporal abstraction, where actions
take a variable amount of time to complete their execution. In this model two types of actions can be distin-
guished: (a) single-step actions roughly corresponding to dialogue acts and (b) multi-step actions correspond-
ing to sub-dialogues. Fig. 6 illustrates a conceptual dialogue at runtime with states st, actions at and rewards rt.
Whilst the full dialogue and child dialogue execute primitive and composite actions, the grandchildren dia-
logues execute only primitive actions. Note that the execution of primitive actions yields single rewards and
the execution of composite actions lasting s time steps yields cumulative discounted rewards given at time
t þ s.

In this paper, we treat each composite dialogue action as a separate SMDP as described in Cuayáhuitl et al.
(2007) and Cuayáhuitl (2009). In this way an MDP can be decomposed into multiple SMDPs hierarchically
organized into L levels and N models per level, denoted as M ¼ Mi

j

n o
, where j 2 f0; . . . ;N � 1g



Fig. 6. Conceptual hierarchical dialogue at runtime with states st, actions at (lasting s time steps) and rewards rtþs. Actions at can be either
primitive or composite, the former yield single rewards and the latter yield cumulative discounted rewards.

Fig. 7. Architecture of the agent–environment interaction using multiple SMDPs Mi
j, circles represent states, squares represent actions,

and diamonds represent rewards.
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and i 2 f0; . . . ; L� 1g. Thus, any given SMDP in the hierarchy is denoted as Mi
j ¼ Si

j;A
i
j; T

i
j;R

i
j

D E
, see the

environment of Fig. 7 for an illustration.
The goal in an SMDP is to find an optimal policy p�, that maximizes the reward of each visited state. The

optimal action-value function Q�ðs; aÞ specifies the expected cumulative reward for executing action a in s and
then following p�. The Bellman equation for Q� of subtask Mi

j can be expressed as
Q�ij ðs; aÞ ¼
X
s0 ;s

P i
jðs0; sjs; aÞ Ri

jðs0; sjs; aÞ þ cs max
a0

Q�ij ðs0; a0Þ
� �

; ð4Þ
where the discount rate 0 6 c 6 1 makes future rewards less valuable than immediate rewards as it approaches
0. Finally, the optimal policy for each subtask is defined by
p�ij ðsÞ ¼ arg max
a2Ai

j

Q�ij ðs; aÞ: ð5Þ
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These policies can be found by dynamic programming or reinforcement learning algorithms for SMDPs. For
instance, the HSMQ-Learning algorithm of Dietterich (2000) approximates Eq. (4) according to
Qi
jðs; aÞ  ð1� aÞQi

jðs; aÞ þ rs þ cs max
a0

Qi
jðs0; a0Þ

� �
: ð6Þ
This behaviour (also referred to as fully-learnt) receives rewards in the following form when executing actions
a lasting s time steps:
r ¼ r1 þ cr2 þ c2r3 þ � � � þ cs�1rs: ð7Þ
The HSMQ-Learning algorithm converges to optimal context-independent policies (Dietterich, 2000).
Although this is a weaker form of optimality than other forms for being only locally optimal, context-inde-
pendent policies facilitate state abstraction (useful to compress the state) and policy reuse.

3.2. Dialogue control using constrained hierarchical SMDPs

The behaviour of reinforcement learning dialogue agents can be constrained with prior expert knowledge,
aiming to combine behaviours specified by human designers and inferred automatically (Paek and Pieraccini,
2008). In this direction we have reported an approach using reinforcement learning with Hierarchical Abstract
Machines (HAMs) (Cuayáhuitl et al., 2006). HAMs are used to reduce the available actions per state, similar
to non-deterministic finite state machines whose transitions may invoke lower-level machines, each machine
specifying a sub-dialogue. Because the HAMs approach does not overcome the curse of dimensionality, we
extend the previous form of dialogue control by constraining each hierarchical SMDP with some prior expert
knowledge. For such a purpose, we associate a HAM denoted as Hi

j to SMDP Mi
j in order to specify the prior

knowledge (Cuayáhuitl, 2009). In this way, dialogue control can be seen as executing two decision-making
models in parallel: a HAM, and a hierarchy of SMDPs. Each HAM partially specifies the behaviour of its
corresponding subtask, and therefore constrains the actions that a reinforcement learning agent can take in
each state. For such a purpose, a cross product of models per subtask is used, referred to as induced SMDP

M 0i
j ¼ H i

j �Mi
j. Briefly, the cross product operates as follows: (1) the induced state space uses joint states ðs;�sÞ,

where s is an environment state in SMDP Mi
j and �s is a choice state in HAM Hi

j; (2) a HAM tells its correspond-
ing SMDP the available actions at state s; (3) the transition functions of both models are executed in parallel;
and (4) the SMDP’s reward function rewards each chosen primitive action. In this joint model the HAMs
make decisions in states with a single action, and the policies of the SMDPs make decisions in states with mul-
tiple actions.

This form of behaviour (also referred to as semi-learnt) is based on the SMDP state s and the HAM choice
state �s. Using a more compact notation for the joint dialogue state w ¼ ðs;�sÞ (Marthi et al., 2006), the Bellman
equation for the action-value function of induced subtask M 0i

j can be expressed as
Q�ij ðw; aÞ ¼
X
w0;s

P i
jðw0; sjw; aÞ Ri

jðw0; sjw; aÞ þ cs max
a0

Q�ij ðw0; a0Þ
� �

: ð8Þ
Optimal context-independent policies for the Q-value function above can be found by combining the algo-
rithms HAMQ-Learning (Parr and Russell, 1997) and HSMQ-Learning (Dietterich, 2000) using the following
update rule, see (Cuayáhuitl, 2009) for more details:
Q0ij ðwt; atÞ  ð1� aÞQ0ij ðwt; atÞ þ rtþs þ cs max
a0

Q0ij ðwtþs; a0Þ
� �

: ð9Þ
3.3. Case study: a travel planning dialogue system

This is a multi-goal mixed-initiative spoken dialogue system in the travel planning domain, allowing users
to book single flights, return flights, hotels and cars. It supports the following features: hand-crafted or learnt
dialogue strategies, multiple goals within a single dialogue, and implicit switching across flight dialogue goals.
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For fully-learnt behaviour, the state space is described in Table 4 using a hierarchy of 21 dialogue subtasks.
This hierarchy employed 43 non-binary state variables, 15 primitive actions and 20 composite actions. The
latter correspond to the child subtasks. The reward function focused on efficient conversations (i.e. the shorter
the dialogue the better), and is defined by the following rewards given to the agent for choosing action a when
the environment makes a transition from state s to state s0:
Table
State v
space

Subtas

M0
0

M1
0

M2
0

M2
1

M2
2

M2
3

M2
4

M3
0

M3
1

M3
2

M3
3

M3
4

M3
5

M3
6

M3
7

M3
8

M3
9

M3
A

M3
B

M3
C

M3
D

Values
rental,
OPT,
2 = few
1 = low
dialog
rðs; a; s0Þ ¼

0; for successful ðsubÞdialogue;

�10; for an already collected subtask Mi
j;

�10; for collecting subtask Mi
i before Mi

i�1;

�10; for presenting many=none items of information;

�10; for multiple greetings or closings;

�10; for executing action a and remaining in state s0 ¼ s;

�1; otherwise:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð10Þ
For semi-learnt behaviour, the state–action space was similar to that of fully-learnt behaviour. The difference
here is that the dialogue subtasks Mi

j were extended with Hierarchical Abstract Machines (HAMs) H k
l , where

their cross product yields the induced subtasks M 0i
j ¼ H k

l �Mi
j. The hierarchy of induced subtasks for the travel

planning system is shown in Fig. 8, and used the abstract machines described in Figs. 9 and 10 (prohibiting
apologies in medium and high confidence levels). These HAMs control the machine’s dialogue behaviour in
deterministic state transitions, but in stochastic state transitions the reinforcement learning agents optimized
decision-making.

The learning parameters used by the algorithms were the same for both learning approaches. The learning
rate parameter a decays from 1 to 0 according to a ¼ 100=ð100þ sÞ, where s represents elapsed time-steps in
4
ariables and actions of the subtask hierarchy in the travel planning system. Whilst a flat approach involves a large state–action

in the order of 1023 (Cuayáhuitl, 2009), our hierarchical representation is only using a space of 800K state–actions.

k State variables Actions (composite actions are Mi
j)

GIF, SAL, G00, G03, G04, G05 M1
0, M2

2, M2
3, M2

4, gre, clo
GIF, G01, G02 M2

0, M2
1

DBT, END, MAN, OPT, TER M3
0, M3

1, M3
2, dbq+sta, rel

DBT, END, MAN, TER M3
3, M3

4, dbq+sta, rel
DBT, END, INI, MAN, TER M3

5, M3
6, M3

7, dbq+sta, rel
DBT, END, INI, MAN, OPT, TER M3

8, M3
9, M3

A, M3
B, dbq+sta, rel

DBT, END, MAN, TER M3
C , M3

D, dbq+sta, rel
SIF, C00, C01, C02, C03, C04, C05 req, apo+req, sic+req, mic+req, sec, mec, acc
C6 req, apo+req, sec
ACK, END, PRE, C07 apo+ofr, sec, pre+ofr, ofr, ack
SIF, C15, C16 req, apo+req, sic+req, mic+req, sec, mec, acc
ACK, END, PRE, C17 apo+ofr, sec, pre+ofr, ofr, ack
C18 req, apo+req, sec
SIF, C19, C20, C21 req, apo+req, sic+req, mic+req, sec, mec, acc
ACK, END, PRE, C22 apo+ofr, sec, pre+ofr, ofr, ack
C23 req, apo+req, sec
SIF, C24, C25, C26, C27, C28 req, apo+req, sic+req, mic+req, sec, mec, acc
C29 req, apo+req, sec
ACK, END, PRE, C30 apo+ofr, sec, pre+ofr, ofr, ack
C31 req, apo+req, sec
ACK, END, PRE, C32 apo+ofr, sec, pre+ofr, ofr, ack

of state variables: Goal In Focus (GIF) {0 = flight booking, 1 = outbound flight, 2 = return flight, 3 = hotel booking, 4 = car
5 = summarize trip}; Salutation (SAL) {0 = null, 1 = greeting, 2 = closing}; {G00, G01, G02, G03, G04, G05, INI, MAN,

TER} {0 = unfilled subtask, 1 = filled subtasks, 2 = confirmed subtask}; Database Tuples (DBT) {0 = none, 1 = empty,
, 3 = many}; Slot In Focus (SIF) {Cij}; acknowledgement or current dialogue goal (ACK) {0,1}; Cij {0 = unfilled,

confidence, 2 = medium confidence, 3 = medium confidence, 4 = confirmed}; Status of information presentation of current
ue goal (PRE) {0,1}; END {0 = continue, 1 = terminate current subtask}.



Fig. 8. A hierarchy of induced subtasks for the travel planning system. The abstract machines Hk
l are specified in Figs. 9 and 10, and the

state variables for each dialogue subtask Mi
j are specified in Table 4.
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the current subtask. Each subtask Mi
j had its own learning rate. The discount factor c ¼ 1 makes future

rewards equally as valuable as immediate rewards, as in Singh et al. (2002). The action selection strategy used
�-Greedy with � ¼ 0:01, and initial Q-values of 0. This choice of parameters satisfies the requirements for con-
vergence to optimal context-independent policies.



Fig. 9. Abstract machines for the travel planning spoken dialogue system (Part 1).
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Fig. 10. Abstract machines for the travel planning spoken dialogue system (Part 2).
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3.4. Qualitative description of hand-crafted and learnt dialogue strategies

The hand-crafted baseline strategy operated as follows: (a) if slot in focus is unknown then request infor-
mation, with implicit confirmation if there were any filled slots; (b) if slot in focus is known with low confi-
dence then do an apology; (c) if slot in focus is known with medium confidence then do an explicit
confirmation; and (d) if slot in focus is known with high confidence then move the slot in focus to the next
ascending one with lower value (this is also referred to as ‘slot acceptance’). This behaviour is specified more
concretely in Eq. (3), and its evaluation is reported in Section 6.3.

The fully-learnt behaviour was inferred by the approach described in Section 3.1. This strategy used all
actions in every state and differs from the hand-crafted one by allowing acceptance, confirmation and rejection
in any filled slot regardless of confidence level. For instance, action ‘mic’ can be chosen with low/medium/high
confidence levels. Briefly, the learnt behaviour differed from the hand-crafted one in the use of more accep-
tances (action ‘acc’), more multiple implicit confirmations (action ‘mic’), fewer apologies (actions ‘apo+req’
and ‘apo+ofr’), and fewer multiple explicit confirmations (action ‘mec’). In addition, although the fully-learnt
policy inferred the sequence of sub-dialogues, it used the same sequence as the other behaviours. Thus, the
dialogue strategies of this paper differ in the selection of primitive (low level) actions rather than composite
(high-level) actions.2

The semi-learnt behaviour was inferred by the approach described in Section 3.2. Similarly to the fully-
learnt behaviour, this strategy differs from the hand-crafted one by allowing acceptance, confirmation and
rejection in any filled slot regardless of confidence level. The semi-learnt behaviour differed from the hand-
crafted one in the use of more acceptances (action ‘acc’), more multiple implicit confirmations (action
‘mic’), fewer apologies (actions ‘apo+req’ and ‘apo+ofr’), and fewer multiple explicit confirmations (action
‘mec’). However, it differs from the fully-learnt behaviour by constraining the actions available per state as
shown in Figs. 9 and 10, where the semi-learnt policy prohibited apologies in slots with medium or high con-
fidence levels. See Cuayáhuitl (2009) for a detailed quantitative comparison of dialogue strategies using sim-
ulated conversations.

4. Spoken dialogue system architecture

Our experiments were based on a travel planning spoken dialogue system supporting hand-crafted or learnt
dialogue behaviour. The latter uses dialogue strategies designed by hierarchical reinforcement learning agents
on a simulated environment. This system is based on the Open Agent Architecture (OAA) (Cheyer and Mar-
tin, 2001). Alternatively, other architectures can be used such as Galaxy-II (Seneff et al., 1998). Fig. 11 shows a
high-level architecture using eight OAA-based agents in order to support speech-based task-oriented human–
machine communication. The communication flows between facilitator (parent) and the other agents (chil-
dren). Briefly, the user gives speech signals xu

t corresponding to words wu
t , concepts or slots cu

t , and dialogue
acts au

t . However, the machine understands them with distortions ~wu
t ;~c

u
t ; ~a

u
t

� �
, and answers back to the user

with speech signals xm
t corresponding to words wm

t , slots cm
t , and dialogue acts am

t . The user may also misun-
derstand the machine, and so on until one of the conversants terminates the conversation. The rest of this sec-
tion describes each agent in the system.

4.1. Facilitator agent

OAA is an agent-based framework to build autonomous, flexible, fault-tolerant, distributed and reusable
software systems (Cheyer and Martin, 2001). OAA agents can be written in multiple programming languages
and run on a computer network with different operating systems. They have a parent facilitator agent, which
coordinates the communication of child agents by keeping a knowledge base of their services. Child agents are
service providers and service requesters. Service providers let the facilitator know of their own capabilities, and
2 The benefit of learning the sequence of sub-dialogues is relevant for adaptive behaviour at different levels of granularity, and further
experimentation using different sequences of sub-dialogues is left as future work.



Fig. 11. Architecture of the CSTR travel planning spoken dialogue system supporting deterministic or learnt dialogue behaviour.
Human–machine communication is carried out with speech signals xt, words wt, concepts or slots ct, and dialogue acts at.
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service requesters request capabilities from other agents. They communicate by passing string messages
between child agents and facilitator.

4.2. Speech recognition agent

The task of the speech recognition agent was to receive user speech signals after each machine prompt wm
t

and to generate a word sequence including confidence levels ~wu
t , derived from the recognition hypothesis incor-

porating confidence scores �wu
t . This agent used the multithreaded ATK API, which is a layer on top of the

HTK speech recognition libraries (Young, 2006, 2007). This agent used the acoustic models (trained with data
from British speakers) generated from the TALK project,3 and customized-based language models with a lex-
icon of 263 words. The confidence levels were assigned by dividing the confidence score range ½0 . . . 1� into
three equal areas, equivalent to l ¼ low, m ¼ medium, and h ¼ high confidence. The following table illustrates
this process.
ID
3 Our speech recogniti
Event
on and speech synthesis OAA agents use
Outcome
wm
t
 Machine prompt
 Welcome to the CSTR travel planning system
Tell me your flight information

wu

t
 User response
 I would like a single flight from Edinburgh to Paris

�wu

t
 ASR hypothesis
 how(0.27) about(0.31) a(0.15) single(0.60)

with confidence
 flight(0.56) with(0.32) b._m._i.(0.47) from(0.70)

scores
 edinburgh(0.59) to(0.40) paris(0.56)
~wu
t
 ASR hypothesis
 how(l) about(l) a(l) single(m) flight(m) with(l)
w/conf. levels
 b._m._i.(m) from(h) edinburgh(m) to(m) paris(m)

wm

tþ1
 Machine prompt
 A single flight from Edinburgh to Paris travelling with
BMI. When do you want to travel?
wu
tþ1
 User response
 I would like to travel with Air France. . .
d wrappers generated from the TALK project (Lemon et al., 2006).
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4.3. Semantic parsing agent

The semantic parsing agent generated concept or keyword sequences ~cu
t from a (distortedly) recognized

word sequence �wu
t . This agent used the Phoenix spontaneous speech parser (Ward, 1994) that maps a word

string into a semantic frame. A semantic frame is a set of slots of information, each slot with an associated
context-free grammar. Such grammars are compiled into recursive transition networks, which are matched
with the given word sequence by a top-down chart parsing algorithm. This agent used three frames (corre-
sponding to flights, hotels and cars) including 18 semantic networks. See the table below for a sample parsed
word sequence.
ID
 Event
 Outcome
wm
t
 Machine prompt
 Welcome to the CSTR travel planning system
Tell me your flight information

wu

t
 User response
 I would like a single flight from Edinburgh to Paris

�wu

t
 ASR hypothesis
 how about a single flight with b._m._i. from

wo/conf. scores
 Edinburgh to Paris
~cu
t
 Semantic parse
 Flight:[FlightType].SINGLE
Flight:[DepCity].[City].EDINBURGH

Flight:[DesCity].[City].PARIS

Flight:[Airline].BMI
~au
t
 User dialogue
 pro(FlightType=single.m,DepCity=edinburgh.m,
act
 DesCity=paris.m,Airline=bmi.m)

wm

tþ1
 Machine prompt
 A single flight from Edinburgh to Paris travelling

with BMI. When do you want to travel?
wu
tþ1
 User response
 I would like to travel with Air France. . .
4.4. Dialogue act recognition agent

This agent generated user dialogue acts ~au
t using a two-stage approach. First, a user dialogue act type was

selected taking into account the current concept sequence ~cu
t and last machine dialogue act corresponding to

the machine prompt wm
t . Once a dialogue act type had been selected, it took context into account to become a

user dialogue act ~au
t . Although it is possible to generate more than one dialogue act per user utterance, this

agent generated a single user dialogue act (see the table above for an example).
4.5. Database system agent

This agent returned database tuples based on SQL queries from the dialogue manager. It used a web scra-
per to populate a local database, retrieving travel data from a commercial web site (http://www.opodo.co.uk).
This strategy was selected for avoiding long time responses from direct queries to the web.
4.6. Dialogue management agent

The dialogue management agent is the key component to evaluate. It generated machine dialogue acts am
t

from the hierarchy of policies pi
j based on three different types of dialogue behaviours: deterministic (described

in Section 2), fully-learnt and semi-learnt (described in Section 3, more details in Cuayáhuitl (2009)). Since
these dialogue behaviours only differ in their action-selection mechanism, and the rest of the OAA-based
agents (see Fig. 11) did not change regardless of the behaviour of choice, it is fair to say that these behaviours
were evaluated under similar conditions.

http://www.opodo.co.uk
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4.7. Language generation agent

The task of the language generation agent was to generate a machine prompt wm
t in natural language based

on a template-based approach. A prompt template has a word sequence embedding variables, and was selected
given the current machine dialogue act am

t , dialogue state sm
t or joint state wm

t , and a simple help mechanism.4

Once a prompt template had been selected, it took context into account by replacing variables with values in
the machine’s knowledge base in order to generate the word sequence wm

tþ1. This agent included 463 prompt
templates. The next table shows a sample prompt template cm

t and its corresponding machine prompt wm
tþ1.
ID
4 Simpl
collection
others =

5 <http
Event
e automatic help: (a) first slot colle
: help prompt suggesting a shor
help prompt suggesting to rephras
://www.cstr.ed.ac.uk/projects/festi
Outcome
wm
t
 Machine prompt
 Welcome to the CSTR travel planning system
Tell me your flight information

~au

t
 User dialogue
 pro(FlightType=single.m,DepCity=edinburgh.m,

Act
 DesCity=paris.m,Airline=bmi.m)
am
t
 Machine
 mic(FlightType=single,DepCity=edinburgh,
Dialogue act
 DesCity=paris,Airline=bmi)+req(DepDate)

cm

t
 Prompt for action ‘mic’
 A $FlightType flight from $DepCity to $DesCity travelling with $Airline

Prompt for action ‘req’
 When do you want to travel?
wm
tþ1
 Machine prompt
 A single flight from Edinburgh to Paris travelling
with BMI. When do you want to travel?

wu

tþ1
 User response
 I would like to travel with Air France. . .
4.8. Speech synthesis agent

The speech synthesis agent generated speech signals xm
t from a given word sequence wm

t . This agent is based
on the Festival text-to-speech system5 with an HTS voice generated from eight hours of recorded speech
(Yamagishi et al., 2007). The speech signals were generated online, using a pre-processing stage to split word
sequences at punctuation symbols in order to avoid long silences in the machine’s utterance.

5. Spoken dialogue system evaluation

The aim of our experiments was to investigate if the learnt dialogue agents can outperform deterministic
behaviour in a realistic environment. For such a purpose the spoken dialogue system described in the previous
section was implemented and tested with a set of users, in laboratory conditions. Table 7 shows a sample
dialogue.

5.1. Evaluation methodology

The CSTR travel planning spoken dialogue system was evaluated using a number of metrics, mostly
derived from the PARADISE framework (Walker et al., 2000), which has been widely accepted for evaluating
the performance of spoken dialogue systems.

(i) Dialogue efficiency: This group of quantitative metrics includes system turns, user turns, and elapsed time
(in seconds). All of them report averages per dialogue goal (a conversation may have several dialogue
goals). Elapsed time includes the time used by both conversants.
ction = no help, (b) second collection = help prompt suggesting to fill multiple slots, (c) third
ter sentence, (d) fourth collection = help prompt suggesting to fill a single slot, and (e)
e the sentence.
val>.

http://www.cstr.ed.ac.uk/projects/festival
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(ii) Dialogue quality: These metrics consists of Word Error Rate (WER), Keyword Error Rate (KER), and
Event Error Rate (EvER). The latter metric is useful because dialogue systems have to handle trade-offs
among acceptance, confirmation and rejection events. The EvER metric is decomposed into the follow-
ing metrics reported as percentages: correct acceptances, correct confirmations, correct rejections, false

acceptances, false confirmations and false rejections. Other commonly reported metrics include percent-
ages of commands and barge-in, but the CSTR system did not support them.

(iii) Task success: This group of quantitative metrics includes task success and dialogue reward. Task success
uses a binary approach, where each dialogue task is classified as successful if the user achieved the goal
(e.g. booking a flight, hotel or car) as in Bohus and Rudnicky (2005). Dialogue reward combines task
success and dialogue length in terms of system turns as in Lemon et al. (2006):
Table
Sampl

Bookin

Single

Comp
DialogueReward ¼
100� jSystemTurnsj; for successful dialogue;

0� jSystemTurnsj; for failed dialogue:

�
ð11Þ
(iv) User satisfaction: These qualitative metrics include easy to understand, system understood, task easy,
interaction pace, what to say, system response, expected behaviour, and future use. The sum of these met-
rics represents the overall user satisfaction score.

5.2. Experimental setup

Our experiments evaluated the three machine dialogue behaviours described in Sections 2 and 3—deter-
ministic (‘D’), fully-learnt (‘F’), and semi-learnt (‘S’)—and were carried out with a user population of native
speakers of English. Each user was presented with six dialogue tasks (travel bookings), with the system
using each of the three behaviours twice, so that each user experienced all behaviours. The first three dia-
logues concerned single bookings and the last three dialogues concerned composite bookings. Table 5 shows
examples of single and composite travel booking tasks. The six dialogues per user were collected using one
of the following two sequences: DSFFSD and SDFFDS; i.e. half of the users interacted first with a deter-
ministic behaviour, and the other half interacted first with a learnt behaviour. Whilst deterministic and
semi-learnt behaviours started the dialogues interchangeably, fully-learnt behaviour always started the com-
posite travel bookings. This sequence of dialogues was used because other alternative sequences such as
{DSFFSD, DFSSFD, SDFFDS, SFDFDS, FSDDSF, FDSSDF} require larger data collections (the more
data the more expensive and time-consuming). Each dialogue was logged using an extended version of the
DATE dialogue annotation scheme (Walker and Passonneau, 2001). These log files were used to compute
quantitative results. In addition, at the end of each dialogue, participants were asked to fill in a question-
naire (Table 6) in order to compute qualitative results, evaluated with a 5-point Likert scale, where 5 rep-
resents the highest score.

The set of 32 users voluntarily agreed to participate in the experimental evaluation. They had an average
age of 36 with a gender distribution of 22 male (69%) vs. 10 female (31%). The participants’ countries of origin
were as follows: 17 from the UK (53%), 12 from USA (38%), and 3 from Canada (9%). From this user
5
e travel booking tasks.

g Task

Try to book a single flight from London to Paris leaving on December 6th in the afternoon, and travelling with any airline

What is the cost of the most expensive flight?
osite (a) Try to book a return flight from Edinburgh to Amsterdam leaving on January 22nd in the morning, and returning on the

1st of February in the evening. What is the cost of the cheapest flight with British Airways?
(b) Try to book a cheap hotel in downtown with any hotel brand . What is the cost of the cheapest hotel in downtown?
(c) Try to rent a compact car near the airport for three

days on January 22nd with pick-up time at 7PM

You don’t have preference in rental company
What is the rental cost of the most expensive car?



Table 6
Subjective measures for qualitative evaluation of human–machine task-oriented spoken dialogues, adapted from Walker et al. (2000).

Measure Question

Easy to understand Was the system easy to understand?
System understood Did the system understand what you said?
Task easy Was it easy to find the flight/hotel/car you wanted?
Interaction pace Was the pace of interaction with the system appropriate?
What to say Did you know what you could say at each point?
System response Was the system fast and quick to reply to you?
Expected behaviour Did the system work the way you expected it to?
Future use Do you think you would use the system in the future?
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population, 9 (28%) had no experience with spoken dialogue systems, 18 (56%) had some experience
interacting with a spoken dialogue system at least once, and 5 (16%) were expert users. The latter were
researchers in spoken dialogue processing (excluding the authors of this paper).

5.3. Experimental results

This subsection describes an analysis of results obtained from automatic and manual transcriptions at the
syntactic and semantic level. Table 8 summarizes the results obtained using the three behaviours, using statis-
tical significance tests to compare the semi-learnt behaviour against the deterministic and fully-learnt behav-
iours. For such a purpose data vectors (averaged per speaker) were verified through Lilliefors tests which
indicated that they do not come from normal distributions. This suggests that non-parametric tests should
be used. Thus, significance tests are reported with the Wilcoxon signed-rank test as suggested by Demsar
(2006).
5.3.1. Dialogue efficiency

The fully-learnt behaviour seems to outperform significantly the other behaviours by obtaining fewer sys-
tem turns, fewer user turns and less time. The result is something of an artifact, since the fully-learnt policy
could induce infinite loops in some dialogue states. In this case the dialogues were manually stopped after
three repetitive actions (considered as evidence of an infinite loop), leading to shorter dialogues but a lower
task success. The purpose of testing this dialogue policy was threefold: (1) to evaluate how users perceive a
dialogue policy with infinite loops; (2) to raise the issue of (in)coherent behaviour inferred by reinforcement
learning agents, which has been ignored in previous related work; and (3) to compare its performance against
a similar dialogue policy, but constrained with prior expert knowledge.

This phenomenon did not happen with deterministic or semi-learnt behaviours because their prior knowl-
edge constrained more tightly the available actions per dialogue state. From these two dialogue strategies, it
can be observed that semi-learnt behaviour outperformed deterministic, with significant differences in system
and user turns. These results suggest that although learnt behaviours were optimized for dialogue efficiency,
they cannot be evaluated in the same way. Therefore, a wider repertoire of evaluation metrics is preferable for
a deeper analysis of dialogue behaviours.
5.3.2. Dialogue quality

Fully-learnt behaviour obtained the lowest word and keyword error rates. These results are not statistically
significant, which suggests that behaviours were compared under similar recognition error rates. Deterministic
and semi-learnt behaviours exhibited similar word and keyword error rates, but different event error rates.
Typically, spoken dialogue strategies have to handle trade-offs between acceptance, confirmation and rejection
of recognition hypotheses, which can be classified as correct or incorrect. Ideally, dialogue behaviours should
choose actions maximizing correct acceptance/confirmation/rejection events, whilst minimizing the incorrect
ones. From these results it can be inferred that semi-learnt behaviour handled such trade-offs better than deter-
ministic behaviour by issuing more acceptances and fewer confirmations. This implies the use of more implicit



Table 7
Fragment of a real dialogue in the CSTR travel planning spoken dialogue system using fully-learnt action-selection following policies p�ij .
The dialogue states are formed by the state variables shown in Table 4.

Agent Policy State Action Dialogue Act Utterance

SYS p�00 0,0,0,0,0,0 gre gre( ) Welcome to the CSTR travel planning
system

0,1,0,0,0,0 M1
0

p�10 1,0,0 M2
0

p�20 0,0,0,0,0 M3
0

p�30 0,0,0,0,0,0,0 req req(DepCity) Tell me your flight information
USR pro(FlightType=single,DepCity=edinburgh,

DesCity=paris)
I would like a single flight from

Edinburgh to Paris

SYS p�30 0,2,2,0,0,2,2 acc
p�30 2,2,2,0,0,2,2 mic mic(FlightType=single,DepCity=edinburgh,

DesCity=paris,Airline=bmi)+req(DepDate)
A single flight from Edinburgh to
Paris travelling with BMI
When do you want to travel?

USR pro(Airline=air france) I would like to travel with Air France

SYS p�30 2,4,4,0,0,2,4 sic sic(Airline=air france)+req(DepDate) A flight travelling with air france
When do you want to travel?

USR pro(DepDate=december sixth) December the sixth

SYS p�30 2,4,4,2,0,4,4 acc
SYS p�30 3,4,4,2,0,4,4 sic sic(DepDate=may sixth)+req(DepTime) A flight leaving on May sixth

At what time do you prefer to travel?
USR rep(DepDate=december sixth, DepTime=morning) Ehh I would like to travel on December

the sixth in the morning

. . .. . .

SYS p�30 3,4,4,4,4,4,4 [terminal state]
p�20 0,0,2,2,0 dbq+sta dbq(db)+sta(db) Please wait while I retrieve

information
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confirmations and fewer explicit confirmations, which helps to explain why semi-learnt behaviour was more
efficient than the deterministic one. Although dialogue policies were not optimized for ‘event error rate’
(see Eq. (12), p. 40), these results suggest that optimizing for dialogue efficiency produced an indirect optimi-
zation for such trade-offs. In addition, it can be observed that deterministic and semi-learnt behaviours are
significantly different in all recognition events (correct/false acceptance/confirmation/rejection). In contrast,
both learnt behaviours are significantly different in only half of the recognition events, suggesting that learnt
behaviours act in a more similar way than deterministic behaviour.

5.3.3. Task success

Fully-learnt behaviour was significantly outperformed by the other behaviours that generated more suc-
cessful conversations. This is where fully-learnt behaviour paid the price for generating some infinite dialogues
that had to be artificially terminated before successful completion. In addition, whilst deterministic and semi-
learnt behaviours were very similar in terms of task success, semi-learnt behaviour significantly outperformed
its deterministic counterpart in terms of dialogue reward. This suggests that the dialogue reward metric is
reflecting well the combined results from dialogue efficiency and dialogue accuracy.

5.3.4. User satisfaction

Users evaluated the semi-learnt behaviour as the best. Although, semi-learnt behaviour was significantly
different to fully-learnt behaviour, it was not significantly different to its deterministic counterpart. A similar
user satisfaction result was found by Singh et al. (2002) and Lemon et al. (2006). The performance of opti-
mized confirmation strategies may be obscured by high recognition error rates. Future experiments could
investigate optimized confirmation strategies under lower recognition error rates. In addition, the differences
between learnt behaviours were statistically significant in the following qualitative metrics: system understood,
task easy, expected behaviour, and future use. Similar differences were observed when comparing statistical sig-



Table 8
Results of the CSTR travel planning spoken dialogue system comparing three different dialogue behaviours, organized according to the
following groups of metrics: dialogue efficiency, dialogue quality, task success and user satisfaction.

Measure Behaviour p-Values

Deterministic(1) Fully-learnt(2) Semi-learnt(3) ð1;2Þ ð1;3Þ ð2;3Þ

Avg. system turns 16.63 12.24 15.09 6 0:05 6 0:05 6 0:05
Avg. user turns 14.38 9.69 12.63 6 0:05 6 0:05 6 0:05
Avg. time (s) 177.23 139.59 165.11 6 0:05

Word error rate 0.429 0.410 0.428
Keyword error rate 0.300 0.278 0.301
Event error rate 0.409 0.351 0.372
Correct acceptance 5.51 26.34 20.95 6 0:05 6 0:05
Correct confirmation 48.51 36.17 39.86 6 0:05 6 0:05 6 0:05
Correct rejection 5.18 2.37 1.92 6 0:05 6 0:05
False acceptance 3.25 12.27 9.30 6 0:05 6 0:05 6 0:05
False confirmation 32.64 20.11 26.60 6 0:05 6 0:05 6 0:1
False rejection 4.91 2.55 1.36 6 0:05 6 0:05

Avg. task success 0.94 0.62 0.95 6 0:05 6 0:05
Avg. dialogue reward 79.46 54.68 82.56 6 0:05 6 0:05 6 0:05

Easy to understand 4.34 4.31 4.44
System understood 3.09 2.72 3.28 6 0:05 6 0:05
Task easy 3.50 3.00 3.45 6 0:1 6 0:05
Interaction pace 3.52 3.55 3.50
What to say 3.45 3.47 3.58
System response 3.67 3.64 3.63
Expected behaviour 3.42 3.08 3.52 6 0:05 6 0:05
Future use 3.14 2.83 3.28 6 0:05 6 0:05
User satisfaction 28.14 26.59 28.67 6 0:1 6 0:05

(1) Note on statistical significance: typically, p-values p 6 0:05 are considered to be statistically significant, and p-values p 6 0:1 are
indicative of a statistical trend.
(2) Note on task success: the drop of performance in fully-learnt behaviour was mainly caused by infinite loops, where the execution of

action a in state s did not change the state s0 ¼ s.
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nificance between deterministic and fully-learnt behaviour. These results suggest that those are the metrics
with more impact on perceived system performance in the presence of unexpected dialogue behaviour such
as infinite loops.

These results can be summarized as follows. First, dialogues by deterministic and semi-learnt behaviour
were significantly more successful than dialogues by fully-learnt behaviour. These unsuccessful dialogues were
reflected in the efficiency metrics, where fully-learnt behaviour falsely seems to be most efficient. Second, deter-
ministic and semi-learnt behaviours are equally successful but the latter is more efficient (at p 6 0:05 in system/
user turns). Third, real users perceived fully-learnt behaviour as the worst (with statistical trend for determin-
istic vs. fully-learnt, and significant at p 6 0:05 for fully-learnt vs. semi-learnt). Finally, the problem of infinite
loops could have been avoided (e.g. by backing off from learnt behaviour to a deterministic one in dialogue
states with potential infinite loops); however, if a dialogue policy uses fully-learnt behaviour without a good
reward function or without constraints to generate dialogues that make sense to humans, then it may not learn
successful and coherent behaviours. According to the quantitative and qualitative results above, it can be con-
cluded that semi-learnt behaviour was better than the other behaviours.

5.4. Analysis of results based on users with only successful dialogues

A further (and possibly more fair) comparison of spoken dialogue behaviours was based on users with only
successful dialogues (9 users out of 32, where each user did six dialogue tasks)—shown in Table 9. It shows a
summary of results comparing deterministic, fully-learnt and semi-learnt behaviour; including statistical
significance. Firstly, it can be observed that both learnt behaviours were more efficient (in system/user turns,



Table 9
Results of the CSTR travel planning spoken dialogue system using data from users—with only successful dialogues. They are organized in
the following groups of metrics: dialogue efficiency, dialogue quality, task success and user satisfaction.

Measure Behaviour p-Values

Deterministic(1) Fully-learnt(2) Semi-learnt(3) ð1;2Þ ð1;3Þ ð2;3Þ

Avg. system turns 14.58 11.94 12.58 60.05 60.05
Avg. user turns 12.50 9.75 10.23 60.05 60.05
Avg. time (s) 159.74 142.69 132.48 60.05

Word error rate 0.343 0.265 0.276
Keyword error rate 0.209 0.137 0.167 60.1
Event error rate 0.365 0.233 0.175 60.1 60.1

Avg. task success 1.00 1.00 1.00
Avg. dialogue reward 85.42 88.06 87.42 60.05 60.05

User satisfaction 31.28 31.78 32.39
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at p 	 0:05) than their deterministic counterpart, and the differences between learnt behaviours were not sta-
tistically significant. Secondly, no significant differences were observed in dialogue quality. However, the sta-
tistical trend in event error rate suggests that the semi-learnt behaviour handled the trade-offs of acceptance/
confirmation/rejection events more effectively. Thirdly, it can be noted that both learnt behaviours obtained
more reward than their deterministic counterpart, and that therefore this metric is reflecting the significant
differences observed from efficiency metrics. Last, similar to the results for all dialogues, the semi-learnt behav-
iour obtained the highest score in user satisfaction, but the differences were not statistically significant.

These results lead us to conclude that semi-learnt dialogue behaviour is a better alternative than determin-
istic, and indicate that its performance is comparable to that of fully-learnt behaviour when they are evaluated
on only successful dialogues.

5.5. Do people want to talk to spoken dialogue systems?

At the end of each experimental session, participants were asked the following question: ‘Would you use
spoken dialogue systems for other tasks based on this experience?’ Participants ranked their preference using
a 5-point Likert scale, where the higher the score, the better the satisfaction. We observed that only 12% (4)
percent of participants were pessimistic in their future use, 56% (18) of participants preferred to stay neutral,
and 31% (10) were optimistic in its future use. The scores in preference of future use per user type were 3.0 for
novice users, 3.28 for experienced users, and 3.2 for expert users (see p. 21 for proportions of user types). To
further analyze this, consider splitting the group of participants: the first group with dialogue reward smaller
than 80 and the rest in the second group. There was a 2.8 score in preference of future use for the first group of
participants against a 3.7 score for the second group. Based on this result (significant at p ¼ 0:006) it can be
inferred that the higher the dialogue reward the higher the preference for future use of dialogue systems.
6. Evaluation of simulated behaviours

The evaluation of simulated behaviours described in this section have three purposes: (1) to investigate the
differences between real and simulated speech recognition, (2) to investigate if simulated user behaviour gen-
erates user responses that resemble human responses, and (3) to investigate if the hand-crafted dialogue strat-
egy is a reasonable baseline to compare against other competing dialogue strategies.

6.1. Real vs. simulated speech recognition

The real conversational environment used the ATK/HTK speech recognizer, and the simulated one used a
simulated speech recognition error model (see Section 2.2). Recognition results in terms of Keyword Error
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Fig. 12. Probability density functions estimated from observed speech recognition confidence scores of keywords in data collected by the
CSTR travel planning system.
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Rate (KER) for both environments were as follows: 20% in the simulated environment and 29% in the real
one. For confidence scoring, the real environment showed confidence scores based on the probability density
functions shown in Fig. 12 (estimated from real data based on a normal density function), and the simulated
environment generated uniformly distributed random confidence scores resulting in equal numbers of confi-
dence levels. It can be observed that simulation used a more conservative KER and different distributions
of confidence levels. This is because no training data was assumed, where the realistic probability distributions
for recognition errors and confidence scoring were unknown.

Previous work in Automatic Speech Recognition (ASR) simulation has assumed that exponential probabil-
ity distributions can model the behaviour of ASR confidence scorers (Pietquin, 2004; Williams, 2006). This
research found that this assumption does not hold for the ASR system used here. Instead, the gamma prob-

ability distributions are suggested to simulate ASR confidence scores, which are more flexible and include the
exponential distribution. Thus, learnt dialogue policies in a second stage can be retrained with more realistic
ASR behaviour in order to generate potentially even better policies. Nevertheless, it was found that even con-
servative ASR error modelling was sufficient to find better policies than deterministic behaviour.

6.2. Real vs. simulated user behaviour

Simulated user behaviour was compared against real user behaviour and against random user behaviour
(see Section 2 for details on dialogue simulation). Because there is a variety of proposals on how to evaluate
user simulations, we proposed two metrics to evaluate user behaviour based on dialogue similarity (using the
Kulback–Leibler divergence) and dialogue coherence (using coherence error rate), and also validated their
results with the more established Precision-Recall metric based on the F-measure score (Schatzmann et al.,
2005). These metrics were applied as described in Appendix A. The objectives of this evaluation were: (a)
to observe if the simulated user model used to learn the dialogue strategies was a reasonable thing to use
and (b) to validate that dialogue realism could be distinguished by the proposed metrics (KL divergence
and CER).

This evaluation used three sets of user responses: (1) real user responses were extracted from annotated data
from the realistic environment, consisting in 192 dialogues including 4623 user utterances; (2) simulated coher-
ent responses using Algorithm 1 described in Section 2; and (3) simulated random responses using the same
algorithm, but with a random choice of user dialogue acts (at line 12) and with a random sequence of slots. All



Table 10
Evaluation of real and simulated user behaviour with Precision-Recall in terms of F-measure (the higher the better) and KL divergence
(the lower the better).

Compared dialogues F-measure KL divergence

Less strict More strict

Real1 vs. Real2 0.915 0.749 1.386
Real vs. simulated coherent 0.708 0.612 4.281
Real vs. simulated random 0.633 0.360 5.025
Simulated coherent vs. simulated random 0.417 0.247 6.532

Notes: (1) The less strict F-measure score considers a user response as a sequence of actions, and the more strict score considers a user
response as a single action, (2) the real dialogues were divided into two subsets (‘Real1’ and ‘Real2’) to provide an upper-bound score, (3)
KL divergence used Witten–Bell discounting to smooth the probability distributions.

420 H. Cuayáhuitl et al. / Computer Speech and Language 24 (2010) 395–429
user responses (real, simulated coherent or simulated random) were derived from machine dialogue acts in the
real logged data, which enabled a fairer comparison. In addition, the user responses were not distorted because
they were compared before speech recognition occurred.

Table 10 shows an evaluation of simulated user behaviour using Precision-Recall and KL divergence. It can
be seen that both metrics agreed in the ranking of dialogue realism, including the proposed KL divergence
metric. These results show that simulated coherent behaviour is more similar to real user behaviour than sim-
ulated random behaviour. It can be observed that the Precision-Recall of simulated coherent behaviour
obtained higher scores than those reported before (Schatzmann et al., 2005; Georgila et al., 2006), approach-
ing the upper-bound scores from real user behaviour.

In addition, the results in terms of Coherence Error Rate (CER) for real, simulated and random responses
were 8.23%, 2.99%, 30.10%, respectively. It can be observed that simulated coherent behaviour behaved very
optimistically, that is not very different from real user behaviour, and it is significantly different from the
coherence of random behaviour. This metric is interesting because it evaluates a different perspective from
the existing metrics, and so it may be used as a complementary evaluation.

6.3. Evaluating the baseline of machine dialogue behaviour

The use of speech recognition confidence scores forces spoken dialogue strategies to handle trade-offs
among acceptance, confirmation and rejection events ei, which can be classified as correct Ec ¼ fca; cc; crg
or incorrect Ef ¼ ffa; fc; frg. Table 11 shows the categories of recognition events. A reasonable dialogue strat-
egy would choose actions maximizing correct acceptance/confirmation/rejection events, whilst minimizing the
incorrect ones. A simple metric to quantify these events is referred to as an Event Error Rate (EvER):
Table
Speech

Recog

Accep
Confir
Reject
EvER ¼
count ei 2 Ef

� �
count ej 2 fEc;Ef g

� �� 100: ð12Þ
For such a purpose, consider that speech recognition hypotheses fall within three equally distributed regions
of confidence scores (assuming no training data): low confidence, medium confidence, and high confidence.
In addition, consider the confirmation strategies P of Table 12 for the three confidence regions. Which
confirmation strategy is a better baseline of machine behaviour? For perfect speech recognizers it has to be
‘Strategy1’, because it leads to more efficient conversations in terms of number of system turns; but this is
11
recognition events in spoken dialogue systems.

nition event Correct False (or incorrect)

tance ca fa
mation cc fc
ion cr fr



Table 12
Confirmation strategies for different recognition confidence score regions. Notation: IC = implicit confirmations, EC = explicit
confirmations, and AP = apologies.

Strategy Low confidence Medium confidence High confidence

Strategy1 IC IC IC
Strategy2 EC IC IC
Strategy3 AP EC IC
Strategy4 AP EC EC
Strategy5 EC EC EC

Table 13
Event Error Rate (EvER) results of real dialogues for confirmation strategies of Table 12. Abbreviations: ca = correct acceptance,
cc = correct confirmation, cr = correct rejection, fa = false acceptance, fc = false confirmation, and fr = false rejection.

Strategy ca(%) cc(%) cr(%) fa(%) fc(%) fr(%) EvER(%)

Strategy1 73.6 0 0 26.3 0 0 26.3
Strategy2 71.9 2.2 0 17.0 9.3 0 26.3
Strategy3 26.7 44.6 9.3 2.5 14.4 2.2 19.2
Strategy4 0 71.4 9.3 0 17.0 2.2 19.2
Strategy5 0 73.6 0 0 26.3 0 26.3
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unrealistic. Thus, a more reasonable choice of dialogue strategy is the one obtaining the lowest EvER score,
and can be expressed as
Baseline Strategy ¼ arg min
pi2P

EvERðpiÞ: ð13Þ
This metric was used to evaluate—with real data—the deterministic (hand-crafted) machine dialogue behav-
iour of the system, in order to find a reasonable baseline of machine dialogue behaviour. From the data col-
lected by the system, we used all keywords (with automatic and manual transcriptions) including their
corresponding speech recognition confidence scores, and computed the EvER for such confirmation strategies
(Table 13). It can be seen that the deterministic behaviour of choice in this research (Strategy3) indeed ob-
tained the lowest EvER, together with ‘Strategy4’. Although they obtained the same result, the former is more
attractive, due to its use of implicit confirmations because it leads towards more efficient conversations. There-
fore, it can be concluded that the learnt dialogue strategies were compared against a reasonable baseline of
deterministic machine dialogue behaviour.

7. Related work

7.1. Dialogue strategy learning

Walker (1993, 1996) developed the notion of a simulation environment to test dialogue strategies and
Walker (1993) and Biermann and Long (1996) proposed the notion of automatically optimizing a dialogue
strategy. Reinforcement learning approaches based on the Markov Decision Process (MDP) model were first
applied to dialogue strategy learning by Levin and Pieraccini (1997) in a simulation-based approach and by
Walker et al. (1998) in a corpus-based approach. Since then there have been several developments in the field
(Levin et al., 2000; Walker, 2000; Young, 2000; Singh et al., 2002; Scheffler, 2002; Pietquin, 2004; Williams,
2006; Toney, 2007; Young et al., 2007; Frampton, 2008), largely adopting flat tabular reinforcement learning
approaches. The scalability of such approaches is limited because of the curse of dimensionality: the exponen-
tial growth of the search space according to the number of state variables taken into account. Even a system
with a simple state representation may have a large search space which can quickly become intractable. This
problem has led to the use of function approximation (Denecke et al., 2004; Henderson et al., 2008) in order to
find solutions on reduced state–action spaces. These investigations have been applied to small-scale dialogue
systems aiming for a single global solution. However, less attention has been paid to finding solutions using a
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divide-and-conquer approach: hierarchical POMDPs with a bottom-up approach have been applied to small
state–action spaces (Pineau, 2004), and hierarchical reactive planning and learning has been used for dialogue
systems with few slots of information (Lemon et al., 2006; Rieser and Lemon, 2008b). Our spoken dialogue
system in the travel planning domain was implemented with five dialogue goals and 26 slots of information.
This is the largest scale spoken dialogue system so far (in terms of dialogue goals and slots) tested using the
reinforcement learning paradigm.

Our approach for incorporating prior expert knowledge into reinforcement learning agents is based on the
Hierarchical Abstract Machines (HAMs) of Parr and Russell (1997). In this approach the system designer
specifies a partial program (HAM) and leaves the unspecified part to the hierarchical reinforcement learning
agent. This is an important extension to the fully-learnt approach because it constrains each hierarchical
SMDP with some prior expert knowledge, in order to combine dialogue behaviour specified by human design-
ers with behaviour automatically inferred by reinforcement learning agents.

Litman et al. (2000), Walker (2000), and Singh et al. (2002) incorporated prior knowledge into MDP-based
spoken dialogue systems (NJFun, ELVIS) by means of hand-crafted rules used to compress the state–action
space. This approach allowed them to perform very efficient dialogue strategy learning. However, NJFun and
ELVIS do not provide a formal framework for incorporating prior knowledge and applying flat dialogue opti-
mization. This is in contrast to our approach which is based on deterministic-stochastic finite state machines
and adopts a hierarchical structure for optimization.

Heeman (2007) proposed combining the information-state update approach with reinforcement learning
agents. In this approach the information-state (dialogue state) is hand-crafted by update rules based on pre-
conditions and effects. A subset of preconditions that are easy to specify are hand-crafted, and those less easy
to specify are left to the reinforcement learning agent. Again this uses flat reinforcement learning.

Williams (2008) proposed executing a POMDP and a hand-crafted dialogue controller in parallel. At
each time step, the hand-crafted controller is in state s (e.g. semantic frame) and the POMDP is in belief
state b (probability distribution over POMDP states), the hand-crafted controller nominates a subset of
actions, and the POMDP updates a value function only for that particular subset of actions. Thus, a
POMDP solution is found on a more compact space of policies. Our approach and Williams’ approach
share the idea of executing a partial program in parallel with an optimized decision-making model, but
we use a decomposed MDP and optimize a hierarchy of partial programs, which is more scalable and suit-
able for reusability.

7.2. Evaluation of simulated user behaviour

Researchers in spoken dialogue tend to agree that realistic simulated user behaviour must exhibit ‘human-
like behaviour’ (Georgila et al., 2006). Schatzmann et al. (2005) found that the quality of the learnt dialogue
strategies is strongly dependent on the simulated user model, where good (realistic) user models help to find
better policies than poor user models. Ai and Litman (2008) evaluated real and simulated dialogues using
human judges and found that no strong agreement can be reached by humans on the quality of the dialogues,
but humans consistently rank models of simulated user behaviour.

Previous work has proposed several evaluation metrics for assessing the realism of user simulations and can
be grouped into two broad approaches: dialogue similarity and system performance. The former approach
assumes that given a set of metrics, a set of simulated dialogues, and a set of real dialogues, the realism of
simulated dialogues increases as their scores approach those obtained by real ones. Most previously proposed
evaluation metrics fall within this approach (Eckert et al., 1997; Scheffler and Young, 2000; Scheffler and
Young, 2002; Schatzmann et al., 2005; Filisko, 2006; Georgila et al., 2005; Cuayáhuitl et al., 2005; Rieser
and Lemon, 2006; Ai and Litman, 2007). This approach is useful for giving a rough indication of the similarity
between simulated and real dialogues, but it penalizes unseen behaviour (even when it may be realistic). The
latter approach ranks simulated user models in terms of their prediction of the performance of a dialogue sys-
tem. This is motivated by the fact that simulated user models should improve machine dialogue behaviours
rather than generating human-like conversations (Williams, 2007). Both approaches are limited by the fact
that they require real dialogue data, which may not exist at early stages of system development, and that they
cannot distinguish if a given sequence of machine–user dialogue acts is realistic or not.
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Our proposed KL divergence metric complements the previous dialogue similarity metrics by comparing
probability distributions of user dialogue acts, and showed agreement with the Precision-Recall metric. In con-
trast with previously proposed metrics, our proposed coherence error rate metric can distinguish if a given
sequence of machine–user dialogue acts is realistic or not. Because this latter metric uses hand-crafted coher-
ence rules, a potential future work is to induce such rules automatically from data.
8. Conclusions and future work

In this paper we have developed a hierarchical reinforcement learning spoken dialogue system, based on an
SMDP, and evaluated it with real users in a laboratory setting. Both fully-learnt and semi-learnt machine dia-
logue behaviours were used and compared with a baseline hand-crafted dialogue strategy. To the best of our
knowledge, this is the first evaluation of SMDP-based reinforcement learning dialogue agents in a realistic
environment.

Semi-learnt behaviour was quantitatively better than the other dialogue behaviours. It achieved similar task
success to deterministic behaviour (95%) and more efficient conversations by using 9% fewer system turns,
12% fewer user turns, and 7% less time (at p < 0:05Þ. It also outperformed fully-learnt behaviour by 35%
in terms of higher task success (at p < 0:05Þ; an evaluation based on users with only successful dialogues
did not report significant differences. However, although fully-learnt behaviour resulted in inferior overall per-
formance, it cannot be discarded as a better alternative to hand-crafted behaviour. But it is less flexible and
less coherent than semi-learnt behaviour because it does not include a mechanism to guarantee coherent
actions, which is essential for successful dialogues. On the other hand, while users did perceive significant qual-
itative differences between fully-learnt behaviour and the semi-learnt behaviour and statistical trend between
fully-learnt and deterministic, users did not observe significant differences between deterministic and semi-
learnt behaviours. Our key findings may be summarized as follows:

1. Hierarchical semi-learnt dialogue agents are a better alternative (with higher overall performance) than
deterministic or fully-learnt behaviour.

2. The proposed simulated environment with coherent user behaviour, and distorted with conservative speech
recognition error rates (keyword error rate of 20%) was sufficient for learning dialogue policies with supe-
rior performance to a reasonable hand-crafted behaviour.

3. The evaluation metrics Precision-Recall and KL divergence agreed in the ranking of dialogue realism.
4. Real users act with highly coherent behaviour at the dialogue act level (real users behaved coherently 92%

of the time according to the metric ‘coherence error rate’).
5. Hierarchical reinforcement learning dialogue agents are feasible and promising for the (semi)automatic

design of optimized behaviours in larger-scale spoken dialogue systems.

We suggest the following research avenues for endowing conversational agents with optimized, adaptive,
robust, scalable and effective spoken dialogue behaviours.

First, one of the most important limitations of this work was the lack of a robust approach for updating
slot values. Due to the fact that speech recognition hypotheses may include errors, it is not trivial to know
when to update the recognized slot values and when to reject them. The effect of non-robust keyword updating
is that the system eventually gives the impression of forgetting what has been said before. This highlights the
importance of effective and efficient mechanisms for dialogue history tracking. Future research can incorpo-
rate beliefs into the knowledge rich-states of the proposed framework with ideas from approaches such as
regression methods (Bohus and Rudnicky, 2005), POMDPs (Williams, 2006), or Bayesian updates (Thomson
et al., 2008).

Second, we focused on optimizing confirmation strategies to keep their assessment simple rather than eval-
uating multiple dimensions. But there is a wide range of optimized behaviours that can be incorporated into
this kind of system. For example: learning initiative strategies, learning to give help, learning to ground, learn-
ing to present information, learning to clarify, learning to negotiate, learning to recover from errors, learning
multimodal strategies, and learning to collaborate. The thorough integration of all these behaviours into a sin-
gle framework remains to be investigated.
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Third, our optimization approaches include support for tabular hierarchical reinforcement learning. How-
ever, if a given subtask is intractable (i.e. the state–action space becomes too large and indecomposable) then
alternative methods should be adopted to make such subtasks feasible. One of the most promising approaches
reported in the literature of reinforcement learning is that of function approximation. The optimization
approaches employed in this paper could be combined with function approximators such as neural networks
or linear function approximation (Henderson et al., 2008).

Fourth, the current practice of reinforcement learning for spoken dialogue uses a single reward function.
Although the proposed approaches in this paper allowed the use of a different reward function per subtask,
the experimental setting used the same performance function across the entire hierarchy. Intuitively, hierarchi-
cal dialogue optimizations may require different types of reward function at different levels of granularity.
Moreover, as the dialogue complexity increases, it becomes more difficult to specify such performance func-
tions. It remains to be investigated how to specify or infer such hierarchical reward functions since the learnt
behaviour strongly depends on the reward function (Walker, 1993, 2000; Rieser and Lemon, 2008a).

In the proposed approaches the system designer has manually to remove irrelevant state variables and
actions for each subtask. Although this is useful because it allows the system designer to specify what to
remove, it may become problematic if relevant information is removed, leading to unsafe state abstraction.
Therefore, it would be useful to have a method for performing state abstraction of dialogue information in
a safer way (Dietterich, 2000).

Finally, the simulated conversational environment that we used did not model errors as in a real environ-
ment, which was to be expected due to the lack of training data. Nonetheless, the experimental results pro-
vided evidence to conclude that this heuristic-based dialogue simulation approach was useful to learn
dialogue strategies with superior performance compared with a reasonable baseline of deterministic behav-
iour. This result is relevant for spoken dialogue systems in new domains, where annotated dialogue data is
not available. Our simulated environment could be enhanced with probability distributions estimated from
real annotated data as in Schatzmann et al. (2007). However, due to the fact that collecting training data is
costly and time-consuming, a potential future work is to investigate methods for generalizing simulated behav-
iours for dialogue systems across different domains.
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Appendix A. Evaluation metrics for user behaviour

The evaluation of real and simulated user behaviour was carried out with three evaluation metrics from two
different perspectives. The first perspective evaluates ‘dialogue similarity’, where Precision-Recall quantifies the
predicted user responses from a user simulation model (strongly penalizes unseen responses (Schatzmann
et al., 2005)), and probabilistic dialogue similarity complements the previous metric by comparing probability
distributions of user dialogue acts based on the Kulback–Leibler divergence (Cuayáhuitl et al., 2005). The sec-
ond perspective evaluates ‘dialogue coherence’, where coherence error rate ignores the seen or unseen user
responses; instead, it classifies them into coherent or incoherent responses.

To illustrate the evaluation metrics consider the following sub-dialogues with common system responses
assumed from logged real data, but user responses may be real (as in Table 14) or simulated (as in Tables
15 and 16). The acronyms of dialogue act types are described in Table 1.

A.1. Precision-Recall

This measure is commonly used in the information retrieval field, and was suggested by Schatzmann et al.
(2005) to evaluate how well a user simulation model can predict real user dialogue behaviour. Precision spec-
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Table 14
Sample sub-dialogue with user responses assumed from logged real data.

Agent Dialogue Act Wording

SYS gre(), Welcome to the travel planning system
req(dep_city) Tell me your flight information.

USR pro(dep_city=amsterdam,flight_type=return) I would like a return flight leaving from Amsterdam

SYS sic(flight_type=return), req(dep_city) A return flight, where are you leaving from?
USR pro(dep_city=amsterdam) Amsterdam

Table 15
Sample sub-dialogue with simulated coherent user responses.

Agent Dialogue Act Wording

SYS gre(), Welcome to the travel planning system
req(dep_city) Tell me your flight information

USR pro(dep_city=amsterdam,dep_time=morning, airline=air
france, flight_type=return)

A return flight from Amsterdam travelling in the morning
with Air France

SYS sic(flight_type=return), A return flight, where are you leaving from?
req(dep_city)

USR pro(dep_city=amsterdam) Amsterdam

Table 16
Sample sub-dialogue with simulated random user responses.

Agent Dialogue Act Wording

SYS gre(), Welcome to the travel planning system
req(dep_city) Tell me your flight information

USR con(dest_city=yes) Yes

SYS sic(flight_type=return), req(dep_city) A return flight, where are you leaving from?
USR pro(des_city=amsterdam) To Amsterdam
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ifies the fraction of correctly predicted real user responses from all simulated responses. Recall specifies the
fraction of correctly predicted real user responses from all real responses. They are expressed as
Precision ¼ Number of correctly predicted user responses

Total number of simulated user responses
ð14Þ
and
Recall ¼ Number of correctly predicted user responses

Total number of real user responses
: ð15Þ
These scores are interpreted as the higher the more realistic the user responses. An average score of recall (R)
and precision (P) called F-measure is defined by
F ¼ 2PR
ðP þ RÞ : ð16Þ
If we want to compute the F-measure score in dialogue data, the slot values can be ignored to reduce data
sparsity while preserving the conveyed information. Schatzmann et al. (2005) suggested to compute Precision-
Recall by considering a user dialogue act as a sequence of actions, e.g. the dialogue act ‘pro(dep_city,
flight_type)’ is equivalent to {pro(dep_city), pro(flight_type)}. Considering the given sample sub-dialogues,
the F-measure score for real vs. simulated coherent responses is F ¼ 0:75, and the score for real vs. simulated
random responses is F ¼ 0. Alternatively, the scores can be computed in a more strict way by considering each
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user response as a single user action instead of multiple ones. Precision-Recall can be recomputed as follows:
the scores for real vs. simulated coherent responses are F ¼ 0:5; and the score for real vs simulated random
responses is F ¼ 0.

A.2. Probabilistic dialogue similarity

The purpose of this measure is to evaluate the probabilistic similarity between two sets of dialogues. The
similarity between real and simulated dialogues has been analyzed using the Kulback–Leibler divergence
(Cuayáhuitl et al., 2005), and here we propose to apply it in a simpler way. First, compute two smoothed prob-
ability distributions of machine–user dialogue acts, without slot values for reduced combinations: P for one
data set and Q for the other. For example: P represents a distribution of the set of real dialogues and Q a dis-
tribution of the set of simulated ones. Then compute the symmetric distance according to
Table
Dialog

Dialog

gre(),r
sic(flig
sic(flig

Diverg

Table
Dialog

Dialog

gre(),r
sic(flig
gre(),r
sic(flig

Diverg
DðP ;QÞ ¼ DKLðPkQÞ þ DKLðQkP Þ
2

; ð17Þ
where DKL is the Kulback–Leibler divergence (distance) between P and Q:
DKLðPkQÞ ¼
X

i

pi log2

pi

qi

	 

: ð18Þ
Tables 17 and 18 use the sample sub-dialogues of this subsection in order to show the divergence between
real and simulated coherent user responses, and between real and simulated random user responses. The prob-
ability distributions of occurrence P and Q were smoothed by assigning a probability mass of 0.1 to unseen
events, and the method of preference can be used to address the issue of data sparsity. It can be observed that
the symmetric divergence between real and simulated random user responses (2.536) is greater than between
real and simulated coherent ones (0.759). This reflects the intuitive perception that the more realistic the user
responses, the shorter the divergence.

It can be observed that this metric gives the same ordering on user simulations than the Precision-Recall
metric. A validation of this ordering based on a corpus of real human–machine dialogues is reported in Sec-
tion 6.
17
ue similarity results for real vs. simulated coherent sub-dialogues.

ue Act Pairs (SYS:USR) P Q DKLðP jjQÞ DKLðQjjP Þ
eq(dep_city):pro(dep_city,flight_type) 0.45 0.45 0.000 0.000
ht_type)+req(dep_city):pro(dep_city) 0.45 0.10 0.976 �0.217
ht_type)+req(dep_city):pro(dep_city,des_city,dep_time,airline) 0.10 0.45 �0.217 0.976

ence 0.759 0.759

18
ue similarity results for real vs. simulated random sub-dialogues.

ue Act Pairs (SYS:USR) P Q DKLðP jjQÞ DKLðQjjP Þ
eq(dep_city):pro(dep_city,flight_type) 0.45 0.05 1.426 �0.158
ht_type)+req(dep_city):pro(dep_city) 0.45 0.05 1.426 �0.158
eq(dep_city):con(des_city) 0.05 0.45 �0.158 1.426
ht_type)+req(dep_city):pro(des_city) 0.05 0.45 �0.158 1.426

ence 2.536 2.536



Table 19
Results of coherence for real and simulated user responses.

Data set Dialogue Act Pairs (SYS:USR) incoherent au
t ; k

u
t

� �
Real gre(),req(dep_city):pro(dep_city) 0

gre(),req(dep_city):pro(flight_type) 0
sic(flight_type),req(dep_city):pro(dep_city) 0

Simulated coherent gre(),req(dep_city):pro(dep_city) 0
gre(),req(dep_city):pro(dep_time) 0
gre(),req(dep_city):pro(airline) 0
gre(),req(dep_city):pro(flight_type) 0
sic(flight_type),req(dep_city):pro(dep_city) 0

Simulated random gre(),req(dep_city):con(dest_city) 1
sic(flight_type),req(dep_city):pro(des_city) 0
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A.3. Coherence Error Rate

An evaluation metric called Coherence Error Rate (CER) is proposed due to the fact that most previously
used metrics penalize unseen user responses even when they may be realistic. The key assumption in this metric
is that given a user knowledge-base ku

t and a set of dialogue coherence rules encoded into a function, we can
evaluate—in an approximated form—whether a user action au

t is coherent or not. This metric rates errors (in
this context, incoherent dialogue acts) from a set of observed events (user dialogue acts in the data), in terms of
dialogue act types (see Table 1):
CER ¼
P

incoherent au
t ; k

u
t

� �
count au

t

� � � 100; ð19Þ
where the coherence of user dialogue acts is evaluated according to
incoherent au
t ; k

u
t

� �
¼

0; if au
t 2 fpro; repg and unconfirmed slot in focus in ku

t ;

0; if au
t 2 fcong and am

t 2 fsec;mecg;
0; if au

t 2 fpro; repg and am
t 2 frelg;

1; otherwise:

8>>><
>>>:

ð20Þ
Eq. (20) is suited for simple slot-filling applications, but for more complex dialogues more rules have to be
added. This metric takes into account user dialogue acts and decomposes them into dialogue acts with a single
slot and without slot value, e.g. proðdes cityÞ. This procedure incorporates the conveyed information, and
assumes that the slot values are always consistent given a user goal at the beginning of the conversation. In
addition, this evaluation metric considers user responses with silences or incomplete dialogue acts as incoher-
ent, the explanation for this consideration is because whatever the user said (e.g. mumbles or out-of-vocabu-
lary words), it was not possible to extract a user dialogue act contributing to the conversation (Table 19).

Given the sample sub-dialogues of this subsection, Table 19 shows the results of coherence for real, simu-
lated coherent and simulated random user responses: 0%, 0%, 50%, respectively. Note that although simulated
coherent user responses do not match the real ones, they are not being penalized because they are responses
that make sense according to the dialogue history.
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