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Abstract
This paper describes a new method for building compact con-

text-dependency transducers for finite-state transducer-based

ASR decoders. Instead of the conventional phonetic decision-

tree growing followed by FST compilation, this approach in-

corporates the phonetic context splitting directly into the trans-

ducer construction. The objective function of the split optimiza-

tion is augmented with a regularization term that measures the

number of transducer states introduced by a split. We give re-

sults on a large spoken-query task for various n-phone orders

and other phonetic features that show this method can greatly

reduce the size of the resulting context-dependency transducer

with no significant impact on recognition accuracy. This per-

mits using context sizes and features that might otherwise be

unmanageable.

Index Terms: WFST, LVCSR

1. Introduction

Weighted finite state transducers (WFST) are widely used in

speech recognition applications [1]. They allow for a unified

representation of all knowledge sources involved as well as their

combination and optimization. The language model is repre-

sented by a transducer G, L is a phone to word transducer

derived from the pronunciation dictionary, and C encodes the

context dependency of the acoustic models. These transduc-

ers are combined by the finite-state operation of composition as

C ◦ L ◦G to form a very efficient recognition transducer.

This paper focuses on the construction of the context depen-

dency transducer C. C rewrites context independent (CI) phone

sequences to sequences of context dependent (CD) phone mod-

els. Because of the composition with L, the output alphabet

is the set of phones used, and the CD phones or their acoustic

model representations occur as input labels.

In the most straight-forward construction, pn−1 states (one

for every n− 1-gram) and and pn transitions (one for every CD

n-phone model) are used to represent the context dependency of

p phones with n the context size, e.g. p2 states and p3 transitions

for triphones [1]. For larger contexts or further dependencies

like word boundaries and vowel stress, this method can become

unwieldy.

Phonetic decision trees are commonly used to tie the param-

eters of context dependent units, if the training data is not suf-

ficient to build all context dependent models [2]. The construc-

tion of C can account for these classes of equivalent contexts,

yielding a more compact transducer [3]. Hence, the number of

states required depends on the structure of the trees.

Several papers have proposed more efficient constructions

of context dependency transducers. A general compilation

∗Work was performed at Google.

method for finite state transducers from decision trees is de-

scribed in [4]. The authors of [5, 6] describe an efficient con-

struction for high-order context-dependent models that builds a

minimal C. [7] presents an on-demand transducer to represent

11-phone decision trees. An “arc minimization” technique is

used in [8] to allow for a full word of cross-word contexts.

These approaches all construct a decision tree first, not tak-

ing advantage of a key observation: slight modifications in the

tree construction that do not affect the quality of the acoustic

models might have a big impact on the size of the C transducer.

In this paper a new construction method is presented that builds

a compact C transducer directly from the training data omitting

the separate explicit construction of decision trees that precedes

their compilation into a transducer. The algorithm to tie pa-

rameters of CD models is modified in order to allow us to con-

trol the size of the resulting transducer. Optimizing the mod-

els based only on the transducer size would not consider the

similarities among acoustic units. On the other hand, relying

solely on acoustic properties might produce large transducers.

Therefore, both criteria are incorporated in the objective func-

tion used to optimize the set of CD models with a parameter to

control their relative contribution. In this way, we can tradeoff

model accuracy and precise context-dependency transducer size

in a way not possible with previous methods.

Section 2 describes conventional phonetic decision tree

methods and their relation to our proposed method. Section 3

describes the proposed, direct context-dependency transducer

construction. Section 4 presents the experimental results on a

large corpus of spoken queries. Section 5 discusses the meth-

ods and results.

2. Decision-Tree Construction

The proposed method generates both the C transducer and the

context dependent tied HMM state models in one optimization

procedure. A separate explicit training of a decision tree is not

required. Nevertheless, before describing the transducer con-

struction in detail, we give a review of phonetic decision trees

for a better comparison and describe which steps are shared with

our new construction.

2.1. Phonetic Decision Trees

In many state-of-the-art LVCSR systems phonetic decision trees

are used to tie the parameters of CD phone models. The de-

cision tree determines the similarity of CD phones by succes-

sively splitting sets of CD phones. A widely used approach

is to build separate trees for each HMM state of each phone,

thereby limiting the sharing of parameters to models of the same

phone and HMM state. The splitting is performed based on

phonetic properties (or questions) of the phones in a specific

context position (left and right in the triphone case). A deci-



({a,b},c)

({c},b)[{a,b}, c, {b,c}] : b

({b,c},a)

[{a,b,c},c,{a}] : a

Figure 1: Example of a part of a C transducer for 3 phones.

Two phone models are shown.

sion tree is trained according to a maximum likelihood criterion

using a greedy optimization strategy. In each iteration of the

optimization, the best split is chosen among all current mod-

els (leaf nodes), phonetic properties, and context positions. The

phonetic properties can be defined as sets of phones, e.g. the set

of vowels. Several stopping conditions may be used – limiting

the minimal achieved gain in likelihood, the number of seen ob-

servations for a model, or the total number of leaf nodes in the

tree.

2.2. Implicit Decision Trees

Building a decision tree explicitly in a separate step is not neces-

sary if the tree is used solely to construct a context dependency

transducer, which rewrites sequences of phones to sequences of

phone models. The tree based classifier is encoded in the trans-

ducer. Therefore, we can split the models in a similar way as in

the decision tree training and encode the context dependency of

the models directly in the transducer. The step-wise construc-

tion of the transducer during the iterative splitting of the models

makes it possible to incorporate the size of the transducer in the

split selection.

The construction uses a greedy optimization strategy. The

steps are identical to building a single phonetic decision-tree for

all phones, except the tree is not explicitly built and a different

objective function is used. We omit many familiar details not

related to these differences [2].

In each iteration a split is chosen, which defines the model

to split, the phonetic property (or phonetic question), and the

context position. The objective function used to rate a split t is

L(t) = G(t)− α · S(t)

where G(t) is the gain in acoustic likelihood achieved by this

split (equal to the gain used in decision tree growing), S(t) is

the number of new states required to distinguish the two split

models in the C transducer, and α is a weight controlling the

impact of the transducer size. Setting α = 0 will produce a

result equivalent to a decision-tree based construction, while

α = ∞ will ignore acoustic properties of the model. S(t) can

be interpreted as a regularization term.

After choosing a split, the change in context dependency is

applied to the transducer, which is described in the following

section. The construction is initialized with monophone mod-

els, as it is done for conventional phonetic decision tree grow-

ing.

3. Transducer Construction

In the previous section, we described the greedy optimization of

phonetic splits and the objective function used to select among

them. In this section we describe how the C transducer is

built at each step in the iteration and how the number of new

states S(t), used in the objective function, is computed. Be-

fore providing a more formal description of the C construction,

we begin with a simple example of part of a C transducer for

three phones a, b, c as it might appear during its construction,

as shown in Figure 1.

An input label on a transition in Figure 1 is a specifi-

cation of a CD phone model. It is denoted, in general, as

[C−L, . . . , C−1, π, C1], describing a set of (L + 2)-phonic

models for phone π with tied parameters. For example, the la-

bel [{a, b} , c, {b, c}] is the model for the triphones acb, acc,

bcb, bcc, Such phone models correspond to leaf nodes in a de-

cision tree (more specifically to leaf nodes in the decision trees

for a single phone and all its HMM states). The context sets Cl

reflect the phone properties used so far for splitting or – in the

decision tree analogy – to the path leading to a leaf node. Note

that we only consider a right context of one phone in this paper

(see Section 5).

An output label on the transitions in Figure 1 is a CI phone

taken from the rightmost CD context. Choosing the rightmost

phone ensures that C−1 is deterministic and thus that C com-

poses efficiently with the lexicon.

A state in Figure 1 represents the sequence of phones read

so far required to disambiguate CD phone models. For instance,

state ({a, b} , c) denotes that the phone labels of all paths reach-

ing it end with either ac or bc. In the conventional construc-

tion of C mentioned in the introduction, there would be a state

for every n − 1 phones read. However, not all possible phone

contexts have be to considered for all phone models. Consider

for example the phone c which is represented by two triphonic

models m1 = [{a, b} , c, {b, c}], m2 = [{c} , c, {b, c}]. Only

two states, ({a, b} , c) and ({c} , c), are required two distin-

guish between these two phone histories.

While the model construction deals with HMM state mod-

els, the C transducer handles phone models consisting of a se-

quence of HMM state models. Each of the HMM state mod-

els may occur in several phone models. Splitting a state model

therefore involves splitting all phone models sharing this state

model. The splitting algorithm is applied for each of the split

phone models.

3.1. Notation

A finite-state transducer T = (A,B, Q, I, F, E) is specified by

a finite input alphabet A, a finite output alphabet B, a finite set

of states Q, a set of initial states I ⊆ Q, a set of final states

F ⊆ Q, and a finite set of transitions (or arcs) E ⊆ Q× (A ∪
{ǫ})× (B ∪ {ǫ})×Q. Weights are trivial in the C transducer

and hence omitted. E[q] denotes the set of transitions leaving

state q ∈ Q, and I[q] the set of transitions to state q.

Given a transition e ∈ E, p[e] denotes its origin or previ-

ous state, n[e] its destination or next state, i[e] its input label,

and o[e] its output label. We denote the transitions with an in-

put label a as E(a) = {e : i[e] = a} and the corresponding

(previous) states as Q(a) = {p[e] : e ∈ E(a)}.
A state in C be represented by a tuple (HL, . . . , H1, π)

with history sets Hl ⊆ A, center phone π ∈ A, and L the

number of left contexts as discussed above.

3.2. Triphonic Contexts

We consider triphone models first and generalize the algorithm

afterwards. Given a split of a phone model m to models m1,

m2, the first step is to identify the affected states q ∈ Q(m). To

split the right context, only the outgoing transitions e ∈ E[q]
have to be relabeled:

i[e]←

8

<

:

m1 if i[e] = m, o[e] ∈ C′

1

m2 if i[e] = m, o[e] ∈ C′′

1

i[e] if i[e] 6= m

with m1 = [C−1, π, C′

1], m2 = [C−1, π, C′′

1 ].
If the split is performed on the left context with m1 =

[C′

−1, π, C1], m2 = [C′′

−1, π, C1] , q = (H, π), the states



{a,b,c},a

[{a,b,c},a,{a,c}] : a

[{a,b,c},a,{b}] : b

[{a,b,c},a,{a,c}] : c

[{a,b,c},b,{a,b,c}] : a

[{a,b,c},c,{a,b,c}] : a

{a,b},a

[{a,b},a,{a,c}] : a

[{a,b,c},a,{b}] : b

[{a,b},a,{a,c}] : c

{c},a

[{c},a,{a,c}] : a
[{a,b,c},a,{b}] : b

[{c},a,{a,c}] : c

[{a,b,c},b,{a,b,c}] : a

[{a,b,c},c,{a,b,c}] : a

Figure 2: A state before and after splitting the model

[{a, b, c}, a, {a, c}] at position −1 into {a, b} and {c}.

q1 = (H ∩C′

−1, π) and q2 = (H ∩C′′

−1, π) are created if they

do not exist yet. An incoming transition e ∈ I[q] is redirected

to q1 if o[e] ∈ C′

−1 or to q2 otherwise. An outgoing transition

ej = (qj , ij , o[ej ], n[ej ]) ∈ E[qj ], j ∈ {1, 2} is updated by

ij ←



mj if i[ej ] = m
i[ej ] if i[ej ] 6= m

Self-loop transitions require a special treatment which is

omitted here, but straight-forward to implement. An example

of a state split is shown in Figure 2.

The initial transducer has a state for each phone with Hi =
Σ, and a transition (π1, [Σ, π1, Σ], π2, π2) for every pair of

phones π1 and π2 and labeled with a monophonic model.

3.3. Wider Contexts

For larger left contexts, splitting the history Hl of state q =
(HL, . . . , H1, π) implies splits on the history H ′

l−1 of all pre-

decessor states p = (H ′

L, . . . , H ′

1, π) with ∃e ∈ E[p] : n[e] =
q. The splitting of predecessor states is done recursively on l
down to 1. This ensures that only valid paths are included in the

transducer.

3.4. Counting States

To count the number of new states required for a HMM state

model split, S(t) in the objective function, the affected states

Q(m) and their predecessors (cf. Section 3.3) have to be dis-

covered. For each state q the required split states q1, q2 are

computed by intersecting the state’s history set with the phone

property sets at the appropriate context position. If qi /∈ Q, the

count is incremented. For splits of the right context, the number

of new states is always 0.

Although we will not prove it here, each step in the con-

struction produces a minimal deterministic automaton (i.e.,

when the the input and output label pair is considered as a single

label). As such, S(t) is an intrinsic measure of the transduction.

3.5. Generalized Features

The proposed framework allows us to incorporate more com-

plex features for the model splitting than just the phone iden-

tity. Examples for these features are word boundary informa-

tion, syllable identity or even speaker gender. By incorporating,

for example, word boundary information into the phone models

different phone models can be generated depending on whether

a phone occurs at beginning, end, or inside of a word.

A simple method to achieve word-boundary modeling is

to introduce separate phones for each of these phone variants

and to modify the pronunciation dictionary accordingly. In or-

der to keep the number of phone models small, initial, final,

and interior variants of a phone are assigned to the same phone

model initially. New phone properties (“is initial phone”, “is fi-

nal phone”, “is inside phone”) are introduced to allow for splits

separating these phone variants.

To keep the number of states in C small, different states

for a phone variant are created only if they need to be distin-

guished, i.e. if different models exist for the different occur-

rences. That requires modifying the state representation to in-

clude a center phone set, initialized with the phone variants, and

allowing splits on these sets as well.

Other phone features can be used in a similar way and in

combination. As number of such features is increased, the C
transducer will grow very large in the conventional construc-

tions, while our approach will control well for the number of

states. However in this work we only did experiments with word

boundary information.

4. Experimental Results
The proposed transducer and model construction method was

evaluated using an LVCSR system on an in-house spoken query

task. The acoustic models and the recognition system are de-

scribed in the following sections, followed by a presentation

and discussion of the experiments.

4.1. Acoustic Modeling

All experiments use baseline acoustic models trained on 2100h

of spoken queries. The acoustic models are retrained for each

C transducer using a bootstrap model. The acoustic front end

consists of Perceptual Linear Prediction (PLP) cepstra. An

LDA transform projects 9 consecutive 13-dimensional features

to a 39-dimensional feature vector. The tied HMM state mod-

els consist of up to 128 Gaussian densities per mixture model

with semi-tied covariances. The total number of densities in the

acoustic model ranges between 400k and 500k depending on

the parameters of the model construction. The pronunciation

dictionaries comprises 43 phones including pseudo phones for

silence and noise. Further training steps for speaker normaliza-

tion and discriminative training were omitted in favor of more

experiments.

4.2. Recognition System

The decoder graph for the recognition system is constructed

from C, lexicon L, and language model G as described in [9].

All experiments used a simple one-pass decoding strategy with

a backoff 3-gram language model containing 14M n-grams for a

vocabulary of 1M words. The test set contains 14.6K utterances

with about 46K words in total.

4.3. Experiments

We evaluated decision tree-based C transducers and those con-

structed using the method proposed. The HMM state models

were constrained to cover at least 20k observations1. Table 1

shows the results grouped by n-phone order. For each n-phone

order, the first row shows the results for the conventional C con-

struction [1]. In each case we show the number of states in the

C transducer (pn−1) and for the triphone case we show recog-

nition results as well. We then follow with the sizes and recog-

nitions results with the proposed method for various values of

α. Note the number of C transitions is p times the number of C
states throughout.

1For 5-phones we used 25% of the training data and limited the num-
ber of state models to 7k covering at least 5k observations per model.



Table 1: Construction of n-phone models with different values

for α. The table shows the number of HMMs, the number of

HMM state models (distributions), the size of the C transducer,

and the achieved word error rate. The first row for each n-phone

order is for the conventional decision-tree-based construction.
acoustic model C

n α HMM dist. states WER

3

- 17,066 6,623 1,849 21.2

0 17,086 6,623 1,056 21.3

100 16,953 6,623 1,032 21.1

103 16,280 6,619 938 21.2

105 6,846 6,543 722 21.4

4

- - - 79,507 -

0 51,782 8,273 18,951 21.6

100 43,890 8,257 9,803 21.6

103 33,124 8,263 6,302 21.6

105 9,681 8,144 5,728 21.7

5
- - - 3.4M -

103 22,857 7,000 1,453 21.4

Table 2: Results for models with incorporated word boundary

information.
n α dist. states WER

3

0 7,052 12.3k 20.5

100 6,146 3.0k 20.5

1k 7,061 2.9k 20.6

First observe that the number of states in the conventional

tree-based method is less than in the proposed method even with

α = 0 since the latter builds C as a minimal automaton. Both

methods give the same recognition accuracy when α = 02. Sec-

ond observe that there are values of α > 0 that cause no reduc-

tion in word-error rate but give a substantial reduction in the

number of states in C (e.g., 3× reduction in size for 4-grams

with α = 1000). There are larger values of α that give even

greater reductions in the size of C with only a small impact on

word error rate.

Using larger contexts did not yield recognition accuracy

improvements for the spoken query task (see Table 1). How-

ever, phone models with larger context have improved recogni-

tion accuracy for other tasks and this new compact construction

should apply similarly to other domains and languages [10].

Table 2 shows the results obtained by incorporating word

boundary information. Using this additional information does

improve the acoustic models. The size of the C transducer can

be reduced by 75% without losing accuracy.

5. Discussion

The key ideas in this paper are that (a) you can build the context-

dependency transducer directly from data without bothering to

build an explicit decision tree in a separate step and (b) that

in doing so it is easy to incorporate a regularization term that

controls the size of the transducer in the greedy optimization

without affecting accuracy in any significant way. Others have

struggled with larger n-gram orders and generalized features

precisely because the standard decision tree construction does

not afford this direct size control and makes unfortunate splits

that substantially increase the transducer size.

If we were to try to use several generalized features, e.g.

word boundary, syllable boundary, and gender, together in

one model the number of states in a conventional construction

2Due to software and memory limitations with our conventional
tree-based system, we actually built C transducers only for triphones
in that case.

would likely be very unwieldy. In our construction, the num-

ber of states would be well-controlled. However, the number

of phone labels and hence C transitions would grow given how

we have chosen to encode the features. This raises the possi-

bility of changing the objective function to count the number of

transitions in C instead and to create new phone labels only as

needed.

In this work we considered only a single phone right con-

text. To handle an r-phone right context, we could initialize

the optimization with the appropriate pr state transducer with a

fixed r-phone shift between input and output labels. However,

this would make obvious that our construction builds a minimal

automaton (i.e., the minimal transducer among all equivalent

deterministic transducers with the same alignment between in-

put and output labels) and not a minimal transducer (among all

deterministic transducers irrespective of that alignment) [11]. It

would be interesting to explore the possibility of building the

true minimal transducer at each step in the iteration.
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