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Abstract

Since 2008, interview-style speech has become an important part of the
NIST Speaker Recognition Evaluations (SREs). Unlike telephone speech,
interview speech has lower signal-to-noise ratio, which necessitates robust
voice activity detectors (VADs). This paper highlights the characteristics of
interview speech files in NIST SREs and discusses the difficulties in perform-
ing speech/non-speech segmentation in these files. To overcome these diffi-
culties, this paper proposes using speech enhancement techniques as a pre-
processing step for enhancing the reliability of energy-based and statistical-
model-based VADs. A decision strategy is also proposed to overcome the
undesirable effects caused by impulsive signals and sinusoidal background
signals. The proposed VAD is compared with the ASR transcripts provided
by NIST, VAD in the ETSI-AMR Option 2 coder, satistical-model (SM)
based VAD, and Gaussian mixture model (GMM) based VAD. Experimen-
tal results based on the NIST 2010 SRE dataset suggest that the proposed
VAD outperforms these conventional ones whenever interview-style speech
is involved. This study also demonstrates that (1) noise reduction is vital for
energy-based VAD under low SNR; (2) the ASR transcripts and ETSI-AMR
speech coder do not produce accurate speech and non-speech segmentations;
and (3) spectral subtraction makes better use of background spectra than the
likelihood-ratio tests in the SM-based VAD. The segmentation files produced
by the proposed VAD can be found in http://bioinfo.eie.polyu.edu.hk/ssvad.
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1. Introduction

NIST speaker recognition evaluations (SREs) have been focusing on text-
independent speaker verification over telephone channels since 1996. In re-
cent years, NIST introduces interview-style speech into the evaluations. For
example, the speech files in NIST 2008 SRE contain conversation segments
of approximately five minutes of telephone speech and three minutes of in-
terview speech, and the speech files in NIST 2010 SRE contain interview
recordings with duration ranging from three to fifteen minutes. In each
speech file, about half of the conversation contains speech, and the remain-
ing part contains pauses or silence intervals. The inclusion of non-speech
intervals in the speech files necessitates voice activity detection (VAD) be-
cause these intervals do not contain any speaker information. In particular,
VAD can be used to identify speech segments prior to the feature extraction
process.

Speech/Non-speech detection can be formulated as a statistical hypoth-
esis problem aimed at determining to which class a given speech segment
belongs. However, a high level of background noise can cause numerous
detection errors, because the noise partly or completely masks the speech
signal [39]. A robust decision rule that works under noisy conditions is
therefore essential. Most of the existing VAD algorithms are effective un-
der clean acoustic environments, but they could fail badly under adverse
acoustic conditions [5].

Traditionally, VAD uses periodicity measure [49], zero-crossing rate [4],
pitch [10], energy [53], spectrum analysis [36], higher order statistics in the
LPC residual domain [37], or combinations of different features [47]. More
sophisticated VAD techniques have been proposed for real-time speech trans-
mission on the Internet [43] and mobile communication services [20]. In par-
ticular, the adaptive multi-rate (AMR) codec option II (AMR2) [19] uses a
decision logic based on the energy of 16 frequency bands, background noise,
channel SNR, frame SNR, and long-term SNR [11]. The VAD of this codec
takes advantage of speech encoder parameters and is more robust against
environmental noise than its earlier version (AMR1) and G.729 [48]. More-
over, the VAD decision threshold can be adapted dynamically according
to the acoustic environment, allowing on-line speech/non-speech detection
under non-stationary acoustic environments.

More recently, research has focused on statistical-model-based VAD where
individual frequency bins of speech are assumed to follow a parametric den-
sity function [44]. In this approach, VAD decisions are based on likelihood
ratio tests (LRTs) where the geometric mean of the log-likelihood ratios of
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individual frequency bins are estimated from observed speech signals. The
statistical model can be Gaussian [44] or generalized Gaussian [24]. How-
ever, it has been recently found that Laplacian and Gamma models are
more appropriate for handling a wide variety of noise conditions [9]. Using
an online version of the Kolmogorov-Smirnov test, the type of models can
be selected adaptively for different noise types and SNRs [9]. To improve
the robustness of VAD under adverse acoustic environment, contextual in-
formation derived from multiple observations has been incorporated into the
LRT (MO-LRT) [41]. Gaussian mixture models have been applied to model
the static harmonic-structure information and the long-term temporal infor-
mation of speech. VAD decisions are then based on the log-likelihood ratios
computed from the clean and noise GMMs [48, 21]. In [46], Wiener filtering
is applied to remove noise before extracting acoustic features for training
the speech and non-speech GMMs.

Characteristics of speech and non-speech signals have also been modeled
by hidden Markov models (HMMs). For example, in [50], a decision-tree al-
gorithm that combines the scores of HMM-based speech/non-speech models
and speech pulse information was used for rejecting far-field speech in speech
recognition systems. Both [21, 52] and [50] use statistical models to char-
acterize speech and non-speech signals, with some decision logics governing
the switching between speech and non-speech states. The difference being
that in the GMM-VAD of [21], state duration is governed by the number
of speech frames (as detected by the GMMs) in a fixed-length buffer, and
that in the GMM-VAD of [52] state duration is governed by a hangover and
handbefore scheme which detects the consonants occurred at the beginning,
middle and the end of words; whereas in the HMM-VAD of [50], the state
duration is controlled by the state-transition probabilities of the HMMs and
speech pulse information. Note that both GMM- and HMM-based VADs
require ground-truth speech/non-speech segments for training the statisti-
cal models. Unfortunately, these labeled segments are not available in NIST
SREs.

The VAD problem has also been formulated as an edge-detection prob-
lem. For example, in [30], two optimal 1-D filters with responses invariant to
various background noise levels are designed to detect the beginning edges
and ending edges of the energy profile of speech signals. To detect the be-
ginning edges, the filter has positive response to a beginning edge, negative
response to an ending edge, and near-zero response to silence. The filter
for detecting the ending edge has the opposite characteristics and has more
time points. The filters are operated as a moving-average filter on the energy
envelope and their outputs are compared with dynamic decision thresholds
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estimated from a 2-mode Gaussian mixture model.
In recent NIST SREs, several sites provided the details of their VAD in

the system descriptions. Typically, these systems use energy-based methods
that estimate a file-dependent decision threshold according to the maximum
energy level of the file [28]. Some sites used the periodicity of speech frames
or the power of noise-removed speech frames to make speech/non-speech de-
cisions [26, 45, 31, 54]. An alternative approach is to use the ASR transcripts
supplied by NIST to remove the non-speech segments [12].

In this paper, we propose a VAD that is specifically designed for NIST
SREs. Special attention has been paid to address the low SNR, impulsive
noise, and cross talks in the interview-style speech files. The main idea is
to apply speech enhancement as a pre-processing step to boost the SNR of
the speech segments, which facilitates the subsequence speech/non-speech
decisions either by log-likelihood ratio tests or comparing with energy-based
thresholds. While this strategy has been adopted in the past, e.g., [46, 40,
32], our proposed VAD has some important differences. For example, the
VAD in [46] requires the training of speech and non-speech GMMs, whereas
ours does not require training. This requirement is a burden for situations
like NIST SREs because labeled speech segments are not available. The
Wiener filtering in [46, 40] and the wavelet denoising in [32] also need to
strike a good balance between spectral distortion and the degree of noise
removal because decisions of these VADs are based on the spectral features
of the noise-reduced speech. Our VAD, on the other hand, does not use
the spectral features for VAD decisions. Therefore, it can leverage the over-
subtraction to boost the SNR for better discrimination between speech and
non-speech. To the best of our knowledge, our study provides the first
comprehensive comparison between different VADs for NIST SREs. Results
based on NIST 2010 SRE suggest that the proposed VAD outperforms the
VAD in AMR2, the transcriptions provided by NIST, and statistical model-
based VAD.

In Section 2, we highlight the characteristics of the interview speech files
in NIST SRE and explain why conventional VAD techniques will encounter
difficulty in detecting speech in these files. Then, in Section 3, we outline
two state-of-the-art statistical VADs and explain how they can be applied
to NIST SREs. Section 4 proposes using speech enhancement techniques
as a pre-processing step for improving the statistic model based VAD and
energy-based VAD. Experimental evaluations comparing different types of
VADs under NIST 2010 SRE are then presented in Section 5.
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2. Characteristics of Interview Speech in NIST SREs

In early NIST SREs, researchers seldom pay attention to VAD. This is
because the telephone speech files in early SREs have high signal-to-noise
ratios (SNRs), making VAD a trivial task. The high SNR in telephone
speech is resulted from the close proximity between speaker’s mouth and
the handset. In interview speech, however, different microphone types were
used for recording. For example, twelve microphones were used in NIST
2008 SRE,1 and in NIST 2010 SRE, the interviewees used different types
of far-field microphones, such as lavaliere microphones, camcorders, and
hanging microphones [34]. These microphones lead to files with the following
characteristics:

1. Low SNR. Depending on the microphone types, some of the inter-
view speech segments have low SNR, causing problems in conven-
tional VAD. Fig. 1(a) shows the waveform of an interview speech file
(ftvhv.sph) in NIST 2008 SRE, and Fig. 1(c) highlights a short seg-
ment of the same file. The NIST STNR Tool2 indicates that the SNR
of this file is 5dB. Although this level of SNR is not very low, it already
causes numerous errors in an energy-based VAD, as indicated by “AE-
VAD” in the lower panel of Fig. 1(c). Fig. 2 shows the histograms of
SNR of interview speech files in NIST 2008 and 2010 SRE. While the
mean SNRs of these two databases are high (22dB and 21dB, respec-
tively), about 2% of the files have SNR less than 5dB, i.e., about 2%
of the files have situation similar to Fig. 1. The VAD errors in these
files will have detrimental effect on speaker verification performance,
which will be demonstrated in Section 5.

2. Impulsive. Some of the files in NIST 2010 SRE contain a large number
of spikes that seriously mask the amplitude of speech segments, as
illustrated in Fig. 3.

3. Low-energy speech superimposed on periodic background signals. Some
files contain low-energy speech superimposed on periodic background
noise, as exemplified in Fig. 4.

1Some of these microphones are of the same models, but they were placed at different
positions with respect to the speakers.

2This tool is part of the Speech File Manipulation Software(SPHERE) Package Version
2.7, available from http://www.nist.gov/itl/iad/mig/tools.cfm.
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4. Cross talk. Each interview speech file in NIST 2010 SRE contains two
channels, one recording the speech of an interviewee and the other
the speech of an interviewer. As far-field microphones were used for
recording interviewee’s speech, a low-energy crosstalk signal appears in
the interviewee’s channel when the interviewer is talking, causing the
VAD mistakenly considers the crosstalk as belonging to the intervie-
wee. This situation is exemplified in Fig. 5(a) in which the microphone
of the interviewee’s channel picks up the speech of the interviewer in
Interval A.

As shown in these figures, conventional energy-based VAD fails to detect
the speech segments under such conditions.

3. Statistical Voice Activity Detection

This section highlights the merit of the statistical model based VAD
[44] and GMM-based VAD [21] and explains how they can be applied to
detect the speech segments of NIST SRE speech files. The section focuses
on the decision logic and threshold determine methods that are specifically
designed for the SREs.

3.1. Statistical Model (SM) Based VAD

In SM-based VAD [44], speech/non-speech segmentation is formulated
as a hypothesis testing problem:

H0 : speech absent : Y (m) = B(m)

H1 : speech present : Y (m) = X(m) +B(m)
(1)

where Y (m), X(m), and B(m) represent the DFT of noisy speech, clean
speech, and background noise at frame m, respectively. The complex DFT
coefficients in Y (m), X(m), and B(m) are assumed to be independent and
normally distributed. For each frame m, a VAD score Γ(m) is computed
based on the VAD score of the previous frame and the likelihood ratio Λ(m)
at the current frame:

Γ(m) =
P (H0)

P (H1)

[

a01 + a11Γ(m− 1)

a00 + a10Γ(m− 1)

]

Λ(m)
H1

≷
H0

η (2)

where aij , Pr(q(m) = Hj|q(m − 1) = Hi) are state-transition probability
and P (H0) and P (H1) are prior probability. Because DFT coefficients are
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assumed to be independent, we have

Λ(m) =

[

K−1
∏

k=0

p(Yk(m)|H1)

p(Yk(m)|H0)

]

1

K

(3)

where K is the number of frequency bins and p()’s are complex normal
densities. The VAD score is then compared with a decision threshold η to
make speech/non-speech decisions.

To apply SM-based VAD to detect speech segments in NIST SRE files,
the SM scores Γ(m) of the entire utterance are ranked in descending order
as shown in Fig. 6. Then, a fixed percentage of scores in the lower and upper
ends of the ranked list are selected and assumed to be the background frames
and peak frames, respectively. The VAD’s fixed decision threshold is a linear
combination of the score mean of the lower end (Γ̄b) and the minimum score
in the upper end:

η = νΓ̄b + (1− ν)min{Γ(p1), . . . ,Γ(pL)}, (4)

where 0 ≪ ν < 1 is a weighting factor and {Γ(p1), . . . ,Γ(pL)} are top-L
scores. Note that L cannot be too large; otherwise the rank list may include
the peaks of some high-energy speech frames, which will lead to under-
estimation of η. However, when L is too small, some medium-amplitude
spikes will be missed. It was found that the influence of spikes can be
largely eliminated by using the minimum amplitude in this ranked list, as
evidenced by the VAD result in the Fig. 3.

The above procedure raises the issue of determining an appropriate per-
centage for the lower and upper ends of the ranked score list. These per-
centages can be founded by inspecting several interview speech files in NIST
2005–2008 SREs. By examining some of these files, we found that it is
fairly safe to assume that among all the frames in a speech file, 10% are
background frames and 5% contain signal peaks.

3.2. Gaussian Mixture Model (GMM) Based VAD

Mel-frequency cepstral coefficients (MFCCs) are known to be inadequate
for discriminating speech and non-speech frames, primarily because of the
similarity between the static MFCC vectors of speech and background noise.
On the other hand, the harmonic structures of speech and background noise
are more distinguishable and more noise robust [25]. Based on this argu-
ment, Fukauda et al. [21] extracted the harmonic-structure-based features
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from the middle range of the cepstral coefficients obtained from the discrete
cosine transform (DCT) of the power spectral coefficients.

The cepstral coefficients ci(m) with small and large indexes i are liftered
out because they include long and short oscillations. On the other hand,
the coefficients in the middle part of the cepstrum capture the harmonic
structure information in the human voice. The liftered cepstrum ĉi(m) is
converted back to the log power spectrum by inverse DCT, followed by
the exponential transform to obtain the linear power spectrum. The power
spectrum are finally converted to mel-cepstrum q̂n(m) by applying a mel-
scale filter bank and DCT, where n is the bin number of the harmonic
structure-based mel cepstral coefficients. This feature captures the envelope
information of the local peaks in the frequency spectrum corresponding to
the harmonic information in the speech signals. Fig. 7 shows the procedure
of extracting the harmonic-structure-based features.

Dynamic (spectro-temporal) features capture the variation of the spec-
tral envelopes along the time axis. They are typically obtained by estimat-
ing the derivative of 5 to 9 consecutive acoustic vectors. The first-order
derivative of a sequence of cepstral vectors is called delta cepstrum, and the
second-order derivative is called delta-delta cepstrum.

In GMM-based VAD, the speech/non-speech decision at framem is given
by the log-likelihood ratio

L(m) = log p(y(m)|H1)− log p(y(m)|H0)
H1

≷
H0

η, (5)

where the acoustic vectors y’s are assumed to follow a mixture of Gaussian
distribution:

p(y|Hi) =

J
∑

j=1

wijN (y;µij ,Σij) (6)

where wij , µij andΣij are the mixture weights, mean vectors and covariance
matrices for either speech (i = 1) or non-speech (i = 0) model.

The decision threshold η is determined by a strategy similar to that
of SM-VAD (Eq. 4) described in Section 3.1. Specifically, 20% and 5% of
a speech file are assumed to contain background frames and signal peaks,
respectively.

Unlike the SM-based VAD, the GMM-based VAD requires the training
of two GMMs – one representing speech and another one representing non-
speech. This means that some speech files with speech and non-speech
segmentations are required. In theory, the segmentations had better be
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the ground-truths, i.e., they need to be done by listening tests and human
inspections of spectrograms. This is not a problem if clean speech files are
available and the VAD is tested on the same files with noise added to them,
e.g., the experiments in [21]. However, in NIST SREs, the requirement of
ground-truth segmentations will cause difficulty because no clean speech files
are available for the listening tests. Even if we can find some interview-style
speech files with high enough SNR for the listening tests, they may be too
clean and therefore cannot represent the realistic situations in other noisy
speech files. Furthermore, hand labeling a large number of speech files is
too laborious and time-consuming.

Here, we propose an automatic method that can find speech and non-
speech segments that are close enough to the ground-truths for training the
GMMs. Fig. 8 shows the procedure. Unlike the VAD in [21], our GMM-
based VAD contains an extra processing block – Frame Index Extraction –
that finds the frame indexes of speech and non-speech segments with very
high confidence of being correct. This seems to be a chicken-and-egg problem
because if a reliable VAD exists, we do not need to build a new one in the
first place. However, having some reliable speech and non-speech segments
does not mean that we need a reliable VAD to detect both at the same
time. The idea is that we can always make a simple energy-based VAD very
reliable in detecting speech but extremely unreliable in detecting non-speech
by adjusting the decision threshold such that it can achieve a very low false
alarm (consider non-speech as speech) but having a very high missing rate
(consider speech as non-speech). A similar argument applies to the reliable
detection of non-speech. Because this simple VAD can only maintain either
the false alarm or missing rate low but not both, it can only be used as a
pre-processing step in more sophisticated VADs such as the one illustrated
in Fig. 8.

The idea is to leverage the large number of speech files in NIST SREs.
Specifically, for each interview-style speech files in the training set (e.g., past
NIST SREs), a simple energy-based VAD is used to determine the energy
of all frames. Then, the frames are ranked in ascending order of energy as
illustrated in Fig. 9. The top 5% of the ranked list are discarded because
the high energy is most likely caused by spiky signals instead of speech.
Because of the simplicity of the energy-based VAD, there will be many false
alarms and misses in the detections. Therefore, only a small percentage in
the upper- and lower-part of the ranked list are considered as speech and
non-speech, respectively. More precisely, 99% of the frames in the middle
of the ranked list will be discarded, and only the frames with a very high
confidence of having a correct segmentation are retained for training the
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GMMs.
Given the frame indexes of speech and non-speech segments, static har-

monic features and long-term dynamic features are extracted and concate-
nated, forming two streams of feature vectors as shown in Fig. 8. These
concatenated features vectors are then used to train the GMMs. In this
work, 3,569 interview-style utterances from NIST SRE 2005–2008 were used
for training the GMMs. This amount to 280,010 training vectors per GMM.
The number of mixtures J was set to 32, and all Gaussians have a full
covariance matrix.

One advantage of the GMM-based VAD is that it is less susceptible
to spiky signals because these signals have low-level of harmonic contents
and their temporal property is also different from that of speech signals.
However, GMM-based VAD also has its own limitations. In particular,
because the GMM-based VAD does not rely on SNR, it may falsely detect
some weak cross-talks from other speakers as speech segments as long as
the cross-talks contain speech-like characteristics. This drawback can be
alleviated by using spectral subtraction as a pre-processor because the weak
cross-talks will be considered as background signals so that they can be
largely eliminated in the spectral subtraction process. Further discussions
on the use of spectral subtraction as a pre-processor can be found in the
next section.

4. Speech Enhancement for VAD

Noise removal is a vital step for pre-processing the interview speech files
in NIST SREs because many of them have low SNR. This paper proposes to
apply spectral subtraction (SS) with a large over-subtraction factor to dis-
card the background noise as much as possible before passing the enhanced
speech to an energy-based VAD. Advanced speech enhancement techniques
(e.g. MMSE [16] and LSA-MMSE [17]) have not been used because au-
dio quality of reconstructed speech is not the main concern.3 Instead, it
is more important to increase the SNR in speech regions and to minimize
the background noise in non-speech regions. Spectral subtraction meets this
requirement without unnecessarily complicating the whole system.

3Acoustic features (MFCCs) were extracted from the original signals instead of from
the reconstructed signals.
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4.1. Noise Reduction via Spectral Subtraction

To obtain the enhanced speech x̂(t) from the noisy speech y(t) at frame
m, we implemented the spectral subtraction [6, 15, 51] of the form

X̂k(m) =

{

[|Yk(m)| − α(m)|B̂k|]e
jϕk(m) if |Yk(m)| > (α(m) + β(m))|B̂k|

β(m)|B̂k|e
jϕk(m) otherwise,

(7)
where k is the frequency bin index, ϕk(m) is the phase of Yk(m), B̂k is the
average spectrum of some non-speech regions, α(m) is an over-subtraction
factor for removing background noise, and 0 < β(m) ≪ 1 is a spectral
floor factor ensuring that the recovered spectra never fall below a preset
minimum. The value of α(m) and β(m) are computed as

α(m) = −
1

2
γ(m) + c (αmin ≤ α(m) ≤ αmax)

β(m) =

{

βmin if γ(m) < 1
βmax otherwise

(8)

where γ(m) =
∑

k
|Yk(m)|

∑
k
|B̂k|

is the a posteriori SNR, c is a constant (= 4.5

in this work), αmin, αmax, βmin, and βmax constrain the allowable range of
the over-subtraction factor and the noise floor. We set these values such
that the speech spectra are over-subtracted when the SNR is low. In this
work, we set αmax = 4, αmin = 0.5, βmax = 0.05, and βmin = 0.01. These
values were determined empirically through experimentations on an i-vector
systems (see Section 5.5) and by visual comparison between the original
and reconstructed waveforms of several speech files. Because of the small
βmax (≪ 1), musical noise occurs when some frequency components meet
the condition in the upper branch of Eq. 7 while some others do not. While
musical noise appears in both speech and non-speech regions, its energy in
non-speech regions is not high enough to cause false detections, as evident
in Fig. 1(d). Also, although this musical noise will degrade the perceptual
quality of the denoised speech, it is not a concern here because the denoised
speech is only used for VAD, not for speaker recognition, i.e., our goal is to
detect voice activity rather than speech enhancement.

Note that if the background noise is high, consonants with weak energy
will be masked by the noise. Therefore, it is more appropriate to exclude
these weak consonants by means of over subtraction. On the other hand,
if the background noise is low, |B̂k| in Eq. 7 is almost zero, meaning that
consonants will also be included.
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Fig. 2 shows the histograms of the speech files in 2008 and 2010 SREs
before and after spectral subtraction. Evidently, spectral subtraction can
improve the SNR significantly.

4.2. Threshold Determination and VAD Decision Logic

Fig. 10 shows the structure of the proposed energy-based VAD, which
we refer to as SS+AE-VAD. For each utterance, after noise removal, the
energy of each 10-ms frame is computed at every 1ms. To avoid excessive
fluctuation in the energy profile, a 40-tap moving average filter is applied to
smooth the profile.

The presence of spikes in some files affects the maximum SNR in these
files, which needs to be taken care of when determining the VAD decision
threshold. In particular, these spikes lead to overestimation of the decision
threshold if it is based on the background amplitude and the maximum
amplitude. Consequently, low-energy speech segments could be mistakenly
detected as non-speech. To address this problem, we have developed a simi-
lar strategy as the one in Section 3.1, but considering signal amplitude rather
than statistical scores. The decision threshold is a linear combination of the
mean of background amplitude (āb) and the minimum of the signal peaks:

η = νāb + (1− ν)min{a(p1), . . . , a(pL)}, (9)

where {a(p1), . . . , a(pL)} are the amplitudes (after the moving average filter)
of L largest-amplitude frames. In this work, L was set to 1% of the total
number of frames in the speech file. By comparing the amplitude of each
frame in the file with the threshold, those frames with amplitude larger than
the threshold are considered as speech frames.

Figs. 1(b) and (d) show the same speech file and segment as in Figs. 1(a)
and (c) but after spectral subtraction. Evidently, with the background noise
largely removed, speech and non-speech intervals can be correctly detected
by an energy-based VAD. To highlight the advantage of spectral subtraction,
Figs. 1(c) and 1(d) compare the segmentation results of SS+AE-VAD and
that of the ETSI-AMR coder (Option 2). The figure suggests that this
coder over-estimates the length of speech segments, whereas the SS+AE-
VAD correctly detects the speech segments.

5. Experiments and Results

VAD algorithms are typically evaluated by comparing the VAD decisions
on clean speech against the VAD decisions on noise contaminated speech
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VAD Description

1 AE-VAD Energy-based VAD with the decision governed by the combination be-
tween average magnitude of background noise and signal peaks. The
combination is controlled by a weighting factor (ν in Eq. 9).

2 ASR-VAD Speech segments in the Automatic Speech Recognition transcripts pro-
vided by NIST [34].

3 AMR-VAD VAD in ETSI Adaptive Multi-Rate coder (Option2) [18].
4 SM-VAD Sohn’s statistical-model-based VAD [44] incorporated with a fixed

threshold, determined by Eq. 4.
5 GMM-VAD Gaussian-mixture-model-based VAD using long-term temporal informa-

tion and harmonic structure-based features in noisy speech [21] incor-
porated with a fixed decision threshold.

6 SS+SM-VAD SM-VAD with spectral subtraction as a pre-processing step.
7 SS+AE-VAD AE-VAD with spectral subtraction as a pre-processing step.

Table 1: The voice activity detection (VAD) methods being applied in this
paper and their acronym.

[3], with performance shown on a receiver operating characteristic (ROC)
curve. However, the noisy speech files in NIST SREs do not have their clean
counterparts. Instead of hand labeling thousands of speech files, we used
the performance indexes of speaker verification, i.e. equal error rate (EER),
detection error tradeoff (DET) curves, and minimum normalized decision
cost function (DCF) for quantifying VAD performance. Discussions and
explanations of these performance indexes can be found in [33] and the
evaluation plans of NIST SRE.4

The experiments involve seven VADs, as shown in Table 1. Among
the five conventional VADs (VADs 1–5), we applied spectral subtraction
to the best performing (SM-VAD) and the worst performing (AE-VAD)
ones, resulting in SS+SM-VAD and SS+AE-VAD in the last two rows of
Table 1. By comparing the speaker verification performance obtained by
these VADs against the ones without spectral subtraction, we can observe
the contribution of spectral subtraction to the VAD performance.

5.1. Speech Data

NIST 2005–2010 SREs were used in the experiments. NIST’05–08 SREs
were used as development data, and NIST’10 was used for performance eval-

4http://www.itl.nist.gov/iad/mig/tests/spk/2010/index.html
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uations. Only male speakers in these corpora were used. The core task of
NIST’10 is divided into 9 common conditions. Conditions 1, 2, 4, 7 and 9
were considered because interview speech and telephone speech collected by
different microphones are involved in these five conditions. Detail descrip-
tions of these five conditions can be found in Section 4 of [35].

5.2. Speaker Modeling and Channel Mismatch Compensation

The target-speakers were modeled by GMM-SVM [7] and i-vectors [14].
For the GMM-SVM systems, we extracted 12 MFCCs [13] and their

first derivatives from the speech regions of the utterances to create 24-
dim acoustic vectors. Cepstral mean normalization [1] was applied to the
MFCCs, followed by feature warping [38]. A 512-center gender-dependent
universal background model was created by using the interview utterances of
NIST’05–06. MAP adaptation [42], with relevance factor set to 16, was then
performed for each of the target-speakers to create target-dependent GMMs.
The same MAP adaptation was also applied to 300 background speakers
(also from NIST’05–06) to create 300 impostor GMMs. The mean vectors
of these GMMs were stacked to produce 12288-dim GMM-supervectors [7].
Finally, a GMM-SVM speaker model for each target speaker is trained by
using his target-dependent GMM-supervector and the background GMM-
supervectors. The utterances of 144 male speakers from NIST’05–08 were
used for estimating the gender-dependent nuisance attribute projection (NAP)
matrices [8] to reduce channel effects (NAP corank was set to 128). Each
of these 144 speakers has at least 8 utterances. For the T-norm speaker
models [2], 300 male utterances from NIST’05 were used.5 The same set of
background speakers used for creating the target-speaker SVMs were used
for creating the T-norm SVMs.

For the i-vector systems, 19 MFCCs together with energy plus their 1st-
and 2nd- derivatives were extracted from the speech regions as detected by
the VADs, followed by cepstral mean normalization and feature warping with
a window size of 3 seconds. A 60-dim acoustic vector was extracted every
10ms, using a Hamming window of 25ms. NIST 2006–2008 microphone data
were used to train a 1024-center UBM. We selected 6,102 utterances from
191 speakers in NIST 2005–2008 SREs to estimate a total variability matrix
with 400 total factors. Then, we used 9511 utterances of these 191 speakers

5It was drawn to the authors’ attention that performance could be improved if impos-
tors and T-norm speakers from NIST’08 were used because they match the test speakers
in NIST’10 better.
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Equal Error Rate (%) Minimum Normalized DCF
VAD Method CC1 CC2 CC4 CC7 CC9 Overall CC1 CC2 CC4 CC7 CC9 Overall

AE-VAD 6.57 11.72 7.23 12.28 7.44 10.30 0.84 0.99 0.96 0.84 0.97 0.97

ASR-VAD 5.15 8.58 7.74 12.81 5.74 8.88 0.78 0.85 0.74 0.88 0.77 0.90

AMR-VAD 4.44 8.05 9.44 12.85 5.98 9.61 0.81 0.85 0.80 0.77 0.55 0.90

GMM-VAD 3.64 5.68 5.71 8.93 4.27 6.28 0.71 0.72 0.72 0.63 0.45 0.82

SM-VAD 3.23 4.68 4.49 9.48 3.06 5.03 0.66 0.68 0.70 0.65 0.38 0.77

SS+SM-VAD 2.83 4.45 4.04 7.58 2.56 4.80 0.62 0.61 0.70 0.59 0.42 0.76

SS+AE-VAD 2.82 4.44 3.51 6.70 2.37 4.55 0.70 0.58 0.62 0.64 0.17 0.72

Table 2: Performance of GMM-SVM systems based on 7 VADs under Com-
mon Conditions (CC) 1, 2, 4, 7 and 9 of NIST 2010 SRE (male speakers).
Refer to Table 1 for the definition of the VADs.

.

to estimate the Gaussian PLDA [22] loading matrix with 150 latent variables.
We applied length normalization [22] to all i-vectors before computing the
loading matrix.

5.3. Selection of Threshold Parameters for SS+AE-VAD

As mentioned in Section 4, energy-based VAD requires a decision thresh-
old for making speech/non-speech decisions. An experiment was conducted
to investigate the effect of varying the weighting factor ν (Eq. 9) on the
energy-based VAD.

Fig. 11 suggests that the best range of ν in Eq. 9 is between 0.95 and 0.99.
Once this value drops below 0.95, the performance degrades rapidly. This
implies that the peak amplitudes can only be used as a reference for setting
the VAD decision threshold, whereas the background amplitudes are more
trustworthy. However, the threshold cannot totally relies on the background
amplitude, because the EER and minDCF increase when ν increases from
0.99 to 1.0.

5.4. Comparing Different VADs

Based on the results in Section 5.3, the weighting factor ν in Eq. 9 was set
to 0.95 and 0.96 for AE-VAD and SS+AE-VAD, respectively. For SM-VAD,
SS+SM-VAD, and GMM-VAD, ν in Eq. 4 was set to 0.993.

Table 2 shows the equal error rate (EER) and minimum normalized de-
cision cost function (minNDCF) achieved by the GMM-SVM systems. The
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results suggest that preprocessing the noisy sound files by spectral subtrac-
tion is a promising idea. After applying SS, the AE-VAD and SM-VAD
reduce the overall EER by 56% and 5% respectively.

Fig. 12 shows the DET performance achieved by the seven VADs. The
results show that SS+AE-VAD achieves a significant lower error rates than
the ETSI-AMR coder, ASR transcripts and the simple energy-based VAD
for a wide range of operating points.

The results shows that SM-VAD performs better than GMM-VAD for
detecting interview speech in NIST SREs. Note that this result does not
mean that SM-VAD is better than GMM-VAD for all tasks. In fact, the
conditions in NIST SREs are disadvantageous to GMM-VAD because the
GMMs of this VAD requires a large number of ground-truth speech and non-
speech segments for training. Unfortunately, in NIST SREs, such segments
are not available. Therefore, we developed an automatic approach (see Sec-
tion 3.2) to finding a large number of speech and non-speech segments that
are close enough to the ground-truth as substitutions. The SM-VAD, on
the other hand, does not require any ground-truth segments. Therefore, it
is more appropriate for NIST SREs.

We notice that both SS and SM work well for the interview speech in
NIST 2010 SRE. The error rates achieved by SS+AE-VAD, however, are
slightly lower than that achieved by SM-VAD.

Comparing the results of AE-VAD and SS+AE-VAD reveals that SS has
significant contribution to the conventional energy-based VAD. However, the
performance of SS+SM-VAD is only slightly better than that of SM-VAD.
This suggests that SS is not vital to the statistical-model-based VAD. The
reason is that in SM-based VADs, the background spectrum has already
been taken into account in the scoring function. As pre-processing the noisy
speech by spectral subtraction is another approach to using the background
spectrum, therefore in SS+SM-VAD, the background spectrum has been
used twice. As a result, the gain of applying SS to SM-VAD is not as
significant as applying SS to AE-VAD.

Note that SS+AE-VAD and SM-VAD use the background spectrum in
a different manner. For the former, the background spectrum is used for
spectral subtraction, whereas for the latter it is used for computing the
likelihood ratio scores. This difference enables us to make better use of
the background spectrum in SS+AE-VAD. Specifically, to remove as much
background noise as possible, we may apply a large upper-limit for the over-
subtraction factor (αmax) and a small lower-limit for the noise floor (βmin).
The over-subtraction factor α(m) is a linear function of the a posteriori SNR
for certain range of SNR and is bounded by the lower- and upper-limit when
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the SNR is beyond this range. As a result, more background noise will be
removed in low SNR region whereas more speech content will be retained
in high SNR region. The SM-VAD, on the other hand, does not have such
property because the background spectrum is assumed constant for both
low and high SNR.

The results show that using the ASR transcripts provided by NIST SRE
Workshop as VAD leads to poor speaker verification performance, suggest-
ing that the ASR transcripts do not produce accurate speech/non-speech
segmentations. The VAD in ETSI-AMR coder also performs poorly. This
is mainly caused by the overestimation of both the speech onset and offset
regions. To ensure the intelligibility of the encoded speech, it is important
for the VAD in a speech coder to include speech onsets and offsets. However,
this overestimation is not appropriate for speaker verification, as excessive
amount of non-speech will be used for verification.

5.5. Performance of I-Vector Systems

While Table 2 suggests that spectral subtraction is an appropriate pre-
processing step for both energy-based VAD and statistical-model based
VAD, it is of interest to investigate if spectral subtraction is also suitable
for state-of-the-art i-vector systems. To further compare the performance
of the proposed VAD with more advanced statistical VADs, the distribution
of DFT coefficients in SM-VAD were assumed to follow not only Gaussian
distributions but also Laplacian and Gamma distributions, similar to that
of [9].

The performance of SM-VAD (Gaussian) with and without spectral sub-
traction is shown in Table 3. Evidently, spectral subtraction can help the
SM-VAD. Results also show that SM-VAD based on Gamma distributions
performs slightly better than Sohn’s classical SM-VAD in terms of EER, but
in terms of minimum DCF, Sohn’s SM-VAD peforms better.

Recall from Eq. 8 that there are several parameters in spectral subtrac-
tion. It is of interest to see if the performance of SS+AE-VAD is sensitive
to these parameters. Among the parameters in this VAD, αmax and βmax

have the greatest impact on the denoised waveform. Therefore, we varied
these two parameters and investigated how they affect the performance of
the i-vector systems. As shown in Table 3, the performance of SS+AE-VAD
is the best when αmax = 4 or 8 and βmax = 0.05, which also agree with the
configuration we used for the GMM-SVM system in Table 2.

As αmax determines the maximum amount of noise to be subtracted from
the noisy signal, the good performance at large value of αmax in Table 3
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Method Equal Error Rate (%) Minimum Normalized DCF
CC1 CC2 CC1 & 2 CC1 CC2 CC1 & 2

SM-VAD (Gaussian) 1.82 3.14 3.02 0.295 0.468 0.487

SM-VAD (Laplacian) 2.02 2.90 2.92 0.299 0.485 0.536

SM-VAD (Gamma) 1.92 2.91 2.87 0.314 0.487 0.540

SS+SM-VAD (Gaussian) 1.48 2.31 2.30 0.315 0.483 0.511

SS+AE-VAD

αmax = 1 2.93 4.76 4.43 0.395 0.665 0.617
αmax = 2 1.40 2.59 2.54 0.353 0.466 0.512

(βmax = 0.05)
αmax = 4 1.60 2.68 2.55 0.351 0.463 0.470

αmax = 8 1.60 2.68 2.55 0.351 0.463 0.470

SS+AE-VAD βmax = 0.1 1.69 2.68 2.55 0.356 0.458 0.481
(αmax = 4) βmax = 0.5 4.35 4.93 4.92 0.354 0.493 0.518

Table 3: Performance of an i-vector system based on statistical-model
based VAD (SM-VAD) with three different distributions of DFT coefficients
and spectral-subtraction VAD (SS+AE-VAD and SS+SM-VAD) under the
interview-interview conditions of NIST 2010 SRE.

confirms our earlier argument in Section 4.1 that it is desirable to use over-
subtraction to remove as much noise as possible when the SNR is low.

6. Conclusions and Future Work

A voice activity detector specially designed for extracting speech seg-
ments from the interview-speech files in NIST SREs has been proposed and
evaluated under the NIST 2010 SREs protocols. Several conclusions can
be drawn from this work: (1) noise reduction is of primary importance for
energy-based VAD under low SNR; (2) it is important to remove the sinu-
soidal background noise as this kind of background signal could lead to many
false detection in energy-based VAD; (3) a reliable threshold strategy is re-
quired to address the spiky (impulsive) speech signals; and (4) our proposed
spectral subtraction VAD outperforms the segmentations derived from the
ASR transcripts provided by NIST, the VAD in the advanced speech coder
(ETSI-AMR, Option2), the state-of-the-art statistical-model-based VAD,
and Gaussian-mixture-model-based VAD in speaker verification.

The proposed VAD is optimized for interview speech in NIST SREs.
It is of interest to investigate its performance on other databases, including
those in speech recognition such as CENSREC-1-C speech database [29] and
Aurora 2 database [27]. The present study assumes that background noise
is stationary. It is of interest to apply methods – such as [23] – that can
deal with non-stationary noises in NIST SREs.
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(a) The whole speech file (without denoising)

(b) The whole speech file (with denoising)

Figure 1: Waveform, spectrogram, and speech/non-speech decision of an energy-
based VAD and the ETSI-AMR coder on an interview speech file. [(a) and (c)]
without denoising. [(b) and (d)] with denoising. The VAD decisions (S for speech
and N for non-speech) are shown in the bottom panels of (c) and (d). See Table 1
for the abbreviations of the VADs.
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Figure 1: (continued)
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(d) A short segment (with denoising)

Figure 1: (continued)
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Figure 2: Histograms of SNR of interview speech files in NIST 2008 and 2010
SREs before and after spectral subtraction. The SNRs were measured by the NIST
STNR Tool.
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