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Abstract

In this article, we describe and interpret a set of acoustic and linguistic features that
characterise emotional/emotion-related user states — confined to the one database
processed: four classes in a German corpus of children interacting with a pet robot.
To this end, we collected a very large feature vector consisting of more than 4000
features extracted at different sites. We performed extensive feature selection (Se-
quential Forward Floating Search) for seven acoustic and four linguistic types of
features, ending up in a small number of ‘most important’ features which we try
to interpret by discussing the impact of different feature and extraction types. We
establish different measures of impact and discuss the mutual influence of acoustics
and linguistics.
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1 Introduction

The manifestations of affective/emotional states in speech have become the
subject of great interest in recent years. In this article, we refrain from at-
tempting to define terms such as ‘affect’” vs. ‘emotion’; and to attribute classes
in a general way to the one term or the other. For those definitions we refer to
the literature, e. g. to Cowie and Cornelius (2003); Ortony et al. (1988); Picard
(1997). Furthermore, the phenomena we are interested in are partly cognitive.
We therefore follow the convention of the HUMAINE project and employ the
term ‘pervasive emotion’ in a broader sense encompassing ‘... whatever is
present in most of life, but absent when people are emotionless ...”, cf. Cowie
et al. (2010); this term includes pure emotions and ‘emotion-related states’
such as ‘interpersonal stances’ which are specified as “affective stance taken
towards another person in a specific interaction, colouring the interpersonal
exchange in that situation” in Scherer (2003). Human-machine interaction will
certainly profit from including these aspects, becoming more satisfactory and
efficient.

Amongst the different and basically independent modalities of emotional ex-
pression, such as gesture, posture, facial expression and speech, this article
will focus on speech alone. Speech plays a major role in human communica-
tion and expression, and distinguishes humans from other creatures. Moreover,
in certain conditions such as communication via the phone, speech is the only
channel available.

To prevent fruitless debates, we use the rather vague term ‘emotion-related
user states’ in the title of this paper to point out that we are interested in
empirically observable states of users within a human-machine communica-
tion, and that we are employing the concept of pervasive emotion in a broad
sense. In the text, we will often use ‘emotion’ as the generic term, for better
readability. This resembles the use of generic ‘he’ instead of ‘he/she’; note,
however, that in our context, it is not a matter of political correctness that
might make a more cumbersome phrasing mandatory, it is only a matter of
competing theoretical approaches, which are not the topic of the present ar-
ticle. The focus of this article is on methodology: we establish taxonomies of
acoustic and linguistic features and describe new evaluation procedures for
using very large feature sets in automatic classification, and for interpreting
the impact of different feature types.

Email address: batliner@informatik.uni-erlangen.de (Anton Batliner).
I The initiative to co-operate was taken within the European Network of Excellence
(NoE) HUMAINE under the name CEICES (Combining Efforts for Improving auto-
matic Classification of Emotional user States). This work was partly funded by the
EU in the projects PF-STAR under grant IST-2001-37599 and HUMAINE under
grant IST-2002-50742. The responsibility lies with the authors.



1.1  Background

The study of ‘Speech and Affect/Emotion’ during the recent years can be
characterised by three trends: (1) striving for more natural(istic), real-life data,
(2) taking into account not only some ‘prototypical’, big n emotions but also
emotion-related, affective states in a broader sense, and (3) the trend towards
a thorough exploitation of the feature space, resulting in hundreds or even
thousands of features used for classification. Note that (2) is conditioned by
(1) — researchers simply realised that most of the full-blown, prototypical
emotions that could easily be addressed and modelled for acted speech, were
absent in realistic databases. Thus the set of emotion classes found inrealistic
databases normally consists of pervasive emotions in the broad sense, e.g.
interest, boredom, etc., and of no or only a few prototypical emotions such as
anger.

Relatively few studies have been conducted using more than one database,
cf. Devillers and Vidrascu (2004); Shami and Verhelst (2007); Schuller et al.
(2007b); Batliner et al. (2008a); Vidrascu and Devillers (2008), discussing sim-
ilar or different characteristics of different databases; however, similar trends
are sometimes pointed out across different studies. No study, however, has
been able, or will be able in the foreseeable future, to exploit fully the huge
feature space that models all possibly relevant factors, or to come up with
a choice of ‘real-life’, realistic databases displaying representative samples of
all emotional states. In this study, we concentrate on one specific database;
this means that we cannot generalise our findings. On the other hand, we
can safely compare across features and types because everything else can be
kept constant. Results reported in Batliner et al. (2006) showed that pooling
together features extracted at different sites indeed improved classification
performance; Schuller et al. (2007a) was a first attempt at comparing feature
types and their relevance for emotion classification. The present article will
give a systematic account of the different steps — such as feature taxonomy
and selection — that had to be taken in order to obtain a set of most relevant
features and types of features.

The ‘holy grail’ of automatic classification is to find ‘the’ optimal set of the
most important independent features. The task is difficult, due to factors such
as the huge number of possible features that can be extracted from speech
signals, and due to the computationally demanding methods needed for clas-
sifying such high-dimensional features spaces. The latter difficulty could be
dealt with feature space de-correlation and reduction, e.g. through transfor-
mations like Principal Component Analysis (PCA). However, in this article
we do not follow this approach because it would not provide the answer to
the question which types of features contribute to classification performance,
and to what extent; this information is crucial for understanding and mod-



elling the phenomenon we are interested in. Neither did we opt for comparing
selection and classification results obtained at each site separately; instead,
feature selection and classification were performed on a pooled set of features
to enable a more reliable comparison between feature types. The various sites
are rooted in different traditions; some focus on acoustics only, and other on
a combination of acoustics and linguistics; some sites follow a ‘brute-force’
method of exploiting the feature space, while other sites compute features in
a ‘knowledge-based’ way. Sometimes, hybrid strategies are used as well. In this
article, we concentrate on feature types (Low Level Descriptors (LLDs) and
functionals), and study their respective impact on classification performance.

1.2 State of the Art

In the ‘pre-automatic’ phase of emotion modelling; ¢f. Frick (1985), the in-
ventory of features was more or less pre-defined or at least inspired by basic
(phonetic) research. Hence, until the nineties of the last century, features were
rather ‘hand-picked’, expert-driven, and based on phonetic knowledge and
models; this was especially true for pitch (contour) features which were often
based on intonation models, cf. Mozziconacci (1998). To give some examples
of developments during the last years: at the beginning of ‘real’ automatic
processing of emotion, Dellaert et al. (1996) for instance used 17 pitch fea-
tures. McGilloway et al. (2000) reduced 375 measures to 32 variables as robust
markers of emotion. Batliner et al. (2000a) used 27 prosodic features on the
utterance level, Oudeyer (2003) 200 features and Information gain for feature
reduction, Schuller et al. (2005) 276 features and SVM-SFFS (cf. below) for
reduction, and Vogt and André (2005) 1280 features and correlation based
feature subset selection (CFS).

More recently, expert-driven feature selection has often been replaced by the
automatic generation and combination of features within the so called ‘brute-
force’ approach. It is easy to create a feature vector which encompasses thou-
sands of features, cf. Schuller et al. (2006). However, just using such large
feature vectors is very time consuming; moreover, finding interesting and rel-
evant features has simply been post-poned: while in the previous approaches,
the selection of features was based on general considerations and took place
before classification, in the newer ones, it is either an integral step of classi-
fication or has to be done after feature extraction and before classification.
Dealing with such large feature vectors, one has to circumvent the curse of
dimensionality: even if some statistical procedures are rather robust if there
are too many features in relation to the number of items to be classified, it is
definitely advisable to use some feature selection procedure.



1.8 CFEICES: the Approach

Sites dealing with the automatic processing of emotion are rooted in specific
traditions — such as a general engineering background, automatic speech recog-
nition, or basic research (phonetics, psychology, etc.); thus their tools as well
as the types of features they use, differ. For instance, linguistic information is
normally only used by sites having some expertise in word recognition; on the
other hand, features modelling aspects of intonation theories are normally only
used by sites coming from basic (phonetic) research. The idea behind CEICES
(‘Combining Efforts for Improving automatic Classification of Emotional user
States’) was to overcome the ‘fossilisation’ at each site and to combine hetero-
geneous expertise in a sort of — metaphorically speaking — genetic approach:
different features were separately extracted at different sites and subsequently
combined in late or early fusion.? After agreeing on the training and the test
set, the CEICES co-operation started with classification runs, independently
at each site. The results are documented in Batliner et al. (2006). Basically,
the classification performance was comparable across sites: the class-wise com-
puted recognition rate in percent (this measure is described in Sec. 5.1 below)
for the sites was: FAU 55.3, TUM 56.4, FBK 55.8, UA 52.3, LIMSI 56.6,
and TAU/AFEKA 46.6.2 We realized, however, that a strict comparison of
the impact of different features and feature types was not possible with such
‘benchmark-like’ procedures, as too many factors were not constant across
sites. To start with, a necessary prerequisite was an agreed-upon, machine
readable representation of extracted features. Note that the idea of combining
heterogeneous knowledge sources or representations is not new and has been
pursued in approaches such-as ROVER, Stacking, Ensemble Learning, etc. As
the European Network of Excellence HUMAINE (2004-2007) was conceived as
a network bringing together different branches of science dealing with emotion,
a certain diversity was already given; moreover, sites from outside HUMAINE
were invited to take part in the endeavour.

We want to point out that the number of features used in the present study
(or in any other study) is of course not a virtue in itself, automatically paying
off in classification performance; cf. Batliner et al. (2006) where we have seen
that one site, using ‘only’ 32 features, produced a classification performance
in the same range as other sites, using more than 1000 features. It is simply
more convenient to automatise feature selection, and more importantly, this
method ensures that we do not overlook relevant features.

2 Late fusion was done in Batliner et al. (2006) by combining independent classifier
output in the so-called ROVER approach; the early fusion will be reported on in
this article.

3 TAU/AFEKA used only rather specific pitch features and not multiple acoustic
features as all other sites.



1.4 Owverview

The present article deals with the following topics: in Sec. 2, we describe
experimental design, recording, and emotion annotation. The segmentation
into meaningful chunks as units of analysis, based on syntactic, semantic,
and prosodic criteria, is presented in Sec. 3. In Sec. 4, we depict the features
extracted at the different sites and the mapping of these features onto fea-
ture types; for that purpose an exhaustive feature coding scheme has been
developed. In Sec. 5, we address the classifier and the feature selection proce-
dure chosen, discuss classification performance (overall and separately for each
acoustic and linguistic feature type), and introduce some specific performance
measures.

In Sec. 6, we summarise the findings and discuss some important, general
topics. In order to focus the presentation, we decided not to give a detailed
account of all stages of processing if a stage is not pivotal for the topic of this
article; as for details we refer to Steidl (2009).*

2 The Database

2.1 Design and Recording

The database used is‘a German corpus of children communicating with Sony’s
pet robot AIBO, the EAU Aibo Emotion Corpus®. This database can be
considered as a corpus of spontaneous speech, because the children were not
given specifie instructions. They were just told to talk to AIBO as they would
talk to a friend. Emotional, affective states conveyed in this speech are not
elicited explicitly (prompted) but produced by the children in the course of
their interaction with the AIBO; thus they are fully natural(istic). The children
were led to believe that AIBO was responding to their commands, whereas the
robot was actually controlled by a human operator (Wizard-of-Oz, WoZ) using
the ‘AIBO Navigator’ software over a wireless LAN; the existing AIBO speech
recognition module was not used, and the AIBO did not produce speech.
The WoZ caused the AIBO to perform a fixed, pre-determined sequence of
actions; sometimes the AIBO behaved disobediently, thus provoking emotional
reactions. The data was collected at two different schools from 51 children

4 The book is available online at:
http://wwwb.cs.fau.de/en/our-team/steidl-stefan/dissertation

° As there are other ‘Aibo’ corpora with emotional speech, cf. Tato et al. (2002);
Kiistner et al. (2004), the specification ‘FAU’ is used.



(age 10 - 13, 21 male, 30 female). Speech was transmitted via a wireless head
set (UT 14/20 TP SHURE UHF-series with microphone WH20TQG) and
recorded using a DAT-recorder (sampling rate 48 kHz, quantisation 16 bit,
down-sampled to 16 kHz). Each recording session took some 30 minutes. Due
to this experimental setup, these recordings contained a huge amount of silence
(reaction time of the AIBO), which caused a noticeable reduction of recorded
speech after raw segmentation; ultimately we obtained about 8.9 hours of
speech.

In planning the sequence of AIBO’s actions, we tried to find a good com-
promise between obedient and disobedient behaviour: we wanted to provoke
the children in order to elicit emotional behaviour, while being careful not to
risk their breaking off the experiment. The children believed that the AIBO
was reacting to their orders — albeit often not immediately. In reality, the sce-
nario was the opposite: the AIBO always followed strictly the same plot, and
the children had to modify their orders to its actions. By this means, it was
possible to examine different children’s reactions to the very same sequence of
AIBO’s actions. Examples for the tasks to be fulfilled and for the experimental
design can be found in Steidl (2009), p. 73ff.

In each of the other five tasks of the experiment, the children were instructed
to direct the AIBO towards one of several cups standing on the carpet. One
of these cups was allegedly ‘poisoned’ and had to be avoided. The children
applied different strategies to direct the AIBO. Again, all actions of the AIBO
were pre-determined. In the first task, the AIBO was ‘obedient’ in order to
make the children believe that the AIBO would understand their commands.
In the other tasks, the AIBO was ‘disobedient’. In some tasks the AIBO went
directly towards the ‘poisoned’ cup in order to evoke emotional speech from
the children. No child broke off the experiment, although it could be clearly
seen towards the end that many of them were bored and wanted to put an end
to the experiment — a reaction that we wanted to provoke. Interestingly, in a
post-experimental questionnaire, all the children reported that they had much
fun and liked it very much. At least two different conceptualisations could be
observed: in the first, the AIBO was treated as a sort of remote-control toy
(commands like turn left, straight on, to the right); in the second, the AIBO
was addressed as a pet dog (commands like Little Aibo doggy, now please turn
left - well done, great!) or Get up, you stupid tin box!), cf. Batliner et al.
(2008Db).



2.2 Manual Processing

The recordings were segmented automatically into ‘utterances’ or ‘turns’®

using a pause threshold of 1s., Steidl (2009), p. 76ff. Each turn was translit-
erated, i.e. orthographically transcribed, by one annotator and cross-checked
by another. In addition to the words, other ‘non-linguistic’ events such as
breathing, laughing, and (technical) noise were annotated. For the experi-
ments reported on in this article, we aimed at an optimal representation of
the acoustic data. After a forced alignment using the spoken word chain, the
automatic word segmentation of the subset used in this study was therefore
corrected manually by the first author. Automatic pitch extraction was cor-
rected manually by the first author as well; this procedure is described in more
detail in Batliner et al. (2007b) and in Steidl (2009), p. 83ff.

2.3 Annotation

In the past, typical studies on emotion in speech used segmentally identical —
and mostly, semantically neutral — utterances, produced in different emotions
by actors. These utterances were processed as a whole; no word segmenta-
tion and/or eventual automatic word recognition were carried out. Recently,
some researchers claimed that acombination of utterance level features along
with segment-level features yields better performance, cf. Shami and Verhelst
(2007). For establishing such ‘segments’, units smaller than the whole ut-
terance must be defined: syllables, voiced/unvoiced parts, segments of fixed
length or fixed proportion of the whole utterance. Although we believe that
such strategies normally do pay off, a more promising approach is to incorpo-
rate word processing from the very beginning. After all, in a fully developed
‘emotional system’, not only acoustic information should be used for recog-
nition but all linguistic information should be used for interaction, i.e. for
understanding and generation/synthesis. In such a full end-to-end system,
word recognition is an integral part, cf. Batliner et al. (2000b, 2003a).

In realistic speech databases with long stretches of speech, the word itself is
normally not the optimal emotion unit to be processed. It is more reasonable to
use larger units (termed here ‘chunks’) comprising one or up to several words,
establishing syntactically /semantically meaningful units, and/or units repre-

6 Note that ‘turn’ and ‘utterance’ are vague concepts: a turn is defined by ‘turn-
taking’, i.e. change of speakers; an utterance can be defined by pauses before and
after. As the AIBO does not speak, we rather have to do with ‘action turns’. The
length of such speech units can thus vary between one word and hundreds of words.
We therefore aim at a more objective criterion using syntactic-prosodic information,
cf. Sec. 3 below.



senting dialogue acts/moves. It has been shown that there is a high correlation
between all these units, cf. Batliner et al. (1998, 2003a). Thus a reasonable
strategy could be devised to segment the data in a pre-processing step into
such units to be presented to the annotators for labelling emotions. However,
this would require an a-priori knowledge on how to define the optimal unit —
which we do not have yet. In order not to decide beforehand on the units to
be processed, we decided in favour of a word-based labelling: each word had
to be annotated with one emotion label. Later on, this makes it possible to
explore different chunk sizes and different degrees of prototypicality.

The labels to be used for annotating emotional user states were data-driven.
We started with a set that has been used for another realistic emotional
database, cf. Batliner et al. (2004); the adaptation to FAU Aibo was done
iteratively, in several steps, and supervised by an expert: Our five labellers
(advanced students of linguistics) first listened to the whele interaction in or-
der to become ‘fine-tuned’ to the children’s baseline: some children sounded
bored throughout, others were lively from the very beginning. We did not
want to annotate the children’s general manner of speaking but only devia-
tions from this general manner which obviously were triggered by the AIBO’s
actions. Independently from each other, the annotators labelled each word as
neutral (default) or as belonging to one of ten other classes. In the following
list, we summarize the annotation strategy for each label:

joyful: the child enjoys the ATIBO’s action and/or notices that something is
funny.

surprised: the child is(positively) surprised because obviously, he/she did
not expect the AIBO to react that way.

motherese: the child addresses the AIBO in the way mothers/parents ad-
dress their babies (also called ‘infant/child-directed speech’ or ‘parentese’)
— either because the AIBO is well-behaving or because the child wants the
ATBO to obey; this is the positive equivalent to reprimanding.

neutral: default, not belonging to one of the other categories; not labelled
explicitly.

rest: not neutral but not belonging to any of the other categories, i.e. some
other spurious emotions.

bored: the child is (momentarily) not interested in the interaction with the
AIBO.

emphatic: the child speaks in a pronounced, accentuated, sometimes hyper-
articulated way but without ‘showing any emotion’.

helpless: the child is hesitant, seems not to know what to tell the AIBO next;
can be marked by disfluencies and/or filled pauses.

touchy (=irritated): the child is slightly irritated; this is a pre-stage of
anger.

reprimanding: the child is reproachful, reprimanding, ‘wags the finger’; this
is the negative equivalent to motherese.



angry: the child is clearly angry, annoyed, speaks in a loud voice.

We do not claim that our labels represent children’s emotions in general, only
that they are adequate for modelling these children’s behaviour in this specific
scenario. We do claim, however, that it is an adequate strategy to use such
a data-driven approach instead of one based on abstract theoretical models.
Note that a more ‘in-depth’ approach followed by a few other studies would be
first to establish an exhaustive list of classes (up to > 100, i.e. labels, or lists
of both classes and dimensions, cf. Devillers et al. (2005). However, for auto-
matic processing, this large list has to be reduced necessarily to fewer cover
classes — we know of studies reporting recognition using up to seven discrete
categories, for instance in Batliner et al. (2003b, 2008b) and eventually, if it
comes to ‘real’ classification, three or two, e.g., neutral and negative. Some
studies relying on the dimensional approach may obtain more classes by dis-
cretising the axes of the emotional space, cf. Grimm et<al. (2007). Moreover,
our database demonstrates that confining oneself to the ‘classic’ dimensions
AROUSAL/INTENSITY and VALENCE might not be the best thing to do
because the first one is not that important, and another one, namely (social)
INTERACTION, comes to the fore instead, cf. Batliner et al. (2008b). Instead
of putting too much effort into the earlier phases of establishing ‘emotional
dictionaries’, we decided to concentrate on later stages of annotation, e. g., on
manual correction of segmentation and pitch, and on the annotation of the
interaction between the child and the AIBO.

If three or more labellers agreed, the label was attributed to the word (Majority
Voting, MV); in parentheses, the number of cases with MV is given: joyful
(101), surprised (0), emphatic (2528), helpless (3), touchy, i.e. irritated (225),
angry (84), motherese (1260), bored (11), reprimanding (310), rest, i.e. non-
neutral, but not-belonging to the other categories (3), neutral (39169). 4707
words had no MV; all in all, there were 48401 words.

Some of the labels are very sparse; if we only take labels with more than 50
MVs; the resulting 7-class problem is most interesting from a methodological
point of view, cf. the new dimensional representation of these seven categor-
ical labels in Batliner et al. (2008b). However, the distribution of classes is
highly non-homogeneous. Therefore, we randomly down-sampled neutral and
emphatic to Neutral and Emphatic, respectively, and mapped touchy, repri-
manding, and angry onto Angry”, as representing different but closely re-
lated kinds of negative attitude. This more balanced 4-class problem, which
we refer to as AMEN, consists of 1557 words for Angry (A), 1224 words for

7 The initial letter is given boldfaced; this letter will be used in the following for
referring to these four cover classes. Note that now, Angry can consist, for instance,
of two touchy and one reprimanding label; thus the number of Angry cases is far
higher than the sum of touchy, reprimanding, and angry MV cases.
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Motherese (M), 1645 words for Emphatic (E), and 1645 for Neutral (N), cf.
Steidl et al. (2005). Cases where less than three labellers agreed were omitted,
as well as cases labelled with other than these four main classes. This mapping
onto cover classes is corroborated by the two- and one-dimensional Nonmetric
Multidimensional Scaling solutions presented in Batliner et al. (2008b).

Angry belongs to the ‘big’, ‘basic’ emotions, cf. Ekman (1999), whereas the
other ones are rather ‘emotion-related /emotion-prone’ user states and there-
fore represent ‘pervasive emotions’ in a broader meaning; most of them are
addressed in Ortony et al. (1988) such as boredom, surprise, and reproach (i. e.
reprimanding). Touchy is nothing else than weak anger. ® The state emphatic
has been introduced because it can be seen as a possible indication of some
(starting) trouble in communication and by that, as a sort of ‘pre-emotional’
state, cf. Batliner et al. (2003a, 2005), or even as weak anger: any marked
deviation from a neutral speaking style can (but does not need to) be taken
as a possible indication of some (starting) trouble in communication. If a user
gets the impression that the machine does not understand him/her, he/she
tries different strategies — repetitions, re-formulations, other wordings, or sim-
ply the use of a pronounced, marked speaking style. Such a style does not
necessarily indicate any deviation from a neutral user state, but it suggests
a higher probability that the (neutral) user state will be changing soon. Of
course, it can be something else as well: a user idiosyncrasy, or a special style
— ‘computer talk’ — that some people use while speaking to a computer, like
speaking to a non-native listener, to a child, or to an elderly person who is hard
of hearing. Thus the fact that emphatic is observed can only be interpreted
meaningfully if other factors are considered; note that we only annotated em-
phatic if this was not the default way of speaking. There are three further
— practical — arguments for the annotation of emphatic: first, it is to a large
extent a prosodic phenomenon, and can thus be modelled and classified with
prosodic features. Second, if the labellers are allowed to label emphatic, it may
be less likely that they confuse it with other user states. Third, as mentioned
above, we can try and model emphasis as an indication of (arising) problems
in communication, cf. Batliner et al. (2003a).

For assessing inter-rater reliability, weighted kappa for multi-raters, cf. Fleiss
et-al. (1969); Davies and Fleiss (1982), was computed for the four-class AMEN
problem and for six classes splitting the Angry cover class into the original
classes touchy, reprimanding, and angry. The weighted version of kappa allows
to penalise confusions of dissimilar emotion categories more than confusions of

8 Tt is interesting that motherese has, to our knowledge, not really mentioned often
in such listings of emotion terms, although child-directed speech has been addressed
in several studies. We can speculate that researchers have been more interested in
negative states such as reproach (reprimanding), i.e. in the negative pendant to
motherese.
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similar ones. Therefore, nominal categories have to be aligned on a linear scale
such that the distances between categories can be meaningfully interpreted as
dissimilarities. In order to employ an objective measure for the weighting,
we used the co-ordinates derived from a one-dimensional Non-Metrical Di-
mensional Scaling (NMDS) solution based on the confusion matrix of the five
labellers; cf. for details Batliner et al. (2008b). The distance measure used is
based on squared differences. Weighted kappa is 0.59 for four classes, and 0.61
for six classes. (This is a rather small difference, presumably because in the
one-dimensional NMDS solution, touchy and reprimanding have been given
almost identical values, cf. Batliner et al. (2008b) p. 188.) Overall; kappa
values are satisfactory albeit not very high — this could be expected, given
the difficulty and subjectivity of the task. Another, entropy-based measure
of inter-labeller agreement and agreement between labellers and automatic
classification is dealt with in Steidl et al. (2005).°

2.4 Children’s Speech

Our database might seem to be atypical since it deals with children’s speech;
however, children represent just one of the usual partitions of the world’s
population into sub-groups such as women/men, upper/lower class, or differ-
ent dialects. Of course, automatic procedures have to adapt to this specific
group — children’s speech is a challenge for an Automatic Speech Recognition
(ASR) system, cf. Blomberg and Elenius (2003), as both acoustic and linguis-
tic characteristics differ from those of adults, cf. Giuliani and Gerosa (2003).
However, this necessity to adapt to a specific sub-group is a frequent issue
in speech processing. Pitch, formant positions, and not yet fully developed
co-articulation vary strongly, especially for younger children due to anatom-
ical and physiological development, cf. Lee et al. (1999). Moreover, until the
age of five/six, expression and emotion are strongly linked: children express
their emotions even if no one else is present; the expression of emotion can
be rather intense. Later on, expressions and emotions are decoupled, cf. Holo-

9" A note on label names and terminology in general: some of our label names were
chosen for purely practical reasons; we needed unique characters for processing.
We chose touchy and not irritated because the letter ‘I’ has been reserved in our
labelling system for ironic, cf. Batliner et al. (2004). Instead of motherese, some
people use ‘child-directed speech’; this is, however, only feasible if the respective
database does not contain any negative counterpart such as reprimanding which is
‘child-directed’ as well. (‘Parentese’ or ‘fatherese’ might be more politically correct
but are descriptively and historically less adequate.) Our nomenclature is sometimes
arbitrary — for example, we could exchange Angry with Negative — which we had
to avoid because we reserved N for Neutral. A methodological decision has been
taken in favour of a categorical and not a dimensional representation. However, in
Batliner et al. (2008b) we show how the one can be mapped onto the other.
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dynski and Friedlmeier (2006), when children start to control their feelings.
So far, we found no indication that our children (age 10-13) behave differently
from adults in a principled way, as far as speech/linguistics in general or emo-
tional states conveyed via speech are concerned. It is known, for example, that
children in this age do not yet have full laryngeal control. Thus, they might
produce more irregular phonation, but we could not find any evidence that
they employ these traits differently from adults, cf. Batliner et al. (2007a).
Moreover, our database is similar to other realistic, spontaneous (neutral and)
emotional speech: although it is rather large, we are faced with the well-known
sparse data problem which makes a mapping of sub-classes onto cover classes
necessary — neutral is by far the most frequent class. The linguistic structure
of the children’s utterances is not too uniform, as it might have been if only
pure, short commands were used; on the other hand, it displays specific traits,
for instance, many Aibo vocatives because these are often used adjacent to
commands. All this can, however, be traced back to this specific scenario and
not to the fact that our subjects are children.

3 Segmentation

Finding the appropriate unit of analysis for emotion recognition has not posed
a problem in studies involving acted speech with different emotions, using
segmentally identical utterances, ¢f. Burkhardt et al. (2005); Engberg et al.
(1997). In realistic data, alarge variety of utterances can be found, from short
commands in a well-defined dialogue setting, where the unit of analysis is ob-
vious and identical to a dialogue move, to much longer utterances. In Batliner
et al. (2003a) it has been shown that in a WoZ-scenario (appointment schedul-
ing dialogues), it is beneficial not to model whole turns but to divide them
into smaller; syntactically and semantically meaningful chunks. Our scenario
differs in<one pivotal aspect from most of the other scenarios investigated so
far: there is no real dialogue between the two partners; only the child is speak-
ing, and the AIBO is only acting. Thus it is not a ‘tidy’ stimulus-response
sequence that can be followed by tracking the very same channel; we are using
only the recordings of the children’s speech. When annotating, we therefore do
not know what the AIBO is doing at the corresponding time, or has been do-
ing shortly before or after the child’s utterance. Moreover, the speaking style
is rather special: there are not many ‘well-formed’ utterances but a mixture of
some long and many short sentences and one- or two-word utterances which
are often commands.!®© We observe neither ‘integrating’ prosody as in the

10 The statistics of the observable turn lengths (in terms of the number of words) for
the whole database is as follows: 1 word (2538 times), 2 words (2800 times), 3 words
(2959 times), 4 words (2134 times), 5 words (1190 times), 6-9 words (1560 times),
> 10 words (461 times). We see that on the one hand, the threshold for segmentation
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case of reading, nor ‘isolating’ prosody as in the case of TV reporters. Many
pauses of varying length are found which can be hesitation pauses — the child
produces slowly while observing the AIBO’s actions — or pauses segmenting
into different dialogue acts — the child waits until he/she reacts to the AIBO’s
actions.

Note that in earlier studies, we found out that there is a rather strong cor-
relation of up to > 90% between prosodic boundaries, syntactic boundaries,
and dialogue act boundaries, cf. Batliner et al. (1998). Using only prosodic
boundaries as chunk triggers might not result in (much) worse classification
performance (in Batliner et al. (1998), some 5 percent points lower). However,
from a practical point of view, it would be more cumbersome to time-align
the different units — prosodic, i.e. acoustic units, and linguistic, i.e. syntac-
tic or dialogue units, based on automatic speech recognition and higher level
segmentation — at a later stage in an end-to-end processing system, and to
interpret the combination of these two different types of units accordingly. '

A detailed account of our segmentation principles can be found in Steidl
(2009), p. 89ff; in Batliner et al. (2009), different types of emotion units, based
on different segmentation principles, are compared. In our segmentation, we
basically annotated a chunk boundary after higher syntactic units such as
main clauses and free phrases; after lower syntactic units such as coordinate
clause and dislocations, we only introduced such a boundary when the pause
is longer than 500 ms. By that, we could chunk longer turns — we obtained
turns containing up to 50 words — into meaningful smaller units. The following
example illustrates such a long turn, divided into meaningful syntactic units;
the boundary is indicated by a pipe symbol. The German original of this ex-
ample and further details can be found in Steidl (2009), p.90, and in Batliner
et al. (2009).

English translation with chunk boundaries: and stop Aibo stand still |
go this way | to the left towards the street | well done Aibo and now go on
| well done Aibo | and further on | and now turn into the street to the left
| to the blue cup | no Aibo no | stop Aibo no | no Aibo stop | stand still |
Aibo stand still |

of 1s is meaningful; on the other hand, there are still many turns having more than
5 words per turn. This means that they tend to be longer than one intonation unit,
one clause, or one elementary dialogue act unit, which are common in this restricted
setting ‘giving commands’.

1 Preliminary experiments with chunks of different granularity, i. e. length, showed
that using our longer turns actually results in sub-optimal classification perfor-
mance, while the chunking procedure presented below which was used for the ex-
periments dealt with in this article, results in better performance. This might partly
result from the fact that more training instances are available, but partly as well
from the fact that shorter units are more ‘consistent’.
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Now we had to map our word-based labels onto chunk-based labels. A simple
majority vote on the raw labels (the decisions of the single labellers for each
word in the turn or chunk) does not necessarily yield a meaningful label for
the whole unit. A whole turn which, for example, consists of two main clauses
— one clause which is labelled as Neutral and one slightly shorter clause which
is labelled as Angry by the majority — would be labelled as Neutral. A chunk
consisting of five words, two of them clearly labelled as Motherese, three of
them being Neutral, can be reasonably labelled as Motherese although the
majority of raw labels yields a different result — after all, we are interested in
deviations from the default Neutral. Thus, the mapping of labels from word
level onto higher units is not as obvious as one might expect. A more practical
problem of a simple majority vote is that the sparse data problem, which
already exists on the word level, becomes aggravated on higher levels since
the dominating choice of the label neutral on the word level yields an even
higher proportion of neutral chunks and turns.

We developed a simple heuristic algorithm. It uses the raw labels on the
word level mapped onto the cover classes Neutral, Emphatic, Angry, and
Motherese. Due to their low frequency, labels of the remaining two cover
classes Joyful and Rest (other) are ignored. If the proportion of the raw la-
bels for Neutral is above a threshold fn, the whole unit is considered to be
Neutral. This threshold depends onthe length of the unit; the longer the unit
is, the higher the threshold need to be set. For our chunks, it is set to 60 %.
If this threshold is not reached, the frequency of the label Motherese is com-
pared to the sum of the frequencies of Emphatic and Angry which are pooled
since emphatic is considered as a possible pre-stage of anger. If Motherese
prevails, the chunk is labelled as Motherese, provided that the relative fre-
quency of Motherese w.r.t. the other three cover classes is not too low, i.e.
it is above a certain threshold #yy = 40 %. If not, the whole unit is considered
to be Neutral. If Motherese does not prevail, the frequency of Emphatic is
compared to the one of Angry. The label of the whole unit is the one of the
prevailing class, again provided that the relative frequency of this class w.r. t.
the other three cover classes is above a threshold fga = 50 %. The thresholds
are set-heuristically by checking the results of the algorithm for a random
subset of chunks and have to be adapted to the average length of the chosen
units. A structogram describing the exact algorithm can be found in Steidl
(2009), p. 101.

If all 13642 turns are split into chunks, the chunk triggering procedure results
in a total of 18216 chunks. 4543 chunks contain at least one word of the original
AMEN set. Compared to the original AMEN set, where the four emotion
labels on the word level are roughly balanced, the frequencies of the chunk
labels for this subset differ to a larger extent: 914 Angry, 586 Motherese, 1045
Emphatic, and 1998 Neutral. Nevertheless, in the training phase of a machine
classifier, these differences can be easily equalised by up-sampling of the less
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frequent classes. On average, the resulting 4543 chunks are 2.9 words long; in
comparison, there are 3.5 words per turn on average in the whole FAU Aibo
corpus.

The basic criteria of our chunking rules have been formulated in Batliner et al.
(1998); of course, other thresholds could be imagined if backed by empirical re-
sults. The rules for these procedures can be automated fully; in Batliner et al.
(1998), multi-layer perceptrons and language models have successfully been
employed for an automatic recognition of similar syntactic-prosodic bound-
aries, yielding a class-wise average recognition rate of 90% for two' classes
(boundary vs. no boundary). Our criteria are ‘external’ and objective, and
are not based on intuitive notions of an ‘emotional’ unit of analysis as in the
studies by Devillers et al. (2005); Inanoglu and Caneel (2005); de Rosis et al.
(2007). Moreover, using syntactically motivated units makes processing in an
end-to-end system more straightforward and adequate.

4 Features

In Batliner et al. (2006), we combined for the first time features extracted
at different sites. These were used both for late fusion using the ROVER ap-
proach, cf. Fiscus (1997), and for early fusion, by combining only the most
relevant features from each site within the same classifier. We were only in-
terested in classification performance, thus an unambiguous assignment to
feature types and funectionals was not yet necessary. It turned out, however,
that we had te establish a uniform taxonomy of features, which could also
be processed fully automatically. To give one example of a possible point of
disagreement: the temporal aspects of pitch configurations are often subsumed
under ‘pitch’ as well. However, the positions of pitch extrema on the time axis
clearly represent duration information, cf. Batliner et al. (2007b). Thus on the
one hand, we decided to treat these positions as belonging to the duration
domain across all sites; on the other hand, we of course wanted to encode
this hybrid status as well. For our encoding scheme, we decided in favour of
a straightforward ASCII representation: one line for each extracted feature;
each column is attributed a unique semantics. This encoding can be easily
converted into a Markup Language such as the one envisaged by Schroder
et al. (2007), cf. as well Schroder et al. (2006). 12

12 A documentation of the scheme can be downloaded from:
http://wwws.cs.fau.de/en/our-team /steidl-stefan/materials
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4.1 Types of Feature Eztraction

Before characterising the feature types, we give a broad description of the
extraction strategy employed by each site. More specifically we can identify
three different approaches generating three different sets of features: the ‘se-
lective’ approach is based on phonetic and linguistic knowledge, cf. Kiefling
(1997); Devillers et al. (2005); this could be called ‘knowledge-based’ in its
literal meaning. The number of features per set is rather low, compared to
the number of features in sets based on ‘brute-force’ approaches. There, a
strict systematic strategy for generating the features is chosen; a fixed set of
functions is applied to time series of different base functions. This approach
normally results in more than 1k features per set, cf. the figures given at the
end of this section. From a ‘technical” point of view, the differences between
the two approaches can be seen in the feature selection step: in the selective
approach, the main selection takes place before putting the features into the
classification process; in the brute-force approach, an automatic feature selec-
tion is mandatory. * Moreover, for the computation of some of our selective
features, FAU/FBK use manually corrected word segmentation, by that em-
ploying additional knowledge. (This is, of course, not a necessary step; as for
a fully automatic processing of this database, cf. Schuller et al. (2007b).) The
approach of FAU/FBK will be called ‘two-layered’: in a first step, word-based
features are computed; in a second step, functionals such as mean values of
all word-based features are computed for the chunks. In contrast, a ‘single-
layered’ approach is used by all other sites, i.e. features are computed for
the whole chunk. The following arrangement into types of feature extraction
has to be taken with a grain of salt; it rather describes the starting point
and the basic approach. FAU for instance uses a selective approach for the
computation of word-based features, and then a systematic approach for the
subsequent computation of chunk-based features; some of UA’s feature com-
putations could be called two-layered because functionals are applied twice.
To sum up, there are three different types of feature extraction:'4

set I: FAU/FBK; selective, two-layered; 118 acoustic and 30 linguistic fea-
tures.

13Tt is an empirical question which type of extraction yields better performing
features, and there are at least the following aspects to be taken into account: (1)
given the same number of features, which set performs better? (2) Which features
can be better interpreted? (3) Which features are more generic, i.e. can be used
for different types of data without loosing predictive power? The last aspect might
be most important but has not been addressed yet: typically, feature evaluation is
done within one study, for one database.

4 Note that w.r.t. to Schuller et al. (2007a), we have changed the terminology
presented in this section to avoid ambiguities.
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set II: TAU/LIMSI; selective, single-layered; 312 acoustic and 12 linguistic
features.

set IIT: UA /TUM,; brute-force, single-layered; 3304 acoustic and 489 linguistic
features.

In the following, we shortly describe the features extracted at each site.

4.1.1  Two-layered, ‘selective’ computation: chunk features, based on word
statistics

FAU: 92 acoustic features: word-based computation (using manually cor-
rected word segmentation) of pauses, energy, duration, and FO; for energy:
maximum (max), minimum (min), mean, absolute value, normalised value,
and regression curve coefficients with mean square error; for duration: abso-
lute and normalised; for FO: min, max, mean, and regression curve coefficients
with mean square error, position on the time axis for FO onset, FO offset, and
FO max; for jitter and shimmer: mean and variance; normalisation for energy
and duration based on speaker-independent mean phone values; for all these
word-based features, min, max, and mean chunk values computed based on all
words in the chunk. 24 linguistic features: part-of-speech (POS) features: AUX
(auxiliaries), PAJ (particles, articles, and interjections), VERB (verbs), APN
(adjectives and participles, not inflected), API (adjectives and participles, in-
flected), and NOUN (nouns; proper nouns), annotated for the spoken word
chain (# of classes per chunk and normalised as for # of words in chunk);
higher semantic features (SEM): vocative, positive valence, negative valence,
commands and directions, interjections, and rest (# of classes per chunk and
normalised as for # of words in chunk).

FBK: 26 acoustic features: similar to the ones of FAU, with the following
difference: no FO onset and offset values, no jitter/shimmer; normalisation of
duration and energy done on the training set without backing off to phones but
using information on the number of syllables in addition, cf. KieBling (1997);
6 linguistic features: POS features.

4.1.2  Single-layered, ‘selective’ computation of chunk features

LIMSI: 90 acoustic features: min, max, median, mean, quartiles, range, stan-
dard deviation for FO; the regression curve coefficients in the voiced segments,
its slope and its mean square error; calculations of energy and of the first 3
formants and their bandwidth; duration features (speaking rate, ratio of the

voiced and unvoiced parts); voice quality (jitter, shimmer, Noise-to-Harmonics
Ratio (NHR), Harmonics-to-Noise Ratio (HNR), etc.), cf. Devillers et al.
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(2005); 12 linguistic features: POS, nonverbals and disfluencies.

TAU/AFEKA: 222 acoustic features: five families of features: pitch based,
duration based, intensity based, spectral, and voice quality based; different
levels of functionals applied to the raw contours: from basic statistics to curve
fitting methods to methods based on perceptual criteria. Several duration
features computed on the lengths of voiced segments and pauses, and spectral
features based on Mel Frequency Cepstral Coefficients (MFCC) and Long
Term Average Spectrum (LTAS).

4.1.3  Single-layered, ‘brute force’ computations of chunk features

UA: 1586 acoustic features: pitch, energy, 12 MFCCs, 10 cepstral coefficients
based on wavelet transformation, HNR and short-term spectra, as well as dif-
ferent views on the time series such as considering only local maxima or min-
ima, or distances, magnitudes and steepness between adjacent extrema. From
each of these series of values, mean, max, min, range, median, first quartile,
third quartile, interquartile range, and variance. Chunk length added to the
vector as a durational feature. The proportion of voiced to unvoiced frames,
several normalised and positional features of pitch and energy.

TUM: 1718 acoustic features: a systematic generation by acoustic Low Level
Descriptors (LLD) extraction, filtering, derivation, and application of function-
als on the chunk level. As LLDs pitch, HNR, jitter, shimmer, energy, MFCCs
1-16, formants 1-7 with amplitude, position, and bandwidth, and a selection
of spectral features; derived LLDs comprising derivatives and crossed LLDs;
functionals covering the first four moments, extremes, quartiles, ranges, zero-
crossings, roll-off, and higher level analysis. 489 linguistic features: frequencies
of bag of words (BOW), cf. Joachims (1998), using the manual transliteration
of the spoken word chain, POS, non-verbals, and disfluencies.

4.2 Types of Features

In the following clustering of the 4244 features used in this study !, we shortly
describe the breakdown into types of LLDs. We concentrate on a characterisa-
tion in phonetic and linguistic terms (what has been extracted); in parentheses,
we indicate by which set, i.e. by which extraction type (which sites) this fea-
ture type is used:

15 Note that 21 acoustic features could not be attributed un-equivocally to one of
the types; the final figures is thus 112 for set I, 297 for set II, and 3304 for set III.
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duration: these features model temporal aspects; the basic unit is millisec-
onds for the ‘raw’ values. Different types of normalisation are applied. Po-
sitions of prominent energy or FO values on the time axis are attributed to
this type as well (set I, 11, IIT).

energy: these features model intensity, based on the amplitude in different
intervals; different types of normalisation are applied. Energy features can
model intervals or characterising points (set I, II, III).

pitch: the acoustic equivalent to the perceptual unit pitch is measured in Hz
and often made perceptually more adequate by logarithmic transformation
and by different normalizations. Intervals, characterising points, or contours
are being modelled (set I, II, III).

spectrum: formants (spectral maxima) model spoken content, esp. lower
ones. Higher ones also represent speaker characteristics. Each one is fully
represented by position, amplitude and bandwidth. As further spectral fea-
tures band-energies, roll-off, centroid or flux are used. Long term average
spectrum over a chunk averages out formant information, giving general
spectral trends (set II, III).

cepstrum: MFCC features — as homomorphic transform with equidistant
band-pass-filters on the Mel-scale — tend to strongly depend on the spoken
content. Yet, they have been proven beneficial in practically any speech
processing task. They emphasise changes or periodicity in the spectrum,
while being relatively robust against noise (set II, I1T).

voice quality: jitter/shimmer and other measures of microprosody, NHR/HNR
and autocorrelation. They are based in part on pitch and intensity but re-
flect voice quality such as breathiness or harshness (set I, II, III).

wavelets: A wavelet packet decomposition is applied to divide the speech
signal into 24 frequency bands. For every sub-band the log of the average
Teager energy is found for a frame length of 8 ms and inverse DCT trans-
formation is applied to obtain 10 cepstrum coefficients. For the most part
the procedure is similar to the extraction of MFCCs. However, it is based
on multi-resolution analysis to provide the application of a Teager energy
operator in order to reflect nonlinear vortex-flow interactions, which has
been found useful to classify stressed vs. neutral speech (set III).

bag of words (BOW): well known from document retrieval tasks, show-
ing good results for emotion recognition as well, cf. Batliner et al. (2006).
Each term within a vocabulary is represented by an individual feature mod-
elling the term’s (logarithmic and normalised) frequency within the cur-
rent phrase. Terms are clustered with Iterated Lovins Stemming, cf. Lovins
(1968) (set III).

part of speech (POS): this is a coarse taxonomy of six lexical and mor-
phological main word classes based on the spoken word chain; given are
frequencies in the chunk, raw or normalised (set I, II, IIT).

higher semantics (SEM): this is a coarse taxonomy into six classes, (partly

20



scenario-specific) most relevant words, word classes, and emotional valence
(negative vs. positive), based on the spoken word chain; given are frequencies
in the chunk, raw or normalised (set I).

varia: disfluencies/non-verbals such as breathing or laughter (set II, III).

The following types of functionals have been employed:

sequential and combinatorial: functionals of any type under the premise
that a minimum of two functionals has been applied in either a sequential
way (e.g. mean of max) or combinatorial way (e.g. ratio of mean of two
different LLDs).

extremes: min/max by value, min/max position, range, and slope min/max,
as well as on-/off-position.

means: first moment by arithmetic mean and centroid.

percentiles: quartiles 1/2/3, quartile ranges lower/upper/total and other
percentiles.

higher statistical moments: standard deviance; variance, skewness, kurto-
sis, length, and zero-crossing-rate.

specific functions (distributional, spectral, regressional): a blend of sev-
eral more ‘unusual’ functionals: several complex statistical functionals, mi-
cro variation, number of segments/intervals/reversal points, ratio, error, lin-
ear/quadratic regression coefficients, and DCT coefficients 1-5.

not attributable: features cannot be attributed un-equivocally to one of the
other types.

It is well known that acoustic parameters like energy and pitch excursions
can be relevant for emotion modelling; the same holds for single words, which
are modelled in the BOW approach. Interestingly, even the very coarse syn-
tactic/morphological POS taxonomy already displays marked differences: Ta~
ble 1 displays a cross-tabulation of our four emotion categories with POS
classes illustrating the high impact of POS due to the un-balanced distribu-
tion: more adjectives (API, APN) for Motherese (example: good boy), more
verbs (VERB) for Emphatic (example: stop), and more nouns (NOUN) and
less particles (PAJ) for Angry (example: vocative Aibo).

POS # of tokens | NOUN API APN VERB AUX PAJ

Motherese 1240 10.6 5.0 25.2 16.0 1.5 41.8

Neutral 7750 15.5 0.7 2.2 24.4 1.3 55.9

Emphatic 1889 10.9 0.3 0.4 40.6 0.1 47.8

Angry 1588 45.7 1.8 0.9 23.6 0.6 27.4
Table 1

Cross-tabulation of emotion labels (MNEA) and POS labels; displayed is frequency
in percent per emotion label
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Our feature vector combines different state-of-the-art feature types. There
is no explicit dynamic modelling, though, for instance with Hidden Markov
Models (HMM), Dynamic Bayesian Networks (DBN) or Dynamic Time Warp
(DTW), which has been used as well for emotion classification, cf. Nose et al.
(2007); Wagner et al. (2007); Inanoglu and Caneel (2005); Schuller et al.
(2003); Nwe et al. (2003); Nogueiras et al. (2001). Note, however, that dy-
namic information over time is represented by ‘static’ features as well: mini-
mum, maximum, onset, offset, position of extreme values, regression with mean
square error, etc. can represent a full pitch or energy contour, albeit somehow
‘quantified’. Thus it is rather the manner of modelling and not the represen-
tation of pertinent information per se that is different between dynamic and
static modelling. So far, however, dynamic modelling has only be carried out
for frame-level features. As far as we can see, there is no evidence that it
yields better performance than static features representing dynamic informa-
tion, cf. Wagner et al. (2007); Schuller et al. (2003); Vlasenko et al. (2007):
this most likely stems from the fact that in frame-level features, the phonetic
content is over-modelled. To ascertain this assumption, more in-depth studies
are needed. Apart from dynamic modelling, some other feature types are not
included which could be used, such as TRAPs, cf. Hermansky and Sharma
(1998).

An increase in accuracy has been reported for the combination of different time
levels, combining frame- and turn-level features, cf. Vlasenko et al. (2007).
However, this effect was especially true for data with pre-defined spoken con-
tent, again demonstrating the dependency on phonetic structure for small
time-units. Other work deals with different time levels that would allow for
dynamic modelling, cf. Schuller et al. (2008). However, no results have been
reported in this respect, yet. In our set I, we use features combining word-
and chunk-level information.

5 Feature Relevance Analysis

5.1 ' Procedures

In the last decade, almost all standard classifiers have been employed for auto-
matic emotion classification. Following this practice, in Batliner et al. (2006),
for FAU Aibo we have used Neural Networks, Support Vector Machines SVMs,
Random Forests RF, Linear Regression, Linear Discriminant Classification,
Naive Bayes, and Rule-based classifiers. A more rigorous comparison of SVMs
and RFs, cf. in Schuller et al. (2007a); Batliner et al. (2008a), confirmed that
both have approximately the same performance. Although not necessarily the
best classifiers for every constellation, cf. Meyer et al. (2002), SVMs provide
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very good generalisation properties, cf. McGilloway et al. (2000); Lee et al.
(2002); Chuang and Wu (2004); Devillers et al. (2005); You et al. (2006);
Morrison et al. (2007); Hu et al. (2007). Since the topic of this study is not a
comparison of different classifiers, we decided to use only SVMs. Note that a
thorough parallel use of several classifiers for selection and classification of fea-
tures would have increased the computational effort by an order of magnitude
(more than a 100 k additional runs per classifier to avoid bias between selec-
tion and classification, cf. below). Feature evaluation is usually done following
two possible strategies: the closed-loop “wrapper” method, which trains and
re-evaluates a given classifier at each search step using its accuracy as ob-
jective function, and the open-loop “filter” method, which maximises simpler
objective functions. While a wrapper can consist of any classifier, filter ob-
jective functions are usually measures such as inter-feature and feature-class
correlation, cf. Hall (1998). As an exhaustive search through-all possible fea-
ture combinations is unfeasible considering typical database and feature space
sizes, faster but sub-optimal search functions are usually chosen. Typical con-
servative hill-climbing procedures are sequential search methods as Sequential
Forward Selection (SFS): at each step the feature reporting the best wrapper
or filter accuracy is chosen. SF'S has been commonly used for emotion recog-
nition, cf. Lee et al. (2001); Lee and Narayanan (2005); Kwon et al. (2003).
Sequential floating forward selection SFFS, ‘ef. Pudil et al. (1994); Jain and
Zongker (1997),is an improved SF'S method in the sense that at each step, pre-
viously selected features are checked and can be discarded from the optimal
group to overcome nesting effects. FExperiments show SFFS to be superior to
other methods, cf. Jain and Zongker (1997). Note that a good feature selection
should de-correlate the feature space to optimize a set of features as opposed
to sheer ranking of features: This is particularly the case for wrapper-search,
which also usually-demands considerably higher computational effort. Some
studies combine feature selection with feature generation to find better rep-
resentations and combinations of features by simple mathematical operations
such as addition, multiplication or reciprocal value of features, cf. Batliner
et al. (2006).

Determining the most relevant features may lead to overall higher accuracy,
especially for our conglomerate of many and partly highly correlated features
— classifiers are susceptible to dimensionality. In addition to accuracy, a low-
dimensional set obviously saves computational load at several stages such as
extraction, training, and classification. Furthermore, feature selection results
in a reduced, interpretable set of significant features; their counts and weights
in the selection set allow to draw conclusions on the relevance of the feature
types they belong to. In this article, we focus on interpretation and not on
optimising classification performance. We search the most important features
in the original untransformed feature space directly by using SFFS for three
groups: acoustics only, linguistics only, and both acoustics and linguistics to-
gether. This resembles the more usual approach to feature selection in the
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field of emotion recognition, cf. Vogt and André (2005). Yet it omits a first
de-correlation step, which often clusters features of the same LLD or func-
tional. This may distort the outcome if the feature space reduction is very
large. Nevertheless, this approach is necessary, because de-correlating pre-
processing, such as PCA or LDA, would project the original feature space
into a new one, thus making it even more difficult to interpret the impact
of different feature types. To freeze the number throughout feature sets and
cross validation splits, we selected the 50 best features per split; using a cut-
off criterion like Receiver Operating Characteristic (ROC) curves would injeet
variance on several layers because they are often overlaid with statistical noise
or show very flat slopes. The wrapper classifier for SFFS is Support Vector
Machines, known as SVM-SFFS, with linear kernel, one-against-one multi-
class discrimination, and Sequential Minimal Optimisation (SMO); ef. Witten
and Frank (2005). The wrapper runs in turn on three speaker-independent
cross-validation splits; two of them are used for training/validation (two-fold
cross-validation), the third for latter performance analysis. The final space of
selected features is the union (thus allowing for potential repetitions of fea-
tures which are discarded subsequently) obtained by applying SFFS on the
original (untransformed) space, on each of these three splits separately. This
approach leads to a reduced set of 150 features (50 per split). The data parti-
tioning meets the following requirements (in order of priority): no splitting of
within-subject chunks, similar distribution of labels, balance between the two
schools, and balance between genders. For the training splits, we up-sampled
all classes but Neutral: 3x Motherese, 2x Emphatic, and 2x Angry 1. SFFS is
thereby carried out in 2-fold, cross-fold selection on two of the three partitions
having one split for training and one for validation. The third split is held out
completely and is used for eventually testing each feature type separately.

For interpretation, we refrain from discussing single ‘most important’ features
because of both technical reasons (i. e. parameterisation of the SFFS selection
algorithm, local minima, etc.) and the very high dimensionality of the feature
space; at this stage, it seems to be safer to discuss distribution of feature types,
their classification performance, and their proportion in relation to all types
and their frequencies. To this aim we report an F-MEASURE as introduced in
Batliner et al. (2006) which is used for having a unique classification perfor-
mance measure; here, the F-MEASURE is defined as the uniformly weighted
harmonic mean of RR and CL: 2- CL - RR/(CL + RR). RR is the overall
recognition rate or recall (number of correctly classified cases divided by total
number of cases or weighted average); CL is the ‘class-wise’ computed recogni-
tion rate, i. e. the mean along the diagonal of the confusion matrix in percent,
or unweighted average. This F-MEASURE represents a trade-off between CL
and RR. This is a slightly different definition from the standard one, given

16 Unlike random up-sampling, such a rule-based strategy guarantees easy and un-
equivocal reproducibility in case of latter parallel experiments.
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in Makhoul et al. (1999); however, it seems to be more adequate for a multi-
classification problem. Note that F-MEASURE values displayed henceforth are
calculated on the reduced feature sets separately for each feature type (i.e.
using its surviving features only), and extraction type.

Another rough but useful indicator of the relevance of a feature type is the
number (#) of the features selected by SFFS. As the reduced set is fixed to
150 we can further refine the count by normalising it: with SHARE we define
the number of each feature type normalised by 150: #/150; with PORTION
we also introduce the same number normalised by the cardinality of a feature
type in the original feature set: (#/#total). SHARE displays for each feature
type its percentage in modelling our 4-class problem, summing up to 100%
modulo rounding errors, across the three splits. It shows the contribution of
single types under the (strictly speaking, contrafactual) assumption that the
types are modelled exhaustively and “fair’ across types; 7 PORTION shows the
contribution of single types weighted by the (reciprocal) number of tokens per
type: the higher it is, the better this type can be exploited. To give examples
for both SHARE and PORTION: in Tab. 2, SHARE for duration is the number
of duration features surviving the feature selection (28) divided by the total
number of features in the reduced set (150): (28/150) = 18.7; PORTION for
duration is the number of duration features surviving the feature selection
(28) divided by the total number of duration features (391): (28/391) = 7.2.

17 This caveat refers on the one hand to the points addressed in Sec. 1, esp. to the fact
that even our large set with its more than 4 k features is of course not exhaustive;
on the other hand, set I with its two-layered approach has some advantage over the
single-layered sets II and III because the acoustic features of set I are computed
based on manually corrected word boundaries. Thus the sets spectrum, cepstrum,
and wavelets which are all not computed for set I, cf. Sec. 4.1.1, might be slightly
‘handicapped’. We do believe, however, that this fact has only a small impact in
the two-layered approach because computation on the first (word-) level is not used
directly but serves only as input to the computation on the second (chunk-) level.
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Fig. 1. Feature types: different impact for separate or combined modelling of acous-
tics and linguistics; for each type, F~-MEASURE and SHARE are plotted for a separate
modelling of acoustics and linguistics, and for a combined modelling; the two points
are connected with a straight line to indicate the distance; the y-axis is scaled log-
arithmically

5.2 Types vs..Functionals

From Tables 2 and 3, we try to gain more insight into the effectiveness of
each feature type and the differences between types in modelling our 4-class
problem. As introduced in the last section, we compare types by looking at
F-MEASURE, SHARE, and PORTION.

Most of the time, all types contribute (SHARE), although some of them might
be more important than others, e.g. for acoustics only (Table 2, left) energy,
duration, pitch, and MFCCs. The picture is a bit different if we look at the F-
MEASURE: highest ranks energy, then duration, MFCCs, and spectrum. Note
that ‘important’ here does not imply a general statement on the LLDs concern-
ing classification performance; it means that obviously, the surviving features
belonging to this specific LLD are compact and good at exploiting relevant
information. This can be illustrated with the linguistic types: for linguistics
only (Table 2, right), BOW has the highest SHARE value; as for PORTION,
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SEM and, to a lesser extent, POS features obviously model (positive or nega-
tive) valence and syntactic/semantic salience to a high extent. This might be
the reason for the difference in F-MEASURE: SEM with highest F-MEASURE,
then POS, and third position BOW. POS features might be most robust if
it comes to dealing with ASR output, cf. Seppi et al. (2008): the difference
between content words and function words is highly correlated with length of
words, i.e. duration, cf. below. Thus word recognition can be suboptimal, and
only word length has to be approximated. Moreover, in Schuller et al. (2007a)
an SVM classification yielded for all BOW features an F-MEASURE of 62.6%,
compared to the 53.2% shown in Table 2, right; thus, BOW is better at per-
forming if all terms in the utterance can be considered while SEM is better at
‘compactness’: when you are interested in performance, take the brute force
set BOW; when you are interested in a generic interpretation, have a look at
the selective, compact SEM set.

Actually, the behaviour of the different types is not much different if used in
acoustics or linguistics alone, or in the full set, if we look at relevance within
the ‘cover type’ — acoustics or linguistics — the types belong to. If we look at
the F-MEASURE values in Table 2 and 3, energy and SEM are most important
within acoustics and linguistics respectively, followed by duration and part-
of-speech features (POS). The SHARE of BOW features is high; this indicates
that they are providing some usefuly detailed information in addition without
being as compact as the other two linguistic types. This could be expected:
SEM and POS features are condensed cover classes of BOW features. Pitch,
spectrum, and MFCCs come second in acoustics (Table 2, left), with somehow
equal importance. Least important — but still providing some information —
are voice quality and wavelets. We have stressed in the introduction that these
results have to be seen in the context of the emotion classes that we can model,
based on our data: the high impact of duration and energy might be partly due
to Emphatic being one of our four classes. The necessity to map reprimanding,
touchy, and angry onto a negative cover class could be responsible for the low
impact _of voice quality features which might be better at modelling particular
differences. However, there is evidence that they are multi-functional and more
susceptible to speaker-idiosyncrasies and therefore maybe of higher impact
only in a personalised setting, cf. Batliner et al. (2007a).'®

18 Scherer (1986) stresses the high impact of voice quality. Evidence for such an
impact comes very often from experiments using acted data or synthesised speech
and perceptive evaluation, cf. Gobl and Ni Chasaide (2003). If subjects have to
listen to stimuli where just one parameter is manipulated such as voice quality, they
certainly attribute some function to such differences. This does not tell us how this
parameter behaves in a natural setting and/or for speaker-independent evaluation.
Moreover, the estimation of the vocal source is a major problem. Thus the low rank
for voice quality can be due to the fact that it is a highly speaker-dependent feature,
and/or to the fact that it cannot be extracted reliably.
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In acoustics plus linguistics (Table 3), SHARE for the acoustic features should
be roughly one third lower than in acoustics alone, because one third (49)
of the 150 surviving features are now linguistic ones. Most pronounced is a
deviation for duration (lower, i.e. only one third instead of two-thirds) and for
energy (higher, i.e. three-thirds). To assess the mutual influence of acoustics
and linguistics in a more objective way, we display in Table 4 the absolute
differences between the values of #, F-MEASURE, SHARE, and PORTION in
Table 2 and 3: we simply subtract the values from Table 3 from those of
Table 2. All differences but one (-0.1 for pitch) are positive; this could be
expected because adding another important knowledge source, namely lin-
guistic information, lowers the impact of acoustics. It is interesting, however,
that there are practically no exceptions. Fig. 1 display this difference in a
plot of SHARE vs. F-MEASURE; for each of the types, two positions are given,
one for the separate modelling of acoustics and linguistics, one for the com-
bined modelling. Apart from pitch, all types display the'same behaviour: they
loose some impact — i.e. they are closer to the origin because F-MEASURE
and SHARE values are lower — if in combination.” The highest ‘loss’ can be
observed for the two linguistic types BOW and POS, and for duration and
wavelets; this is indicated by the longer lines connecting the respective two
points. Between duration and linguistic information, there is a ‘trading’ (i. e., a
complementary) relation because duration implicitly encodes linguistic infor-
mation: longer words are content words, and shorter ones are function words;
short utterances tend more towards denoting Emphatic or Angry, cf. below. It
might be that adding linguistic information makes energy more salient, espe-
cially for our classes which entail Emphatic. Obviously, wavelets and MFCCs
model as well linguistics to-a higher extent than spectrum and esp. pitch and
energy. In Schuller et al. (2007a), the feature types were used alone and not
in combination with all other feature types; classification performance using
SVM and individual Information Gain Ratio for selecting the 150 most impor-
tant features for each type was between 51.6% for voice quality and 60.6% for
duration. The ranking from highest to lowest was: duration, energy, cepstral,
wavelets, spectrum, pitch, and voice quality. Thus wavelets are ‘in the middle
of the field’ if used alone, but lag behind if used together with other features.

As for the linguistic types, BOW is most affected, second come POS and SEM.
The very low impact of VAR, i.e. disfluencies and non-verbals, might be due
to the simple fact that they do not occur that often in this scenario: mostly
waiting for the AIBO’s actions, the children do have enough time to plan their
rather short utterances. Thus planning does not interfere with production.

Acoustics only and Linguistics only yield roughly the same performance for
‘all’: 63.4% vs. 62.6% in Table 2. If taken together, cf. Table 3, more acoustic
features survive. There might be at least two reasons for that: first, there
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label M N E A

acoustics only

Motherese | 64.0 25.6 2.7 7.7
Neutral 11.3 66.9 12.3 9.6
Emphatic 2.6 154 62.0 20.0
Angry 4.5 16.5 199 59.1

linguistics only

Motherese | 69.8 19.3 4.1 6.8
Neutral 11.0 62.5 17.6 8.9
Emphatic 0.9 166 70.1 124
Angry 3.1 206 28.0 48.4

acoustics and linguistics

Motherese | 69.3 224 22 6.1
Neutral 10.5 67.1 151 7.4
Emphatic 0.6 159 '66.9 16.7
Angry 2.3 176 22.0 58.1

Table 5

Confusion matrix for our 4 classes in percent correctly classified, for the three dif-
ferent feature type combinations acoustics only (above) linguistics only (middle),
and acoustics and linguisties (below). Correct recall values in the diagonal are given

in bold.

are simply many more acoustic features than linguistic features to choose
amongst. The encoding of linguistic information in acoustic features such as
duration plus some added value based on acoustics alone might be a second
reason.. The outcome that acoustics and linguistics alone yield roughly the
same performance might of course depend on the type of data: trivially, in
written data, there is no acoustics. In very restricted codes (e.g., commands
only) acoustics is the channel that can be altered most. In acted data, if
segmental structure is identical, the impact of linguistics is null. We believe
that the equilibrium found in our data is characteristic for ‘normal’, realistic
data, where both acoustic and linguistic means are available for the speakers;
a similar equilibrium was obtained for realistic call-center data and for lexical
vs. prosodic cues in Devillers and Vidrascu (2004). It is not a full equilibrium,
though, because the scenario ‘giving commands to pet robots’ is certainly more
restricted than, e. g. free human-human conversations. (Note that the impact
of linguistics will be certainly lower if real ASR with noisy data is applied.)

With Table 4 and Fig. 1, we discussed the interrelation of acoustics with lin-
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guistics by looking at the different feature types. With Table 5, we discuss it
by looking at the differences of recalls (accuracy) per class. First we see that
the values confirm the NMDS scaling found in Batliner et al. (2008b), cf. sec-
tion 2.3, and by that, corroborate the order M, N, E, A: with a few and small
exceptions, esp. for M vs. E and A, values are falling monotonously, starting
from the correct recall. Second, M and E are classified better with acoustics
only, N and A with linguistics only. Recall for A is lowest — the reason might
be that it is composed of different categories with different arousal levels: high
for angry, lower for reprimanding and touchy.

It should be born in mind at this point that an up-sampling was carried out
to cope with the high imbalance of classes. Clearly, by different balancing dif-
ferent behaviours will be observed with respect to the highest recall. However,
the chosen up-sampling leads as close as possible to a uniform distribution by
a straightforward and easily re-doable rule-based processing. By up-sampling,
recall rates are more balanced for all four classes.
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Table 6 displays in a parallel way F-MEASURE, SHARE, and PORTION, broken
down into functional types, for acoustic features only. We see that highest
comes ‘sequential and combinatorial’, second ‘extremes’, ‘means’, and ‘higher
statistics’. This is no proof yet that ‘sequential and combinatorial’ features are
best because they are based on many other — but not on all — types of func-
tionals, cf. the description given above; they are therefore sort of unrivalled.
‘Specific functions & regression’ as well as ‘percentiles’ rank low, compared to
‘extremes’, ‘means’, and ‘higher statistics’; it might be that the latter types
are either more robust such as ‘means’, or more ‘characteristic’ such as ‘ex-
tremes’: extreme values are more prone to extraction errors than mean values
but if they are correct they can be good predictors, such as higher FO excur-
sion indicating higher arousal. For assessing the real impact of ‘sequential and
combinatorial’ features, we have to use another strategy which is described in
the next paragraph.

To find out up to what extent the three different sets (types of feature extrac-
tion) described in Sec. 4.1 result in different impact, we computed for them
the same figures as in Table 2 and 3; results are given in Table 7. This was
done only for the acoustic features because the linguistic ones show consider-
ably lower variability. Further they are all based on information on the spoken
word chain. We can see that the F-MEASURE is highest for the two-layered set
I, and lower for the brute-force setIII; for set II (one-layered and selective)
it is a bit lower than for set III (brute-force). As for SHARE, set I (selective,
two-layered) and set III (brute-force, single layered) change places. PORTION
tells us that set I is exploited much better than set II; as expected, PORTION
for set III is lowest. Due to the differences in processing described in Sec. 4.1,
this is no exact benchmark: we used the features from each site as is and did
not try to optimize performance independently. In set II, spectral and MFCC
features are used but not in set I. On the other hand, set I used manually
corrected word information. However, in Steidl et al. (2008) it is shown for
the same database that there is no difference between manually corrected and
automatically extracted word boundaries, as far as classification performance
is concerned. It seems rather to be information based on the spoken word
chain (word length, how many words per chunk, etc.) and the mere fact that
sub-chunk units are taken into account, which somehow is modelled in these
two-layered acoustic features as well. Thus most likely, a two-layered process-
ing has some added value, and within the brute force approaches, the single
features might not model ‘too much’, i.e. they might be only relevant within
a whole network of many features. A combination of a ‘many feature’ ap-
proach, be this selective, i.e. knowledge-based, or brute-force features, with a
two-layered processing, cf. Schuller et al. (2008), might be promising,.

We should stress that comparing values of our measures SHARE and POR-

TION is not fully ‘fair’, for different reasons: first, some features are not ex-
tracted (fully) automatically: this holds for all linguistic features, and for the
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two-layered approach of FAU and FBK which uses manually corrected word
boundaries; note, however, that in Schuller et al. (2007b) we have shown that
automatic segmentation based on ASR output does not deteriorate sharply
classification performance for our 4-class problem. Second, our measures are
‘unfair’ against very small or very large feature sets: if all 31 POS features were
entailed in all three SFFS sets, this highest possible SHARE would amount to
31-3/150 = 62%; more is not possible, even in theory. On the other hand, the
MFCC features could never have a PORTION higher than some 8.8% because of
their overall frequency. However, if all (types of) features were of exactly equal
importance, so that choosing amongst them would simply be by chance, then
the proportion of SHARE and PORTION for extraction and feature types would
tend to be roughly equivalent to the frequency of tokens in the respective set.
This is not the case. Thus we are allowed to formulate some interesting hy-
potheses: first, that a combination of lower and higher units (two-layered word
and chunk processing) is promising — even for non-‘cheating’~ASR processing,
cf. Schuller et al. (2007b). Second, that features computed within brute force
approaches may really need larger ‘feature networks’ than selective features.
This is a daring hypothesis, but an interesting one which can be tested. Third,
that all types of features contribute, albeit up to a different extent, cf. the dif-
ferences in performance of pure types described in Schuller et al. (2007a) — but
we maybe only need all of them if we are interested in utmost performance,
or in a generic feature set. Fourth, that acoustics on its own definitely does
not tell the whole story; note that our labellers annotated sequentially, taking
into account all context given — after all, this is a realistic modelling of the
interaction: speech is not only acoustics but linguistics as well.

In Schuller et al. (2007a), we pursued a similar, but not identical approach
towards the relevance of feature types: using the same taxonomy as described
in Sec. 4.1, we processed separately each type using the 150 features per each
type with the highest individual Information Gain Ratio; F-MEASURE was
always computed for these 150 ‘most relevant’ features per set. Thus in Schuller
et al. (2007a), we addressed the question ‘how good is this feature type alone?’;
in the present article, we addressed the (more realistic) question ‘how much
does this specific feature type contribute if used together with all other feature
types?’. The order of relevance (classification performance) for the different
types is very much alike in these two different approaches; this is a reassuring
result because differences in feature selection strategy seem not to be that
important as differences in phonetic or linguistic content of the feature types.

It could be argued that we should apply tests of significance on our results to
find out which of them are significantly different and which are not. To cor-
rectly apply inferential statistics, we should, however, deal with the multiplic-
ity effect, i.e. the repeated use of the same data, through significance testing
using, e. g. the Bonferroni adjustment: the errors made by our computations
are not independent; chunks can be from the same turn, and the data are the
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same throughout, cf. Salzberg (1997) — note that we certainly have done more
than 100k classification tests with these data throughout the years. Thus the
Bonferroni adjustment would simply invalidate any result. (There are some
theoretical /methodological arguments against the Bonferroni adjustment, cf.
Pernegger (1998).) A common use of tests of significance in speech processing
— albeit, strictly speaking, an incorrect one — is to disregard the multiplicity
effect and to apply tests of significance to get an indication whether the results
are marked enough, given the difference in performance and the size of the two
samples: the smaller the samples, the higher the difference in performance has
to be to yield ‘significant’ results. (Already Eysenck (1960); Rozeboom (1960)
suggested to use significance not in the inferential meaning but as a sort of de-
scriptive device.) As described previously, the performance of a feature set was
measured as a proportion of correctly classified instances over a population.
Thus we test the significance of the differences of RRs. If we assume RR1 and
RR2 as independent, then we can adopt the Z-test fora proportion, namely
A RR = RR1 - RR2. This test allows to investigate the significance of A RR
compared to the standard normal distribution, in specific using a two-tailed
test. In Fig. 2 we draw the significance threshold for A RR given two typical
values of a: 0.01 and 0.05. To give two examples: F-MEASURE for duration
exploiting acoustics only in Tab. 2 is 54.9; F-MEASURE for duration exploiting
acoustics plus linguistics in Tab. 3 is 49.6. The difference amounts to 5.3 and
is above the value needed for ‘significance” at the 5% level which is 2.0, and
above the value needed for ‘significance’ at the 1% level which is 2.7, cf. Fig.
2. For SEM in the analogous constellation, the difference of (57.9 —56.0) = 1.9
is slightly below the values needed for significance at both levels (2.0 or 2.7).

A last note on ‘perceptual and cognitive adequacy’: can we infer from our
hierarchy of relevance to human processing? This question is normally being
addressed by perception experiments — a task impossible to accomplish with
that many features. Thus the argumentation can only be indirect: if we can
model the behaviour of our labellers with our selection of features, chances
are that perception and classification do have something in common. Even
for such a rather general statement, one caveat has to be made: our features
are, up-to a great extent, extracted automatically. This means in turn that
they all are, again up to a certain extent, erroneous. We have seen in Batliner
et-al. (2007b) that for automatically extracted pitch features, mean values are
most important; for manually corrected pitch features, however, it is features

19 The assumption that RR1 and RR2 are independent is of course not completely
true, because the figures were computed on the same test data: although the features
from the two algorithms are different, both methods exploit, for instance, the same
classifier and they can therefore share a number of errors. However, a more precise
significance test (e.g. McNemar’s test) would simply be less conservative, yielding
more ‘significant’ differences. Therefore, the values reported in Fig. 2 can be seen
as a lower bound of the significance values.
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Fig. 2. Significance threshold for A RR given two typical values of a: 0.01 (left) and
0.05 (right); two-tailed test

set 1 set IT  set III all

total # 112 297 3304 3713

# 54 32 64 150

,_Uljl F-MEASURE 58.8 53.3 54.9 63.4
g5

2 SHARE 36.0 21.3 42.7  100.0

PORTION 48.2 10.8 1.9 4.0

Table 7

Summary per type of feature extraction (acoustic features only): set I (selective,
two-layered), set II (selective, single layered), set III (brute force, single-layered),
and all. Explanation of measures is given in the text.

modelling the shape of the pitch contour. This can be explained easily because
mean values are less prone to octave errors than shape values. But we still do
not know whether human perception (always) fine-tunes to shapes or uses less
‘precise’ but more robust features such as mean values as well.
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6 Concluding Remarks

To our knowledge, the present article describes the most extensive approach
so far towards examining the impact of different types of features on the
performance of automatic recognition of emotions/emotion-related user states
within the two sign systems acoustics and linguistics, both separately and in
combination. We have shown that the performance of all acoustic and of all
linguistic features is comparable, and that a combination of both sets still
improves recognition performance. The ranking within the acoustic feature
sets corresponds to most of the studies using realistic data and a fair coverage
of feature types conducted so far; a strict comparison is not easy because
of several trading relations within and across acoustic and linguistic feature
types; however, a separate evaluation of the sets in Schuller et al. (2007a)
yielded a comparable ranking.

The size of our feature vector was a necessary pre-requisite for obtaining a high
coverage of different feature types and functionals but it makes it way more
difficult to interpret single features. We therefore introduced the new and more
global measures SHARE and PORTION, besides F-MEASURE. Another necessary
pre-requisite for the co-operation between different sites was an un-equivocal,
agreed upon feature encoding scheme.

It is clear that even if our seenario is realistic and as such, representative,
the specific emotion/emotion-related classes we have found are not the only
ones; thus the ranking of relevance for the different feature types might not be
representative. Note that we always have to speak about a ranking, not about
any irrelevance of single feature types: every type taken alone — either within
the approach chosen for the present study, or within the one chosen in Schuller
et al. (2007a) —yields a classification performance above chance level. The less
feature values are a direct result of physiological conditions (for instance, high
arousal producing large pitch ranges for angry or joyful), and the more they
are conventionalised and individualised, the less plausible might a ‘universal’
ranking be.

The caveat has to be made that, strictly speaking, our statements on the rel-
ative importance of feature types have to be confined to our data. This caveat
holds, of course, for every study. It seems to be stricter in our case due to the
lesser amount of prototypical representation of emotional user states: we do
not model the ‘big n” emotions but a mixture of big emotions/emotion-related
states (interpersonal stances in Scherer’s terminology, cf. Scherer (2003)), and
‘semantic-related” phenomena such as emphasis. Such a strict caveat holds,
however, only against the background of an ideal world where emotions could
be investigated ‘in nuce’. The classes we have found might be, on the con-
trary, rather representative for realistic scenarios and applications — ‘repre-
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sentative’ because they do not model some ‘big n” emotions but a selection
out of the much larger set of user states that can be found in realistic ap-
plication scenarios. Note that most studies giving a survey of features most
relevant for specific emotions such as, e.g. Frick (1985); Banse and Scherer
(1996); Cowie et al. (2001), are based mostly on acted data — simply because
at that time, most of the studies on acoustics and emotion were based on
acted data. However, acted or synthesised data can be used as sort of ‘heuris-
tic inspiration’ but must not simply be transferred generically onto realistic
data. As Erickson et al. (2004), p. 20 put it: “In acted emotion, the speaker
is volitionally changing the acoustic signal to impart to the listener a mental
or emotional state (paralanguage) while in spontaneous emotion the speaker
is working at maintaining the acoustic signal to convey the intended message
even through emotional interruptions (nonlanguage).” It simply cannot be
granted that conveying emotions by acting yields the very same acoustics and
prosody as conveying a message, while being emotional:

In everyday, neutral speech, expressing salience with emphasis needs not co-
occur with expression of emotions. But if we express emotions, we most cer-
tainly express salience besides because this in a genuine trait of speech: ex-
pressing emotions within the paralinguistic system is modulated onto ex-
pressing semantics within the linguistic system; we do not use only an ‘emotion
system’, forgetting about linguistics. This is only the case if we act emotions
using always the same, segmentally identical utterances, and maybe in spe-
cific situations with a very high arousal level. Thus the sparsity of emphasis
as category in emotion studies so far might partly be due to the fact that it
simply has not been addressed (you don’t get what you’re not looking for).
However, in realistic applications, we have to model both phenomena in order
not to confound the two sign systems linguistics, on the one hand, with its
means of accentuation and emphasising, and para-linguistics, with its means
of expressing emotional states. It will be an empirical question whether for
a specific application, an integrated approach with an acoustic, an emotion
and a linguistic module interacting with each other, or a sequential approach,
strictly separating these modules from each other, is more applicable. In prac-
tice, often only parts of a sequential approach will be implemented, due to
complexity considerations.
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