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Abstract
Segmental and suprasegmental speech signal modulations offer information about paralinguistic
content such as affect, age and gender, pathology, and speaker state. Speaker state encompasses
medium-term, temporary physiological phenomena influenced by internal or external biochemical
actions (e.g., sleepiness, alcohol intoxication). Perceptual and computational research indicates
that detecting speaker state from speech is a challenging task. In this paper, we present a system
constructed with multiple representations of prosodic and spectral features that provided the best
result at the Intoxication Subchallenge of Interspeech 2011 on the Alcohol Language Corpus. We
discuss the details of each classifier and show that fusion improves performance. We additionally
address the question of how best to construct a speaker state detection system in terms of robust
and practical marginalization of associated variability such as through modeling speakers,
utterance type, gender, and utterance length. As is the case in human perception, speaker
normalization provides significant improvements to our system. We show that a held-out set of
baseline (sober) data can be used to achieve comparable gains to other speaker normalization
techniques. Our fused frame-level statistic-functional systems, fused GMM systems, and final
combined system achieve unweighted average recalls (UARs) of 69.7%, 65.1%, and 68.8%,
respectively, on the test set. More consistent numbers compared to development set results occur
with matched-prompt training, where the UARs are 70.4%, 66.2%, and 71.4%, respectively. The
combined system improves over the Challenge baseline by 5.5% absolute (8.4% relative), also
improving upon our previously best result.
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1. Introduction
Understanding and modeling variations in prosody and articulation are at the core of spoken
language study. Increasingly, researchers are interested in computing the information carried
in a person’s speech beyond the linguistic content. Notably, the study of paralinguistic
aspects of speech has recently included modeling and estimating pathological speaking
styles, mental states of cognition and socio-emotions, and individual attributes such as age
and gender. Such information can serve to provide a more complete description of human
behavior and social interaction. With this inspiration, the field of behavioral signal
processing aims to quantify human behavior states in a variety of application fields such as
education and health (Black et al., 2011b; Lee et al., 2011; Black et al., 2011a).

Intoxicated speaker state recognition is a topic that provides important opportunities to learn
about paralinguistic speech production and perception. A unique aspect of intoxication
detection is that the data utilizes a (direct) chemical signal for the reference labels, as
opposed to human annotation (of inferred labels) based on observed behavioral cues.
Features and methods developed in a single paralinguistic domain can often transfer to, or
inform, another. Furthermore, it is interesting to consider how intoxicated speech cues
interact with cues from other paralinguistic domains. These are some of the motivations that
led to the collection of the first large-scale corpus of intoxicated speech, the Alcohol
Language Corpus, or ALC (Schiel et al., 2011). Another motivating application was to
determine if the speech commands used in modern automobile technology can dually be
used to detect possible intoxication, and prevent road accidents associated with impaired
driving.

Alcohol affects cognitive and motor function, leading to perceptible changes in behavior,
including communication. Compared to other drugs, alcohol has a medium-to-large negative
effect on psycho-motor function (Hindmarch et al., 1991). Alcohol has lasting cognitive
effects, impairing information processing even during decreasing blood-alcohol
concentration (BAC) (Schweizer et al., 2004). Such impairment has been demonstrated in
vision (Abroms and Fillmore, 2004), hand-writing (Galbraith, 1986), and many other motor
tasks. Speech is the result of high-level sensory, cognitive, and motor processes (Hollien et
al., 2009). Alcohol-induced sensory-motor impairment justifies the presence of traceable
cues of alcohol intoxication in speech.

Listening experiments corroborate theorized changes in speech patterns due to alcohol
intoxication. Hollien et al. (2009) demonstrated listeners are able to perceive increasing
levels of intoxication within a speaker, but have difficulty ascertaining the specific level of
BAC. It was not found that professionals (e.g., highway patrolmen) had acute discernment
of intoxicated speech. However, there were differences in classes of speech, such that
increasing text difficulty correlated positively with perceptibility. Pisoni and Martin (1989)
conducted similar listening experiments and reached analogous results. Compared to 65%
accuracy for an arbitrary utterance, they demonstrated a 9% absolute increase in binary
perception of alcohol intoxication when classifying two utterances from the same speaker,
supporting the need for speaker normalization. Schiel (2011) investigated aural coding
accuracies on the Alcohol Language Corpus for a subset of read and spontaneous prompts,
finding an average (human) decoding accuracy of 71.65%. It was observed that read
sentences were more easily identifiable than spontaneous speech. This may have been
because the cognitive-motor task was more complicated than the interview-style dialogue
found in spontaneous speech. Schiel also reported that female speakers were more easily
identifiable as intoxicated than male speakers. Pitch studies on the same corpus corroborate
these conclusions since females were found to increase pitch more consistently than their
male counterparts (Schiel and Heinrich, 2009).
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Analyses of intoxicated speech have sought to understand the pairwise-correlations between
intoxication and acoustic features, but also note an apparent speaker dependency in the
expression of intoxicated speech. For instance, mean pitch is largely seen to rise with
intoxication (Hollien et al., 2001; Baumeister and Schiel, 2010), but previous studies
reported the opposite can also be true (Pisoni and Martin, 1989; Schiel and Heinrich, 2009).
In Pisoni and Martin’s experiment, one of four speakers exhibited a decrease in pitch when
inebriated. Increased disfluencies in the form of increased pauses, mispronunciations,
elongations, and interruptions have been noted (Barfusser and Schiel, 2010).
Correspondingly, speech rate is consistently observed to decline with intoxication (Pisoni
and Martin, 1989; Sobell and Sobell, 1972; Behne et al., 1991). Behne et al. (1991) reported
reliable increases in durations of read sentences, but not in isolated monosyllabic words.
This is possibly due to the low cognitive load required for producing well-practiced,
independent syllables. Besides the durational and static aspects of prosody, dynamic aspects
can also be affected, such as generating a perceived quivering voice quality (Pisoni and
Martin, 1989).

Features that have been proposed in order to capture intoxicated speech statistics and
dynamics in classification experiments include: rhythmicity features for speaking rate and
vowel triangle area indicating articulatory variability (Schiel et al., 2010); jitter and shimmer
for prosodic variability and articulatory features including Mel-frequency cepstral
coefficients (MFCCs) (Schuller et al., 2008); and prosodic features including duration,
isochrony, pairwise variability indices, and global interval proportions (Honig et al., 2011).

Classification results with these systems have demonstrated accuracies on par with human
evaluations. Levit presented results on a smaller German database and a cuto of 0.8 g/L,
achieving 69% accuracy. As expected, classification accuracy was worst near the cutoff, and
improved with increased intoxication or sobriety (Levit et al., 2001). In our previous work at
the Interspeech 2011 Speaker State Intoxication Subchallenge (Schuller et al., 2011), our
proposed approach yielded the top unweighted average recall of 70.5% on the Alcohol
Language Corpus test set by fusing scores from various feature-representation models,
utilizing hierarchical feature extraction, and applying two types of speaker normalization
(Bone et al., 2011). Corresponding to speaker normalization benefits, differences at the
phoneme level have been discovered in single-vowel experiments, where speaker-specific
models for voice-excitation features achieved an accuracy of 70% (Sigmund and Zelinka,
2011).

The present work focuses on two questions. Firstly, we investigate speaker state
classification with our general model, focusing on improving performance on the
Intoxication Subchallenge test set. Our approach is detailed, and the benefits of individual
components are thoroughly evaluated. Since previous studies have noted perceptual
differences in prosodic expression between genders during intoxicated speech, we also
investigate gender-dependent models.

Our complete fusion model is comprised of: (i) hierarchical contour functionals; (ii)
alternative feature representation with Gaussian mixture model (GMM) mean supervectors,
Universal Background Model (UBM) weight posterior probability (UWPP) supervectors,
and latent factor analysis (LFA) supervectors; and (iii) global and iterative speaker
normalization on the feature vectors generated by each of these representations.

Secondly, we focus our intoxicated speech detection analysis towards a system that can
marginalize certain sources of variability, in turn gaining understanding about the
perceptibility of intoxicated speech under different conditions. Experimental results are
presented on the development dataset for prompt-type specific models, experiments using
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matched prompts that occur in both the sober and intoxicated condition, and various speaker
normalization techniques. Prompt-type specific models may indicate that certain types of
prompts are more or less difficult to model due to increasing cognitive load. Matched-
prompt data reduces the tendency of a system to model lexical content. One of the proposed
speaker normalizations that is suitable for live applications is referred to as background
normalization in this paper. This type of normalization makes a practical assumption that
each speaker is enrolled with sober intoxication data. Having such held-out enrollment data
from unseen prompts leads to accuracies comparable to other speaker normalization
techniques that may be dependent on the speaker’s class-label distribution.

The rest of this article is organized as follows: section 2 describes the ALC corpus and
experimental setup; section 3 details the feature extraction, modeling, and classification
methods utilized; general speaker state experimental results are discussed in section 4;
section 5 presents results of the final, fused model; error analysis is conducted in section 6;
and conclusions and ideas for future research are presented in section 7.

2. Database and Experimental Setup
All experiments were conducted on a large, controlled-environment collection of
alcoholized and non-alcoholized speech named the Alcohol Language Corpus. The
following subsections detail the corpus, the corresponding matched-prompt subset, the
Interspeech Speaker State Challenge and classification metric, and pre-processing.

2.1. Alcohol Language Corpus
The Alcohol Language Corpus (ALC) is the first publicly available speech corpus of
intoxicated individuals, encompassing an impressive number of 162 female and male
speakers of German (Schiel et al., 2011; Schuller et al., 2011). The corpus was collected
with the intent of determining whether advances in automated speech processing and
machine learning could capture the changes in a person’s speech patterns due to
intoxication.

The collection and the data elicitation were diverse in an effort to make results
generalizable, valid, and complete. Speech was acquired across a broad range of speaker
ages (21-75 years, mean = 31 years) at 5 different locations in Germany and balanced for
gender (78 female, 84 male). Data were recorded in an automotive environment to
approximate real-world application scenarios. Three types of speech styles were obtained:
read, spontaneous, and command and control. The prompts included: read digit strings,
tongue twisters, commands, addresses, and spelling; spontaneous monologues of picture
description, question answering, and commands; and dialogues with a researcher.1

To begin, subjects drank a desired amount of alcohol. The subject BAC– measured by blood
test– was between 0.28 and 1.75 g/L during the alcoholized speech samples. Next, the
subject was asked to respond to 30 prompts in the alcoholized condition (not necessarily
above the Challenge BAC limit). The ‘alcoholized’ speech sample was collected in less than
15 minutes. Within two weeks the speakers recorded 60 sober prompts in the same acoustic
environment.

Audio recorded from a headset microphone is downsampled to 16 kHz for the Challenge.
Gender is provided for the Challenge training and development sets, but not for the
Challenge test set. All Challenge sets come with speaker labels, supporting speaker
normalization.

1Detailed description is provided by the corpus authors, Schiel et al. (2011).
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2.2. Matched Prompt Sets
While the paper largely focuses on classification using the framework of the Intoxication
Subchallenge, we also conducted additional experiments with a subset of the data to gain
greater insights into speaker state system design. It came to our attention that a significant
degradation in performance was noted when training on the train and development sets and
testing on the test set, which had its subset of prompts. It seems reasonable that prompt-
specific features were being captured by the classifiers implicitly. As further evidence, when
classification was performed by training on the set of 36 sober prompts that did not appear
identically in the intoxicated set (i.e., those read and spontaneous prompts that would have
surely led to unique lexical content) and testing on the entire intoxicated set, unweighted
accuracy reached 95%. In short, the classifier was performing prompt identification rather
than intoxication detection. One remedy in real-world applications would be to have a large,
random set of prompts for either condition; and the ALC allows us a step towards that by
providing 24 identical prompts from either condition– designated our matched set. The
matched set contains samples of all three speech styles. Even if a ‘matched’ prompt requires
a spontaneous response, we will be modeling intricacies specific to intoxication. Item types
from the non-matched and matched sets, written as they will be reported in Results, are
shown in Table 1. It should be noted that the one ‘spelling’ prompt was grouped with the 10
read ‘address’ prompts for analysis. Another inherent benefit was the opportunity to train
models with sober background data (from the 36 remaining sober prompts) as previously
suggested in Schiel et al. (2010).

2.3. Interspeech Speaker State Challenge and Classification Metric
The Interspeech 2011 Speaker State Challenge consisted of two Subchallenges- Intoxication
and Sleepiness (Schuller et al., 2011). The Intoxication Subchallenge used the Alcohol
Language Corpus (ALC). The classification was posed as a two-way, high- and low-
intoxication-level division set at Germany’s legal limit for ‘intoxicated’ driving, 0.5 g/L.
This led to some speakers not meeting the cutoff for intoxication and having all utterances
designated as sober. The train and development data encompasses all 90 utterances, 60 sober
and 30 alcoholized, per speaker while the test set contained only 60 utterances per speaker–
uncertain during the Challenge, 30 are sober and 30 are alcoholized per speaker. 154
speakers were randomly chosen in order to obtain a balanced gender set (77 female, 77
male). The speakers were further randomly divided into three groups: train (60 speakers),
development (44 speakers), and test (50 speakers).

The official classification metric was unweighted average recall– which is the average of
per-class recall percentages.

2.4. Corpus Pre-Processing
We focus our analysis on the speech of the subject, ignoring all speech defects or pauses and
all speech from the research conductor. Manual lexical transcriptions which include tagging
of speech defects are supplied for the subject’s speech. No such transcript is provided for the
rare background speech from the research conductor. The database also provides associated
phonetic alignments based on the manual transcriptions. We remove any frames aligned as
silence, garbage, defects, or background noise from the original wave files prior to any
feature extraction (this is a standard approach used in GMM supervector modeling in speech
processing).

3. Methods
Our framework consists of five subsystems. Two are built on static- and hierarchical-
functionals and are different only in the adopted speaker normalization method– global vs.
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iterative. The remaining three are GMM supervector constructs that incorporate global
speaker normalization. The static/hierarchical functional systems are described in the first
subsection, followed by details of the GMM systems. Next, speaker normalization
techniques are discussed, followed by description of a feature selection technique with
which we have experimented. Lastly, score-level fusion is described. All classification is
performed using LIBLINEAR (Fan et al., 2008; Chang and Lin, 2011), except for RBF-
kernel SVM in association with feature selection which uses LIBSVM (Chang and Lin,
2011).

3.1. Static- and Hierarchical- Functionals
In this subsection, details are given of the static and hierarchical functionals computed on
the baseline and Praat low-level descriptors (LLDs). In total, 150 LLDs and 33,618
functionals (features) are computed.

3.1.1. openSMILE Baseline—The openSMILE baseline is constructed on numerous,
commonly used acoustic LLDs (Eyben et al., 2010). The computed LLDs include relative
spectral (RASTA) MFCCs, spectral energies, spectral roll-offs, spectral flux and entropy,
zero-crossing rate, loudness, probability of voicing, fundamental frequency (f0), energy,
jitter, and shimmer, among others. In total, 120 LLDs (60 LLDs and corresponding first-
order deltas) are extracted using openSMILE. The baseline system for the Interspeech
Speaker State Intoxication Subchallenge is composed of 33 base, utterance-level static
functionals such as mean, standard deviation, quartiles, mean value of peaks, linear
prediction (LP) coefficients 1-5, and duration of signal above 95% quantile. An additional
set of 6 functionals is extracted on the f0 contour. In total, there are 4368 baseline features.
Further description of the baseline features can be found in the Challenge Description Paper
(Schuller et al., 2011).

3.1.2. Praat Prosody and Formants—We expected that a complementary set of
acoustic LLDs could be extracted using Praat (Boersma, 2001). Eight feature contours were
computed using a 25ms window with 10ms period: f0, intensity, and the first three formants
and their bandwidths. The formants and formant bandwidths were included based on their
success in sleepiness detection (Krajewski et al., 2009). Pitch was extracted using the
autocorrelation method with a minimum of 75Hz and maximum of 500Hz. Normalized
versions of pitch (Equation 1) and intensity (Equation 2) were additionally computed per-
speaker. First- and second- order deltas are calculated, totaling 30 Praat LLDs.

(1)

(2)

3.1.3. Hierarchical Functionals—Hierarchical feature extraction uses multi-level
windowed statistics (functionals-of-functionals) to extract features. Hierarchical features
have proven more effective than utterance-level functionals in emotion, sleepy speaker state,
and couples’ therapy machine learning tasks (Schuller et al., 2008; Krajewski et al., 2009;
Black et al., 2011b). Although this combinatoric representation generates very large feature
sets, linear support vector machine (SVM) has proven to provide high classification
accuracy in all of these domains.

There are two rationales behind extracting hierarchical features– to find features that are
robust to utterance duration and to better capture moment-to-moment changes in an
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utterance compared with utterance-level static functionals. The utterance durations in the
ALC range from 0.5 seconds to over 60 seconds. Wider variations will occur for functionals
computed on shorter-duration utterances, even if those utterances are being produced by the
same generating distribution. We expect that using hierarchical feature extraction will
produce features that are robust to utterance duration. Because we have shown in our
previous work that hierarchical features increase accuracy when using global speaker
normalization, we do not consider the baseline features alone (although we do investigate
feature selection) (Bone et al., 2011). Dynamic variations may also be better captured
because functionals are now computed within smaller windows throughout the utterance,
supplying a finer granularity to utterance modeling.

First, primary-level windowing is performed on each LLD at two temporal granularities: 0.1
seconds and 0.5 seconds. Next, the 15 functionals shown in Table 2 are computed within
each windowed segment of each LLD. This is a new contour of functionals, upon which we
compute a second set of six ‘core’ functionals designated by an asterisk, ‘*’. A reduced set
of core functionals is used to avoid an even larger feature set resulting from this
multiplicative framework. Hierarchical extraction is depicted in Figure 1, where f1(n) is one
of 15 frame-level functionals and f2(n) is one of six core, hierarchical functionals. For each
of the 150 LLDs, 15 utterance-level functionals are extracted and 90 (15×6) hierarchical
functionals are calculated at the two temporal granularities. In total 29,250 functionals
(150×195) are computed and added to the 4368 baseline features, completing the final
33,618 functional feature-vector. Some functionals may be co-linear or even identical, but
linear SVM is expected to be robust in such cases. In the rare case that an utterance had a
feature that could not be computed because the utterance was too short, that feature was set
to 0. This implicitly incorporated utterance length into our model. Features which had very
small variance compared to the corresponding mean absolute value were removed.

3.2. GMM Supervectors
GMM methods enable alternative feature representations that provide various opportunities
to account for orthogonal variances due to speaker and ‘channel’ effects representing the
multiple sources of potential variability. Our GMM supervector systems consist of
established, state of the art methods drawn from areas such as age and gender identification
(Li et al., 2012a), speaker and language recognition (Castaldo et al., 2007), and
paralinguistic classification (Li et al., 2012b). Three GMM-based subsystems are
implemented in our experiments. It is generally shown that larger GMMs produce higher
accuracies. We also would like to keep the mean supervector dimensionality low enough
that computation is feasible. We choose a 512-dimensional GMM constructed with 39-
dimensional MFCC feature vectors (13 + Δ + ΔΔ) for the mean-supervector and the
Universal Background Model (UBM) weight posterior probability (UWPP) supervector .
We construct a 256-dimensional GMM for latent factor analysis, as was done in our
previous work (Li et al., 2012b). Standard GMM scoring was not included because we
already are considering three related GMM systems, and have also previously found the
GMM baseline system to have lower performance than the latent factor analysis (LFA)
subsystem for intoxication detection.

3.2.1. GMM Mean-Supervector—The 512-dimensional universal background model
(UBM) is trained on all 39-dimensional MFCC feature vectors from 10ms speech frames in
the training set (all frames are speech frames due to pre-processing). Separate GMMs are
trained for the official, complete prompt set of 5400 utterances and the reduced, matched-
prompt set of 2880 utterances. Then, the means of the UBM are MAP-adapted for each
training and evaluation utterance. Each supervector is constructed by concatenating the 39-
dimensional means of all 512 Gaussians in the GMM, plus the bias (19968+1 features).
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Lastly, each supervector feature is normalized by the corresponding standard deviation and
GMM-component weight to fit a supervector kernel that is a bounded approximation of the
Kullback-Leibler divergence (Campbell et al., 2006).

3.2.2. GMM UWPP Supervector—For each utterance in the training and evaluation sets,
unweighted posterior probability (UWPP) feature extraction is performed on the appropriate
512-dimensional UBM (official or matched set). The UWPP supervector consists of the
average posterior probability associated with each GMM-component, and is therefore a 512-
dimensional vector. The computation is conducted as shown in Equation 3, where bi is the i-
th UWPP-supervector-component, λi is the i-th GMM-component, ot is the t-th window’s
MFCC vector, and T is the number of frames in the utterance.

(3)

Lastly, the vector is modeled using the Bhattacharyya probability product kernel as has been
previously proposed for age and gender identification (Li et al., 2012a).

3.2.3. GMM LFA Supervector—We have adopted the GMM latent factor analysis (LFA)
framework that was recently implemented for speaker state detection (Li et al., 2012b). LFA
is often used to remove channel effects for speaker verification and diarization (Kenny et al.,
2010), but we repose the problem to model the ‘channel’ factors which we anticipate to be
resultant from alcoholized speech. If we let Ms,c denote the speaker- and channel- dependent
mean supervector and Ms denote the ‘clean’ mean supervector of a speaker, then we can
define the speaker and channel dependent mean supervector in terms of the ‘clean’ mean
supervector and a low-rank Eigenchannel projection, Ux, which represents channel effects
(Equation 4).

(4)

The Eigenchannel matrix is computed with Principal Component Analysis (PCA) on the
pooled within speaker covariance matrix. In order to train the Eigenchannel matrix with the
256-dimensional GMM-UBM, we need to use data from multiple speakers, with each
speaker having data from each class. We therefore use only the 96 speakers in the training
and development sets who reached the intoxication limit. We combine all utterances per
speaker and per state into single vectors for adaptation based on previous success (Li et al.,
2012b). We then construct a within speaker variability matrix S by concatenating all of the
mean-subtracted supervectors (vectors from MAP adaptation). The Eigenchannel matrix U
is given by the R PCA eigenvectors of the within speaker covariance matrix, (1/J)SSt, with
the largest eigenvalues (J is the number of supervectors).

The speaker state factor x of the LFA framework is calculated as in Equations 5 and 6
(Castaldo et al., 2007).

(5)
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(6)

Ui is the i-th Gaussian component’s sub-matrix of U, ot is the t-th feature vector, and γi(t) is
the occupancy probability of the i-th Gaussian component for the t-th feature. μi and Σi are
the mean and the diagonal covariance of the UBM, respectively. The diagonal covariance
matrix E is constructed from the R eigenvalues of the Eigenchannel matrix U.2 The
Eigenchannel factor x is computed for all utterances. Linear SVM is then used for modeling
on the channel factors.

3.3. Speaker Normalization
Speech features are well-known to be corpus and person specific. Accommodation through
model adaptation or speaker normalization is extremely important in automatic speech
recognition, language identification, and emotion recognition. Speaker normalization is
investigated in three variants– global, iterative, and background– each carrying assumptions
about the data, but all showing marked improvements over using raw feature vectors. Global
speaker normalization computes normalizing statistics on all data per speaker, regardless of
class-label distribution. In contrast, iterative and background speaker normalization
techniques normalize data by an approximation of the baseline-class (sober) statistics.
Iterative speaker normalization seeks to automatically determine the baseline samples by a
recursive-classification algorithm. Background speaker normalization utilizes a set of
‘control’ data that is often of distinct lexical content.

We choose Z-normalization over only mean subtraction or median and interquartile
normalization because we initially found that it led to higher accuracies. In the per-prompt
experiments, normalization is only performed using sentences of the same prompt type.

3.3.1. Global Normalization—Global speaker normalization consists of computing the
mean and standard deviation of each feature across all utterances from a speaker, indifferent
to the class-label distribution. An inherent disadvantage is that the expected location for the
optimal hyperplane should change if the class-label distribution changes. In our previous
work, we attempted to fit the expected class-label distribution and saw a small gain (Bone et
al., 2011). However, our current work investigates the robustness of our subsystems to the
observed change in the class-label distribution on the test set– specifically, the training data
that is distributed approximately 2-1 (sober-alcoholized), but the test data is distributed
approximately 1-1. An additional benefit of global speaker normalization is the simplicity of
computation.

3.3.2. Iterative Normalization—Iterative speaker normalization recursively uses
hypothesized sober labels for prediction, until convergence. The method is motivated by
‘oracle’ experiments in which the class-labels are actually known. If Z-statistics for speaker
normalization are calculated on the true sober samples, the highest accuracies reported on
the ALC are obtained (Bone et al., 2011). Iterative speaker normalization seeks a local
optimum, and hence it will be dependent upon a proper initialization (Busso et al., 2011). To
provide an appropriate seed-point, the hypothesized labels already obtained from global
speaker normalization are used. Although the first iteration will likely provide a similar
result to the global-normalization seed-point, the new hypothesis need not be identical since
the hyperplane is being drawn in a space that has undergone different linear transformations

2Further details can be obtained from Burget et al. (2007) and Castaldo et al. (2007).
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between speakers. Besides the global cost parameter for SVM, the number of iterations can
also be tuned. The iterative algorithm was run for three iterations based on quick
convergence of the algorithm and observed development set performance.

3.3.3. Background Normalization—Speaker normalization is a common approach for
increasing performance in speech processing applications, but not all types of speaker
normalization are practical in real-world applications. Take for example speaker state
detection, where it is likely that we will not have representative data for a person in a
particular speaker state. However, we likely can gain access to neutral/baseline speech from
the speaker in similar recording conditions. This approach is similar to iterative speaker
normalization in that it approximates a speaker’s neutral state statistics for a given utterance,
except that instead of computing those sober sample-statistics through iterative classification
on the target prompt-responses, we are estimating those features with sober utterances with
comparable qualities.

Background speaker normalization requires a set of additional reference utterances for each
speaker. Instead of performing another layer of cross-validation on the development set, we
evaluate background normalization when a full held-out set of utterances is available as in
the matched-prompt experiments. Out of the original 60 non-alcoholized prompts, 24 are
repeated identically in the test set, leaving 36 to be used as background data on which to
compute Z-statistics. For prompt-specific experiments, we perform speaker normalization
regardless of the number of background utterances of that prompt-type available for each
speaker (given in Table 1). Monologue prompts only have 2 utterances per speaker available
as background, thus that specific result should be analyzed with care.

3.4. Feature Selection
We have previously shown that the inclusion of hierarchical features increases unweighted
average recall (UAR) over the baseline openSMILE functionals in the case of speaker-
normalized features (Bone et al., 2011), but feature selection may lead to further
improvements. Feature selection is a common machine learning method to improve
modeling by reducing the ‘noisy’ features or the co-linearity between ‘important’ features.
However, feature selection can be computationally expensive and may not provide gain in
recall. This is especially true for very high-dimensional feature spaces where some standard
techniques are computationally infeasible, and practical implementations may not succeed–
e.g., Black et al. (2010) showed that using LDA with forward-feature selection on
hierarchical features did not improve recall in dyadic interaction behavior modeling.

When using an SVM classifier, the SVM may also offer the most successful feature
selection. However, we cannot utilize exhaustive methods and instead choose a recently
proposed method in biological learning. This feature selection method based on recursion is
named recursive SVM (R-SVM) (Zhang et al., 2006). The intent is to find the dimension(s),
j, for which the difference between class-average distances from the hyperplane and that
component’s weight is properly maximized for each class (standardized features are
assumed). We generally violate the algorithm’s assumption (and initial inspiration) that the
classes can be separated in the feature space; however, this assumption does not appear to
affect the algorithm’s motivation and derivation and we still adopt this technique in
consideration of feature selection constraints for high-dimensional feature spaces and
previous failure of standard techniques. The method is explained through equations 7 and 8.
In these equations, n1 and n2 are the number of data points in classes 1 (+) and 2 (−), f(x) is
the distance from the hyperplane, mj

+ and mj
− are the means of feature j for each class, d is

the total number of features, and wj is the j-th component of the weight vector, x. Our goal is
to select features, j, corresponding to maximal values of sj.
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(7)

(8)

To begin, the final feature-dimensionality and step size, which determines the number of
‘new’ features that are considered at each iteration, are chosen. We opted to select feature-
dimensionalities of 4000 and 200 with the feature step size set to be half the final feature
size. At each iteration, 6000 or 300 randomly chosen features are used for classification in
the 4000 or 200 feature-set cases, respectively. The top N features are kept at each iteration.
This process is iterated until all features have been considered. For each selected feature set,
we again perform classification with linear SVM. For small feature sets, kernel-SVM using
a radial basis function (RBF) kernel may provide an increased, modeling capability. Thus,
we also utilize RBF-SVM for the case of 200 selected features.

3.5. Score-level Fusion
Late-fusion is chosen to combine all five subsystems by their ‘scores’– i.e., distances from
the SVM decision-hyperplane. Each score is standardized by its median and inter-quartile
ratio, calculated across all utterances. When deciding when to fuse each subsystem, the
most-related and weakest subsystems should be fused first. We group the two static-
functional subsystems and all GMM subsystems for fusion because those groups are
expected to be closely related. We fuse the GMM mean supervector with the UWPP
supervector and then add the LFA supervector. The final score is then thresholded at zero
and used for classification.

4. Speaker State Experiments and Discussion
This section has two major goals: (i) to experiment with speaker normalization methods,
gender-dependent models, and feature selection in order to obtain a system that provides the
best accuracy; and (ii) to analyze the results both per prompt-type and in relation to non-
matched and matched sets, discussing generalizability and commenting on underlying
cognitive-motor coordination in intoxicated speech. Such investigation is broadly
informative to speaker state research.

4.1. Feature Selection on Functionals
In this subsection, classification performance is evaluated in terms of the following: feature
selection, official or prompt-matched development sets, global speaker normalization, and
prompt-type specific models. Speaker-independent cross-validation was performed for
parameter selection. The results are displayed in Table 3.

A relatively consistent decline in performance is observed when anything less than the full
feature set is modeled, whether using linear-kernel or RBF-kernel SVM. Feature selection is
non-beneficial in all four combinations of development-set type and speaker normalization
type. The matched development set with global speaker normalization may be the most
important experiment to examine because it is unaffected by bias in modeling prompt type
and provides higher performance than without speaker normalization. In this region, feature
reduction to 4000 features while using linear SVM increases UAR for the address prompts,
but does not notably improve classification for the remaining prompt-types or remaining
feature dimension. It was determined through experiment repetition with random feature
selection that the benefits were coming from increased modeling ability due to reduced
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feature size, not from feature selection. The results indicate that a subset of robust features
may exist, although they may be prompt specific and are difficult to select. We therefore
have empirical support to avoid feature selection on the test set.

Although large discrepancies in unweighted accuracy exist between the official and matched
development sets, the matched-prompt results may be more robust. The matched-prompt
experiments are motivated by the observation that lexical content that only occurs in a single
class is being implicitly modeled (prompt identification, section 2.2), affecting the potential
of the system to model the true underlying speaker state. To further analyze this claim,
results using global speaker normalization on both development sets are presented in Table
4. The matched model appears more successful in identifying cues of alcoholized speech
since it has a higher accuracy on the matched-prompt evaluation set. Utterance identification
is evident in the 11% absolute UAR increase between the matched (24 alcoholized/non-
alcoholized prompts) and non-matched (36 alcoholized and 6 non-alcoholized prompts) test
sets– together the ‘matched’ and ‘non-matched’ prompts are the official set. We did not
evaluate matched-prompt model performance on non-matched data since the test would have
been on unseen data (we do this later for the test set). It is clear that using matched prompts
should produce the least biased view of intoxication detection and we may focus our
discussion on this set.

The success of global speaker normalization is demonstrated in the right-half of Table 3.
Regardless of other variables, using only the global speaker-normalized features (without
raw features) is seen to always improve unweighted averaged recall compared to the raw
features. For instance, UAR increases from 64.1% to 71.9% on the official development set
and from 58.8% to 69.7% on the matched-prompt development set when using all features
and combining all prompt types.

Lastly, we analyze the outcome of classification for different types of prompts and the
potential gain from modeling each prompt type individually. Focusing on the lower-right
quadrant of Table 3, we observe that modeling precision is consistently low for command-
and-control utterances which contain both read and spontaneous responses. While these
utterances tend to be shorter than certain other prompt-types (the median lengths for
command & control and for tongue twister utterances are 3.2 seconds and 4.9 seconds,
respectively, on the development set), they are also of lower cognitive requirement. They
utilize familiar words and phrases, and in the case of spontaneous commands, potentially
require less complex planning in sentence construction. Therefore, both the motor and
cognitive loads on the participants are low. In comparison, we consider read tongue-twisters
for which the motor load is prominently increased because the phrases and phonetic-pairings
are unusual for natural speech. These findings are in accordance with perceptual studies
(Hollien et al., 2009).

A drawback of prompt-specific modeling is reduced training data, but a potential gain may
come from modeling intricacies of each speech type. In all four cases presented in Table 3,
modeling each prompt individually increases the overall performance. However, we have
not developed an appropriate automated prompt-identification system, and will not use such
a method for the test set experiments. Likely, the delivered prompt would be known in real-
world systems, and the system could presumably leverage this knowledge.

4.2. Speaker Normalization Methods
Three speaker normalization techniques are implemented in this work. The first is global
speaker normalization, in which all samples from a speaker are used to normalize each
feature. The intuitive assumption is that the class-distribution is relatively constant from
speaker-to-speaker; we will examine the robustness of this assumption when classifying on

Bone et al. Page 12

Comput Speech Lang. Author manuscript; available in PMC 2015 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the test set. Secondly, iterative speaker normalization attempts to automatically find the
sober samples through recursion. Lastly, background speaker normalization assumes the
system has access to samples of a speaker’s baseline speech. The following subsections
show the development set performance of these methods.

4.2.1. Global versus Iterative Normalization—Results are displayed collectively and
per prompt-type on the official and matched development sets in Table 5. Global speaker
normalization is reliably superior to iterative speaker normalization. Iterative speaker
normalization is shown to consistently improve upon no speaker normalization. We will
consider potential benefits of iterative speaker normalization during fusion in the next
section.

4.2.2. Background Normalization—Background normalization has been suggested as a
viable adaptation mechanism for real-world systems, given that neutral/baseline speech
should be easier to obtain, whereas procuring training data for particular states of interest
may be impractical (Schiel et al., 2010). With this in mind, we evaluate performance using
background normalization on the matched development set, having tuned parameters on the
matched training set with speaker-independent cross-validation (Table 5). We do not
evaluate the performance on the test set, and we analyze these results only in order to
provide reference numbers for future research on intoxicated speech detection and for the
general relevance to speaker state research. This valuable technique should be largely
independent of the test set distribution of class-labels.3

Speaker normalization using statistics from a speaker’s background data provides higher
unweighted average recall than non-normalized features, but lower accuracy than global
speaker normalization. In fact, the UARs for background normalization are nearly identical
to the UARs for iterative normalization. This is intuitive as the techniques approximate the
same knowledge, a speaker’s would-be neutral state characteristics for any given utterance.
These experiments show the utility of background data.

4.3. Gender-Dependent Modeling
Gender-dependent models have demonstrated improved accuracy across a variety of speech
based classification tasks. Pitch studies performed on the ALC by Schiel and Heinrich
(2009) found that females increased their pitch more consistently than their male
counterparts. But it is unknown whether these trends will apply across the vast feature set
employed, or if the benefits of extra training data will outweigh the gains from modeling
these gender-specific feature tendencies. The results of gender-dependent modeling on the
official and matched development sets in the cases of no speaker normalization and global
speaker normalization are shown in Table 6.

Gender-combined modeling outperforms gender-dependent modeling in all of the situations
considered. As previously stated, it may be more informative to focus analysis on the
matched-prompt set of experiments. For the raw feature case, there is similar performance
whether the model is trained separately or jointly. Also, males are more accurately modeled
than females– a surprising finding. This may be because males have lower variance in
median pitch, and possibly other features, across speakers than females. In the speaker-
normalized feature case, gender-combined accuracy is higher than both gender-dependent
accuracies. Female accuracy is comparable to male accuracy, possibly because the variance
in female neutral state features is now comparable to the variance in male neutral state
features due to speaker normalization. While it is still possible that other modeling

3Some evidence for this proposition is found through experiments in Section 6.
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techniques and features may make use of gender-specific information, we have shown that
gender-dependent models are not necessary for our feature set with linear SVM modeling.

5. Final System Construction: Late Fusion of Functionals and GMM-SVM
Systems

In this section we present our final system constructed by late-fusion of five classifiers– two
static functional systems, and three GMM-supervector systems. We show results for each
subsystem on the development and test sets (Table 7) and compare with previous results on
the Speaker State Intoxication Subchallenge test set.

5.1. Subsystem Results
The modeling capabilities of all five subsystems should be examined in order to determine
which subsystems are best overall. The global and iterative speaker normalization
subsystems, which operate on static and hierarchical functionals, produce the highest single-
system accuracies on the matched development set and the official development set, with the
exception of latent factor analysis (LFA). However, LFA’s performance drops notably from
the official to the matched-prompt case. The GMM mean-supervector (MGMM) has the
fourth highest unweighted accuracy, followed only by the lower dimensionality (512)
unweighted posterior probability supervector (UWPP).

In terms of robustness, the closely related global and iterative functional-feature subsystems
and the GMM mean-supervector system, all of which are very high-dimensional, show
consistency between development and test set when trained on matched-prompt data. LFA
and MGMM obtain considerably higher performance on the official development set than
the matched development set, suggesting that the GMM methods built on MFCC features
were exploiting utterance-specific lexical information to improve classification performance.
The test set is identical in the official and matched experiments, only the training datasets
differ.

The LFA rank R (the size of the U matrix) and the sub-rank r (the ordered-subset of the R
factors used for SVM modeling) were tuned on the development set, with R having a
maximum value of 55. For the non-matched set, cross-validation showed only r = 10 factors
were necessary for peak performance when chosen from the LFA matrix of rank R = 55. For
the matched set, R = 40 with r = 20 provided optimal performance. The additional factors
included in the matched-prompt set may have provided higher robustness based on its
slightly higher performance on the test set, although it is universally observed that training
with matched-data provides more consistent results when transitioning to the test set.

5.2. Fusion Results
Fusion was carried out at the score-level in order to increase robustness to unexpected
failures of specific sub-systems (results in Table 7). In parallel, the functional-feature
subsystem scores are merged as are the GMM subsystems. Then, both composites are united
to form the final system.

Performance of the static-functional systems ([1,2]) is comparable to the GMM systems
([3,4,5]) on the official development set, but not when evaluated on the official test set
because the GMM systems overfit the non-matched lexical content. Additionally, the LFA
vector receives a large fusion weight (0.79 vs. 0.69) with the other two fused GMM
classifiers (MGMM and UWPP) due to high development set performance, but it notably
declines in recall on the test set, explaining the reduced performance in the official prompt
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case. In contrast, the accuracies of the matched-prompt models are consistent in both
evaluation sets (devel and test).

The final accuracies on the test set are 68.8% for modeling the official prompts and 71.4%
when modeling the matched-prompts. The matched-prompt-training results are higher than
our best reported result in the Interspech Speaker State Intoxication Subchallenge, where we
achieved the maximal recall of 70.5%, but the official-prompt-training results are lower. The
largest factor that explains this discrepancy is that we assumed a 1-1 distribution of the test
set when performing speaker normalization during the Challenge, but here we relied on
tuning of the SVM weight and cost parameters, among others, to produce the most
generalizable results. Our matched-prompt-type accuracy of 71.4% is a 5.5% absolute
improvement and 8.4% relative improvement of the openSmile baseline accuracy of 65.9%
unweighted average recall, and the best result reported thus far.

6. Error Analysis
Analysis of errors can improve future system performance and give insight into the
limitations of the modeling task. With increasing utterance length, we can expect statistical
variance to decrease, and our modeling accuracy to increase. Unweighted average recall
(UAR) is displayed in relation to utterance length when evaluating on the test set with
models obtained from our most-accurate system (Table 8). Unweighted average recall is
four percent lower for the shorter utterances (first quartile) than the overall UAR. This
serves as one explanation for differences in accuracy between prompts, although the more
complex cognitive processes may even induce longer utterance durations.

Next, we examine performance of our system near the ‘intoxication’ line of 0.5 g/L. The top
subplot in Figure 2 demonstrates that sober recall is nearly unaffected on either side of the
threshold, while intoxicated recall is by default 0 on the ‘sober’ side. Furthermore, the
bottom subplot indicates that the percentage of samples classified as sober or intoxicated
remains close to 50/50 regardless of the side of the ‘intoxication’ line it is on. Our system
finds it difficult to tell ‘intoxicated’ from ‘sober’ speech, but can detect ‘non-alcoholized’
versus ‘alcoholized’ speech to a reasonable degree. Additionally, when considering only
UAR on samples above the ‘intoxication’ threshold (because the ones below are much
lower), there is a weak, significant correlation between BAC and UAR– Spearman’s rank-
correlation coefficient ρ=0.35 (p<0.05). This correlation aligns with listening experiments
conducted by Hollien et al. (2009). We also note that the recalls are similar between both
classes for all speakers with no significant dependence between UAR and BAC (p=0.49).

Interestingly, background normalization (performed on the matched-prompt development
set) does not demonstrate independence between the predicted labels and blood-alcohol
concentration. As BAC increases, the percentage of samples predicted as ‘intoxicated’
increases, ρ=0.35 (p<0.05). This is relevant because a person should be expected to produce
a higher number of “drunk” sounding utterances if they are more intoxicated, and the system
should pick up on that. We again find a weak, significant correlation between BAC and
UAR when using background speaker normalization, ρ=0.30 (p<0.10); however, we still
cannot explicitly detect the ‘intoxication’ cutoff since at least 30% of samples are classified
as intoxicated per speaker. Background speaker normalization is a practical technique which
provides comparable performance to other speaker normalization methods, but with lesser
implicit assumptions about the distribution of evaluation set class labels built into the model.
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7. Conclusion and Future Work
Speaker states are medium-term phenomena that are reflected, at least in part, in the speech
signal patterns. We have presented a fused system composed of five classification
subsystems that provides robustness and improvements when evaluated on the test set. The
final unweighted accuracy on the test set was 71.4% when training with only matched-
prompts (approximately matched lexical content) and 68.8% when modeling with the
official prompt set. If optimized to improve UWA directly for the test set (assuming a 1-1
reference label distribution), we were able to achieve 70.5% performance (Bone et al.,
2011). While such a result from models trained using the non-matched prompts was better
than our results without assuming the test set label distribution (68.8%), training with
matched prompts avoided modeling of extraneous lexical content and improved our final
prediction (71.4%). We demonstrated that global and iterative speaker normalizations are
both useful tools, although global normalization generally obtained higher results. In a
potentially more realistic experiment, we have shown that with background speaker
normalization, in which only baseline data is required for each speaker, we were able to
achieve higher results than with no speaker normalization, and very similar numbers to what
the related iterative speaker normalization produced. Importantly, we performed all
classifications in this paper without making assumptions about the test set label distribution,
showing some robustness in our system design.

Individual prompt-types were classified and the results were analyzed– the observations
were congruous with psychological theory. It was demonstrated that modeling each prompt
separately may provide higher recalls, but we did not explore this on the test set since we did
not have a prompt recognition system and this information may be known in live systems.
We corroborated perceptual studies on increasing intoxication perception given either
amplified cognitive load or higher BAC. We demonstrated that longer utterances increased
detection performance. It was also shown that gender-dependent models did not improve
upon combined-gender models in our hierarchical functional subsystem.

Lastly, we showed through recall analysis that our system could detect ‘alcoholized’ versus
‘non-alcoholized’ speech, but could not do so explicitly at the threshold of 0.5 g/L. An
important finding was that when using background speaker normalization on the matched-
prompt development set, the number of predicted drunk utterance increases with BAC,
ρ=0.35 (p<0.05)– an indication that this alternative speaker normalization framework will
make even less implicit assumptions about the distribution of evaluation set class-labels.
Unweighted average recall improved for higher BAC and for longer utterance lengths. These
results should inform design of real-world speaker state detection systems.

Our model is general, and may be readily applied to other speaker state investigations, such
as sleepiness detection, or it can be fused with additional, orthogonal subsystems. Future
research into intoxicated speech detection may focus on further feature optimization, such
that more complex modeling may be successful on a reduced set of features. Phonetic-based
prosodic systems appear promising and intuitive (Honig et al., 2011). Dynamical modeling
of prosody may also prove beneficial. Since we have demonstrated that recall increases with
increasing BAC, ordinal techniques to create soft-labels may be useful for improved
modeling.
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We combine two statistic/hierarchical functional subsystems (differing in their speaker
normalization method) with three GMM subsystems. We find that the GMM subsystems
happened to be capturing lexical information that was distinct between classes only on
the training and development sets; we improved accuracy when taking this into account.
We show that background speaker normalization is a useful method for speaker state
applications. Additionally, we show that longer utterances and utterances requiring
higher cognitive load are easier to detect.
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Figure 1.
Pictorial Description of hierarchical feature computation.
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Figure 2.
Recall and prediction per speaker plotted against each speaker’s BAC for final model–
trained on matched-prompt train&devel sets and evaluated on the official test set.
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Table 1

Groupings of ALC recordings and their respective numbers within the official and matched experiment
designs.

Official Matched

Item type Sober Intoxicated Sober Intoxicated Remaining Sober

Address 11 6 2 2 9

Command & Control 19 9 8 8 11

Dialogue 5 2 1 1 4

Monologue 5 3 3 3 2

Digit String 10 5 5 5 5

Tongue Twister 10 5 5 5 5

All 60 30 24 24 36
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Table 2

A list of the 15 static functionals computed at the frame-level on LLD contours; the six ‘core’, hierarchical
functionals are starred (*).

LLDs 150 total – 120 openSmile, 30 Praat

Functionals
Mean*, median*, standard deviation*, 0.01/0.99 quantiles*, 0.01/0.99 quantile

range*, skewness, kurtosis, min/max positions, upper/lower quartiles, interquartile range, linear
approximation slope coeff., linear approximation MSE
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Table 3

UAR for no speaker normalization (Raw) and global speaker normalization on the official and matched
development sets. Results of feature selection for All, 4000, and 200 features are presented. Linear (LIN) and
radial basis function (RBF) kernels are used.

Official Development Set Raw Functionals Global Speaker Normalization

All LIN 4000LIN 200LIN 200RBF All LIN 4000LIN 200LIN 200RBF

All 0.641 0.632 0.590 0.536 0.719 0.712 0.640 0.595

Address 0.737 0.736 0.693 0.585 0.761 0.749 0.719 0.681

Command & Control 0.660 0.634 0.603 0.523 0.702 0.709 0.628 0.582

Dialogue 0.604 0.637 0.645 0.500 0.765 0.711 0.689 0.567

Monologue 0.638 0.640 0.574 0.506 0.768 0.766 0.675 0.656

Digit String 0.654 0.613 0.538 0.499 0.747 0.688 0.656 0.600

Tongue Twister 0.711 0.713 0.654 0.514 0.783 0.763 0.731 0.664

All-divided 0.676 0.664 0.618 0.526 0.745 0.727 0.676 0.623

Matched Development Set Raw Functionals Global Speaker Normalization

All LIN 4000LIN 200LIN 200RBF All LIN 4000LIN 200LIN 200RBF

All 0.588 0.591 0.575 0.533 0.697 0.674 0.617 0.599

Address 0.665 0.606 0.569 0.526 0.682 0.763 0.608 0.610

Command & Control 0.564 0.564 0.555 0.505 0.679 0.676 0.615 0.635

Dialogue 0.590 0.546 0.581 0.500 0.752 0.775 0.638 0.627

Monologue 0.632 0.627 0.598 0.572 0.751 0.765 0.668 0.744

Digit String 0.583 0.566 0.534 0.537 0.701 0.668 0.600 0.611

Tongue Twister 0.591 0.609 0.592 0.560 0.727 0.702 0.680 0.670

All-divided 0.592 0.584 0.566 0.533 0.706 0.702 0.632 0.649
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Table 4

Unweighted average recall on the matched prompts and the non-matched prompts in reference to matched and
non-matched prompt training. Global speaker normalization is used.

Tested on:

Non-matched Matched

Trained on:
Official 0.771 0.658

Matched N/A 0.697
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Table 5

Unweighted average recall for iterative and background speaker normalization when compared to no speaker
normalization (Raw) and global speaker normalization on the official and matched development sets.

Official Development Set Matched Development Set

Raw Global Iterative Raw Global Iterative Background

All 0.641 0.719 0.684 0.588 0.697 0.676 0.685

Address 0.737 0.761 0.760 0.665 0.682 0.695 0.690

Command & Control 0.660 0.702 0.677 0.564 0.679 0.663 0.671

Dialogue 0.604 0.765 0.768 0.590 0.752 0.729 0.713

Monologue 0.638 0.768 0.759 0.632 0.751 0.644 0.512

Digit String 0.654 0.747 0.729 0.583 0.701 0.648 0.654

Tongue Twister 0.711 0.783 0.752 0.591 0.727 0.681 0.682

All-divided 0.671 0.744 0.724 0.592 0.706 0.667 0.672
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Table 6

UAR for gender-dependent models using all features for no speaker normalization (Raw) and for global
speaker normalization on the official and matched development sets.

Data Set
Raw Global

Baseline Female Male Average Baseline Female Male Average

Official Development Set 0.641 0.605 0.648 0.626 0.719 0.711 0.702 0.707

Matched Development Set 0.588 0.556 0.605 0.581 0.697 0.681 0.673 0.678
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Table 8

Increased accuracy of final prediction in relation to utterance length for the test set when trained with ALC
matched-prompt data. Utterance length groupings are determined by quantile.

Utterance Length (Quantile) [0,25] (25,75] (75,100] [0,100]

Unweighted Average Recall 0.67 0.71 0.76 0.71
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