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Abstract

Automatic speech recognition (ASR) has become a valuable tool in large document
production environments like medical dictation. While manual post-processing is
still needed for correcting speech recognition errors and for creating documents
which adhere to various stylistic and formatting conventions, a large part of the
document production process is carried out by the ASR system. For improving
the quality of the system output, knowledge about the multi-layered relationship
between the dictated texts and the final documents is required. Thus, typical speech-
recognition errors can be avoided, and proper style and formatting can be antici-
pated in the ASR part of the document production process. Yet — while vast amounts
of recognition results and manually edited final reports are constantly being pro-
duced — the error-free literal transcripts of the actually dictated texts are a scarce
and costly resource because they have to be created by manually transcribing the
audio files.

To obtain large corpora of literal transcripts for medical dictation, we propose a
method for automatically reconstructing them from draft speech-recognition tran-
scripts plus the corresponding final medical reports. The main innovative aspect
of our method is the combination of two independent knowledge sources: phonetic
information for the identification of speech-recognition errors and semantic infor-
mation for detecting post-editing concerning format and style. Speech recognition
results and final reports are first aligned, then properly matched based on seman-
tic and phonetic similarity, and finally categorised and selectively combined into
a reconstruction hypothesis. This method can be used for various applications in
language technology, e.g., adaptation for ASR, document production, or generally
for the development of parallel text corpora of non-literal text resources. In an
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experimental evaluation, which also includes an assessment of the quality of the re-
constructed transcripts compared to manual transcriptions, the described method
results in a relative word error rate reduction of 7.74% after retraining the standard
language model with reconstructed transcripts.

Key words: automatic transcription, semantics, phonetics, automatic speech
recognition, dictation

1 Introduction

After decades of research, speech recognition technology has reached a level
where it can be successfully integrated into products for everyday use. In par-
ticular, this applies to dictation systems with integrated speech recognition
which help reduce the amount of manual transcriptions. In the medical do-
main, where dictation traditionally plays an important role, speech recognition
systems have contributed to a more efficient report creation process since med-
ical transcriptionists no longer have to type whole documents, instead they
only do the post-processing to create the final reports. This way, highly skilled
medical transcriptionists make better use of their expertise.

In many cases, this post-processing step unfortunately still involves a lot of
tedious editing: recognition errors have to be corrected, and the style and for-
matting of the document have to be adapted to the standards applied to writ-
ten reports. Particularly for dictations by unexperienced users, post-processing
can become time consuming, and thus may lead to many and various devia-
tions between the recognition results and the final reports.

While recognition results and final reports are usually available in abundance,
manual transcriptions of the actual spoken words without recognition errors
(i.e., assuming perfect recognition) are costly and scarce. For training auto-
matic speech recognition systems, however, literal transcriptions of the actual
words are needed.

A standard methodology to overcome the problem of non-literal transcrip-
tions in ASR training is unsupervised or lightly supervised training (Lamel
et. al. (2002), Kemp and Waibel (1999)). These approaches allow the gener-
ation of statistical models from only small amounts of literal transcriptions
together with large amounts of non-literal transcriptions in an iterative fash-
ion. For language model training, methods like linear model interpolation

* Corresponding author.
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(Chen and Goodman (1996)) or transformation-based learning (Peters and
Drexel (2004)) are used to cope with non-literal transcriptions. Although these
methodologies lead to reductions in word error rate for as various domains as
news broadcasts or transcriptions of class lectures (Hazen (2006)), they do
not give explanations for the mismatches between the non-literal data and
the actual wording in the training utterances. Furthermore, problematic seg-
ments like disfluencies, hesitations, or speaker corrections cannot be modelled
without proper annotation. For these reasons, literal transcriptions are still
valuable.

These motivations lead us to the definition of the problem of how a literal
transcription can be automatically reconstructed from non-literal transcripts
of different information sources. This problem has already been addressed by
Pakhomov et al. (2001) for modelling disfluencies and hesitations in medi-
cal dictations. However, a comprehensive model for automatic reconstruction
needs to go beyond the scope of specific phenomena and provide a generic
framework for exploiting the full potential of the analysed documents.

In this article, we propose such a reconstruction framework and describe a
system which has been developed for automatically reconstructing the actual
spoken words from the recognition result and the final medical reports. These
two different input sources are complementary for the task of reconstructing
literal transcripts. The resulting reconstructions can be used the same way as
manual transcriptions for training speech recognition systems.

The base for reconstruction is an alignment between the written report and the
recognition result. The alignment takes into account semantic information (for
explaining reformulations) and phonetic information (for explaining recogni-
tion errors) as well as syntactic information in terms of document formatting.
From the interpretation of the deviations between the written report and
the recognition result, the words which are considered to have actually been
spoken are reconstructed. According to the proposed methods, we name our
approach Semantic and Phonetic Automatic ReConstruction (SPARC). The
main innovative aspect of our method is the optimal interplay between two
independent knowledge sources, namely semantics and acoustics/phonetics in
the categorisation of differences between automatic transcript and final docu-
ment, as well as in the reconstruction of the original utterance from these two
data sources.

Qualitative and quantitative evaluations based on manual transcriptions have
shown that, in many cases, the alignment leads to a correct reconstruction.
The resulting reconstructed text can serve not only as a base for training and
improving the speech recognition system; a deeper understanding of the typical
reformulations and reformatting may eventually also support a shift from mere
speech recognition to document production in dictation applications.
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In the following sections, we will continue with a more detailed account of the
SPARC approach in section 2 and a description of the available text corpora
in section 3. Following this introductory part, in sections 4, 5, and 6 the three
main units of the approach - text alignment, similarity measurement, and text
reconstruction - are then elucidated. In section 7, we report experimental re-
sults in terms of the quality of the reconstructed text and an automatic speech
recognition experiment with retrained language model. We conclude the paper
with a discussion of the results and an outlook for further applications.

2 SPARC approach

The SPARC approach is a method for the automatic production of literal
transcriptions from available data sources in large document production envi-
ronments using speech recognition. Three types of data are currently available
in such systems:

e Audio files (AF'), comprising the original utterances;

e Draft transcriptions (DT) - or more simply: recognised texts -, produced by
the dictation system (containing the recognition errors);

e Final documents (FD) - or more simply: written texts -, produced by the
typist (where recognition errors are corrected but where also some parts are
re-formulated in a way different from the original utterances).

Error-free literal transcriptions (LT) - or more simply: reference texts - of the
audio files, however, are usually not available, or only to a certain degree if
some manual transcriptions have been made. Yet, literal transcriptions of the
original spoken utterances are needed for advancing the accuracy and efficiency
of automated dictation:

e Aligned corpora of LT and FD can be used to automatically learn recurrent
reformulations, thus allowing automated dictation to be augmented by an
automatic text reformulation module which provides a draft that is closer
to the intended final document.

e Large quantities of literal transcriptions and audio files can serve as data
for training of the acoustic and language models to decrease the word error
rate of speech recognition.

For medical dictations, the reconstruction task was already described by Pakho-
mov et al. (2001). There, the authors propose an augmented probabilistic
finite-state model for generating semi-literal transcriptions. This probabilistic
model handles so-called ‘out-of-transcription expressions’ like greetings, false
starts and repairs, and filled pauses as the only sources of mismatches between
recognised and written texts. For the same task, SPARC provides added value
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by also explaining and categorising such mismatches. For hypothesising the
reconstructed text mismatches are not only detected, but also interpreted.
The interpretation of a mismatching token pair as e.g., a recognition error,
or a reformulation of the typist helps in designing more accurate models for
the differences between spoken and written form of medical dictations. Voll
(2006) describes a hybrid method for detecting speech recognition errors in ra-
diology reports based on semantic knowledge, constraint rules and statistical
modelling (i.e., pointwise mutual information and co-occurrence analysis). In
Hazen (2006), transcription generation was presented for recorded academic
lectures with a finite-state transducer approach.

Semantic relatedness and similarity measures have mostly been developed to
improve the recall of Information Retrieval (IR) systems. There are two main
established ways of measuring the semantic similarity between two terms: on
the one hand, relatedness can be measured in terms of the distance between
two words or multiword expressions in a knowledge base, e.g., WordNet (see
Fellbaum (1998)). On the other hand, relatedness can be derived from a corpus
by determining co-occurrence and context features with IR methods. Often,
corpus- and knowledge-based measures are combined. Due to the many avail-
able knowledge sources, the medical domain lends itself well to knowledge-
based measures for semantic relatedness and similarity (for an overview, cf.
Pedersen et al. (2007)).

Similarly, phonetic similarity measurement has been used for addressing many
topics in ASR: modelling pronunciation variation (e.g., Ristad and Yianilos
(1998), Filali and Bilmes (2005)), predicting ASR errors (Fosler-Lussier et al.
(2005)), measuring acoustic confusability (Printz and Olsen (2002)), discrim-
inative language model training and OOV detection (Rastrow et al. (2009)),
or IR (Zobel and Dart (1996)). In many of these applications, confusion ma-
trices are used to measure the phonetic similarity of phone sequences or phone
confusion networks. These matrices are either handcrafted, e.g., from phonetic
class information, or estimated from data.

The technological goal is to automatically construct an error-free literal writ-
ten transcription of the user’s original utterances. Methodologically, the basis
for this reconstruction is formed by an analysis of the semantic and acoustic
differences between DT and FD. Scientifically, SPARC requires solutions for
the following problems:

e Automatic semantic annotation of text corpora with the help of a domain-
specific ontology.

e Accurate text alignment and chunking for the available draft transcriptions
and final documents.

e Methods for comparing aligned text chunks for semantic and phonetic sim-
ilarity.
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/Audio files (AF) /
/Draft transcriptions (DT) -:-:-j
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Alignment -

/ Final documents (FD) /
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¢ . Reconstructed texts
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Fig. 1. SPARC architecture: draft transcriptions and final documents are first an-
notated, then properly matched based on semantic and phonetic similarities, and
finally categorised and selectively combined into a reconstruction hypothesis.

e Classification of text chunks based on the similarity measures (text recon-
struction).

Figure 1 illustrates the architecture of the SPARC approach. Our method
starts with the automatic semantic annotation of both DTs and FDs. Pairs of
documents are then aligned to identify chunks where texts display differences.
Semantic similarity is measured based on the semantic annotation, while pho-
netic similarity is determined online with a parameterised stochastic similarity
measure. This way, the difference between a specific chunk in DT and FD can
be categorised as correction of a speech recognition error or a reformulation
by the human typist — or a combination of both (cf. table 1). Reconstruction
of the originally dictated words is based on this analysis. Note that semantic
and phonetic similarity measurement are used for both alignment and recon-
struction.

SPARC can be adapted to any domain and to any language as long as the
basis for training/learning — namely adequately sized parallel corpora of DT
and FD — as well as the necessary linguistic resources — lexical, morphology,
thesauri, etc. — are available. We implemented SPARC for English medical
reporting, due to the fact that very large collections of medical corpora in
English can be obtained, and medical reporting is at the moment by far the
most important application of speech recognition in professional dictation.
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PHONETICS
similar dissimilar
[9)]
E similar MATCH REFORMULATION
2
. REFORMULATION
% dissimilar | CORRECTION & CORRECTION

Table 1

The SPARC approach to text reconstruction. Based on semantic and phonetic sim-
ilarity measurements, chunks of written and recognised text can be classified as
either matches, reformulations, corrections or a combination of both.

3 Data Description

For reconstruction, we distinguish between matching (i.e., identical) and mis-
matching parts of the aligned texts. As this task is trivial for matching parts,
only the mismatching parts will be of interest. Generally, we describe mis-
matches between texts on word level in terms of the mismatch edit operations
insertion, deletion, and substitution. This way, a word error rate can be deter-
mined easily, but mismatch interpretation is difficult since actual mismatches
can be composed of several adjacent mismatch edit operations. For this rea-
son, we define a mismatch region as a contiguous sequence of mismatch edit
operations in order to establish correspondences between matched words.

A statistical study of a corpus of 80,000 medical reports with 38 million words
revealed an average length of 2.3 words for a mismatch region and an average
occurrence of 3.6 times for this region within the corpus. Regions occurring
only once account already for 60% of all mismatches while frequent regions
occurring > 10,000 times only account for about 11% of all mismatches. Such
highly frequent mismatches are, e.g., insertions or deletions of punctuations
and short words. On the other hand, regions of length 1 cover around 20%
of all mismatches, and 75% of all mismatches occur in regions of length <
5. For the reconstruction task, this means that only relatively short symbol
sequences have to be processed.

Mismatches can be traced back to the human dictation process, the automatic
recognition process, and the human transcription process. In general, the dic-
tating person speaks freely, thus hesitations, self-corrections, and repetitions
can be observed often in the recordings, but of course not in the final docu-
ments. ASR is error-prone, resulting in the confusion of words which are pho-
netically similar. The transcription process completes the range of mismatch
sources by adding formatting to the text according to certain well-defined
standards. Formatting affects the text in two ways: first, by additional struc-
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ture like inserted punctuations, paragraph breaks, or capitalisation of words,
and second, by formatting of particular document entities like headings, gram-
matical units (dates, quantities, etc.), or enumerations out of continuous text.
The latter formatting step makes reconstruction difficult, as different speak-
ing variants are mapped onto a standardised written form. Furthermore, the
structure and style of the text can be altered by reformulations of the typist
as well. These alterations include expansion of abbreviations, acronyms, and
short forms, or grammatical corrections like changes in genus, tempus, or nu-
merus so as to put the final written text into a proper stylistic and grammatical
form.

4 Text alignment

Establishing proper alignment of the final report (FD) and the recognised text
(DT) is an important prerequisite for all further steps (Huber (2006)).

During alignment, both input documents are viewed as sequences of tokens.
A generalised Levenshtein alignment algorithm is then applied to these se-
quences (cf. Levenshtein (1966)). The Levenshtein algorithm views alignment
as a minimisation problem, where a number of actions with associated costs
can be performed to navigate through the search space:

e If substitution is performed for two elements z; and y; of sequences x?’

and yM, then these two elements will be mapped to each other in the final
alignment and labelled with [=]. This action includes the special case of
identity where x; = y; with zero cost (unlike ‘true’ substitutions).

e Deletion, on the other hand, results in element z; of sequence z being
mapped to the empty element, i.e., it will not have a corresponding element
of sequence 4 in the alignment. Deletions are labelled with [<].

e Insertion is symmetric to deletion and as such leads to y; being mapped
to the empty element. Insertions are labelled with [>].

For each pairing (z;,y;) out of z’ x y}, a scoring function is invoked that
evaluates the respective costs for each of the three available actions. Dynamic
programming is applied to find the cheapest path (i.e., the cheapest sequence
of actions) through the search space in O(NM) time, where N and M are
the length of 2 and y}, respectively. This approach allows to factor out
all domain-specific aspects to the scoring function by, e.g., assigning special
scores to formatting marks while the dynamic programming scheme for cost
minimisation remains untouched.

A common phenomenon that can be observed in such alignments are mis-
matches caused by recognition errors involving splitting or merging of words
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written text < recognised text written text < recognised text
COR COR
\n\n/DIET/ \n = \n\n L > \n\n |
| Low-fat - Diet 1 \n\n/DIET/\n = Diet
| [ |
. = s > s
| |
| low-cholesterol = a o > a I
| [ |
: low : | Low-fat =< low :
| |
: fat o <= fat !
_______________________ | |
, COR , | , = : |
r— - """ "—-""—-"="-"="-"=-"=-"=-"—-"=—-"—-"=—-"—-¥' - - - - = hl I I
: two-gram = low : | low-cholesterol =< low :
: > cholesterol : : <= cholesterol :
| | | |
. > Zgrams 1 ) < |
sodium COR  sodium : two-gram = 2 grams :

_______________________

sodium COR sodium

Fig. 2. A sample text passage with mismatch regions highlighted in boxes, aligned
with standard Levenshtein alignment (left) and the advanced multi-alignment com-
puted by SPARC (right). Labels are: COR for identical words, [=] for correspond-
ing/substituted words, [<] for deletions, and [>] for insertions.

(segmentation errors) within the recognised texts or massive reductions due to
fast speech (cf. fig. 2 and 4). To account for these problems, the alignment has
been extended to handle multiple levels of segmentation. Since the alignment
procedure operates on sequences of tokens, it can be applied recursively to
any pair of tokens that has been further split to a finer level of segmentation.
Multi-word expressions or grammatical units can thus be reduced to sequences
of single words which in turn can be broken down to sequences of syllables.
The sequence of alignment labels obtained from these alignment processes are
concatenated into a single alignment label, expressing the amount of overlap
on submatching level between the parent tokens.

For the purpose of creating a literal transcript, it is crucial that all corre-
sponding passages of the two input documents are mapped to each other.
Corresponding means that two passages denote the same section in the ac-
tual dictation. Naturally, the two passages need not necessarily consist of the
same tokens like, e.g., in a mismatch region. Figure 2 illustrates this problem
for a sample text passage. The standard Levenshtein algorithm with equal
costs for all edit operations calculates the minimum cost alignment based
on the orthographic spelling, however, at the expense of proper word corre-
spondences. Furthermore, the mismatch region is even split improperly at the
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wrong comma, such that the semantic correspondence between written and
recognised text is lost. The SPARC alignment re-establishes the proper word
correspondences even for segmentation mismatches and preserves a singular
contiguous mismatch region.

Hence, two scoring mechanisms have been developed that compare token pairs
for semantic and for phonetic similarity, respectively, and these have then
been united in a single scoring function. Naturally, it would be desirable to
not only compare token pairs, but whole passages for similarity in the scoring
functions. However, the restriction to token pairs is a necessary concession to
the already unfavourable computational complexity of alignment problems.
Less local comparisons can be performed at the reconstruction stage.

5 Similarity measures

Similarity measurement of tokens is used in both text alignment (cf. section 4)
and reconstruction (cf. section 6). For text alignment, the similarity measures
are consulted by scoring functions of the generalised Levenshtein alignment
algorithm to improve accuracy in contrast to plain orthographic matching. In
text reconstruction, the measures are used to condition reconstruction rules
and perform the classification of text chunks as either matches, corrections,
reformulations, or a combination thereof (cf. section 2, table 1). The basic
methods, however, are the same in alignment and in reconstruction.

5.1  Semantic similarity

In order to measure semantic similarity, words are first assigned a seman-
tic representation. Since our primary application domain is medical reports,
specialised medical terminology has to be incorporated into the knowledge
sources. The resource we employ for that purpose is the Unified Medical Lan-
guage System (UMLS, Lindberg et al. (1993)), which includes a metathe-
saurus, a semantic network, and a lexicon (SPECIALIST). The morphosyn-
tactic information from the lexicon was worked into the finite-state transducer
that is used as a morphological lexicon.

The metathesaurus is a very large, multi-purpose, and multi-lingual terminol-
ogy database that contains information about biomedical and health related
concepts, their various names, and the relationships among them. Unfortu-
nately, the relations between UMLS concepts appear to depend on the partic-
ular knowledge source the concept comes from, and the depth it is modeled
solely within that knowledge source. Nevertheless, for analysing synonymity

10
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of two words or determining a rough degree of semantic relatedness, these re-
lations appear to be sufficient. In addition, all concepts in the metathesaurus
are assigned to at least one semantic type from the UMLS semantic network.

Furthermore, a high coverage resource for general vocabulary, the WordNet
lexical database (Fellbaum (1998)) is available for English. In Wordnet, nouns,
verbs, adjectives and adverbs are organised into synonym sets, each represent-
ing one underlying lexical concept; the relations connecting WordNet synsets
are quite different from the relations between UMLS concepts. For our pur-
pose, the hypernym relation is the most important synset relation. ! .

The following ordinal scale has been defined in order to obtain a rough measure
of semantic similarity of two words:

7 identical (modulo case) 2 same UMLS semantic type
or parent (wordl,word2)

6 same root (only inflection) or parent (word2,word1)

5 synonymous 1 direct hierarchical relation

4 morphologically derived between semantic types

0 no similarity at all

3 conceptual siblings

In the above context, parent(wordl, word2) means that wordl maps to a
concept /synset (inter alia) that is a direct UMLS superconcept or hypernym
synset of one of the concepts/synsets word2 maps to. Two words are siblings
if they share at least one direct UMLS superconcept or hypernym synset.
The intuition behind this was to use a measure which is available in both
WordNet and UMLS, which has a finer granularity than the (rather crude)
UMLS semantic type and which assures that both concepts have something
in common (the “supertype”).

Based on the similarity value of its two argument tokens on the ordinal scale,
costs for substitution, insertion and deletion are determined by the semantic
scoring function and returned to the invoking alignment framework.

5.2 Phonetic similarity

Phonetic similarity measurement (Petrik and Kubin (2007)) requires three
sources of information for comparison: the phonetic symbol sequence from the
recognised text, the orthographic word sequence from the recognised text and
the word sequence from the written text. The basic similarity measurement

I For a study which compares WordNet and UMLS in greater detail, see Burgun
and Bodenreider (2001)

11
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process is depicted in figure 3, and its main components are explained in more
detail below.

recogni zed witten recogni zed
wor ds wor ds phoneti cs

_________________________________

Fvl+—:

LevD (orth) LevD (pho) "| SED (pho)

silence,
noise

v v
© © ®

Fig. 3. Block scheme of phonetic similarity function: automatic phonetic transcrip-
tion (APT), automatic syllabification, trainable string edit distance measure (SED),
and Levenshtein measure (LevD)

5.2.1 Automatic phonetic transcription (APT)

In a first step, the written text is transferred to the phonetic domain with
automatic phonetic transcription (APT). This is done by a simple lexicon
lookup. The phonetic lexicon we used contains 160,000 words with 197,000
pronunciations. It includes common as well as domain-dependent vocabulary
and was compiled from customary and publicly available resources like CMU-
dict 2. To improve coverage on formatted text parts, a de-formatting grammar
is applied to formatted text units. The de-formatting grammar is an inverted
version of a formatting grammar used in the speech recogniser which now pro-
duces speaking variants for a given formatted entity as shown in the following
example:

2 See http://www.speech.cs.cmu.edu/cgi-bin/cmudict

12
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December 6 — December the sixth
December 0 six

sixth of December

Furthermore, a simple regular expression syntax was defined to encode the
possibly many speaking and pronunciation variants in a single string. The ex-
tended syntax allows grouping and alternation (“|”) of expressions as described
in the corresponding BNF grammar:

expr := group™
group — (L(” word—"— ( LC|77 word*)* (L)”

word == [A, .., Z,a, .., 2]

Since the word after the alternation-operator | is optional, whole words may
be omitted. This is particularly useful for dealing with hesitations or dictated
formatting instructions which do not appear in the written text by definition.

The recognised text still contains non-speech events like silence or noise mark-
ers which do not have a phonetic transcription and which are not contained in
the written text either. These parts get scores assigned which automatically
force them to be marked as insertions (path A in figure 3). After that, it is
certain that the remaining string pairs are valid phonetic strings that can be
handled by the phonetic similarity measurement model. Whenever the APT
fails, phonetic matching is impossible, so the string pair can only be matched
in the orthographic domain with the Levenshtein measure (path B in figure
3).

5.2.2  Automatic syllabification

Syllable boundaries are usually best assigned by expert phoneticians or can
be inferred from stress markers stored offline in the lexicon. For the highly
specific vocabulary used in the medical domain, such annotated expert pho-
netic lexica were not available to us. Furthermore, the vocabulary is subject to
change over time, as new medication may be prescribed or medical treatments
and measures may change. Therefore, an online automatic syllabification al-
gorithm was implemented to determine syllables directly from the texts. The
algorithm introduced by Hammond (1995) is based on Optimality Theory
(Prince and Smolensky (2004)), where phonological processes are modelled
by applying ranked constraints on base forms to obtain surface forms. For syl-
labification, this means that a number of competing syllabification constraints

13
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are applied to the input words. In contrast to Hammond (1995), the ‘noonset’
constraint had to be removed, as primary stress information was not available
in the phonetic lexicon. The modified algorithm was tested on a sample set
of 100 randomly selected words which were manually compared to a reference
syllabification provided by Merriam-Webster’s online dictionary®. The mod-
ification degraded the performance of the algorithm in terms of accuracy of
the syllable boundaries, but not the number of detected syllables, and still
returned correct results in around 80% of all cases.

With this algorithm, the word level units for recognised and written text
are split into sequences of syllables. The alignment algorithm is then applied
recursively on the syllable sequences. Adjacent words are not only aligned,
but also tested for overlap on syllable level. The word-level alignment label
is therefore replaced by an overlap symbol string. The resulting alignment
expresses both word and syllable level correspondences. Consider the sample
alignment in figure 4. Within the first mismatch region, the word Charcot
was incorrectly recognised and split into sharp and cold. The syllable level
alignment, however, shows that sharp corresponds to the first, and cold to
the second syllable of Charcot. As syllable alignment is determined based on
phonetic similarity, the alignment may sometimes look confusing. The short
words of and in are not aligned with each other, since in is phonetically more
similar to the last syllable of ulceration than to of.

5.2.3 Training a string edit distance measure (SED)

The main component of the phonetic scoring function is a trainable string
edit distance measure based on the stochastic model presented by Ristad and
Yianilos (1998). In this model, a string pair (x,y) is represented by all se-
quences of edit operations z; which produce that pair. Assuming that each
pair can be produced by at least one edit sequence, the probability of the pair
is the sum of the probabilities of all edit sequences for that pair:

pla,yl0) = > p(="#l0) , (1)
[t =(o)}

where # is the sequence termination symbol and v(2"#) defines the set of all
terminated edit sequences producing (z,y). Since every z; has a probability
p(z;) assigned and the model is memoryless, p(z"#|0) is the product of the
probabilities of the single edit operations. These probabilities p(z;) are learned
from a corpus of predefined, similar string pairs with an EM algorithm ( Ristad
and Yianilos (1998)). Accumulating the probabilities for all edit sequences, a
similarity measure can now be defined as

3 See http://www.merriam-webster.com/
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written text > recognised text

a COR a
| Charcot  SArkes =< shrp  sharp |
.- - >= koUld cold
i foot fUut = fUt foot i
: : kAm@ < - -
:L though DoU = n0 no :
Cthereis  Der= Iz COR  Der= Iz thereis

no n0 COR n0 no
Culceration  V1-s@rel:Sen ———= Ql-te-rel-Sen alteration |
L - - <<<= In in |
:L of Vv < - - :
skin skIn coR skIn skin

Fig. 4. A sample alignment containing two mismatch regions. The re-aligned mis-
match regions are highlighted in boxes while identical words are labelled with COR.
Phonetic strings are in SAMPA notation and syllable boundaries are marked with
dots []. Note that the [=]-overlap symbol just indicates correspondence, not equal-
ity of syllables, in contrast to the insertion [<] and deletion [>] symbols which label
non-matching syllables.

d(x,y) = —log p(z,y|0) . (2)

Two issues should be noted at this point. First, the similarity value decreases
exponentially with the input string length due to the usage of the distinct
termination symbol #. Therefore, the similarity value needs to be normalised —
in this case by the sum of the input string lengths. Furthermore, the similarity
measure is never zero since each edit operation has assigned a probability
0 < z; < 1. To still be able to detect exact matches, the systematic bias is
subtracted symmetrically to normalise the measure to zero according to the
following formula:

o) = d(a, ) = 5 - (e, 2) + d(y, ) g

Prior to matching, the regular expressions generated by the automatic pho-
netic transcription have to be expanded again, as only the minimum score for
all possible realizations is returned (path C in figure 3). Finally, in case the
stochastic model fails, another fallback to the Levenshtein measure is done,
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this time with phonetic strings (path D in figure 3).

The model was trained in 3 EM iterations with a set of 13,383 string pairs
obtained from manual narrow phonetic transcriptions of a domain-specific cor-
pus of 272 medical reports. The transcriptions were done by English students
with specific training in phonetics, ensuring quality in the transcription pro-
cess. For each word in the transcription, a string pair consisting of the canon-
ical transcription obtained from the phonetic lexicon and the actual phonetic
transcription was compiled. This way, phonetic similarity is clearly defined,
and frequent phoneme confusions can be learned easily from real-world data.

Figure 5 displays the learned probability distribution for each edit operation
defined on a phonetic symbol pair. As expected, most of the probability mass
was assigned to identity operations (main diagonal). Furthermore, vowels were
likely to be substituted by schwa (/@Q/) and vice versa. Voiced-unvoiced substi-
tutions between /t/ and /d/ were also quite prominent, just like substitutions
between the syllabic (/n=/, /m=/, /1=/) and non-syllabic forms (/n/, /m/,
/1/) of the semi-vowels. The learned probability distribution clearly reflects
the phonetic knowledge that can be observed in dictated speech.

5.8 Combined similarity measurement

The semantic and phonetic scoring functions are used as building blocks for
a combined scoring function that best exhibits the behaviour that is required
for further processing.

The goal is to align any two sequences of elements for which phonetic or seman-
tic similarity can be assigned. Distinguishing between phonetic and semantic
similarity is postponed to the reconstruction process since it is the single aim
of this processing stage to put related elements into proper correspondences.

Combining the two sets of scores for substitution, deletion and insertion into a
single set of scores is somewhat subtle, because contradictory actions might be
suggested by semantic and phonetic similarity scores. As an example, phonetic
scoring might vote for substituting two elements, while semantic scoring might
want to substitute one of these elements with a different one. Such contradic-
tions need to be resolved while still following the overall goal of performing
substitution (mapping between two elements) when either the phonetic or
semantic measure indicate similarity.

The combined scoring function for alignment was developed and tuned heuris-
tically by manual inspection of a small number of alignments. In general, the
phonetic similarity function analyses the tokens on a high level of detail and
thus establishes correspondences in a greedy fashion which sometimes results
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Fig. 5. Learned probability distribution for edit operations z; after 3 EM iterations.
Phonetic symbols are in SAMPA notation.

in alignments that cannot be interpreted meaningfully any more. The semantic
similarity scoring function on the other hand, is more robust against “over-
correspondencing” but at the same time not capable of properly detecting fine
matches. For these reasons, semantic matching is applied in the first place to
filter out clear cases and avoid overstretched regions of correspondence, before
phonetic matching is used to find detailed matches.

6 Text reconstruction

Based on the alignment, a reconstruction hypothesis for a literal transcription
can be computed. In general, this process can be seen as a classification task,
as already outlined in section 2 (cf. table 1). A classifier is used to select the
recognised or the written text for each alignment token. For optimal control
and fine-tuning, we implemented a rule-based reconstruction system that al-
lows generic and context-dependent analysis of the alignment. This approach
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written text & recognised text || deformatted reconstructed rule
i He = he he he sim_bigram :
:L says = said said said sim_bigram :
~ he  COR he | he he identical -
did not COR did not did not did not identical
have COR have have have identical
any COR any any any identical
cardiac COR cardiac cardiac cardiac identical
o > | comma - -
:L > residual residual residual repetition :
Cresiduals  COR  residuals | residuals  residuals  identical

Fig. 6. Reconstruction of a text passage with two mismatch regions (dashed boxes):
Written text, alignment labels, and recognized text are given as input. Deformatted
recognized text, reconstructed text, and the matching rule for each alignment line
are generated by the system.

is also compared to state-of-the-art automatic classification approaches using
the same input features.

The rule-based reconstruction process, which is described in Jancsary et al.
(2007), operates on the established alignment. The steps performed for recon-
structing the actually spoken words are the following (cf. figure 6):

Deformatting:

First, a column containing the completely deformatted variant of the recog-
nised words is created (cf. section 5.2.1). In particular, formatted items and
punctuation are replaced by the most likely spoken variant based on the
phonetic representation and the measures for phonetic and semantic simi-
larity.

Identifying and retracing moved blocks:

Then, moved blocks are identified if there are any, and within the written
text the identified text blocks are actually moved to the place where the
corresponding text is assumed to have been dictated. The moved regions
are then realigned, such that the result of this (and the previous) step is a
new alignment column.

Application of reconstruction rules:

Reconstruction rules specified by the user are applied to this alignment, and
two additional columns are created: one containing the reconstructed words
and another one consisting of a justification (i.e., the responsible rule) for
that reconstruction.
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written text > recognised text
HEART: = Heart
Examination = examination
is <
normal COR normal
COR
LUNGS: = Lungs
> are
Clear = clear
COR

Fig. 7. Excerpt of aligned input sequences with sliding rule window indicated by
solid frame

e Reconstructing moved blocks:
Finally, the moved parts of the report are reinserted in order to resemble
the original input.

6.1 Rule Engine

Once a stable alignment has been established, knowledge about corresponding
passages can be used for inspecting tokens and their contexts both in the edited
document and the output of the speech recognition system.

For this purpose, a rule engine has been developed. The reconstruction rules
that are interpreted by this engine provide a mechanism for inspecting a slid-
ing window that is moved over multiple columns according to their alignment.
In addition to columns for the edited document (cf. figure 7, left side) and
the output of the speech recogniser (cf. figure 7, right side), a so-called “align-
ment” column is available that indicates the correspondence between the left
and the right side at the current element: “=" indicates that some kind of
similarity has been found between the left and the right side, and therefore a
substitution has been performed, whereas “<” indicates a deletion and “>”
indicates an insertion. In the case of deletion, there is no element on the right
side corresponding to that on the left side. Symmetrically, there is no element
on the left side if the alignment column contains an insertion label.

Figure 7 depicts aligned columns and the sliding window of a rule that is
used to inspect the column elements and their context at a certain position
in the input. For each rule, a regular expression is applied to the alignment
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column, which specifies a dynamic sliding window size. In the example above,
the regular expression might have been formulated in such a way that the
sliding window iterates over instances of consecutive lines labelled with “=",
with the intention of inspecting only whole blocks of elements for which some
kind of similarity has been found.

Each rule adheres to the following skeleton:

rule rulename
match -w/window regexp/
# inspect sliding window
do
# specify reconstruction result
done

As explained above, the “window regular expression” works on the string of
labels in the alignment column and specifies for which lines the rule window
is set up. The match block can then be used to inspect all columns within
the borders of the window. If the rule finds that the lines inside the window
exhibit a phenomenon that this rule can handle, a non-zero value is returned
in the match block, which causes the do block to be triggered. The do block is
then responsible for building a literal transcription of the matching lines and
writing it to a result column.

The advantage of this approach is that each phenomenon (like recogniser er-
rors, repetitions, etc.) can be handled by a separate rule which encapsulates
both the detection of such cases as well as the required knowledge to decide
which column should be used or which transformations have to be applied to
build an appropriate literal transcription for the current window.

The bodies of the match and do blocks can be freely expressed in regular
Perl code. In addition, some special built-in functions for measuring phonetic
and semantic similarity between two strings, and for converting formatted ex-
pressions into their most likely spoken variant (e.g.: 500 mg — five hundred
milligrams, cf. section 5.2.1) are available in these blocks.

Since more than one rule can match for a certain sequence of alignment labels,
rules match on a first-come first-serve basis, meaning that rule precedence in-
fluences the result. In the experiments (cf. section 7), the effect of rule ordering
is investigated explicitly.
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reference text

written text < recognized textH CTX ho OVGy,h, ‘ OVS,ho

a COR a a a a a
F— = — = = — — = — = = = = = — = = = = — = = = = — = — — — — 4 H— —— — — — A
I Char-cot =< sharp Charcot Charcot Charcot Charcot |
: = cold :
I foot = foot foot - foot I
o < - : - l
'L though = no - - though J
there is COR there is there is there is there is there is
no COR no no no no no
:—ul-ce-ra-tion ==== al-te'ra-tion |||ulceration|||ulceration - ulceration -:
: <<= in - :
'L of < - of - of J'
 skin  COR skin | s skin |  skin | skin || skin

Fig. 8. A sample alignment containing two mismatch regions (dashed boxes), to-
gether with reconstruction rule results. Syllable boundaries are marked with dots
[]. Note that the [=]-overlap symbol just indicates correspondence, not equality
of syllables, in contrast to the insertion [<] and deletion [>] symbols which label
non-matching syllables. The solid boxes highlight lines affected by each rule, dashes
[—] mark parts not covered by the rule.

6.2 Rule definitions

To test the effects of the previously described techniques, we specified recon-
struction rules, where an alignment label is either the identity edit operation
(COR) or a sequence of alignment labels [=, <, >] (cf. figure 8). The rules can
be grouped into three categories: baseline rules, semantics-based rules, and
phonetics-based rules.

Baseline rules are the three simple starting points for the hypothesized recon-
struction that do not require any advanced processing:

e Baseline: only identical words in the alignment (COR) are reconstructed,

mismatch regions are ignored.
e Recognised-only (REC): for each alignment label, always select the recog-

nised text for reconstruction.
e Written-only (WRI): for each alignment label, always select the written

text for reconstruction.

Semantics-based rules implement semantic knowledge in the reconstruction
process. With regard to the initial assumption that reformulations are seman-
tically similar, semantic rules select the recognised text for reconstruction, as
soon as the rule matches.

Phonetics-based rules on the other hand try to detect corrections of speech
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recognition errors in the alignments. Therefore, they select the written text
for reconstruction whenever the rule matches. As recognition errors are more
likely to occur than reformulations, these rules should match more often than
the semantic rules.

The following types of rules were defined for both semantic and phonetic
similarity separately as indicated by subscripts in section 7:

e Context (CTX): matches sequences of 1, 2, or 3 alignment labels contain-
ing at least one submatching label (=), if similarity is higher than threshold
t. The idea behind this rule is that longer corresponding regions in the align-

ment are more likely to be real correspondences.
e Overlap, greedy (OVG): matches sequences of 2 or 3 alignment labels,

where inserted or deleted submatching labels (</>) are either preceded
or succeeded by at least one matching label (=), if similarity is higher than
threshold ¢. This rule collects all word sequences showing any possible overlap

at submatching level without regard of the matching order.
e Overlap, selective (OVS): matches sequences of 2, 3, or 4 alignment la-

bels, where submatching labels (=) are first succeeded by insertion (<), and
then preceded by deletion (>) labels if similarity is higher than threshold ¢.
This pattern is typical for segmentation errors in the recognised text.

Figure 8 illustrates the effect of each rule on a sample alignment for the pho-
netic similarity case. The context rule is activated whenever a group of match-
ing syllables appears. Still, it is not enough as it does not handle stand-alone
insertions or deletions appropriately. The greedy overlap rule can handle
insertions and deletions whenever they appear in terms of a syllable overlap.
However, it is not activated when there is a direct match (though < no).
The selective overlap rule, finally, matches only the precise first segmenta-
tion error, where the syllable counts exactly match. Accidental matches are
therefore impossible. This example indicates that combination of rules may
be beneficial.

7 Experiments

The text reconstruction process was evaluated for two different tasks to ex-
amine the performance of the SPARC method. First, the quality of the recon-
struction was tested. For this test, a literal transcription was reconstructed
and compared to a manual reference transcription for a set of medical re-
ports. We define the evaluation as a text retrieval task, because the results
reflect how much of the original text can be reconstructed and how much of
the reconstructed text is actually part of the original text. This test is a true
performance measure of the system, without considering any particular ap-
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plication. The performance of the main components - semantic and phonetic
similarity measurement, and text reconstruction - will be evaluated separately
in section 7.1.

Second, the speech recognition performance using reconstructed texts is mea-
sured (cf. section 7.2). In this test, the language model of the speech recogniser
producing the recognised texts was re-trained with the reconstructed texts and
tested on an independent test set. This test is only an indirect performance
measure and is intended to demonstrate the applicability and impact on the
speech recognition process. For this reason, we decided to test with a commer-
cially available ASR system instead of an academic one and did not perform
specific parameter tuning to keep the results more independent from the ac-
tually used ASR system.

7.1  Reconstruction quality

For measuring reconstruction quality, we report results in terms of the metrics
Recall = %, Precision = ‘COR‘EY'%@'%ONG', and their harmonic mean
F1, where |[COR| is the number of reconstructed words with perfect correspon-
dence in the reference text, |[MISS| is the number of words in the reference
text without correspondence in the reconstructed text, and [WRONG] is the
number of reconstructed words without correspondence in the reference text

(Van Rijsbergen (1979)).

The evaluation corpus consisted of 735 written and recognised texts of about
335,000 tokens, as well as manually transcribed reference texts for validation
of the hypothesized reconstruction. The texts were selected such that they
equally represent three ranges of average word error rates (WER) for the
recognised text compared to a manual reference transcription. Hesitations and
incomplete words were removed beforehand to avoid biased results.

7.1.1 Semantic and phonetic similarity measurement

The impact of semantic and phonetic similarity measurement is studied by
evaluating semantic and phonetic reconstruction rules separately before they
are joined in a single system. For the phonetic rules, previous results from
Petrik and Pernkopf (2008a) are summarised here, while for the semantic
rules and the joint system, entirely new results are presented.

We start with the evaluation of the semantic rules in table 2. The first group
covers the baseline rules (Baseline, REC, WRI), while the CTX.,,, OVGgepn,
and OVS,.,, systems of the second group represent semantic context and over-
lap. The combination of all rules is denoted by all,.,,.
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5-13% WER 20-25% WER 40-45% WER
Prec.|Rec.| F1 ||Prec.|Rec.| F1 ||Prec.|Rec.| F1

Baseline | 100 | 78.9 | 88.2|199.9 | 64.6 | 78.4 |1 99.5| 46.0 | 62.9
REC 83.3 193.4|88.1 || 79.0 | 85.7|82.2| 66.7 | 71.9 | 69.2
WRI 92.8 193.1(92.9| 89.9 {89.6|89.8| 85.9 |85.4|85.6

CTXgem | 98.6 |87.6 |92.8] 97.3 | 76.9 [ 85.9 || 95.6 | 60.6 | 74.2
OVGgem | 99.7 180.2 | 88.9] 99.4 | 66.6 | 79.8 || 98.7 | 47.9 | 64.5
OVSsem [99.8|79.2 | 88.4199.7|65.0 | 78.7{99.0|46.5 | 63.3

allgem, 98.6 |87.7(92.8|| 97.2 |77.0|86.0| 95.5 |60.8|74.3

Table 2
Reconstruction results in % for semantics-based rules (second block) in comparison
to baseline systems (first block). Best results for each row grouping are boldface.

The recognised text (REC) is not a good starting point for reconstructing a
literal transcription. Although the recall scores are comparable to the other
methods, many errors stem from the recognition process, resulting in poor
precision. The written text (WRI) is more reliable for the domain of medical
dictations.

Using semantic context (CTX,.,,) for reconstruction returns accurate results
with higher precision than recognised-only (REC) or written-only (WRI) re-
construction and significantly higher recall than the baseline system. This
holds even more for the overlap rules (OVGge,,, OVSge): whenever semantic
overlap is detected, it is almost always correct. Unfortunately, the recall scores
are only 0.4% - 2.0% absolute higher than the baseline scores, indicating a low
number of matches for these rules. In sum, neither the separate semantic rule
systems nor their combination is able to exceed the baseline systems for any
of the WER ranges.

The threshold value for semantic similarity measurement can take values be-
tween ¢t = 0 (no similarity) and ¢ = 7 (identity) and was varied from ¢t =1 to
t = 7 in the experiments. The resulting curves are plotted in a Recall /Precision
diagram (cf. figure 9). Adjusting the semantic similarity threshold does not
contribute much to the overall performance. The trade-off between recall and
precision is almost linear, as is shown by the graphs in figure 9. The best re-
call /precision value pairs were obtained for a similarity threshold value ¢t = 5
for all WER ranges.

Likewise, we evaluated the phonetic rules separately and in combination com-
pared to the baseline systems. Table 3 summarises the results.
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Fig. 9. Recall/Precision diagram derived from the allse,, system by varying the
semantic similarity threshold ¢ between ¢t = 1 and ¢t = 7 for high, medium, and low
WER texts.

5-13% WER 20-25% WER 40-45% WER
Prec.|Rec.| F1 ||Prec.|Rec.| F1 ||Prec.|Rec.| F1

Baseline| 100 | 78.9 | 88.2(99.9 | 64.6 | 78.4 | 99.5 | 46.0 | 62.9
REC 83.3 193.4|88.1 || 79.0 | 85.7|82.2 | 66.7 | 71.9|69.2
WRI 92.8 193.1 192.9] 89.9 |89.6|89.8| 85.9 |85.4|85.6

CTXpho | 97.6 190.4]93.8 | 95.4 | 82.8 | 88.7 | 93.1 [69.8 | 79.8
OVGpno | 97.9 | 86.4|91.8 | 95.8 | 78.3|86.2 || 93.1 [65.7 | 77.0
OVSpno |99.8]79.5|88.5(99.6|65.6|79.1|98.8(47.3|64.0

allyno 97.0 [91.1]94.0| 94.7 |84.3|89.2|| 92.1 |72.6|81.2

Table 3
Reconstruction results in % for phonetics-based rules (second block) in comparison
to baseline systems (first block). Best results for each row grouping are boldface.

In the phonetically controlled reconstruction contextual information (CTX,,)
returned better F1 scores than in the semantically-controlled reconstruction.
Only for the low WER case, however, a gain of 0.9% absolute can be ob-
served in contrast to the written-only (WRI) reconstruction. The greedy ex-
ploration of overlap on syllable level (OVG,y,) returned surprisingly precise
results which are absolutely comparable to using contextual information. This
applies even more to the selective overlap rule (OVS,,), which has only very
little gain in recall in comparison to the baseline, but almost maximum pre-
cision. These findings indicate that the combination of these rules could be
beneficial. The combination of all rules shows the best performance for all

25

Page 25 of 38



O©CO~NOOOTA~AWNPE

WER ranges.

The threshold value for phonetic similarity measurement can be adjusted be-
tween ¢ = 0.0 (no similarity) and 10.0 (identity) and was varied from ¢t = 5.0
to 10.0 in the experiments. Like for semantic similarity measurement, the re-
sulting curves are plotted in a Recall/Precision diagram, shown in figure 10.
Optimising the threshold value for phonetic similarity also contributes to the
overall performance. The trade-off between recall and precision is not linear,
as the graphs in figure 10 show. The best recall/precision value pairs were
obtained for a similarity threshold value ¢ = 8.0 for all WER ranges.
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Fig. 10. Recall/Precision diagram derived from the all,;, system by varying the
phonetic similarity threshold ¢ between ¢t = 5.0 and ¢ = 10.0 for high, medium, and
low WER texts.

The SPARC method tries to combine knowledge about semantic and phonetic
similarity to detect matches, corrections, and reformulations in the data (cf.
section 2, figure 1). For this reason, the best semantics- and phonetics-based
systems were combined into a single system. As mentioned before, the rule en-
gine is sensitive to rule precedence, so there are several possible combinations.
Thus, the impact of semantic and phonetic knowledge in the reconstruction
process can be estimated. Table 4 lists the results for the given combinations:
the I+S and I4-P systems are combinations of the baseline and the alls., /all,p,
systems, where the results are taken from tables 2 and 3, respectively. The
[+S+P and [4+P+S systems are combinations of the baseline, semantic and
phonetic systems with the given rule precedence.

In terms of reconstruction performance, the combination of semantic and pho-
netic rules leads to improvements in recall without major losses in precision,
resulting in gains in F1. The semantic system improves significantly (1.4%
to 7.4% relative) while the phonetic system improves only slightly (0.1% to
0.25% relative). The best results are obtained when phonetic rules are given
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5-13% WER 20-25% WER 40-45% WER
Prec.|Rec.| F1 ||Prec.|Rec.| F1 [|Prec.|Rec.| F1

I+P 97.0191.1194.0] 94.6 |84.2|89.1 || 92.1 | 72.5|81.1
I+S 98.6 | 87.692.8(97.3|76.9|85.9|95.6|60.6|74.2

[+P+S| 97.0 {91.3|94.1| 94.5 |84.6|89.3| 91.9 |72.8|81.3
I[+5+P | 97.9 | 90.5 |94.1| 95.9 | 82.7 | 88.8 || 93.4 | 69.5 | 79.7

Table 4

Reconstruction results in % for combinations of the baseline identity (I), semantics-
(S), and phonetics-based (P) rules. Rule precedence is indicated by the order of the
rule addition terms. Best results for each column are boldface.

precedence over semantic rules. The detailed statistics on rule matching counts
in table 5 explain this observation. In about 70 to 80% of all cases, identical
items are detected which are matched by the baseline identity rule. Seman-
tic rule matches account for about 18% of all matches and phonetic matches
for about 28%, when applied separately to the alignments. In combination,
however, phonetic rules still match in about 8% of all cases after semantic
matching, while semantic rules only match in 0.5% after phonetic rules have
been applied. Therefore, it can be concluded that 8% of mismatches are of pure
phonetic nature, only 0.5% of pure semantic nature, and the rest of about 17
to 18% can be explained in both semantic and phonetic terms.

7.1.2  Rule-based vs. data-driven reconstruction

The rule-based reconstruction approach was compared to a data-driven ap-
proach to evaluate the classification performance. For data-driven text re-
construction, we use different classifiers to produce the hypothesized literal
transcription which is the 2-class output of a classifier, i.e., either written
text or recognised text. For classifier training, the class labels are produced
by aligning the reference text with the written text. The features are derived
from the automatic alignment and the phonetic similarity score (see section
3.1) computed for the aligned written and recognised phoneme strings. In ad-
dition, this score is derived for 3 consecutive phoneme strings to model the
dependency of adjacent words in the classifier. The remaining features are
computed from the sequence of submatching alignment labels. Therefore, the
sequence is split into 3 equal parts. After assigning values to the labels, i.e.
[=]...0,[<]... = 1,[>]...1, the mean and standard deviation of each part
serve as feature. The last feature denotes the length of the syllable symbol
sequence. Hence, 9 features are used for the classifiers. The following classifi-
cation approaches are used (Bishop (2006)):

e k-NN: k-nearest neighbour classifier. For the presented results £ = 9.
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System: I+S System: I+P

S:0.5%

S: 16.9%
'B; 27.4%

A P: 8.3%
System: [+S+P System: [+P+S

¢

1: 74.8% 1:72.1%

TOTAL|identical (I)|semantic (S)|phonetic (P)
[1] A | Do) | [ | 6] | [1) ] [%)]

I4+S 79,525 64,911|81.6|14,614| 18.4 0 0

I+P 89,592 |64,923|72.5 0 0 |24,669| 27.5

I4+S+P| 86,741 [64,916|74.8|14,621| 16.9 | 7,204 | 8.3
I+P+S| 90,033 |164,923|72.1| 441 | 0.5 [24,669| 27.4

Table 5
Rule matching counts and percentages for the combined rule systems.

e NN: Neural network (Multilayer Perceptron) with 3 layers. The number of
neurons in the input and output layer is set to the number of features and the
number of classes, respectively. The number of neurons in the hidden layer
is set to 70. We use Levenberg-Marquardt backpropagation for training, a
hyperbolic tangent sigmoid transfer function for the neurons in the input
and hidden layer, and a linear transfer function in the output layer.

e SVM: The support vector machine with the radial basis function (RBF)
kernel uses two parameters C* and o, where C* is the penalty parameter
for the errors of the non-separable case and ¢ is the parameter for the RBF
kernel. We set the values for these parameters to C* =1 and o = 1.5.

The optimal choice of the parameters, kernel function, number of neighbours,
and transfer functions of the above mentioned classifiers has been established
during extensive experiments. Five-fold cross-validation is used to produce the
results with the classifiers. Throughout our experiments, we use exactly the
same data partitioning for each training procedure.

Table 6 lists the data-driven systems k-NN, NN, and SVM in comparison
to the best combined rule-based system [4+P-+S. Both, rule-based and data-
driven reconstruction use the same input features derived from the alignment
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5-13% WER 20-25% WER 40-45% WER
Prec.|Rec.| F1 ||Prec.|Rec.| F1 ||Prec.|Rec.| F1

Baseline| 100 | 78.9 | 88.2{99.9|64.6 | 78.4 |, 99.5|46.0 | 62.9
REC 83.3 193.4|88.1| 79.0 | 85.7]82.2| 66.7 | 71.9 | 69.2
WRI 92.8 193.1192.9| 89.9 [89.6|89.8 || 85.9 |85.4|85.6

I+P+S | 97.0 | 91.3|94.1|| 94.5 | 84.6 | 89.3 || 91.9 | 72.8 | 81.3

k-NN 94.9 192.8193.9| 91.6 | 88.0|89.8 || 87.1 | 83.4|85.2
NN 94.9 193.0193.9 | 91.4 | 88.5|89.9| 86.6 | 84.0|85.3
SVM 94.8 193.0193.9 || 91.3 | 88.6 |89.9| 86.6 | 84.4 | 85.5

Table 6

Reconstruction results in % for baseline systems (first block), the best rule-based
system (second block), and data-driven systems (third block). Best results for each
column are boldface.

labels, semantic, and phonetic similarity scores.

The data-driven systems are closer to the written text only (WRI) recon-
struction than the rule-based system, showing improvement in precision for
all WER ranges. The rather simple £-NN classifier consistently produces the
highest precision while the more complex NN and SVM classifiers achieve
higher recall scores. The rule-based system outperforms the data-driven sys-
tem only for low error rates.

The selection of either rule-based or data-driven reconstruction framework
depends on the intended application. The definition of rules allows the precise
control of the reconstruction process and specific fine tuning for either high
precision or high recall. Furthermore, it can be used efficiently for “labelling”
a corpus of parallel recognised and written texts by applying specific rule
configurations. The data-driven system, however, is better when the amount
of reconstructed data needs to be maximised, particularly for the high WER
condition. The main benefit is then that no handcrafting of rules and no tuning
of similarity thresholds is required.

7.2 Automatic Speech Recognition

We demonstrate the application of reconstructed texts in an attempt to im-
prove the automatic speech recognition system with which the input recog-
nised texts were produced. For this exemplary evaluation, we retrained the
language model of this commercial backend speech-recognition system for tele-
phone channel audio with reconstructed texts. The SPARC method was com-
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pared to the standard method for language model training and to a random
generation of reconstructed text.

The reconstruced texts could as well be utilised for retraining the acoustic
models, e.g., by providing improved transcripts of audio training data. We
expect the gains for this task, however, to be low, since the amount of material
that the SPARC method makes available for acoustic training in addition to
the material that is already there is relatively small.

The evaluation presented in the following not only measures the performance
of the modified ASR system, but also shows in an exemplary fashion how
for any other application an appropriate SPARC reconstruction approach is
selected based on the findings from section 7.1.

7.2.1 Language modelling approach

The standard approach of this ASR system for creating language models is to
segment large corpora of written text into lexicon entries and to train trigram
models on them. The mapping of written text onto lexicon entries is not a triv-
ial process since formatted items like numbers, quantities, dates etc. cannot
be directly represented as lexicon entries and give only little clue as to what
a speaker would say to dictate such items. Written text further contains ad-
ditions (including punctuation marks) and reformulations by transcriptionists
and, therefore, does not represent what actually has been or will be dictated.

To handle the common cases of formatted numeric items (“grammar items”)
and inserted punctuation marks, a 2-stage decoding-rescoring strategy is ap-
plied:

e Decoding: An initial language model is trained on regular words and classes
of grammar items. This language model cannot cover spoken forms of gram-
mar items. Therefore, at decoding time, it is interpolated with an additional
language model derived from grammars representing spoken forms of gram-
mar items (“grammar language model”).

e Rescoring: The emerging wordgraph is parsed for grammar items, and
enriched with edges marked with the corresponding grammar classes. This
wordgraph then is rescored using the initial language model. At the same
time, punctuation marks are hypothesized.

The setup is robust in language-model adaptation as only the class of a gram-
mar item needs to be determined, without guessing a word sequence that
might have been spoken. Its weakness, however, lies in the imprecise grammar
language model used at decoding time.
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7.2.2  Ezrperimental setup

We chose the domain of Clinical Reports as test case since there was enough
data available, both to create reconstructed text (requiring written and recog-
nised text) and to evaluate the performance (requiring reference transcriptions
of what has actually been dictated). Our setup reconstructed 101,607 reports
from 504 authors (between 45 and 507 reports per author) running in paral-
lel on four standard personal computers for three weeks and produced a text
corpus of 52 million words (cf. table 7), the equivalent of about 9,000 hours
of sound.

The SPARC reconstruction approach was selected as follows: The baseline
word error rate of the chosen corpus indicated a low-to-medium WER con-
dition. According to table 6 either the rule-based system with I+P+S rules
or one of the data-driven reconstruction approaches appeared to be promis-
ing for text reconstruction. Previous language model adaptation experiments
conducted on less data showed that a certain fragmentation is introduced in
the reconstructed text by the data-driven reconstruction approaches resulting
in higher language model perplexities (Petrik and Pernkopf (2008b)). There-
fore, we selected the rule-based I+P+S system for text reconstruction in the
experiments.

The speaker-independent acoustic models of the ASR system have been trained
on 200 hours (female speakers) and 300 hours (male speakers) of acoustic
material recorded on a telephone channel with 4kHz bandwidth, Acoustic
speaker-adaptation was performed using Maximum-Likelihood Linear Regres-
sion (MLLR) for the first 15 minutes of sound, and Maximum-A-Posteriori
(MAP) adaptation for the rest of the available data, which was 10 hours of
sound for each speaker in the test set.

For this domain, a large medical lexicon of 58,103 words was used, giving a
high coverage on both the test set and the training corpus (OOV rates <

1.5%).

Recognition tests were performed on a set of 239 reports from 2 female and
3 male authors (3 hours of sound per user), all in the domain of Clinical Re-
ports*, and all recorded through a telephone channel with 4kHz bandwidth.
The best available acoustic references for these speakers were used. The base-
line word error rate on our test set was 11.77% (cf. table 8).

4 The available speakers for the domain of Clinical Reports do not cover all word
error rate ranges of the previous experiments in section 7.1. For this reason, re-
sults are reported per speaker and on average, but not according to the previous
separation into low, medium, and high word error rate conditions.
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7.2.3  Language models

The reconstruction of spoken words allows to avoid the use of language model
classes for grammar items. To measure this effect and the quality of the result-
ing language models, we perform recognition tests with four different trigram
language models:

(1)

Broad: A language model used in commercial applications, created from
287 million words of general medical reports. This language model re-
quires an interpolated grammar language model at decoding time, since
it trains grammar items as classes.

Classic: This language model is built from the corrected text of the
reconstruction corpus (52 millions words), and is otherwise consistent
with initial language models used in commercial applications, requiring
an interpolated grammar language model at decoding time.

Random as-spoken: Same as classic, but instead of grammar classes, a
randomly chosen spoken representation of that class is trained. This is a
standard technique to get closer to what has been spoken, at least in the
case of grammar items, and can be seen as a simple case of reconstruction.
It does not require a grammar language model at decoding time any more.
Reconstructed: Reconstructed text produced by SPARC was slightly
post-processed to match the lexicon: Phrases (i.e., multi-word expressions
handled as single lexicon entry like “she is”, “he had” etc.) are handled
by SPARC as word sequences and were mapped back to single lexicon
entries. Special words for punctuation marks were reintroduced (SPARC
reconstructs dictated periods and commas as lexicon entries “period” and
“comma”, while the lexicon and the rescoring language model use special
symbols).

Language model size OOV rate

Broad 287TM 0.9%

Classic (baseline) | 51.92M 1.15%
Random as-spoken | 56.37M 1.15%
Reconstructed 49.64M 1.34%

Table 7
Language model details: Number of tokens and out-of-vocabulary (OOV) rate.

The chosen evaluation method is biased against the SPARC reconstruction
approach and leads to slightly worse results for two reasons:

e SPARC reconstructs the so called “demographic header”, this is demo-
graphic patient information at the beginning of the dictation, which is not
a part of the final report. Recognition performance on the demographic
header is ruled out in all tests since recognition accuracy in this section is
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of no benefit for the user.

e The lexicon (and rescoring language model) makes a distinction between
special words like “Lungs:” and “Heart:” versus “lungs” and “heart”, re-
spectively to be able to produce appropriately formatted output. SPARC
always reconstructs the regular words; therefore, recognition accuracy is
expected to be lower on these special words.

The information recovered by the SPARC method may also be included in
other ways into language model training. Instead of reconstructed text, an an-
notated database of particular observations such as spoken forms of grammar
items or other reformulations may be generated. An extensive evaluation of
methods for including this annotated data in language model training as, e.g.,
embedded grammars or language model classes was, however, not the focus of
this work.

7.2.4 Results

The results are summarised in table 8. Using the reconstructed text language
model reduced the overall word error rate from 11.77% to 10.86% which is a
relative reduction of 7.74% compared to the baseline classic language model.
The randomly generated as-spoken variants only lead to an overall relative
reduction of 4.38%. Table 8 also shows that these improvements are consistent
for all speakers. Both, the random as-spoken and reconstructed text language
models even outperform the broad language model which was created from
substantially more data. Hypothesizing the spoken forms of grammar items is
therefore beneficial for the applied 2-stage decoding-rescoring strategy.

Speaker | Broad | Classic Random Reconstructed

WER | WER | WER | rel. A | WER | rel. A
F1 7.68 825 | 793 | -391| 781 | -5.36
F2 16.80 17.64 | 16.37 | -7.18 | 15.42 | -12.56
M1 16.79 17.37 | 16.76 | -3.50 | 16.56 | -4.67
M2 6.86 713 | 712 | -0.28 | 6.57 | -7.98
M3 9.33 887 | 846 | -4.60 | 845 | -4.80
Total 11.34 11.77 | 11.25 | -4.38 | 10.86 -7.74

Table 8
ASR results for the tested language models: Word error rate (WER) and relative
difference (rel A) to the Classic (baseline) model in [%].

Based on the findings from this first experiment, we conducted a second ex-
periment where we gradually increased the corpus size for language model
training from 1 million tokens up to the maximum size of about 50 million
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tokens. Figure 11 illustrates the evolution of the word-error rate with respect
to the size of the language model training corpus. Up to a corpus size of 3
million words, there is not much difference between the models built on ran-
domly generated as-spoken variants and reconstructed text. For a corpus size
of 6 million tokens or more, the SPARC method performs consistently bet-
ter. At 50 million words, the word-error rate begins to go into saturation, so
incorporating more data will only have minor effects on the word-error rate.

16 T

T
—#— Classic

>— Random
—&— Reconstructed

15

Word error rate [%)]
= =
w IS

=
N

11

10 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

Language model size in million words
Fig. 11. WER in [%] for increasing re-training text corpus size.

Apart from the mentioned adjustments, the reconstructed texts were not fur-
ther optimised or tuned for ASR purposes. Using the SPARC method without
any further tuning immediately resulted in the reported improvements. Ad-
ditional fine-tuning in terms of, e.g., the interpretation of punctuation or the
exclusion of leading and trailing irrelevant text blocks in recognised texts may
even further improve the performance.

8 Conclusion

We have described the SPARC method of semantics and phonetics based sim-
ilarity measurement for the automatic reconstruction of medical dictations
from draft recognised texts and final written reports. The resulting recon-
structed texts can be used for various applications in language technology,
including but not limited to acoustic and language model adaptation for au-
tomatic speech recognition, computer-aided document production in medical
transcription, or generally for the development of parallel text corpora of non-
literal text resources.

The method is based on an alignment between a draft speech recognition
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transcript containing errors and a formatted, corrected medical report that
may have been paraphrased during the transcription process. The text align-
ment uses a model of semantic and phonetic similarity to detect corresponding
(matching) regions in the texts and to properly align them on multiple levels
of segmentation. For this purpose, semantic and phonetic similarity measures
were developed for the matching procedure. The resulting alignment is inter-
preted with a newly developed rule engine which allows precise control over
the reconstruction process with context-sensitive reconstruction rules.

The experimental evaluation showed that the text quality improved for the
reconstructed text in comparison to both recognised and written text. For
recognised texts with a low word error rate, the best reconstruction system
improved the Fl-score of the best baseline system from 92.9 to 94.1%. In gen-
eral, phonetics-based rules proved to be more effective than semantic-based
rules while semantics-based rules turned out to be more precise. Combining
phonetic and semantic knowledge for text reconstruction improved the recon-
struction quality. A more detailed analysis revealed that 8% of the resolved
mismatches are of pure phonetic nature, only 0.5% of pure semantic nature,
and about 17-18% are detectable with both semantic and phonetic measures
together. The rule engine for reconstruction proved to have comparable per-
formance to a data-driven classification system for the low word error rate
condition, while for medium and high word error rates, the automatic classi-
fiers returned better results.

Concerning the overall benefit for the speech recognition system, an experi-
ment with a retrained language model based on reconstructed texts yielded
a word error rate reduction of 7.74% relative in comparison to a standard
retraining, and of 4.38% relative for a language model based on randomly re-
constructed text. As no specific optimisation has been performed yet, further
improvements by parameter tuning are still possible.

In future work, we plan to complement our experiments by evaluating the
usage of reconstructed text for retraining of the acoustic models. Furthermore,
we want to compare our results to different approaches of including semantic
information into the language model, e.g., as classes or embedded grammars.

The focus of the SPARC approach on the assignment of phonetic and semantic
similarity between aligned speech recognition results and final reports has
turned out to be useful and suitable for the reconstruction of literal transcripts.
Three main aspects of the approach have already turned out to be beneficial: 1)
Reconstructed texts reduce the required amount of manually transcribed texts
for training of speech recognition systems. 2) Retraining with reconstructions
leads to slightly lower word-error rates in speech recognition. 3) Since the
reconstruction and alignment are knowledge based, our methods are already
being used as annotation tools for semantic and phonetic information and
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serve as a starting point for automatic document creation.
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