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Abstract

In the emerging field of computational paralinguistics, most research efforts are devoted to either short-term speaker states such
as emotions, or long-term traits such as personality, gender, or age. To bridge this gap on the time axis, and hence broaden the
scope of the field, the INTERSPEECH 2011 Speaker State Challenge addressed the algorithmic analysis of medium-term speaker
states: alcohol intoxication and sleepiness, both of which are highly relevant in high risk environments. Preserving the paradigms of
the two previous INTERSPEECH Challenges, researchers were invited to participate in a large-scale evaluation providing unified
testing conditions. This article reviews previous efforts to automatically recognise intoxication and sleepiness from speech signals,
and gives an overview on the Challenge conditions and data sets, the methods used by the participants, and their results. By fusing
participants’ systems, we show that binary classification of alcoholisation and sleepiness from short-term observations, i.e., single
utterances, can both reach over 72% accuracy on unseen test data; furthermore, we demonstrate that these medium-term states can
be recognised more robustly by fusing short-term classifiers along the time axis, reaching up to 91% accuracy for intoxication and
75% for sleepiness.
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1. Medium-term speaker states—an introduction

Amongst paralinguistic phenomena, personality — characterising human beings — and emotions — characteri-
sing cognitive, psycho-physiological experiences of human beings — are arguably most prototypical. A quick web

* Corresponding author at: Joanneum Research Forschungsgesellschaft mbH, DIGITAL — Institute for Information and Communication Tech-
nologies, Austria. Tel.: +43 316 876 5012; fax: +49 89 289 28535.
E-mail addresses: bjoern.schuller @joanneum.at, schuller @tum.de, schuller @IEEE.org (B. Schuller).



2

search! yielded these frequencies for the following noun phrases: “personality traits”: 8,760,000, “emotional states”:
3,600,000, “personality states”: 81,100, and “emotional traits”: 121,000. On the time axis, personality can be described
as constituted by long-term traits, and emotions as short-term states; our crude web search corroborates this statement
because traits most often go together with personality, and emotions with states. However, there are enough personality
states and emotional traits to make one believe that there is something in between: Personality forms the pre-condition
for specific emotions, as stated by Revelle and Scherer (2009) who speak of: “[. . .] the notion of habitual or trait emo-
tionality; that is, an individual difference variable consisting of a disposition to experience certain types of emotions
more frequently than other people.” In the same way, personality can manifest itself in specific states. (Note that for the
sake of the argument, we disregard the sloppy use of ‘state’ as a sort of synonym for ‘trait’.) Now the two phenomena
we deal with in this article — intoxication and sleepiness — certainly have to do both with personality and with emo-
tion: Certain personality traits may predispose an individual to drug use, cf. Kalivas (2003), Loukas et al. (2000) and
Echeburia et al. (2007), and under the influence of drugs, the manifestation of emotion can vary, and the personality
can change as well in the long run. A similar relationship can be observed for sleepiness disorders, cf. Sforza et al.
(2002). Both states can be described and processed on their own, without reference to personality traits that favour
or disfavour them. Moreover, intoxication and sleepiness are definitely medium-term, not short-term states, lasting
normally at least several minutes in the case of sleepiness and several hours in the case of intoxication—definitely
not only a few seconds: It takes some time to get drunk or sleepy, and it gets some time to get sober or awake again.
Moreover, in some pathological cases, we can speak of long-term, permanent intoxication, and of habitual sleepiness
that should be taken care of.

Medium-term states can be self-induced, such as intoxication—apart from specific circumstances (for instance,
knock-out drops that are consumed unintentionally). Or, they can be partly self-induced, such as sleepiness—sometimes
the situation requires to stay awake. To mention other medium-term states: In the conceptualisation of Scherer (2003),
affective states such as mood, interpersonal stances, and attitudes are medium-term as well. Such affective states are
normally not self-induced but a result of complex interactions of dispositions with the surroundings, especially in
communicative situations. Intuitively, health states are mostly medium-term as well, and are partly self-induced, partly
not. In our context, all these states are of course mostly relevant if we can diagnose them with the help of speech
parameters.

So far, the bulk of research within computational paralinguistics has been devoted to the two ‘endpoints’ on the
time scale, i.e., to long-term traits and to short-term states. Within automatic speech recognition, mostly traits such
as age and gender were addressed, arguably because pertinent information is straightforward and easy to get, and
it can be employed within envisaged applications. If it comes to the modelling and processing of human—human or
human-machine interaction, both personality traits and especially affective/emotional states have been frequently dealt
with. The focus of research efforts has not been on the phenomena in between, i.e., on medium-term states. One of the
reasons is arguably the difficulty to collect such data within tightly controlled experimental settings: Itis very easy to tell
people to act in some emotional way, and it is relatively easy to elicit emotions in an experimental setting. Every human
being has a personality, thus the problem is not primarily to find, elicit, and segment it. In contrast, the experimental
effort is much higher and ethical considerations play a much greater role if it comes to medium-term states such as
sleepiness and especially intoxication. Given the fact that alcoholic intoxication and sleepiness are pivotal factors
in accidents, it would be highly desirable to model and detect them automatically, based on nonintrusive recordings
of speech. To this aim, the INTERSPEECH 2011 Speaker State Challenge addressed these two medium-term states
within the same strictly controlled paradigm as has been used for the preceding two INTERSPEECH challenges which
addressed emotional states and several types of traits.

From a processing point of view, medium-term states can and have to be handled differently from short term states
and long term traits: The segmentation of the speech signal into coherent chunks, cf. Batliner et al. (2010), is not
critical because the state does not change fast as in the case of emotions. This means in turn, however, that we cannot
investigate different medium term states within one straightforward experimental setting. Recordings have to be made
over periods of several hours or days when we want to monitor changes. However, in contrast to personality traits, we
can monitor individuals before, during, and after intoxication or sleepiness, in medium-term time frames as well. On

1 Google search on February 12, 2012.
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the one hand, all this makes experimentation more cumbersome; on the other hand, we will see that this opens new
possibilities to collect cumulative evidence.

The remainder of this article is organised as follows: In Sections 2 and 3, we review previous studies relating speech
signal parameters to intoxication and sleepiness levels, respectively. We then describe the Challenge framework and
results in Section 4. Our conclusions are drawn in Section 5.

2. Speaker intoxication—a review
2.1. Earlier studies

It is a widely accepted hypothesis that alcoholic intoxication (Al), as other factors such as fatigue, stress and
illness, influences the way a person speaks. Quite a number of studies during the last decades have investigated this
hypothesis from different points of view: looking for reliable acoustic (Kiinzel and Braun, 2003; Cooney et al., 1998)
or behaviouristic (Hollien et al., 2001; Behne et al., 1991; Sobell et al., 1982; Trojan and Kryspin-Exner, 1968) features
that may indicate intoxication, studying the physiological effects of alcohol on the articulators (Watanabe et al., 1994) or
even pursuing forensic questions (Kiinzel and Braun, 2003; Braun, 1991; Klingholz et al., 1988; Martin and Yuchtman,
1986) such as in the infamous case of the captain of the Exxon Valdez: When the oil tanker Exxon Valdez stranded in
Alaska in 1989, the captain of the ship was suspected of being under alcoholic influence during the time of the crisis.
Forensic analysis of the recorded air traffic indicated that the spectra of the phone /s/ were skewed in the direction of
an /S/ sound? which was considered as an indicator for drunkenness (Johnson et al., 1990).

2.2. Automatic detection of Al

Alcoholic intoxication has always been and still is one of the major causes for traffic accidents. Al can forensically
be measured by (ordered by descending reliability): taking blood samples (blood alcohol concentration, BAC), breath
alcohol detectors (breath alcohol concentration, BRAC) and a variety of tests often applied in experimental and cognitive
psychology (mainly reaction time and motor control). All these tests can only be applied either in random checks or
post-accidentally, that is after an accident has already happened. Currently there are no known practical methods to
routinely check on the Al of a driver pre-emptively.

On the other hand, nowadays automobiles are equipped with a growing number of functions controlled by speech
input. Prominent examples are entertainment (radio, CD), control of the hands-free telephone, and input to the navigation
system. The type of speech applied here is typical command and control consisting of a limited number of pre-
determined commands (often only 3—7 words) and issued to the car system after pressing a button on the steering
wheel via a built-in microphone in the roof of the cabin. However, it is to be expected in the near future that more
sophisticated voice input in the form of keyword activation and free (continuous) speech — as already demonstrated
in prototype systems — will be incorporated into standard car systems. This leads to the interesting question whether a
pre-emptive test of alcoholic intoxication using speech input might be feasible in the automotive environment: Since the
driver of an automobile will increasingly use his or her voice to communicate with the car system, it could theoretically
be possible for the car system to automatically retrieve indicators for Al and react accordingly, for instance by warning
the driver about her or his condition.

The detection of Al (and other speaker states) with automatic methods differs from classic pattern recognition tasks
where the training or enrollment data matches the test data and the subject is sober when producing both. In the Al
detection application, it is not possible to collect speech data from the intoxicated speaker during the enrollment. The
subject is usually sober when producing the enrollment data and either sober or intoxicated in the test situation, which
makes the recognition task more difficult (Schiel et al., 2010). To our knowledge nobody has yet approached such a
realistic detection problem (involving out-of-the-lab language and a variety of speakers of different age and gender).
Aside from reports within the Interspeech Speaker State Challenge 2011 based on the ALC (Schuller et al., 2011), only
Levit et al. (2001) and Sigmund et al. (2010) have reported about attempts to detect the grade of intoxication from the
speech signal by means of statistical classification.

2 Phonetic symbols in SAM-PA.



In Levit et al. (2001) prosodic features were used in binary classification by an Artificial Neural Network. Read
speech was recorded from 33 German male speakers and labelled with ‘below 0.8 per mill” and ‘above 0.8 per mill’
BAC. Due to data sparsity the tests were performed on the validation set. The best combination of recognisers yielded
about 69% recognition rate on the binary classification.

Sigmund et al. (2010) analysed the glottal pulses of the vowels /a/, /e/, /i/, /u/ and /o/ of young Czech male speakers
using Iterative Adaptive Inverse Filtering. In a linear classification scheme into two classes ’sober’ and ‘intoxicated’
(BAC >1.0 per mill), the glottal pulse features derived from the vowels /e/ and /o/ yielded the best results (76.6% and
77.0% respectively) on a group of 12 male test speakers.

2.3. Realistic situation

For a realistic evaluation of automatic Al detection, data outside the laboratory environment have to be investigated.
Unfortunately, most of the studies listed above have the following in common:

they dealt with read speech in an acoustically clean environment only,

they analysed speech of male speakers only,

they analysed less than 40 speakers,

the Al was not measured reliably, and finally

the analysed empirical speech data have not been made available for other research groups so that different methods
of detection could be compared.

The speech data used in the Interspeech 2011 Speaker State Challenge has been selected to remedy some of these
deficiencies (see Section 4.2 for details).

2.4. Human performance

In this context the question arises what performance is to be expected as a gold standard in the task of Al detection.
One straightforward way in scientific studies is to use the measured BAC which ideally should be provided for each
investigated speaker. On the other hand it is possible that some speakers are able to mask their Al perfectly and therefore
produce speech signals indistinguishable from normal (sober) speech. Hence, it would be interesting to see how human
listeners perform on the same task, since for many recognition tasks concerning speech, humans are considered to
perform better than machines.

Based on common experience, most listeners claim that they can reliably recognise Al in the speech uttered by
intoxicated persons. In a number of earlier studies, results of identification tests on laboratory speech of intoxicated
speakers have been reported. In Martin and Yuchtman (1986), 44 male subjects performed a forced choice test on
192 sentences read by 8 (male) speakers resulting in an identification rate of 62.5%. In another study Klingholz et al.
(1988) reported a recognition rate of 54.0% on 30 s of read text spoken by 11 male speakers intoxicated with <1.0 per
mill BAC and judged by 12 listeners; recognition rates increased to a maximum of 82.0% when the BAC was >1.0 per
mill. In Kiinzel et al. (1992) 33 male speakers produced read and semi-spontaneous speech under varying intoxication
levels. 10-12 s long stimuli derived from these recording were used in an identification task performed by 30 listeners
yielding an average recognition rate of 66.8%; recognition rates increased linearly from 50.0 to 96.0% with increasing
BAC (estimated from BRAC) over a range of 0.4-2.0 per mill.

If the performance of human listeners is significantly above chance, which features do they use for their (success-
ful) decisions and is there a difference between female and male listeners? Another question relates to the speaker
dependency on the Al detection task. More specifically: are there distinctive speaker groups that

o reveal their Al more easily,
e mask their Al better than others, or
e appear to be under Al although being sober?

In analogy to Doddington’s ‘zoo of speaker verification’ (Doddington, 1998) we could label these three groups as
lambs, wolves and goats.



5

A small class-balanced and length-normalised sample drawn from 16 speakers of the corpus of the Intoxication
Sub-Challenge (cf. Section4.2.1) was used in a simple forced choice perception experiment to quantify the ability
of human listeners to distinguish between sober and intoxicated speech. The average discrimination rate (unweighted
accuracy) of 47 listeners was significantly above chance with 71.65%, but still far from the optimum. The listeners were
more successful in detecting intoxication in female voices than in male voices, and in read rather than in spontaneous
speech. On the other hand, female and male listeners showed the same detection performance. Prosodic information
could be exploited by human listeners for the decision process but probably not as much as other types of features.
There was some evidence that Al detection is strongly influenced by the individual behaviour of speakers. More
specifically, some speakers were easier recognised than the average (lambs), while some speakers were even judged to
be intoxicated when in fact being sober (goats). No significant indication for speakers that can mask their intoxication
perfectly (wolves) were found in this study (Schiel, 2011).

In Ultes et al. (2011) a large balanced sample of 3600 recordings from the Intoxication Sub-Challenge was sub-
divided into chunks of 50 recordings each and presented to 79 listeners in an Al identification task. The listeners
had to make a hard decision between ‘sober’ and ‘intoxicated’ for each presented recording. They achieved 55.8%
unweighted accuracy in this task which is only slightly above chance. No effects of listener gender, of listener age (2
age groups below/above 50 years) nor of the length of the speech sample on the detection accuracy were found in this
study (speaker gender was not tested). Inter-rater kappa was very low with « =0.15 indicating that the raters had great
difficulties with this task. Although it is to be expected that human raters perform better in a discrimination task than
in identification, it is still surprising that the performance in this study is so much lower than in Schiel (2011).

3. Speaker sleepiness—a review

Regarding speaker sleepiness — the second medium-term speaker state addressed in the Challenge besides intoxica-
tion — we now discuss potential applications of automatic analysis, acoustic correlates of sleepiness, and algorithmic
approaches.

3.1. Automatic detection of sleepiness

Sleepiness is a crucial factor in a variety of incidents and accidents in road traffic (Flatley et al., 2004; Horberry
et al., 2008; Read, 2006) and work contexts (e.g., safety sensitive fields such as chemical factories, nuclear power
stations, and air traffic control: Melamed and Oksenberg, 2002; Wright and McGown, 2001). For instance, 21% of
the reported incidents mentioned in the Aviation Safety Reporting System (including pilots and air traffic controllers)
were related to sleepiness. Thus, the prediction and warning of traffic employees against impending critical sleepiness
play an important role in preventing accidents and the resulting human and financial costs.

Moreover, the aim to enhance joy of use and comfort within Human—Computer Interaction (HCI) could also
benefit from the detection of and automatic countermeasures to sleepiness. Knowing the speaker’s sleepiness state can
contribute to the naturalness and acceptance of HCI. If the user shows unusual sleepiness, giving feedback about this
fact would make the communication more empathic and human-like. This enhanced naturalism might improve the
acceptance of these systems. Furthermore, it may result in better comprehensiveness, if the system output is adapted
to the user’s actual sleepiness-impaired attentional and cognitive resources.

Hence, many efforts have been reported in the literature for measuring sleepiness related states (Fulda and Popp,
2011; Golz et al., 2005; Sommer et al., 2009; Schnupp et al., 2009; Krajewski et al., 2010). These approaches have
focused mainly on measures of

e the autonomous nervous system such as pupil size (Schnieder et al., 2012), eye blinking (Schleicher et al., 2008),
or heart rate (Heinze et al., 2009),

e the central nervous system such as EEG (Sommer et al., 2009), and

e behavioural expression data such as steering behaviour, tracking tasks, gross body movement (Krajewski et al.,
2010; Schenka et al., 2010; Schnupp et al., 2009)

in order to characterise the sleepiness state.



But these electrode-based (EOG/EEG reaching 15% error rate; Golz et al., 2005) or video-based instruments
(PERCLOS reaching 32% error rate; Sommer et al., 2009) still do not meet the demands of an everyday life measurement
system (Golz et al., 2010). The major drawbacks are

e a lack of robustness against environmental and individual-specific variations (e.g., bright light, wearing correction
or sun glasses, occlusions, or anatomic variations such as small palpebral fissures) and
e alack of comfort and longevity due to electrode sensor application.

In contrast to these electrode- or video-based instruments, the utilisation of voice communication as an indicator for
sleepiness could match the demands of everyday life measurement. Contactless measurements such as voice analysis
are non-obtrusive (not interfering with the primary task) and favourable for sleepiness detection since an application
of sensors can cause annoyance and additional stress, and often impairs working capabilities and mobility demands.
In addition, speech is easy to record even under extreme environmental conditions (bright light, high humidity and
temperature) even if several sources of noise during driving, such as motor sound, radio, and sidetalk, can lead to
difficult recording situations (Schuller et al., 2010).

3.2. Acoustic correlates of sleepiness

The temporary states of sleepiness show a distinct pattern of effects on speech, despite various influencing factors
from the acoustic environment to interdependencies with other states and traits (cf. Table 2 in Traunmiiller, 2000).
Sleepiness related cognitive-physiological changes can influence voice characteristics indirectly, according to the
following stages of speech production (O’Shaughnessy, 2000): At the stage of cognitive speech planning, a reduced
cognitive processing speed might lead to impaired speech planning (Levelt et al., 1999) and impaired neuromuscular
motor coordination processes, slowing down the transduction of neuromuscular commands into articulator movement
and affecting the feedback of articulator positions (Bratzke et al., 2007; Dinges and Kribbs, 1991). At the stage of
muscular actions, the effects of reduced body temperature and general muscular relaxation might, e.g., lead to a vocal
tract softening and thus to a stronger dampening of the signal due to yielding walls (Ananthapadmanabha, 2011).
Accordingly, glottal loss and cavity-wall loss for the lower resonant frequencies (formants), and radiation, viscous and
heat-conduction loss for the higher formants are expected (Story, 2002).

Thus, it can be anticipated that sleepy speech compared with rested speech might exhibit acoustic changes in

e prosody—such as monotonic and flattened intonation, shifted speech rate, or reduced syllable duration due to, e.g.,
slowed cognitive speech planning,

e articulation—such as slurred, less crisp pronunciation, mispronunciations, abrupt articulatory changes, speech errors,
or hesitations due to, e.g., impaired motor coordination processes and aversion of spending compensatory effort
(Lieberman et al., 1995), and

e speech quality—such as tensed, nasal, or breathy speech due to, e.g., impaired coordination of velum closure (Kostyk
and Rochet, 1998).

Furthermore, linguistic changes in syntactic and semantic structures can be expected (e.g., simplified grammat-
ical structure; favouring easy accessible, frequently used words; repetitive, vague, and rambled speech; favouring
words associated with the field of deactivation or negative mood; less involved and polite discourse behaviour, less
backchannels). These changes — summarised in the cognitive-physiological mediator model of sleepiness induced
speech changes (Krajewski and Kroeger, 2007; Krajewski et al., 2012) — are based on educated guesses. In spite of the
partially vague model predictions referring to sleepiness sensitive acoustic features, this model provides first insights
and a theoretical background for the development of acoustic measurements of sleepiness.

Nevertheless, little empirical research has been done to examine these processes mediating between sleepiness,
speech production, and acoustic features. Previous studies have analysed mostly highly artificial speech material
(meaningless syllable list; Vollrath, 1993), only small sample sizes (N < 20), and small phonetic feature sets (Harrison
and Horne, 1997; Shahidi et al., 2010; Vogel et al., 2010; Whitmore and Fisher, 1996) or small feature sets containing
only perceptual acoustic features (e.g., pitch, intensity, speech rate). Signal processing based features, well-known
from speech and speaker recognition (e.g., mel-frequency cepstrum coefficients, MFCCs) have received little attention
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(Greeley et al., 2007; Krajewski and Kroeger, 2007; Krajewski et al., 2009; Nwe et al., 2006; Zhang et al., 2010).
Moreover, often no sleepiness scaled reference instruments are applied (e.g., psychophysiological measures or psy-
chomotorical tests, Dhupati et al., 2010), and only very long time-since-sleep periods (> 24 h) were analysed, which
narrows the range of potential application scenarios.

In detail, the following sleepiness induced changes of speech parameters have been reported:

e adecreased mean fundamental frequency (FO) (Johannes et al., 2000; Krajewski et al., 2009; Nwe et al., 20006) vs.
an increased mean fundamental frequency (Ruiz et al., 2010),

e a decreased standard deviation of FO (Morris et al., 1960; Nwe et al., 2006) vs. an increased standard deviation of
FO (Vogel et al., 2010),

e adecreased speech rate (Morris et al., 1960; Vogel et al., 2010), respectively an increased mean pause length (Vogel
etal., 2010),

e a decreased ratio of duration of voiced-unvoiced parts (derived from Mel-Frequency Cepstrum Coefficients and
Gaussian Mixture Model; Dhupati et al., 2010),

e an increase in misarticulations (Morris et al., 1960) vs. no change in misarticulations (Harrison and Horne, 1997),

increased speaking errors (Morris et al., 1960) vs. no changes in increased speaking errors (Harrison and Horne,

1997),

a decreased Formant 1 position (Krajewski et al., 2009),

a decreased Formant 4 Variation (Vogel et al., 2010),

an increased time of high values for Formant 1 bandwidth (Krajewski et al., 2009),

an increased average absolute deviation of intensity (Krajewski et al., 2009),

a decrease of the slope of the long term average spectrum (Krajewski et al., 2012), and

a decreased fractal dimension, maximum of the Cao’s minimum embedding dimensions (Krajewski et al., 2012).

These partly ambiguous results could be explained by various methodological issues such as small sample sizes,
different choices of speech tasks (read, automated, vowel phonation vs. spontaneous speech; e.g., contradictory effects
on speech rate for read vs. automated speech), or different distribution of sleepiness intensity. Similarly to the issues
mentioned for alcoholised speech, the speech data used in the Interspeech 2011 Speaker State Challenge has been
selected to overcome some of these drawbacks.

3.3. Automatic speech sleepiness detection

In order to show a comprehensive summary of the results achieved so far in automatic speech sleepiness detection,
Table 1 is presented. To ensure generalisability, the sample size was evaluated as well as the naturalness of the speech,
as indicated by the speech task mentioned. Speaker independent modelling is listed due to different demands of
application scenarios. The recording protocol is given to estimate the sleepiness distribution and ease of the classification
task. Finally, we provide unweighted accuracy to evaluate the overall performance of the applied feature sets and
classifier.

The studies mainly recorded only a few speakers (N < 25), and only several seconds of speech material per speaker.
Moreover, the naturalness of the speech scenario measured by the applied speech task (mainly vowel phonation or
command and control speech) can be considered as restricted. A further restriction of the listed studies is given by their
speaker dependent modelling, which does not meet the demands of several relevant application scenarios. As can be
derived from the given recording protocols, several studies choose a very high time-since-sleep, inducing very strong
sleepiness. On the one hand this distribution of sleepiness simplifies the classification task, on the other hand, again the
range of application scenarios is narrowed. The size of the applied feature sets is in the range 0.1-45 k, often containing
FO-F5, MFCCs or LPCCs. Comparing the applied classifiers (e.g., RF, MLP, LDA, or HMM), no consistent results
could be achieved favouring one classifier. The presented unweighted average recall rates show speaker-dependent rates
of about 80—85%. In sum, small sample sizes, irrelevant high time-since-sleep values, speaker-dependent modelling,
and non-comparable sleepiness reference values narrowed down the generalisability of the results found so far.
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Table 1

Comparison of sleepiness studies involving automatic speech detection. (1), Greeley et al. (2007); (2), Krajewski et al. (2009); (3), Krajewski and
Kroeger (2007); (4), Krajewski et al. (2012); (5), Nwe et al. (2006); (6), Zhang et al. (2010); #S, number of speakers; Lang., language; en, English; ge,
German; ma, Mandarin; read, read speech; c+c, command and control speech; spon, spontaneous monolog/dialog; SI, speaker independence; TSS,
time-since-sleep [h] of recording protocol (minimum:stepsize:maximum); MFCC, mel frequency cepstrum coefficients; LFCC, linear frequency
cepstrum coefficients; LPCC, linear predictive coding coefficients; PHSC, Pitch and Harmonic frequency Spectral Coefficients; FO, fundamental
frequency; FO-F5, formant 0-5 frequency position and bandwidth; MLP, multi layer perceptron, PNN, probabilistic neural network; LDA, linear
discriminant analysis; HMM, hidden markov model; GMM, gaussian mixture model; LR, logistic regression; kNN, k-nearest neighbor; DT, decision
tree; RF, random forest; BN, Bayesian network; UA, unweighted accuracy.

#S Lang. Speech task SI TSS Features Classifier UA [%]

(D 2 en, ge read (31 words) ? 4:4:34 MECC (36) GMM ?

2) 12 ge c+c (1 sentence) no 12:1:20 FO-F5, MFCC, KNN, MLP, SVM 82.8
LFCC, LPCC
(45,088)

3 23 ge c+c (1 sentence) no 12:1:20 FO-F5, HNR, MFCC MLP, LDA 84.2
(169)

4) 77 en vowel phonation no 12:1:20 nonlin. dynamics MLP, LDA, LR, 79.6
(395), 169 features kNN, DT, RF, BN
from (3)

(5) 12 en spon (DCIEM, Bard et al., ? 0.5/60 PHSC, MFCC, LPCC HMM 86.5

1996)
(6) 1 ma vowel phonation (6 vowels) no 0:6:18 LPCC, MFCC PNN ?

4. The first challenge on medium-term speaker states: intoxication and sleepiness

Paralinguistics comprises much more than, on the one hand, emotional states which can change in a short time, and
on the other hand, speaker-specific traits such as gender or age that normally either do not change at all or only over
a longer period of time. Thus, the INTERSPEECH 2011 Speaker State Challenge broadened the scope by addressing
two less researched speaker states, by that focusing on the crucial application domain of security and safety: the
computational analysis of intoxication and sleepiness in speech. Apart from intelligent and socially competent future
agents and robots, main applications are found in the medical domain and surveillance in high-risk environments such
as driving, steering or controlling (Brenner and Cash, 1991).

The INTERSPEECH 2011 Speaker State Challenge, organised by Bjorn Schuller (TUM, Germany), Stefan Steidl
(ICSI, USA), Anton Batliner (FAU, Germany), Florian Schiel (University of Munich, Germany), and Jarek Krajewski
(University of Wuppertal, Germany) was held in conjunction with INTERSPEECH 2011 in Florence, Italy, 28-31
August 2011. This Challenge was the first open public evaluation of speech-based speaker state recognition systems
aimed at medium-term speaker states — namely intoxication and sleepiness — in between short term states such as
emotion or interest and long-term traits such as age or gender. As in previous Challenges organised by the first three
organisers starting with INTERSPEECH 2009, strict comparability was given: The German Alcohol Language Corpus
(provided by the Bavarian Archive for Speech Signals).? Please contact bas@bas.uni-muenchen.de or refer directly
to the BAS catalogue at www.bas.uni-muenchen.de/Bas. and the Sleepy Language Corpus — both containing real
affection of the speaker by either alcohol intoxication or sleep deprivation — served as a basis with clearly defined
test, training, and development partitions incorporating speaker independence as needed in most real-life settings. The
first consists of 39 h of speech, stemming from 154 speakers in gender balance, and serves to evaluate features and
algorithms for the estimation of speaker intoxication in gradual blood alcohol concentration (BAC). The second features
21h of speech recordings of 99 subjects, annotated in the 10 different levels of sleepiness defined by the Karolinska
Sleepiness Scale (KSS). The verbal material is of different complexity reaching from sustained vowel phonation to
natural communication.

Two Sub-challenges were addressed in the 2011 Speaker State Challenge, each using two classes. In the Intoxication
Sub-Challenge, the alcoholisation of a speaker had to be determined as two-class classification task: alcoholised for a

3 The ALC is available for unrestricted scientific and commercial usage. Interested parties may obtain copies of the full corpus at BAS (BAS
distribution fees apply.)



Table 2
Baseline feature set provided for the Challenge, based on low-level descriptors extracted on frame level and functionals applied on recording level.

(a) 60 provided low-level descriptors (LLD)
4 energy related LLD
Sum of auditory spectrum (loudness)
Sum of RASTA-style filtered auditory spectrum
RMS Energy
Zero-Crossing Rate
50 spectral LLD
RASTA-filt. auditory spectrum, bands 1-26 (0-8 kHz)
MFCC 1-12
Spectral energy 25-650 Hz, 1 k-4 kHz
Spectral Roll Off Point 0.25, 0.50, 0.75, 0.90
Spectral Flux, Entropy, Var., Skewness, Kurtosis, Slope
5 voice related LLD
FO, Probability of voicing
Jitter (local, delta)
Shimmer (local)
(b) 33/6 applied functionals.
33 base functionals
Quartiles 1-3
3 inter-quartile ranges
1% percentile (*min), 99% percentile (*max)
Percentile range 1-99%
Arithmetic mean, standard deviation
Skewness, kurtosis
Mean of peak distances
Standard deviation of peak distances
Mean value of peaks
Mean value of peaks — arithmetic mean
Linear regression slope and quadratic error
Quadratic regression a and b and quadratic error
Contour centroid
Duration signal is below 25% range
Duration signal is above 90% range
Duration signal is rising/falling
Gain of linear prediction (LP)
LP coefficients 1-5
6 F0 functionals
Percentage of non-zero frames
Mean, max, min, std. dev. of segment length
Input duration in seconds

BAC exceeding 0.5 per mill* or non-alcoholised for a BAC equal or below 0.5 per mill. In the Sleepiness Sub-Challenge,
sleepiness of speakers had to be determined for a level exceeding level 7.5 on the KSS reaching from one (extremely
alert) to 10 (cannot stay awake). This threshold (between level 7, ‘sleepy, some effort to stay awake’ and level 8, ‘very
sleepy, great effort to stay awake ‘) has been validated by observations of microsleep events: Below this threshold, we
have never observed any microsleep events; further, from level 7 to level 8 there is a significant increase in the accident
risk (Ingre et al., 2006). Before presenting the intoxication and sleepiness tasks in detail, let us first outline the set of
acoustic features that was provided to the Challenge participants and was used to compute the baseline classification
accuracies for the Challenge (Table 4).

4 Per mill BAC by volume, which is standard in most central and eastern European countries; further ways exist, e.g., percent BAC by volume,
i.e., the range resembles 0.028-0.175 per cent (Australia, Canada, USA), points by volume (GB), per mill by BAC per mass (Scandinavia) or part
per million.
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Table 3
Challenge partitions of ALC. ‘NAL’ denotes recordings of non-alcoholised, i.e., BAC per mill in the interval [0;0.5], and ‘AL’ recordings of
alcoholised speakers, i.e., BAC per mill in]0.5;1.75].

#ALC NAL AL Total
Train 3750 1650 5400
Develop 2790 1170 3960
Test 1620 1380 3000
Train + Develop 6540 2820 9360
Train + Develop + Test 8160 4200 12,360
Table 4

Challenge partitions of SLC. ‘NSL’ denotes recordings of non-sleepy, i.e., KSS in the interval [1;7.5], and ‘SL’ recordings of sleepy speakers, i.e.,
KSS]7.5;10].

#SLC NSL SL Total
Train 2125 1241 3366
Develop 1836 1079 2915
Test 1957 851 2808
Train + Develop 3961 2320 6281
Train + Develop + Test 5918 3171 9089

4.1. Challenge features

In this Challenge, an extended set of features with respect to the INTERSPEECH 2009 Emotion Challenge (384
features) (Schuller et al., 2009) and INTERSPEECH 2010 Paralinguistic Challenge (1 582 features) (Schuller et al.,
2010a) is given to the participants, again using the open-source Emotion and Affect Recognition (openEAR) (Eyben
et al., 2009) toolkit’s feature extracting backend openSMILE (Eyben et al., 2010). The feature set consists of 4368
features comprising features known as relevant for these tasks (Chin and Pisoni, 1997; Dhupati et al., 2010) built from
three sets of low-level descriptors (LLDs) extracted on frame level and one corresponding set of functionals for each
LLD set, applied on recording level, i.e., to entire audio files.

The LLD sets are given in Table 2a: A major novelty concerning LLD compared to the previous Challenge set
(Schuller et al., 2010a) is the auditory spectrum derived loudness measure and the use of RASTA-style filtered auditory
spectra instead of Mel-spectra, as well as a slightly extended set of statistical spectral descriptors (such as entropy,
variance, etc.). These features were added to have their potential evaluated in the Challenge setting. The new loudness
measure serves as a better measure of perceptual loudness than the linear or logarithmic signal energy. Loudness
variations are an important descriptor for speech prosody, thus it is desirable to have a measure for this which fits
human perception well. The RASTA-style filtered auditory spectra are introduced for two reasons: (a) an auditory
weighting is applied to the mel-band spectra to better model the ear’s frequency perception, and (b) the RASTA-style
filtering reduces the influence of stationary as well as highly instationary background and non-speech sounds on the
spectra, as the time domain filter emphasises frequencies in the 4-8 Hz region, the syllable rate of speech. The statistical
spectral descriptors describe the shape of the spectral energy distribution over the frequency axis. They would have
distinctly different values for voiced and unvoiced spectra for example. Yet, as they describe the general shape of the
spectrum, they do not contain the same information as the probability of voicing, for example, which is computed by
the pitch tracker based on the strength of the fundamental frequency and its harmonics.

Further, a base set of 33 functionals is introduced as shown in Table 2b. Again, compared to the previous set,
the use of autoregressive model coefficients as functionals is new. We use the autocorrelation method to compute
linear predictive coding (LPC) coefficients and gain from low level descriptor contours. While in speech coding the
purpose of LPC is to identify the vocal tract transfer function and the vocalic formant structure, when applying LPC
as a functional to arbitrary data contours, there is generally no interpretation regarding the human voice production.
Yet, the coefficients of the AR model represent a measure of how correlated adjacent samples are. They allow us to
discriminate if the signal behaves predictable or not in a local region. Moreover, the standard deviation of the intra-peak
distances was added as a functional. Assuming that peaks in a data contour correspond to certain important points, such
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as prosodic emphasis if they are loudness maxima or pitch maxima, for example, they carry important information
for emotion related phenomena. The same holds for their distribution over the time axis, whose regularity is roughly
described by the standard deviation of the distances between the peaks.

In the set of functionals applied to the spectral and energy related LLDs, the standard deviation of the segment
lengths is new as well. Also, a new algorithm for splitting the contour into segments is used. Previously this was based
on delta thresholding, where a new segment was started when the signal rose by a pre-defined relative (to the signal’s
range) amount in a short time frame. Now, a new segment boundary is given each time the LLD’s value (after simple
moving average filtering with 3 frames width) crosses the values (min + 0.25-range) and (min +0.75-range). This gives
a more stable and meaningful segmentation, which does not rely on large jumps, but identifies regions where the signal
remains continuously within certain bounds. As with the standard deviation of the inter peak distances, the standard
deviation of the segment lengths describes the temporal regularity of the signal.

To the 54 energy and spectral LLDs and their first order deltas, the base functional set and the mean, max, min, and
the standard deviation of the segment length are applied, resulting in 3996 features. To the five pitch and voice quality
LLDs and their first order deltas, the base functional set as well as the quadratic mean and the rise and fall durations
of the signal are applied only to voiced regions (probability of voicing greater 0.7). This adds another 360 features.
Another 12 features are obtained by applying a small set of six functionals to the Fy contour (including non-voiced
regions where FO is set to 0) and its first order derivative as also shown in Table 2b. Please note that segments in this
case correspond to continuous voiced regions, i.e., where Fy is >0. The configuration for the extraction of the features
with openSMILE is also provided and allows, e.g., to use the LLD on frame basis, or to alter and add features.

4.2. Intoxication Sub-Challenge

4.2.1. Alcohol Language Corpus (ALC)

A brief description of the ALC project is given in this section. For a detailed description of the corpus please refer
to Schiel and Heinrich (2009) and Schiel et al. (2012).

ALC comprises 162 speakers (84 male, 78 female) within the age range 21-75, mean age 31.0 years and standard
deviation 9.5 years, from 5 different locations in Germany. To obtain a gender balanced set, 154 speakers (77 male, 77
female) are selected randomly for the Challenge; these are further randomly partitioned into gender balanced training,
development and test sets according to Table 3.

Speakers voluntarily underwent a systematic intoxication test supervised by the staff of the Institute of Legal
Medicine, Munich. Before the test, each speaker chose the BAC he/she wanted to reach during the intoxication test.
Using both Watson- and Widmark formula (Schiel et al., 2012), the amount of required alcohol for each person was
estimated and handed to the subject. After consumption, the speaker waited another 20 min before undergoing a BRAC
test and a blood sample test (BAC). For the Challenge, only the BAC value is considered. The possible range is
between 0.28 and 1.75 per mill. Immediately after the tests, the speaker was asked to perform the ALC speech test
which lasted no longer than 15 min, to avoid significant changes caused by fatigue or saturation/decomposition of the
measured blood alcohol level. At least two weeks later the speaker was required to undergo a second recording in sober
condition, which took about 30 min. Both tests took place in the same acoustic environment and were supervised by
the same member of the BAS staff, who also acted as the conversational partner for dialogue recordings. The speech
signal was recorded with two different microphones: a headset Beyerdynamic Opus 54.16/3 and an AKG Q400 mouse
microphone, frequently used for in-car voice input, located in the middle of the front ceiling of the automobile. For the
Challenge, only the headset microphone is considered; signals are down-sampled from 44.1 kHz to 16 kHz sampling
rate. Further, for the Challenge only the following meta data associated with each recording are provided: speaker ID,
gender, and BAC (not for test). All speakers are prompted with the same material. Orthographic (in extended SpeechDat
format) and phonologic transcripts as well as an automatic phonetic segmentation of all spoken items are provided for
all recordings in Praat’s TextGrid and BAS Partitur Format (BPF). Three different speech styles are part of each ALC
recording session: read speech, spontaneous speech, and command & control. Speech styles are not marked for the
Challenge.

4.2.2. Baseline results
For transparency and easy reproducibility, we use the WEKA data mining tool kit for classification (Hall et al.,
2009), as we did for the INTERSPEECH 2009 Emotion Challenge and the 2010 Paralinguistic Challenge. As classifier



12

o ' ¥ »
x 62} X— 9
,<:C> 60 4
58 .
56 . : :
0.2 0.1 0.05 0.02 0.01
Complexity
IS2009EC —>— 1S2010PC —x— IS2011SSC

Fig. 1. Optimisation of SVM complexity by unweighted accuracy (UA) on the development partition of the ALC when training on the training
partition after SMOTE. Three different feature sets are evaluated (cf. Table 7).

we chose Support Vector Machines (SVM) with linear kernel functions and Sequential Minimal Optimisation (SMO)
as learning algorithm. We performed a limited grid search on the development set to find a suitable value for the
complexity, which influences the number of support vectors for the hyperplane construction. We further use WEKA'’s
implementation of the Synthetic Minority Over-sampling Technique (SMOTE), introduced by Chawla et al. (2002), as
was done for the INTERSPEECH 2009 Emotion Challenge baseline, to balance instances in the learning partitions. If
training and development partitions are united, SMOTE is applied subsequently to the unification. The results of the
SVM complexity optimisation when training on the training partition of ALC and testing on the development partition
is shown in Fig. 1 in terms of UA—the Challenge competition measure. We further evaluate the former feature sets of
the 2009 and 2010 Challenges in comparison to the one provided for this Challenge. As can be seen, the new feature set
prevails throughout the considered complexity range, especially in comparison to the 2009 Emotion Challenge feature
set which mainly consists of basic MFCC and pitch functionals. Based on the optimal complexity C=.01 as found
on the development partition, Table 5 shows baseline results for the Intoxication Sub-Challenge by UA and WA. As
the distribution among classes is not balanced, the competition measure is UA as earlier stated. Results are given for
training on the train partition and testing on the development partition—this could be freely done by participants, as
well as for training on the unification of the training and development partitions and testing on the test partition—these
results could be uploaded five times by the participants.

4.3. Sleepiness Sub-Challenge

4.3.1. Sleepy language corpus

99 participants took part in six partial sleep deprivation studies. The mean age of subjects was 24.9 years, with a
standard deviation of 4.2 years and a range of 20-52 years. The recordings took place in a realistic car environment or in
lecture-rooms (sampling rate 44.1 kHz, down-sampled to 16 kHz, quantisation 16 bit, microphone-to-mouth distance
0.3 m). The speech data consisted of different tasks: isolated vowels, i.e., sustained vowel phonation, sustained loud

Table 5

Intoxication Sub-Challenge baseline results by unweighted and weighted accuracy (UA/WA). SMO learned pairwise SVM with linear kernel,
complexity optimised on development partition to 0.01. SMOTE on (united) learning instances. Feature sets IS 2009 EC, IS 2010 PC, and IS 2011 SSC
correspond to the official sets of the Challenges (Emotion, Schuller et al., 2009, Paralinguistic, Schuller et al., 2010a, and Speaker State, Schuller
et al., 2011) held at INTERSPEECH in these years.

[%] Train vs. Develop Train + Develop vs. Test

Features UA WA UA WA
IS2009EC 574 65.3 60.3 60.2
IS2010PC 61.6 66.1 63.2 62.6
IS2011SSC 65.3 69.2 65.9 66.4

The final baseline is set in bold face.
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vowel phonation, and sustained smiling vowel phonation; read speech: “Die Sonne und der Nordwind” (the story of
‘the North Wind and the Sun’, widely used within phonetics, speech pathology, and alike); commands/requests: 10
simulated driver assistance system commands/requests in German, e.g., “Ich suche die Friesenstrale” (‘I am looking
for the Friesen street’); four simulated pilot-air traffic controller communication statements; moreover, a description
of a picture and giving a PowerPoint guided, but non-scripted 20 minutes presentation in front of 50 listeners. A
well established, standardised subjective sleepiness questionnaire measure, the Karolinska Sleepiness Scale, was used
by the subjects (self-assessment) and additionally by the two experimental assistants (observer assessment, given by
assessors who had been formally trained to apply a standardised set of judging criteria). In the version used in the
present study, scores range from 1 to 10: extremely alert (1), very alert (2), alert (3), rather alert (4), neither alert nor
sleepy (5), some signs of sleepiness (6), sleepy, but no effort to stay awake (7), sleepy, some effort to stay awake
(8), very sleepy, great effort to stay awake, struggling against sleep (9), extremely sleepy, cannot stay awake (10).
Given these verbal descriptions, scores greater than 7.5 appear to be most relevant from a practical perspective as they
describe a state in which the subject feels unable to stay awake. For training and classification purposes, the recordings
(mean = 5.9, standard deviation = 2.2) were thus divided into two classes: not sleepy (‘NSL’) and sleepy (‘SL’) samples
with the threshold of 7.5 (ca. 94 samples per subject; in total 9277 samples). Besides these categorical labels, the SLC
features speaker meta data (i. e., speaker ID and gender), and multiple annotation tracks of sleepiness ratings. Neither
orthographic nor phonologic transcripts are provided for the recordings.

The six partial sleep deprivation studies can be described as follows:

e Study 1 has a within-subject, partial sleep deprivation design (8 pm—4 am) located in a noise subdued lab, hourly
recordings (ca. 95 samples per subject; in total 2570 samples), 10 male and 15 female subjects, maximum time-
since-sleep (tss) =20 h, KSS =5.18 4 2.02.

e Study 2 has a within-subject, partial sleep deprivation design (8 pm—8 am) located in a driving simulator, nearly
hourly recordings (ca. 118 samples per subject; in total 1411 samples), 9 male and 3 female subjects, max. tss=24h,
KSS=7.52 £2.28.

e Study 3 has a within-subject, partial sleep deprivation design (8 pm—2 am, 5 days) located in private home settings,
hourly recordings (ca. 280 samples per subject; in total 3361 samples), 5 female subjects, max. tss=18 h, KSS =
6.24 £+ 2.37.

e Study 4 has a within-subject design (10 am—6 pm) located in a noise subdued lab, two recording sessions with a time
lag of 8 h (40 samples per subject; in total 720 samples), 7 male and 11 female subjects, max. tss = 10 h, KSS =4.31
=+ 1.66.

e Study 5 has a within-subject design (2-5 pm) located in a realistic car environment, one recording sessions before
and one after a three hour drive (40 samples per subject; in total 920 samples), 12 male and 11 female subjects, tss
=12h, KSS =5.13 £ 2.29. Study 6 has a single recorded presentation session (10-12 am) located in lecture-rooms,
hourly recordings (ca. 15 samples per subject; in total 302 samples), 5 male and 11 female subjects, max. tss=5h,
KSS =3.20 £ 0.68. Further details of the studies can be found in Krajewski et al. (2009, 2012) and Krajewski and
Kroeger (2007).

To follow a straightforward protocol for partitioning the SLC into the Challenge sets, the available turns were first
divided into males (m) and females (f) per study. Then, the turns from male and from female subjects were split speaker-
independently, in ascending order of subject ID, into training, development, and test instances. This subdivision not
only ensures speaker-independent partitions, but also provides for stratification by gender and study setup (environment
and degree of sleep deprivation). Out of the 99 subjects, 36 (20 f, 16 m) were assigned to the training, 30 (17 f, 13 m)
to the development, and 33 (19 £, 14 m) to the test set. For the purpose of the Challenge, all turns including linguistic
cues on the sleepiness level (e.g., “Ich bin sehr miide” — “I’m very tired”) were removed from the test set — 188 in
total. The distribution of instances is given in Table 4.

In Table 6, we show the inter-rater agreement between the self (S) and observer assessments (O;, i=1, 2, 3) of the
subjects’ sleepiness levels. We provide unweighted (Cohen’s)  as well as «! (weighted by the absolute disagreement
on the KSS scale) and «? (weighted by the squared disagreement). In Table 6a, Cohen’s « is computed for a hypothetical
nominal assessment (sleepy or non-sleepy) derived from the ordinal ratings in accordance with the derivation of the
Challenge instance labels (‘non-sleepy’: KSS 1-7; ‘sleepy’: KSS 8-10); this ‘conversion’ is done since we believe that
Cohen’s « for the ten-point KSS scale would underestimate the degree of agreement. Overall, we observe sufficiently
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Table 6
Inter-rater agreement on SLC, and agreement with consensus (i.e., binary Challenge label for « and rounded mean of O; for !, Kz). S: self assessment.
0;, 0;: observer asssessments.

Ratings K K K

(a) Inter-rater agreement

S < 0O .693 738 .908
S+ 0, .655 .669 872
S < 03 745 .685 .885
Mean (S < O;) .698 .697 .888
0; < 0, .586 .659 .875
0; < 03 .662 .691 .886
0; < 03 740 .699 .883
Mean (O; < Oj) .663 .683 .881
Mean .680 .690 .885
(b) Agreement with rater consensus
S .829 832 955
(O] 755 814 950
0, .801 787 .940
O3 .870 .805 .948
Mean 814 .809 948

high «, ! and k2 values for inter-rater agreement (k > .586, k! > .659; k2 > .872). The fact that the weighted « variants
indicate higher agreement than unweighted « can be attributed to ratings being generally close to each other on the
KSS scale. Furthermore, we observe that the average agreement of the self-assessment with the observer assessments
(k =.698) is slightly higher than the average agreement of observer assessments with each other (x = .663); this justifies
weighting the self-assessment and observer assessments equally in calculating the Challenge label.

In Table 6b, we proceed to quantify the agreement of individual assessments with the ‘consensus’ in terms of «
statistics. More precisely, we compute Cohen’s « of the nominal individual ratings with the Challenge label, which is
obtained by discretising the mean ordinal rating as indicated above (‘non-sleepy’: mean KSS <7.5; ‘sleepy’ otherwise);
the ! and k> measurements are taken between the ordinal KSS ratings and the mean KSS rating, rounded to the closest
integer number in {1, ..., 10}. Generally, we obtain « values widely above.7 regardless of the « variant considered;
this particularly indicates high agreement of the raters with the Challenge label (mean « =.814). Finally, we note that
mean &2 is observed as high as.948.

4.3.2. Baseline

The baseline for the Sleepiness Sub-Challenge was computed in full analogy to the Intoxication Sub-Challenge: An
optimal combination of feature set (IS 2009 EC, IS 2010 PC, IS 2011 SSC) and SVM complexity C € {0.01, 0.02, 0.05,
0.1, 0.2} was determined on the development set; the overall best result was achieved at C=0.02 with the 2011 SSC
feature set (cf. Fig. 2). The achieved UA and WA on the development and testing partitions of the SLC are shown in
Table 7. In contrast to the Intoxication Sub-Challenge, the accuracy on the test set (70.3% UA) is considerably higher
than the one on the development set (67.3% UA).

4.4. Challenge conditions

Having outlined the Challenge corpora and baseline results, we now describe the rules for the participants, their
contributions and results.

Asinthe 2009 and 2010 Challenges, the labels of the test set were unknown, and all learning and optimisations needed
to be based only on the training material. However, each participant could upload instance predictions to receive the
confusion matrix and results up to five times. The upload format was instance and prediction, and optionally additional
probabilities per class. This allowed a final fusion of all participants’ results to demonstrate the potential maximum by
combined efforts. As classes were unbalanced, the primary measure to optimise was unweighted accuracy (UA), i.e.,
unweighted average recall. The choice of unweighted average recall was a necessary step to better reflect imbalance of
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Fig. 2. Optimisation of SVM complexity by unweighted accuracy (UA) on the development partition of the SLC when training on the training
partition after SMOTE. Three different feature sets are evaluated (cf. Table 7).

Table 7

Sleepiness Sub-Challenge baseline results by unweighted and weighted accuracy (UA/WA). SMO learned pairwise SVM with linear Kernel,
complexity optimised on development partition to 0.02. SMOTE on (united) learning instances. Feature sets IS 2009 EC, IS 2010 PC, and IS 2011 SSC
correspond to the official sets of the Challenges (Emotion, Schuller et al., 2009, Paralinguistic, Schuller et al., 2010a, and Speaker State, Schuller
et al., 2011) held at INTERSPEECH in these years.

[%] Train vs. Develop Train + Develop vs. Test

Features UA WA UA WA
IS2009EC 65.3 64.2 68.0 72.4
1S2010PC 65.1 66.4 70.2 72.8
1S2011SSC 67.3 69.1 70.3 72.9

The final baseline is set in bold face.

instances among classes as often given in real-world settings, where sober or alert speech is usually available in larger
quantities than intoxicated or sleepy speech. Other well-suited and interesting measures such as the detection error
trade-off were considered; however, these are either not yet common measures in the field or did not fit the evaluation
paradigm, where participants are not required to submit classifier confidences.

While the competition measure was aimed at classification, for the training and development partitions of the ALC
and SLC continuous valued annotations (BAC from 0.28 to 1.75 and mean KSS from 1 to 10) were provided. This
information could be used for model construction or reporting of more precise results in submitted papers on the
development partition. Furthermore, phonetic information was given for the ALC (cf. Section 4.2.1).

A new set of 4368 acoustic features per speech chunk, computed with TUM’s openSMILE toolkit (Eyben et al.,
2010) as in the 2009 and 2010 Challenges, was provided by the organisers. This set is based on applying functionals
to 60 low level descriptors extracted on frame level (cf. above). These features could be used directly or sub-sampled,
altered, or processed in any other way, and combined with other features. Both Sub-Challenges allowed contributors to
find their own features with their own classification algorithm. The labels of the test set were unknown, and participants
had to stick to the definition of training, development, and test sets. They were allowed to report on results obtained on
the development set, but had only a limited number of five trials to upload their results on the test set, whose labels were
unknown to them. Each participation had to be accompanied by a paper presenting the results that underwent peer-
review. Only contributions with an accepted paper were eligible for Challenge participation. The organisers reserved
the right to re-evaluate the findings, but did not participate themselves in the Challenge. Instead, they provided baselines
using the standard WEKA toolkit (Hall et al., 2009) so that the results were reproducible. Participants were encouraged
to compete in both Sub-Challenges.

4.5. Challenge results

All participants were encouraged to compete in both Sub-Challenges and each participant had to submit a paper to
the INTERSPEECH 2011 Speaker State Challenge Special Event. Overall, 34 sites registered for the Challenge, and
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Table 8
Participants of the intoxication and the Sleepiness Sub-Challenge.
Sub-Challenge Participants
Intoxication Sleepiness Count Papers
Vv 4 Ultes et al. (2011), Honig et al. (2011), Bocklet et al. (2011) and Bone et al. (2011)
Vv 2 Bozkurt et al. (2011) and Rahman et al. (2011)
J J 4 Nogueiras (2011), Montacié and Caraty (2011), Gajsek et al. (2011) and Huang et al. (2011)
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Fig. 3. Intoxication Sub-Challenge: (a) results of the participants and (b) majority vote of the best n systems.

12 papers were accepted for presentations. Ten groups actually submitted classification results on the official test set.
Six groups took part in only one of the two Sub-Challenges: four groups in the Intoxication Sub-Challenge, and two
groups in the Sleepiness Sub-Challenge. Four groups took part in both Sub-Challenges. Table 8 gives an overview of

the participants and cites their contributions.

4.5.1. Contributions to the Intoxication Sub-Challenge
Fig. 3(a) summarises the results of the eight participants in the Intoxication Sub-Challenge on the official test

set. Not all results surpassed the baseline result demonstrating the high competitiveness of the baseline. However,
the proposed approaches are interesting, and in the official review process, they were considered worthwhile being
published. Although the mid-range results are very close to each other, a large variety of different ways to address the
classification problem can be observed.

In contrast to the other contributions, Nogueiras (2011) uses dynamic classification in order to model the temporal
structure. Although the degree of intoxication is constant for the speech utterance under consideration, the speech
changes over time. Thus, functionals computed over the whole utterance clearly depend on the phonetic contents. In
order to cancel the effects of the phonetic contents, Nogueiras (2011) uses semi-continuous hidden Markov models with
32 states modelling the different phonemes. The HMM structure allows phonemes to occur in an arbitrary order. Based
on a universal background model, individual HMMs are obtained for each of the two speaker states by re-estimation
of the parameters using discriminative training. The 60 openSMILE low-level descriptors provided by the Challenge
organisers with a context of 11 frames are used as acoustic features. Additionally, the mean feature vector for the
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whole utterance is added. This high-dimensional feature space is reduced from 720 to 64 based on linear discriminant
analysis (LDA). The results on the development set (63.0% UA) were close to the baseline result (65.3% UA on the
development set). Unfortunately, only 60.1% UA were obtained on the test set.

In order to cancel the effects of the phoneme contents, Montacié and Caraty (2011) train gender-dependent SVM
classifiers for each of the six phonemes /a/, /6/, /al/, /E/, /I/,and /1/. As acoustic features, they use a subset
of 30 features of the openSMILE features provided by the organisers, which they obtained by successively applying
WEKA’s feature selection algorithms Subset Size Forward Selection and Best First. The outputs of these six classifiers
are combined using multi-layer perceptrons (MLP), support vector machines (SVM), and decision trees (J47 pruned
trees). The latter method yields the best results. Additionally, the phoneme-based classifiers are combined with the
baseline SVM classifier based on a selection of 30 features of the openSMILE Challenge feature set. Although the
results on the development set are promising, the results on the test set (64.5%) are slightly below the official baseline
(65.3%).

Ultes et al. (2011) enrich the official openSMILE feature set of 4368 acoustic features by adding 19 linguistic features
based on the transcription: the total number of words per utterance and the number and rate of repetitions, hesitations,
interruptions, corrections, word lengthenings, wrongly pronounced words, and pauses (additionally split into long and
short pauses). As in Montacié and Caraty (2011), the set of features is reduced — yet using the information-gain ratio
(IGR) — before classifying them with SVMs. The classification result on the test set is 66.6% UA and outperforms
the baseline result.

Huang et al. (2011) rely on the official feature set of the INTERSPEECH 2011 Speaker State Challenge and the
smaller feature sets of the two previous Challenges. For each of the three sets, they train a support vector machine.
In order to cope with the fact that the two classes are unbalanced, they propose a classification technique called
Asymmetric SIMPLS, which they use for all three data sets in addition to the SVM classifiers. Finally, the outputs of
these six classifiers are combined using logistic regression, adaboost, and simple fusion. Best results are obtained with
simple fusion, resulting in 67.0% UA on the test set.

Gajsek et al. (2011) use a UBM-MAP supervector approach based on the 26 acoustic features MFCC 1-12 and
the RMS Energy, and their first order delta coefficients. Instead of training a Gaussian mixture model (GMM) as
universal background model (UBM), the authors train 3-state left-to-right HMMs with one 26-dimensional Gaussian
distribution in each state for each of the 47 allophones, based on the phone level transcriptions. MAP adaptation is
used to adapt the mean vectors of the Gaussian distributions to a given utterance. Covariance matrices, weights, and
transition probabilities are kept fixed. The transformed means form the supervector of dimension 47 [HMMs] - 3
[states] - 26 [dimensions] = 3666. These supervectors are classified with support vector machines. Further experiments
are carried out with FO based features. The two best systems are combined with the baseline system using a simple
majority vote, yielding 67.5% UA.

Honig et al. (2011) use 534 general-purpose prosodic features modelling durations, energy, pitch, and pauses for
different segments (words, syllables, and nuclei). Furthermore, the authors use 17 ‘specialised’ prosodic features:
the duration of the whole chunk and the average duration of vocalic segments within one chunk, isochrony prop-
erties modelling the distance between consecutive stressed and consecutive unstressed syllables, variability indices
modelling the differences in the duration of consecutive vocalic and consecutive consonantal segments, and global
interval proportions (percentage of vocalic intervals, standard deviation of vocalic and consonantal segments). Fea-
tures types are classified with support vector machines (SVM) and linear discriminant analysis (LDA). Finally,
the output of the SVM classifier based on all prosodic features is combined with the output of the SVM classi-
fier based on the openSMILE Challenge feature set. The authors identified a mismatch with respect to the spoken
texts between Train + Develop and Test. After removing 30 prompts from Train + Develop, an unweighted accuracy
of 67.6% was achieved on the test set, stating that the proposed features have an additional value under matched
conditions.

Bocklet et al. (2011) developed several systems based on different feature sets and different classifiers. Gaussian
mixture models (GMMs), which are obtained from an GMM universal background model after MAP adaptation,
are used for spectral features. One system is trained on MFCCs, one on Perceptual Linear Prediction (PLP) fea-
tures, and one on Temporal Patterns (TRAPS). Three more systems are obtained by classifying the same feature sets
with a GMM supervector approach similar to Gajsek et al. (2011) except that GMMs are used instead of HMMs.
System 7 is based on SVM classification of prosodic features computed on voiced speech segments. Another sys-
tem is based on the official openSMILE feature set and SVMs. Further SVM systems use features based on the
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transcription: the phoneme duration system uses duration statistics of pauses, schwas, vowels, and diphthongs, and
mean and standard deviation features of phonemes and groups of phonemes. The textual system uses features such
as the duration of the turn, the number of false, dialectal, or unintelligible words, the number of restarts, interrupts,
irregularities, or hesitations, the approximate rate of speech, and a lexicality feature. Score level fusion is performed
using linear logistic regression or simple majority vote. The best combination of systems achieves 68.6% UA on the test
set.

Bone et al. (2011) also use GMM supervector systems based on 39-dimensional MFCC features: one system is based
on GMM mean supervectors, one on Tandem posterior probability supervectors, and the third one on Eigenchannel
factor supervectors. Furthermore, the authors build one system using the official openSMILE feature set and one
system based on the normalized pitch on a logarithmic scale, the normalised energy, and the first three formants and
their bandwidths. These features are computed with Praat. In order to deal with widely varying utterance durations,
the authors create another system with hierarchical features of the openSMILE and Praat low-level descriptors. First,
they compute 15 functionals over windows of 0.1 s and 0.5 s, and finally they get features for the whole utterance by
applying 6 ‘core’ functionals on these features. Another system uses 103 global speech rate features computed from the
phoneme durations that are extracted after forced alignment with the manual transcription. The authors use SVMs with
a linear kernel. Instead of applying SMOTE, they use knowledge about the class bias to adjust the decision threshold
of the SVM model. Bone et al. perform global and iterative speaker normalisation. The best model — 70.5% UA on
the test set — was obtained by naive fusion of all systems.

Biadsy et al. (2011) only report results on the development set and their own definition of a training and a test
set. Unfortunately, results are also not given in terms of the unweighted accuracy, which is the official measure of the
Challenge, making it hard to compare these results with the ones of the other participants. The authors build four systems
modelling prosodic variations, phone duration variations, phonotactic variations, and spectral-phonetic variations. In
order to model prosodic variations, prosodic events (pitch accents, intermediate and intonational phrase boundaries)
are identified automatically using the AuToBI toolkit (Rosenberg, 2010), which is trained on Standard American
English. n-Grams are used to represent the prosodic event sequence. Additionally, n-grams of deaccented words, the
relative frequency of pitch accent, phrase accent and boundary tone types, and the overall accenting and phrasing rates,
and the number of tones in the sequence are used. The classification with a logistic regression classifier shows poor
results. According to the authors, this might be due to the short length of the utterances and the mismatch between
the German speech of the database and the English speech the AuToBI toolkit is trained on. In order to model phone
duration variations, statistics of phone durations extracted from a forced alignment of the transcription are computed
and classified with logistic regression. Phonotactic variations are modelled with a bag-of-triphones approach using
SVMs with a linear kernel. Spectral-phonetic variations are modelled with phone-dependent GMMSs. For each of the
45 most frequent phones, a GMM universal background model is trained with 13 RASTA-PLP features (including
energy) and their first and second order delta coefficients. MAP adaptation is used to adapt the GMM mean vectors to
the realisations of the corresponding phone in a given utterance. SVMs with a KL-divergence-based kernel are used
to classify these adapted phone-GMMs.

This summary of the Challenge contributions focuses on the automatic classification of sober and intoxicated speech.
However, there are two contributions that also report results of human perception tests: Schiel (2011) and Ultes et al.
(2011). These two papers are summarised in Section 2.4.

The given overview of the participants’ contributions to the Challenge shows the large variety of different approaches.
Still, the mid-range results are all very close. Fig. 5(a) shows which absolute improvements over a given experiment
could be declared to be significantly better for the four levels of significance « =.050,.010,.005, and.001. The null
hypothesis HO assumes that the accuracies of both experiments are identical. We apply a one-tailed significance test
since we are interested in whether the outcome of the second experiment is better than the first one. We assume that
HO is true and disprove it at various levels of significance. It depends on the accuracy of the first experiment which
absolute improvements are necessary for the second one to be significantly better. Compared to the baseline (65.9%),
accuracies >68.7 % could be considered to be significantly better at a level of o =.01.

As in the previous Challenges, the individual results of the participants are combined by a simple majority vote
of the best n participants. More sophisticated methods cannot be used since the participants’ predictions are available
only for the test set. Fig. 3(b) shows the results of this fusion for values of n between three and nine. If three to five
systems are fused, the combined system outperforms the system of the winning team (70.5%). The best result (72.2%)
is obtained for n=3.
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4.5.2. Contributions to the Sleepiness Sub-Challenge

Fig. 4(a) summarises the results of the six participants in the Sleepiness Sub-Challenge on the official test set.
Three of the six results surpassed the baseline result (70.3% UA). Again, the baseline was highly competitive. Four
of the six participants in the Sleepiness Sub-Challenges also took part in the Intoxication Sub-Challenge. Nogueiras
(2011), Montacié and Caraty (2011), Gajsek et al. (2011), and Huang et al. (2011) applied the same system to both
classification tasks. Their systems are described in the previous section.

As in the Intoxication Sub-Challenge, the performance of the system of Nogueiras Rodriguez (66.3% UA) and the
one of Montacié and Caraty (69.4% UA) are below the baseline result.
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The system of Gajsek et al. is based on a phoneme transcription, which is not available for the Sleepy Language
Corpus (SLC). Therefore, they train a simple monophone recogniser on the Alcohol Language Corpus (ALC). Com-
pared to the results in the Intoxication Sub-Challenge, their approach of modelling MFCCs shows a lower improvement
probably due to inaccurate phoneme transcriptions, but it is still superior to the statistical approach and outperforms
the baseline result: 71.3% UA vs. 70.3% UA. As in the Intoxication Sub-Challenge, the system of Huang et al. (71.7%
UA) outperforms the baseline system in the Sleepiness Sub-Challenge, too, and is actually the highest result in this
Sub-Challenge.

The contribution of Bozkurt et al. (2011) evaluates a training data selection method to prune possible outliers of
mislabelled or ambiguous training samples. Their approach is based on Random Sampling Consensus (RANSAC).
They use the official openSMILE feature set and SVMs with a linear kernel for classification. In contrast to the official
baseline, no techniques such as SMOTE are used to handle the problem of unbalanced classes, resulting in clearly
higher WA values than UA values. On the test set of the Sleepiness Sub-Challenge, the proposed approach (65.4%
UA) outperforms the authors’ own baseline (63.9% UA) but remains clearly below the official baseline in terms of the
unweighted accuracy.

Rahman et al. (2011) evaluate feature level and decision level fusion of various systems. The baseline system is
based on the official openSMILE features and SVMs with linear kernel and SMOTE. For the second system, a neutral
GMM is trained on English speech of the Wall Street Journal-based Continuous Speech Recognition Corpus Phase
II. A univariate GMM with four mixtures is trained for each feature of the baseline set. Then, the GMM likelihood
scores are computed for sleepy and non-sleepy speech. Lower scores are expected for sleepy speech than for non-
sleepy speech as sleepy speech is expected to deviate from neutral speech. SVMs are used for classification of these
likelihood scores. The third system uses 17 features modelling local dynamics of the pitch contour. For each voiced
segment within one utterance, functionals are applied to the FO contour. In a second step, the mean, the maximum,
and the standard deviation of these functionals are computed over all voiced segments of the same utterance. These
features are then classified with SVMs along the same lines as the baseline system. The remaining two systems are
GMM systems modelling 36-dimensional MFCCs (12 coefficients and their delta and delta-delta values), and 10-
dimensional perceptual minimum variance distortionless response (PMVDR) features and their shifted delta cepstrum
(SDC) features, respectively. For feature level fusion, all 7812 sentence-level features (baseline features, likelihood
features, and FO statistics) form one large feature vector, which is classified with SVMs. Additionally, the feature
dimension is reduced using a chi-squared feature selection technique. However, no improvement over the baseline
system is obtained. For decision level fusion, fusion with hard and soft decision labels is evaluated. The best result —
71.0% UA on the test set— is obtained with soft decision labels combining all single systems except the one based on FO
statistics.

As in the Intoxication Sub-Challenge, a large variety of different approaches can be observed in the Sleepiness Sub-
Challenge. Again, many results are very close. Fig. 5(b) shows which absolute improvements over a given experiment
could be declared to be significantly better for the four levels of significance o =.050, . 010, . 005, and . 001. Compared
to the baseline (70.3%), accuracies >72.3 % can be considered to be significantly better at a level of « =.05.

Again, the individual results of the participants are combined by a simple majority vote of the best n participants.
Fig. 4(b) shows the results of this fusion for values of n between three and seven. If three to five systems are fused, the
combined system outperforms the system of the winning team (71.7%). The best result (72.5%) is obtained again for
n=3.

4.5.3. Winners of the INTERSPEECH 2011 Speaker State Challenge

The results of the Challenge were presented in a Special Event of INTERSPEECH 2011 (double session) and
the winners were awarded in the closing ceremony by the organisers. Two prizes (each 250.- GBP sponsored by the
HUMAINE Association) could be awarded following the pre-conditions that the according paper needed to be accepted
to the special event after the INTERSPEECH 2011 general peer-review, the provided baseline was exceeded, and a
best result in a Sub-Challenge was reached.

The Intoxication Sub-Challenge Prize was awarded to Daniel Bone et al. (Signal Analysis and Interpretation Labo-
ratory (SAIL), University of Southern California, Los Angeles) who reached 70.5% UA. The Sleepiness Sub-Challenge
Prize was awarded to Dong-Yan Huang et al. (Institute for Infocomm Research/A*STAR, Singapore) who reached
71.7% UA.
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Table 9
Pairwise Q-statistics measuring whether participants’ systems commit the same errors on the test set. Avg: Average of Q-statistics with all other
participants. The darker the shading, the higher the correlation.

(a) Intoxication Sub-Challenge

| Avg | #2 #3  #4  #5 #6 #T #8 #9 (Nogueiras)
#1 (Bone et al.) 427 (1898 425 461 460 428 433 .395 .217

#2 (Bocklet et al.) .356
#3 (Honig et al.) 418
#4 (Gajsek et al.) .358
#5 (Huang et al.) 452
#6 (Ultes et al.) A17
#7 (Baseline) 427
#8 (Montacié and Caraty) .346

#9 (Nogueiras) 374

(b) Sleepiness Sub-Challenge

(Bozkurt et al.)

#1 (Huang et al.) .993
#2 (Gajsek et al.) : 976
#3 (Rahman et al.) .899 .938
#4 (Baseline)

#5 (Montacié and Caraty)
#6 (Nogueiras)

#7 (Bozkurt et al.)

4.5.4. Analysing participants’ systems: beyond accuracy-related measures

As stated above, evaluation of participant’s contributions by accuracy reveals that systems are fairly close to each
other in terms of overall performance. The question remains, though, whether all the systems fail on the same utterances
(for example, because certain subjects successfully mask their state), or if they might have complementary strengths.
We shed light on this aspect by considering the pairwise Q statistics (Yule, 1900; Afifi and Azen, 1979; Kuncheva and
Whitaker, 2003). Informally, Q4 p measures whether two systems A and B commit the same errors on the evaluation
set, information which is not contained in simple accuracy comparisons. More precisely,

NIINOO _ NOINIO
~ NIUIN00  NOT N0

0A.B (1)

where N'! and N are the numbers of instances where the predictions of A and B are both correct or incorrect,
respectively, and N°' and N'© are the numbers of instances where only A or B commit an error.

For the Intoxication Sub-Challenge (Table 9a), we observe that the systems ranked first and last in the competition
(Bone et al., 2011; Nogueiras, 2011) display low Q statistics with the other systems in the field. Indeed, this can
be attributed to little methodological overlap: The system by Nogueiras (2011) is the only one relying on dynamic
classification (Hidden Markov Models, HMM); the contribution by Bone et al. (2011) is the only one exploiting speaker
normalisation techniques. Overall, the Q statistics seem to be highest among the middle-ranked participants. For the
Sleepiness Sub-Challenge (Table 9b), differences in the Q statistics are much lower overall; yet again, the HMM system
by Nogueiras (2011) displays the lowest Q values with the others.

Furthermore, the competition measure of the Intoxication Sub-Challenge, or related measures for binary classifica-
tion or detection, do not reveal whether a system’s accuracy in distinguishing alcoholised and non-alcoholised speech
of a certain person depends on the person’s actual intoxication level. In other words, even a system with high UA recall
or equal error rate could still fail in recognising some of the most intoxicated speakers, due to the binarisation of the
learning and prediction tasks. Hence, in Table 10a, we display the Spearman rank-correlation between the systems’
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Table 10
Spearman’s rank-correlation coefficients (0) between (a) system accuracy per speaker and speaker BAC and (b) session-wise system accuracy and
absolute KSS deviation from KSS threshold (7.5).

(a) Intoxication Sub-Challenge (b) Sleepiness Sub-Challenge
Participant Participant ]
#1 (Bone et al.) #1 (Huang et al.) 251

(Bocklet et al.) #2 (Gajsek et al.) 276

(Honig et al.) #3 (Rahman et al.) [.358

(Gajsek et al.) 197  #4 (Baseline) .289

(Huang et al.) 195 #5 (Caraty) 232

6 (Ultes et al.) 122 #6 (Nogueiras) 229

(Baseline) 118  #7 (Bozkurt et al.)

(Montacié and Caraty) | .110

(Nogueiras) .180

accuracy per speaker® and the speakers’ BAC levels. A high correlation would mean that the system is more reliable
in ‘extreme cases’ but less in ‘limit cases’; conversely, a low correlation indicates that either some of the extreme
cases are not recognised, or there is remarkable performance for some limit cases, or both. Given imperfect accuracy
of automatic classification, the first kind of behaviour is arguably more desirable in practical applications. It turns out
that only for the systems by Bone et al. (2011) and Bocklet et al. (2011) this correlation is significant (p <.05).

Following a similar procedure for the Sleepiness Sub-Challenge, in Table 10b we assess the correlation between
the session accuracy (165 sessions where at least 10 utterances were recorded) and the absolute deviation of the KSS
value of the session from the threshold value of 7.5.° The correlation is highest for the system by Bozkurt et al. (2011);
this can probably be attributed to their automatic selection of ‘prototypical’ training instances.

4.5.5. From short-term to medium-term: performance bounds for speaker state recognition

Overall, the results of both Sub-Challenges clearly demonstrate that utterance level recognition of intoxication
and sleepiness is a demanding task. However, in many practical applications, medium term speaker states such as
intoxication and sleepiness need not be recognised from single utterances; rather, observations from longer time
intervals are available, in which the speaker state is supposed not to change. In the case of the Challenge data, we
can consider entire recording sessions with one individual (of roughly 15 min in the ALC and 5-10 min in the SLC),
during which intoxication and sleepiness level are assumed as constant. Hence, as an upper bound on what can be
achieved with today’s methodology, we consider decision level fusion of utterance level classifiers to gain a session
level classification, as proposed by Weninger and Schuller (2011) for intoxication recognition. In that study, 76%
UA recall of alcoholised/non-alcoholised recording sessions could be achieved on the Challenge test data by majority
voting among the alcoholised/non-alcoholised utterance level decisions of the baseline classifier. We now proceed to
apply this methodology to the results obtained by all of the Challenge participants, for both Sub-Challenges.

In particular, we investigate the relation between the number of utterances taken into account and the achieved
accuracy to determine which amount of speech would be required in practice to achieve a robust decision. Precisely,
we take the majority vote over N randomly selected utterances from each of the alcoholised (sleepy) and non-alcoholised
(non-sleepy) sessions for each speaker. The parameter N is chosen from {3, 5,7, .. ., 29} for the ALC and {3, 5, 7, 9}
for the SLC (odd numbers ensure that the majority vote is well-defined). Note that in the SLC, less speech material is
available per session; further, we exclude all sessions from the SLC where less than nine utterances have been recorded.
In the end, we consider all 100 sessions of the ALC test set and 189 of the SLC test set for the following experiments.
For each value of N, the experiment is repeated 30 times with different random initialisations to deal with singular

> For the measurement of speaker specific system performance, we have to resort to conventional accuracy instead of UA, since not all speakers
delivered alcoholised speech above.5 per mill BAC, hence the recall of the AL class per speaker is not well defined.

6 The evaluation has to be performed slightly differently than for ALC, since in the SLC, there are multiple KSS values per speaker (yet only one
per session), and naturally, there is no equivalent to a ‘sober’ condition.
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Fig. 6. Recognition of intoxication (a) and sleepiness (b) in a recording session through fusion of utterance level decisions by participants’
systems. Expected UA on session level for increasing numbers of randomly selected utterances from each of the recording sessions. (a) Intoxication
Sub-Challenge (b) Sleepiness Sub-Challenge.

effects due to ‘lucky’ or ‘unlucky’ selections; for each N, the expected UA (averaged across random initialisations) is
reported in Fig. 6.

In the result, the best single system in the Intoxication Sub-Challenge (Bone et al., 2011) delivers a very remarkable
average UA of 91% when voting over 29 utterances (Fig. 6(a)). The system by Bocklet et al. (2011) is ranked second
with up to 81.6% average UA (for 25 utterances); interestingly, the system by Ultes et al. (2011), which is only slightly
above the baseline and is ranked sixth on utterance level, is the third best on session level (up to 78.8% UA). Generally,
the higher ranked systems can profit more from inclusion of more utterances in the majority vote; the systems by Huang
et al. (2011) and Montacié and Caraty (2011) profit least, with the former even degrading performance with higher
numbers of utterances taken into account. In order to investigate whether majority voting is beneficial on average,
we calculate the average session accuracy across all participants and random seeds, as displayed in Fig. 7. Due to the
system by Bone et al. (2011) being an outlier as visible in Fig. 6(a), we present a separate average across all participants
except Bone et al. (2011) in Fig. 7(b). For both, the Intoxication (Fig. 7(a) and (b)) and Sleepiness Sub-Challenges
(Fig. 7(c)) a somewhat upward trend is visible despite the large standard deviation which is caused on the one hand by
variation among participants (as clearly visible in Fig. 6(a)), but also by the choice of utterances, since performance
of automatic intoxication classification seems to depend heavily on the prompt type (spontaneous, read, or command
and control speech) used for recording the utterances (Weninger and Schuller, 2011).

These remarkable differences in the accuracy of the majority voting, which exceed the differences in utterance
level performance by far, clearly deserve some further investigation. Our hypothesis is that this is due to different
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Fig. 7. (a) Recognition of intoxication (a), (b) and sleepiness (c) in a recording session through fusion of utterance level decisions by participants’
systems. Mean and standard deviation of session level UA for increasing numbers of randomly selected utterances from each of the recording
sessions, across various random seeds and all participants’ systems (a), (c) or systems except Bone et al. (2011) (b), which is considered as an outlier.
(a) Intoxication Sub-Challenge, #1-9 (b) Intoxication Sub-Challenge, #2-9 (c) Sleepiness Sub-Challenge, #1-7.

variability of the prediction accuracy per session: Obviously, since the number of utterances per session is constant in
the Challenge test set, any utterance level accuracy above chance will result in perfect accuracy of the session level
majority vote across all utterances, if the variability of the accuracy among sessions is zero. The hypothesis is confirmed
by the significant negative correlation (o =—.75, p <.05) between (i) the session level UA improvement by taking into
account 29 instead of 3 utterances, and (ii) the standard deviation of the classification accuracy per session. Further,
in considering for each system the correlations between its recalls of alcoholised and non-alcoholised utterances per
speaker, we observe that for the systems except the one by Bone et al. (2011), a high recall of alcoholised utterances
implies a low recall of non-alcoholised ones (—.58< o < —.31), while for the predictions by Bone et al. (2011), the recalls
of alcoholised and non-alcoholised utterances per speaker are strongly correlated (¢ =.89). This results in the observed
great stability of the majority vote among utterances, while the other systems tend to be biased towards a decision
for ‘alcoholised’ or ‘non-alcoholised’ for each speaker, and thus majority voting does not increase performance as
drastically. This phenomenon can be attributed partly to the speaker normalisation as performed by Bone et al. (2011):
Since the Challenge test set contains alcoholised and non-alcoholised utterances for each speaker, normalising such that
each feature has unit variance and zero mean per speaker will contribute to maximising the separability of alcoholised
and non-alcoholised utterances in the feature space, and minimise inter-speaker variation. However, note that speaker
normalisation cannot be performed in an application scenario where only non-alcoholised or alcoholised speech is
available for the speaker to be tested, e.g., at a police checkpoint.

Concerning the session level UA of majority voting among utterance level predictions from the Sleepiness Sub-
Challenge (Fig. 6(b)), we observe differences to utterance level UA in the same order of magnitude as for the ALC,
given the lower number of utterances that can be voted among. Notably, the system that performs best at session level
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(Rahman et al., 2011; 75% UA) is not the best system at utterance level—in fact, it seems that the system of the
Sub-Challenge winners (Huang et al., 2011) cannot exploit the increased amount of context, somewhat similarly to
what we observe for their system in the Intoxication Sub-Challenge (Fig. 6(a)).

Going from here, a straightforward option would be voting over participants for each turn and combine the fused
predictions over the utterances—however, in our experiments, this approach could never significantly exceed the
performance of the single best system in majority voting. This indicates that there is much more information gained
from observing multiple utterances than by fusing multiple systems’ predictions.

5. Concluding remarks

The aim of this succession of three Interspeech challenges 2009, 2010, and 2011 has been two-fold: first, from a
methodological point of view, we wanted to introduce the concept of a strict partition into train, development, and test,
together with well-defined measures of performance — all this is known from established fields such as automatic
Speech Recognition (ASR) — into the broad and divergent field of paralinguistics. Second, as for content-based
research questions, we wanted to address different sub-fields of paralinguistics which we can describe, in somehow
sloppy terms, as ‘states and traits and all that is in-between, called medium-term’. In 2009 (Schuller et al., 2009),
we addressed short-time emotional states such as ‘anger’ — a member of the established set of full-blown emotions
— and a positive cover class consisting of ‘joyful’ as well as ‘motherese’, the latter definitely being no full-blown
emotion but, at the same time, a well-defined interactional-emotional state whose description has a long tradition
within developmental psychology. In 2010 (Schuller et al., 2010a), we dealt with pronounced speaker traits which we
could describe as the ‘primitives of personality’, namely age and gender. Now, in this 2011 challenge, we addressed
phenomena which are in between pronounced short-time states and long-time traits, namely intoxication and sleepiness.
Both phenomena introduce on the one hand an interesting combination of annotations on the ordinal level (sleepiness)
or measurements on the interval level (intoxication), both mapped onto a binary decision. On the other hand, the very
essence of being ‘medium-term’ made it possible to have a look at decisions obtained for single units or ‘accumulated’
units, without any change of attribution. Comparing single systems and combined systems as well as different types
of evaluation proved to be very instructive and might lead to a better understanding of differences between approaches
and full systems.

All these states and traits are not only simply interesting phenomena; being able to deal with them, especially to
obtain good classification performance, is a necessary prerequisite for incorporation into successful applications. And
in turn, a further necessary prerequisite is to establish standards within these fields that make comparisons between
studies and obtained performance possible. These standards include provision of feature sets that can be re-used as
reference. We hope that this present challenge is a further step towards broadening the view and at the same time,
defining and using standards within the field of paralinguistics.

The corpora used for the Challenge are available. The follow-up to the 2011 Speaker State Challenge is the 2012
Speaker Trait Challenge, which is on-going at the time of writing (Schuller et al., 2012). It focuses on “perceived”
speaker traits — again for the first time in such a public and well-regulated comparative evaluation, featuring the tasks
Personality, Likability, and Pathology.
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