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Abstract

In this work, a first approach to a robust phoneme recognition task by means of a biologically inspired feature extraction method is
presented. The proposed technique provides an approximation to the speech signal representation at the auditory cortical level. It is
based on an optimal dictionary of atoms, estimated from auditory spectrograms, and the Matching Pursuit algorithm to approximate
the cortical activations. This provides a sparse coding with intrinsic noise robustness, which can be therefore exploited when using
the system in adverse environments. The recognition task consisted in the classification of a set of 5 easily confused English
phonemes, in both clean and noisy conditions. Multilayer perceptrons were trained as classifiers and the performance was compared
to other classic and robust parameterizations: the auditory spectrogram, a probabilistic optimum filtering on Mel frequency cepstral
coefficients and the perceptual linear prediction coefficients. Results showed a significant improvement in the recognition rate of
clean and noisy phonemes by the cortical representation over these other parameterizations.
© 2012 Elsevier Ltd. All rights reserved.
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1. Introduction

In previous years, the classic techniques of signal analysis have been applied to automatic speech recognition with
relatively good results in controlled conditions. At present, however, there is an increasing need to deal with more
complex and real situations, for example robust speech recognition in noisy environments. The ability to solve this and
other challenging problems could be improved by the development of new speech representation techniques.

An early stage in the speech recognition process consists in the acoustic modeling of phonemes. In the last years,
efforts have been made to provide robustness to this stage by the proposal of different approaches in the speech
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Fig. 1. Block diagram of the proposed phoneme classification system based on the sparse representation of speech.

representation. In Yousafzai et al. (2008), Ager et al. (2008), and Yousafzai et al. (2009), authors use the central segment
of the acoustic waveforms of the phonemes. They showed that the mismatch between clean and noisy conditions is
better managed by the raw acoustic data than perceptual linear prediction (PLP) coefficients, specially under severe
degradation. Recently, a noise compensation technique was proposed to suppress the effect of additive noise with an
estimation of the noise envelope (Ganapathy et al., 2010). This work was carried out by processing the speech signal
in their time-frequency representation, in a similar way as the approach proposed here, showing better performance at
low signal-to-noise ratios (SNRs) than classic speech representations.

The use of biologically inspired, feature extraction methods has improved the performance of artificial systems that
try to emulate some aspect of human communication, such as emphasizing the discourse cues. Based on the biological
time-frequency analysis the inner ear carries out, auditory representations of speech beyond the cochlea have been
widely studied. Different mathematical and computational models have been developed that allow for the estimation
of the auditory spectrograms (Delgutte, 1996). These investigations enabled modeling the discharge patterns of the
auditory nerve.

Moreover, given a speech utterance, a pattern of activations can be found at the primary auditory cortex that encodes
a series of meaningful cues contained in the signal. This behavior of the cortical neurons could be emulated using the
notion of spectro-temporal receptive fields (STRF). The STRF are defined as the optimal linear filter that convert a time-
varying stimulus into the firing rate of an auditory cortical neuron, so that it responds with the largest possible activation
(Theunissen et al., 2000). Using two-bidimensional discrete dictionaries, an approximated cortical representation can
be established by means of techniques related to independent component analysis (ICA) and sparse representations
(Klein et al., 2003; Oja and Hyvirinen, 2000; Rubinstein et al., 2010). Here we used the term approximated cortical
representation with the meaning of the set of activations that contribute to form a particular pattern from an estimation
of the STRF. This estimation intends to model the global statistical characteristics of the discharge patterns in the
auditory cortex, in a phenomenological rather than a physiological way. This concept of cortical representation is
slightly different from the one applied in neuroscience, where studies about brain activity involves analysis of the
cortical areas that are mainly stimulated by viewing images or listening words (Mitchell et al., 2008).

In this work, using the time-frequency representations of the auditory spectrograms of phoneme speech signals,
a dictionary of two-dimensional optimal atoms is estimated. Based on this STRF dictionary, a sparse representation
that emulates the cortical activation is computed. This representation is then applied to a phoneme classification task
in both clean and noisy conditions, designed to evaluate the advantages and robustness of the representation. Fig. 1
resumes the main steps in the operation of the proposed system.

The organization of the paper is as follows. Section 2 presents the method for the speech signal representation used
in this work. Section 3 gives the information about the speech data and the noise corpus used in the experiments,
along with details of the cortical representation. Section 4 presents the results obtained in the preliminary tuning of the
method and the phoneme classification task, which is then compared with other robust parameterizations widely used
in this field. Finally, Section 5 summarizes the contributions of this paper and outlines future research.

2. Sparse representations
2.1. Representations based on discrete dictionaries

There are different ways of representing a signal using general discrete and finite dictionaries. For the case where
the dictionary forms a basis, in particular for the orthonormal or unitary cases, the techniques are quite simple. This
is because, among other aspects, the representation is unique. However, in the general case, a signal can have many
different representations for the same dictionary. In these cases, it is possible to find a suitable representation if additional
criteria are imposed. For our problem, these criteria can be motivated by obtaining a representation with characteristics
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such as sparseness and independence. Furthermore, it is possible to find an optimal dictionary that resembles biological
properties of sensorial systems, such as in the primary visual cortex. These visual neurons exhibit a spatially localized,
oriented bandpass behavior, similar to the basis functions of a wavelet transform (Olshausen and Field, 1996).

A sparse code is one which represents the information in terms of a small number of descriptors taken from a large
set. This means that a small fraction of the elements from the code are used actively to represent a typical pattern. In
numerical terms, this means that the majority of the elements are zero, or ‘almost’ zero, most of the time (Hyvirinen,
1998).

It is possible to define measures or norms that allow us to quantify how sparse a representation is; one way is using
either the £¢ or the £| norms. An alternative criteria for optimization is to use an a priori probability distribution with
a large positive kurtosis. This results in a distribution with a large thin peak at the origin and long tails on either side.
One such distribution is the Laplacian. In the statistical context it is relatively simple to include aspects related to the
independence of the coefficients, like factorial probability distributions, which connects this approach with ICA (Oja
and Hyvirinen, 2000).

In the following section a formal description of a statistical method for estimation is given. This method estimates
an optimal dictionary and the corresponding sparse representation of the input data.!

2.2. Optimal sparse and factorial representations

Letx¥ € RV bea signal to represent in terms of a dictionary &D, with size N x M, and a set of coefficients a € RM.
In this way, the signal is described as

=Y i+ =da+é, (1
1<i<M

where ¢ € RY is the term fqr additive noise and M > 1\£ The dictionary d is composed of a collection of waveforms
or parameterized functions (¢;), where each waveform ¢; is an atom of the representation.

In the context of this work, X corresponds to the reconstruction of the time-frequency representation of the speech
at the auditory cortex. The atoms in ® will further be the representation of the important features found at the cortex
for each input stimuli. Finally, an estimation of the coefficients a will be the output of the feature extraction stage
proposed.

Although (1) appears very simple, the main problem is that for the most general case ®, 4 and € are unknown,
thus there can be an infinite number of possible solutions. Even in the noiseless case (when ¢ = 0) and given ®, if
there are more atoms than the dimension of X then multiple representations of the signal are possible. Therefore, an
approach that allows us to select one of these representations has to be found. For the complete and noiseless case the
relationship between the data and the coefficients is linear and it is given by ®~!. For classical transformations, such as
the discrete Fourier transform, this inverse is simplified because ®~! = o+ (with d ¢ CVN*N and D*(, j) = O, i)).
In our case — although this is a linear system — the coefficients chosen to be part of the solution generally have a
non-linear relationship with the data x (Chen et al., 2001).

When ® and ¥ are known, an interesting way to choose the set of coefficients @ from among all the possible
representations, consists of finding those a; which make the representation as sparse and independent as possible. In
order to obtain a sparse representation, a distribution with positive kurtosis can be assumed for each coefficient a;.
Further, assuming the statistical independence of the a;, the imposed joint a priori distribution satisfies

P@) = [[P(a). @

The system (1) can also be seen as a generative model. Following the terminology used in the ICA field, this means
that signal X € R" is generated from a set of sources g; (in the form of a state vector a € R™) using a mixing matrix
®, and including an additive noise term £ (Gaussian, in most cases).

I Although in our proposed method and experiments two-dimensional patterns are used, for clearness we only describe the one-dimensional case
in this section.
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The state vector @ can be estimated from the posterior distribution (Lewicki and Sejnowski, 1998)

PG|, 4)P(@)

P@|d, %) = Sl 3)
| PG|®)
Thus, a maximum a posteriori estimation of a would be
& = arg max[log P(¥|®, a) + log P(@)]. )
a

When P(a| P, X) is sufficiently smooth, the maximum can be found by the method of gradient ascent. The solution
depends on the functional forms assigned to the distributions for the noise and the coefficients, giving rise to different
methods for finding the coefficients. Lewicki and Olshausen (1999) proposed the use of a Laplacian a priori distribution
with parameter S;

P(ai) = a exp(—pilail), &)

where o is a normalization constant. This distribution, with the assumption of Gaussian additive noise &, results in the
following updating rule for a

Aa = dT Az — BTal, (6)

where ]\g is the inverse of the noise covariance matrix E[£7 £], with & - | denoting the expected value. This provides a
gradient-based search for thg solution of (4).
To estimate the value of @, the following objective function can be maximized (Lewicki and Olshausen, 1999)

>

o= arg max[L(X, a))], @)
3

where £ = &[log P(X| CTD)] p(%) 1s the likelihood of the data. This likelihood can be found by marginalizing the following
product of the conditional distribution of the data, given the dictionary and the a priori distribution of the coefficients

P(G|®) = / P(X|®, 3)P(3)da, )
RM

where the integral is over the M-dimensional state space of a.
The objective function in (7) can be maximized using gradient ascent with the following update rule for the
matrix ¢

A® = nALEa" 1 pg55 )

where 7, in the range (0, 1), is the learning rate.

The practical implementation is carried out through an iterative estimation of (6) and (9) allow the calculation of
the dictionary & and the coefficients @. In this work, the initialization of both is at random and 1000 iterations are
then performed. The parameter 7 is kept high to get a rough approach to the solution up to 500 iterations, then it is
gradually decreased as a function of the number of cycles. This election was guided by preliminary experiments where
the evolution of £ was surveyed.

2.3. Matching Pursuit

The computational cost in the estimation of ais truly expensive. The Matching Pursuit (MP) algorithm is another
method to approximate the solution of the sparse representation problem, once the dictionary is provided or estimated
(Mallat and Zhang, 1993). .

Sparsity is enforced by choosing an appropriate number of terms. Given an initial approximation X* = 0 and an
initial residue R© =%, a sequence of approximations is iteratively constructed. At step k the parameter y = j is
selected, such that the atom <_75(Ak) best correlates with the residue i?(k), and a multiple of this atom is added to the
approximation at step k — 1, obtaining

70 = 30D 4 o000, (10)
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where agc) = (k(k_l), &;k)), and R® =% — 30 After m steps an approximation to (1) is obtained, with residue
R = R™ 1t is said that MP constitutes a greedy solution to the sparse representation problem?; therefore it shares
the same advantages and disadvantages of this type of optimization methods (fast but generally not optimal methods).
Nevertheless, there are investigations that establish that under appropriate conditions of dictionary coherence and
sparsity of the state vector &, these algorithms obtain the globally optimal solution (Donoho and Elad, 2003; Donoho
et al., 20006).

3. Approximated auditory cortical representation

In neuroscience, it has been established the principle that the brain of an animal adapt its properties (internal
configuration) to best describe the statistics of stimuli perceived through its senses (Barlow, 2001). If a simple model
of these stimuli is assumed, as the one outlined in (1), it is possible to estimate their properties from the statistical
approach presented in the previous section.

The early auditory system codes important cues for phonetic discrimination, such as the ones found in the auditory
spectrograms (AS) (Delgutte, 1996). Shamma et al. proposed a model of the processing of the sound carried out in the
auditory system based on psychoacoustic facts found in physiological experiments in mammals. The main idea behind
the model is to move forward in the representation of the sound from the initial spectral analysis by decomposing
this spectrogram in its spectrotemporal modulation content (Chi et al., 2005). While the complete model of Shamma
consists of two stages, in this work only the early stage was used. It obtains the auditory spectrogram, an internal
cochlear representation of the pattern of vibrations along the basilar membrane. This part of the model is composed of
a bank of 128 cochlear filters that process the temporal signal s(#) and obtain the outputs

Yeh = 8(2) X hen(t, 1), (11)
where Ay, is the impulse response of each filter. These outputs are transduced into auditory-nerve patterns
Yan = &he(drYeh(?, f)) X pne(?), (12)

where 9, represents the fluid-cilia coupling (highpass filter), gnc the nonlinear compression in the ionic channels and ppc
the hair-cell membrane leakage (lowpass filter). Finally, the lateral inhibitory network is approximated by a half-wave
rectified first-order derivative with respect to the frequency axis as

Yin(t, ) = max(dsyan(t, f),0) (13)

and the final output consists in a integration of this signal over short windows.

In these representations — of a higher level in the auditory path — some aspects of the acoustic signal that arrives at the
eardrum have been reduced or eliminated. Among these superfluous aspects are the temporal variability of the signal
and the relative phase of acoustic waveforms. Hence, following this biological simile, the representation becomes a
good starting point to attain more complex ones. _

Obtaining a dictionary of two-dimensional atoms @ using (7), corresponding to time-frequency features estimated
from the AS of X, is equivalent to the STRF of a group of cortical neurons (Klein et al., 2003). Therefore, the
activation level of each neuron can be associated with the set of coefficients a in (1). Instead of using this vector as the
representation, due to the high computational cost in computing it from (4), the preferred approach here is to obtain an
approximated solution by the Matching Pursuit algorithm by means of (10). Thus, the feature extraction scheme here
proposed obtains the coefficients modeling the activations at the primary auditory cortex in reponse to input stimuli.
These features are named approximated auditory cortical representation (AACR).

Fig. 2 shows a schematic diagram of the method adopted for estimating the AACR, once the dictionary has been
trained following the process previously described. The acoustic signal corresponding to a complete utterance, s(f), is
processed by the ear model. It obtains the spectrogram at the early auditory level, y(z, f) from (13). Finally, from these
time-frequency representations, the feature extraction scheme obtains the coefficients a of the AACR as a subproduct
of (10) in the Matching Pursuit algorithm.

2 MP is a greedy algorithm that minimizes ||¥ — ®a|».
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Fig. 2. Schematic diagram of the method used for estimating the approximated auditory cortical representation (AACR).
Table 1
Distribution of patterns per class for training and test data in region DR1 of the TIMIT corpus.
Phoneme Train, # (%) Test, # (%)
/b/ 211(3.26) 66(3.43)
/d/ 417(6.45) 108 (5.62)
/ih/ 489 (7.56) 116(6.04)
/eh/ 2753 (42.58) 799 (41.63)
/ih/ 2594 (40.13) 830(43.25)
Total 6464 (100.00) 1919 (100.00)

4. Materials and methods

The feasibility of building a robust classification system based on the described scheme was studied for an initial
simpler task of phoneme classification. The classifiers were trained with approximated auditory cortical patterns
calculated from clean speech and then tested with patterns obtained from noisy speech, where controlled amounts of
white noise were added. The task consisted in the classification of the set of five easily confused phonemes in English:
/b/, /d/, /jh/, /eh/, /ik/, in a context-independent approach (Stevens, 2000).

4.1. The signals

The clean speech data were extracted from the TIMIT corpus, which contains a total of 6300 sentences recorded
from 630 speakers (10 sentences each) (Garofolo et al., 1993). In this work, the training (38 speakers) and test (11
speakers) data corresponding to region DR1 were used. The number of AACR patterns calculated from the TIMIT
data is showed in Table 1. It can be observed that there is a noticeable imbalance in the distribution, which could be
counterproductive for the generalization capabilities of the classifiers. Thus, the training and test sets were balanced
by selecting the same number of patterns for each phoneme in each set (211 and 66 patterns, respectively).

For the estimation of the dictionaries, an AS from the original clean signals sampled at 16 kHz was obtained by
means of an early auditory model (Yang et al., 1992). In order to process less data, the frequency resolution was
downsampled by half. Thus, AS with 64 frequency coefficients per frame of 32 ms were obtained. After that, a sliding
window of one frame in length at intervals of 8 ms, was applied to obtain the set of spectro-temporal patterns. Fig. 3
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Fig. 3. Principal signals in the process of obtaining the spectro-temporal patterns: sonogram (top) and auditory spectrogram (bottom). A section
corresponding to the sliding window, from which each spectro-temporal pattern is generated, has been marked with vertical lines.

shows the principal signals of this process, while in Fig. 4 there is an excerpt of the clean signal and its corresponding
low-resolution AS for the five phonemes used in the experiments. Here, the phonemes /b/ and /d/ are shorter than the
32 ms required to calculate the spectro-temporal patterns, so the signals are first zero-padded at the beginning and the
end, maintaining the phoneme in the central portion. The spectrograms show in red (light gray) the highest amplitudes,
highlighting the high frequency features of the shortest phonemes and the voiced features of the longest ones.

In a previous work using clean speech, we obtained different dictionaries of two-dimensional atoms through the
Basis Pursuit algorithm and trained a number of neural networks with the spectro-temporal patterns using (9), with
exhaustive tests for both the complete and overcomplete cases (Rufiner et al., 2007). The classification experiments
were carried out by means of an artificial neural network, namely a multi-layer perceptron (MLP). The best performance
was obtained with a dictionary size of 256 atoms. This corresponds to the complete case given that each atom has a
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Fig. 4. Examples of the five phonemes used in the experiments showing the sonogram (top) and their respective auditory spectrogram (bottom). The
spectrograms have 64 frequency coefficients in height from 0 to 8 kHz and a minimum of 4 coefficients in length, as it can be seen in the shortest
phonemes.
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dimension of 64 frequency coefficients by 4 frames. In spite of there being no evidence that it would be the best choice
for noisy speech as well, it is the configuration used in this work.

In order to obtain the patterns that are the inputs to the classifiers, speech utterances corresponding to the phonemes
are processed by the auditory model and their AS are obtained. Then, using the dictionary previously computed, the
activation coefficients are calculated. This operation is carried out using the MP algorithm explained in Section 2.3,
giving patterns with 256 coefficients (recall that only a subset of them are different from zero).

The noisy version of the corpus was obtained by mixing the clean data with white noise taken from the NOISEX-92
database (Varga and Steeneken, 1993). The noise was first conveniently resampled at 16 kHz with a resolution of 16
bits in order to match the characteristics of the clean signals. Finally, both signals were additively mixed at different
signal-to-noise ratios.

4.2. The features

The suitability of the AACR approach for robust phoneme recognition was evaluated by comparing the perfor-
mance in classification against different parameterizations used in this area: the Mel frequency cepstral coefficients
(MFCC) (Deller et al., 1993), the auditory spectrogram, the PLP coefficients, the Relative Spectral Transform applied
to the previous ones (RASTA-PLP) (Hermansky, 1990) and the Probabilistic Optimum Filtering (POF) applied to the
MEFCC coefficients. The POF analysis consists of a mapping between a pair of acoustic spaces: the clean and noisy
speech features. The mapping tries to estimate the clean feature vectors by means of a probabilistic piece-wise linear
transformation from the noisy features (Neumeyer and Weintraub, 1994).

4.3. The classifier

This paper focuses on assessing the advantages of the proposed AACR method over the other parameterizations
in the representation of isolated phonemes. Thus, a static classifier was used because in this stage of the investigation
there is no need to incorporate either a language model or temporal dynamics, in spite of the fact that the patterns are
of variable length.

The MLP was used as classifier. It has a fixed number of input units that receives one vector of 256 activations
at each time, corresponding to a STRF in R%**. Longer phonemes contribute with more patterns due to the sliding
window used to extract the STRF. The architecture of the MLPs consisted of one input layer, where the number of input
units depended on the dimension of the patterns; one hidden layer with a variable number of units and one output layer
of 5 units. The training of the networks was conducted with the standard backpropagation algorithm with momentum
term (Haykin, 1999).

5. Results and discussion
5.1. Dictionary for the sparse representation

Fig. 5 shows some of the STRFs corresponding to the complete estimated dictionary ® e R29256 The STRFs
are in R64*4, with frequency content from 0 to 4 kHz and 32 ms in length.

The obtained STRFs present some characteristics of typical behaviors. It can be observed that they act like detectors
of diverse significant features present in the spectrogram: unique frequencies, stable speech formant patterns, changes
in the speech formants, unvoiced or fricative components (e.g. atom located in the dictionary at row/column 2/2 in the
figure) and well-located patterns in time and/or frequency (e.g. the dark marks in atoms located at 1/2 and 1/6). The
general similarities with the STRF patterns found in mammals are also revealed by comparing a pair of them taken
from sound signals in animals with patterns here estimated, as can be seen to the left of Fig. 5 (Kording et al., 2002).

5.2. Initial tuning of the method

The first series of experiments, using clean speech, was devoted to find the optimum number of coefficients in the
Matching Pursuit feature extraction scheme.



344 C. Martinez et al. / Computer Speech and Language 26 (2012) 336-348

- - - ;
T — -

—
L - -

-
I -

- » -
- -
-
-
- -
-
s T -
!
il -
-
-
-
-
-
> - -
-

Fig. 5. Example of spectro-temporal receptive fields (STRF) in R%** calculated from the early auditory representation of phoneme utterances.

Two examples of biological STRF as found in animals are shown to the left and compared (in red) with similar patterns as estimated in the discrete
dictionary. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

From the TIMIT DRI1 training set, we constructed two subsets for carrying out these experiments. In order to avoid
bias in the results due to the class imbalance (showed in Table 1), the data consisted of 100 patterns of each phoneme
for the training subset and 25 patterns for the test subset. The exploration was carried out with 4, 8, 16, 32, 64 and
128 selected coefficients of the complete vector in R*¢. Also, the best network architecture was found by varying the
number of hidden units with a powers-of-two law, from 4 up to 512 units. Each experiment consisted of 3 runs with
different initial weights at random, reporting the mean value obtained on the test subset.

The results of this initial tuning are presented in Fig. 6, where a similar behavior for all the curves was observed
in general. They showed a lower performance when the size of the hidden layer was reduced, because of the limited
capability of the MLPs to learn the key aspects of the patterns. Also, the performance achieved a maximum and then
flattened as the size of the hidden layer was increased, due to the greater number of weights to adapt. Regarding the
differences found when varying the number of selected coefficients, the best performances were obtained with few
selected coefficients, showing the curves a general dropping when this parameter increased. This situation may arise
owing to the fact that the patterns contain more non-relevant information to the classification.

From these curves, it can be seen that the best recognition rate is achieved by retaining only 8 coefficients in the MP
algorithm. This is the situation expected, since the representation obtained is truly sparse (few active atoms for each
analyzed pattern). In these conditions, the important cues of each pattern would be encoded in about 3% from the total
of atoms in the dictionary. Also, this representation is better processed by an MLP with a low dimension in the hidden
layer, in this case 32 nodes. This makes clear the generalization capabilities of the networks, given that the patterns
carry only the most important information and therefore fewer weights are required. Therefore, this configuration of
the MP algorithm and MLP architecture is set for the following experiments.
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Fig. 6. Initial tuning of the number of selected coefficients in the algorithm and hidden units in the neural networks. The best performance is obtained
for 8 selected coefficients and 32 nodes in the hidden layer of the MLP.

5.3. Robust phoneme classification

With the aim of evaluating the performance of the cortical representation in the presence of noise and to compare
its robustness with other parameterizations, the next series of experiments consisted in training the MLPs with clean
speech and testing them in different noisy conditions.

The feature extraction for MFCC, PLP and RASTA-PLP was fixed to 12 coefficients with frame energy and delta
coefficients added, resulting in patterns of 26 coefficients. The patterns obtained from the AS have 256 coefficients.
For all these networks, the number of hidden units was fixed to the same number of input units, as it was found to be
the optimal configuration in preliminary experiments.

In each experiment, a different SNR was fixed from clean speech up to 0 dB (equal energy levels of noise and
speech). Then, for each parameterization, a series of 10 runs with different initial network weights chosen at random
was conducted. This initialization method seems to be good enough for our purposes, given that the generalization
peak of the MLPs is reached at roughly 10-20 iterations of the backpropagation algorithm in a 200 iterations cycle.
Moreover, the variance in the results remains between 1% and 3% in the case of clean test signals.

The obtained results are shown in Fig. 7. The curves show the general behavior of artificial systems in the presence
of noise: they achieve a good recognition rate with clean speech, with performance falling as the noise content in
the signal increases. The performance of the less robust parameterization, the MFCC, quickly drops in severe noisy
conditions (SNR near to 0 dB). All the other parameterizations obtain higher rates in these conditions, as can be seen
for 5 and 0 dB. In Neumeyer and Weintraub (1995) authors showed better performance of POF mapping than MFCC
at higher noise levels also, but those results were obtained on continuous speech and using hidden Markov models as
classifiers. These experimental conditions are very different from our configuration of isolated phoneme recognition
by a static classifier.

The AACR approach here proposed always achieves the highest classification rates with respect to the other param-
eterizations, for all the SNRs evaluated including clean speech. This result would be given by the intrinsic robustness
of the AACR, where only the more important activations are retained by the algorithm. Thus, the selected coefficients
are acting as phonetic clues that capture the particularities of each phoneme and enable their characterization.

A more in depth analysis of the results is presented by the confusion matrices showed in Table 2. They show the mean
recognition rate in percent for each phoneme using the best configuration found with the proposed AACR approach: 8
coefficients in the MP algorithm and the MLP with 32 units in the hidden layer. The rates correspond to the mean test
values for the 10 initializations, and two different conditions are evaluated: with clean signals and with noise added
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Fig. 7. Recognition rates in percent for the classification of the 5 phonemes in the presence noise at different SNR, from clean speech up to same
energy levels of speech and noise (SNR =0dB).

Table 2
Confusion matrices showing the classification percentages for the AACR approach with clean and noisy speech at SNR =15 dB. In rows: teaching
output, in columns: classification. Mean recognition rate: 83% (clean speech) and 71% (noisy speech).

Actual phoneme

Clean speech

Noisy speech at SNR=15dB

/b/ /d/ /jh/ leh/ fih/ /b/ /d/ /jh/ leh/ /ih/
/b/ 84 16 33 67
/d/ 16 70 10 4 5 94 1
/ih/ 1 99 12 88
/eh/ 5 93 2 5 1 92 2
/ih/ 2 2 10 26 60 3 17 15 18 46

at SNR =15 dB. For each phoneme in the first column (teaching output of the MLPs), the matrices show in rows the
percentages of each phoneme given by the networks.

Results showed that, in the clean condition, the MLP is able to carry out an adequate classification of almost all
the classes except the phoneme /ih/, which is spread in the rest of classes (last row). In the noisy condition, it can be
seen that the networks classify very well the phonemes /d/, /jh/ and /eh/, whereas phoneme /ih/ is mainly assigned
to the other classes. The case for phoneme /b/ is also interesting to analyze. In the clean case a good performance is
obtained (84 %), with a minor confusion with phoneme /d/. With the introduction of noise, even in moderate amounts,
this confusion is increased: 67% of /b/ are recognized as /d/. This behaviour could be explained by the fact that in clean
speech these plosive, voiced consonants show a high energy content at low frequencies in the AS, but phoneme /d/ also
presents more energy at higher frequencies unlike phoneme /b/ (see Fig. 4). When white noise is added, the AS of /b/
resembles more to that of /d/, giving rise to the misclassification found. A study in line with this idea was presented
in Mesgarani et al. (2008), where authors showed that these phonemes are very confusable given their high acoustic
similarity (Euclidean distance between their average auditory spectrograms). Similarly, due to the energy content of
phoneme /d/, when noise is added the patterns become more similar to the learned examples. Therefore, the initial
confusion of phoneme /d/ with others is reduced given that the noisy phoneme is very different from the clean /b/, /jh/
and /ih/.

The statistical significance of these results was evaluated considering the probability that the classification error
of a given classifier € is smaller than the one of the reference system €. In order to make this estimation, the
statistical independence of the errors for each frame was assumed, and the binomial distribution of the errors was
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modeled by means of a Gaussian distribution (this is possible because a sufficiently large number of test patterns
are given). Therefore, comparing our approach against the second best result (auditory spectrogram) for the worst
case, SNR =0dB, a Pr(e,.p>€)>96.54 % was obtained. The standard deviation for the AACR ranges from 0.88 (clean
speech) up to 2.31 (SNR =0dB), whereas for the PLP coefficients the same parameter has a higher variation: from
0.87 up to 10.71, respectively.

The use of additive white noise is probably the most studied and straightforward way to simulate the operation of
an artificial system in adverse conditions. In speech applications, perhaps the babble noise would be the more difficult
one to deal with, due to their concentration of energy in the same range as speech formants, masking important features
for the classification. A previous study in robust speech recognition support this hypothesis (Rufiner et al., 2003). The
performance of phoneme recognition systems with this and other types of noise is a topic to further explore.

6. Conclusions

In this paper, a biologically inspired sparse method for speech parameterization was presented. From the auditory
spectrograms, the technique calculates an optimal dictionary of atoms. The extracted feature vectors consist of the
activation coefficients obtained with the Matching Pursuit algorithm, which selects the more representative ones. Using
a dictionary of 256 atoms, the optimal sparse representation for each speech segment is obtained by selecting only
8 atoms. Thus, in adverse environments, a sort of thresholding of noisy components is carried out, while the most
important cues are preserved.

The feasibility of building a robust phoneme recognizer using this representation was evaluated in the classification
of five highly confusing English phonemes. The performance of our approach was compared against a number of
standard and robust parameterizations, namely the PLP and MFCC among others. The recognition experiments were
carried out using multilayer perceptrons. Results showed that the approximated cortical representation always improves
the recognition rate obtained by the rest of parameterizations, for both the clean case and in the presence of additive
white noise at different signal to noise ratios (from 50 dB up to 0 dB).

Future direction in this investigation would be devoted to optimize the denoising of the speech activation patterns,
explore a discriminative learning of the dictionaries and to explore this feature extraction scheme in the major problem
of large vocabulary continuous speech recognition.
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