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Abstract

Speech output technology is finding widespread application, including in scenarios where intelligibility might be

compromised – at least for some listeners – by adverse conditions. Unlike most current algorithms, talkers continually

adapt their speech patterns as a response to the immediate context of spoken communication, where the type of

interlocutor and the environment are the dominant situational factors influencing speech production. Observations of

talker behaviour can motivate the design of more robust speech output algorithms. Starting with a listener-oriented

categorisation of possible goals for speech modification, this review article summarises the extensive set of behavioural

findings related to human speech modification, identifies which factors appear to be beneficial, and goes on to examine

previous computational attempts to improve intelligibility in noise. The review concludes by tabulating 46 speech

modifications, many of which have yet to be perceptually or algorithmically-evaluated. Consequently, the review

provides a roadmap for future work in improving the robustness of speech output.

Keywords: Speech production, modification algorithms

1. Introduction

It is a common experience to miss information-bearing fragments of speech relayed over public address systems

due to the presence of background noise, or to be surprised by an inappropriately-timed interjection from a speaking

navigation system while engaged in other tasks which make additional cognitive demands. Speech output, whether

live, recorded or synthetic, is used increasingly in conditions where correct reception of the message is not guaranteed.

To ensure that the intended message is correctly understood, developers of speech output technology have little choice

at present than to resort to rather crude measures such as increasing speech volume or repeating the message, both

of which can create an uncomfortable listening environment. Indeed, for those unfortunate enough to work in an
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environment of frequent, loud announcements, output speech is a form of noise which can contribute to ill health

[317].

Are there alternative approaches to maintaining speech intelligibility in challenging conditions? One source of

potential techniques comes from the observation of human talkers in similar contexts. It has long been known that

human talkers are capable of adjusting their own speech delivery in response to context. Here, the context might

be noise, which leads to speech production changes collectively described as Lombard speech, or it might be the

listener or audience, leading variously to the adoption of clear speech, foreigner-directed speech or infant-directed

speech amongst other listener-oriented styles. In general, talkers appear to make continuous modifications to message

generation to suit the needs of the situation, targetting an appropriate place on a continuum from casual (hypo) to clear

(hyper) speech [177]. The modifications to speech that characterise each speech style are moderately-well understood

at the level of changes to acoustic parameters (e.g., f0 and segment duration) and acoustic-phonetic mappings (e.g.,

vowel space). Precisely if and how observed changes in a talker’s speech patterns contribute to intelligibility is far

less clear.

Complementary approaches to speech modification are motivated by models of the auditory system, signal en-

hancement or linguistic entropy. A simple technique is to reallocate speech energy to those frequency regions pre-

dicted to contribute most to speech intelligibility, perhaps exploiting estimates of the masker spectrum to determine

where to boost speech energy to improve audibility. Speech modification algorithms are also influenced by techniques

from cognate domains, e.g., dynamic range compression from audio broadcasting. Likewise, information-theoretic

concerns such as increasing message redundancy can inspire modification approaches.

This review article examines both human and algorithmic modifications to speech. Starting with a top-level

taxonomy of possible goals of modification as seen from the point of view of a listener (section 2), those listening

contexts which induce modifications in human speech production are identified in section 3, and the resulting changes

in acoustic, phonetic and higher-level parameters are detailed in section 4. The perceptual effect of human speech

modifications is examined in section 5. section 6 reviews speech modification algorithms to date. Finally, in section 7

we draw together both behavioural and algorithmic studies into a unified compilation of speech modifications and

suggest new directions for research in intelligibility-enhancing speech modification.

2. A listener-oriented taxonomy of speech modification goals

Since maintaining intelligibility is our key focus in this review, one way to look at speech production changes in

response to context is in terms of how they might be expected to benefit the listener. In subsequent sections we group

both human and algorithmic modifications under the following four categories, which are ordered approximately from

low- to high-level.

Promoting audibility Here, the aim is to improve the audibility of the target speech by reducing the energetic

masking effect of the noise caused by the interaction of speech and noise at the level of the auditory periphery.
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Both simultaneous and non-simultaneous masking are well-described by computational models [e.g., 208, 70]

which allow prediction of the benefit of speech modifications. Changing the spectral slope of speech in a

masker-dependent manner is an example of an audibility-promoting speech modification.

Increasing coherence Audible fragments of speech which escape masking need to be allocated to a single ongoing

linguistic interpretation. This requirement can be challenging when the masker is itself speech, leading to a

form of informational masking which increases as the source and target get more similar [42]. One approach

to coherence-enhancing speech modification is to attach information to the target speech to ease the process

of grouping audible fragments together (e.g., by presenting it from a common spatial direction). Conversely,

modifications may attempt to increase the distance between the target and masker to enable their separation into

distinct auditory streams [39] (e.g., by changing the f0 to avoid collision with the background source).

Enhancing linguistic information Information-bearing elements of speech are encoded with a high degree of re-

dundancy, allowing speech to be degraded in various ways before intelligibility declines. For instance, at low

levels, syllable-rate temporal modulations are present across the entire spectrum, leading to a resistance against

masking, while at higher levels tactics such as lexical repetition or rephrasing also constitute redundant encod-

ing. Modifications in this category aim to actively increase redundancy (e.g., synthesising speech with multiple

cues to voicing; match interlocutor word choices), or better approximate canonical forms of speech.

Decreasing cognitive effort Interpreting speech output is often just one of several tasks which listeners are engaged

in. Modification approaches might seek to minimise the cognitive effort associated with speech processing.

This could involve simplifying the message or modifying it to better meet listeners’ expectations, or, in the

context of a dialog system, employing back channels to signal agreement or otherwise.

Note that the same modification might help intelligibility in more than one of the above categories. For example,

the use of more prototypical vowels could help to increase coherence, by permitting sequential grouping of speech

from the same talker, and at the same time decrease the cognitive effort required to process unfamiliar forms of speech

[97].

3. Communicative situations which induce speech production modifications

Types of speech that are produced with the goal of improving intelligibility are commonly referred to as ‘clear

speech’ or ‘hyper-speech’. However, these labels cover a great variety of situations and speech types that differ

in intention. First, there is a distinction between the ‘inadvertent or natural clear speech’ [31, 165] produced by

certain speakers who are intrinsically more intelligible than others (inter-speaker variability), and ‘deliberately clear

speech’ produced by one speaker in adaptation to a perturbed situation of communication or to a listener with reduced

comprehension (intra-speaker variability). Most studies of deliberately clear speech use an elicitation procedure in

which speakers are asked to imagine themselves speaking to a hearing impaired person [49, 236, 228, 299, 34] or
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to a non-native listener [206, 178, 207, 300]. By extension, the term ‘clear speech’ has been used to designate any

kind of hyper-articulated speech that aims at improving speech intelligibility or at preserving it in adverse listening

conditions. [298] provides a comprehensive review of clear speech.

For the current review, we avoid using the term ‘clear speech’ in favour of a more detailed categorisation based on

types of speech induced by either interlocutor- or environment-related factors.

3.1. Interlocutor-related speech types

Interlocutor-induced modifications occur in speech addressed to listeners (or machines) who are perceived by

the talker to have intrinsically reduced comprehension (i.e., regardless of listening environment), and includes the

following categories:

• Infant Directed Speech (IDS), also called ‘motherese’, ‘parentese’, ‘babytalk’ or Child Directed Speech (CDS)

[271, 214, 222, 178, 47, 75]

• Speech addressed to children with learning disabilities [36]

• Hearing-Impaired Directed Speech (HIDS) [235, 236, 263, 299, 137, 34, 35, 171]

• Hyper-visual speech and speech addressed to deaf persons [24, 18]

• Foreign Directed Speech (FDS) addressed to non native listeners [102, 206, 221, 26, 260, 270, 300, 179, 258]

• Machine Directed Speech (MDS) [44, 219, 45, 199]

• Speech used when correcting/amending [19]

• Pet Directed Speech (PDS) [47, 265, 17]

3.2. Environment-related speech changes

Environmental modifiations are those which occur when audibility (including self-audibility) is affected by – or

perceived to be affected by – the distorting effects of additive, channel or convolutional noise:

• Speech produced in noise, known as ‘Lombard speech’ (LS; [183]) [278, 146, 48, 226, 58, 115, 128] or speech

addressed to a listener whose audition is perturbed by noise [49, 128]

• Speech produced in filtered or reverberant environments [43, 230] or addressed to a listener through a distorted

transmission channel [68, 128].

• Speech addressed to a distant person [176, 297, 81, 51, 104, 230, 103, 105]
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3.3. Issues

The subdivision into interlocutor- and environment-related contexts is by no means absolute. Speech directed

to individuals with hearing impairment might share characteristics with speech produced in response to a perceived

loss of audibility caused by noise, for example. At the same time, speech induced by interlocutor and environment-

related contexts cannot always be treated as similar or even comparable. Interlocutor-related speech changes typically

possess adaptations – a slower speech rate, longer and more frequent pauses, exaggerated articulation – that might be

considered as communicative strategies that help the listener to retrieve and decode phonetic cues. In contrast, speech

changes induced by environmental factors are primarily characterised by an increase in vocal intensity (accompanied

by changes in fundamental frequency and spectrum) compared to speech produced at a comfortable level [254, 262,

293, 279]. Unlike interlocutor-induced speech, the primary goal of increased vocal intensity is not necessarily to

enhance the clarity of phonetic cues, but to preserve their audibility, a strategy that can even be detrimental to their

clarity [239, 240, 255, 146, 57]. As a consequence, complementary strategies are often observed in adverse conditions

whose aim is to simplify lexical and semantic decoding of the message.

Speech adaptations are not only motivated by the improvement of speech intelligibility, but also by social and

affective goals. For example, some of the modifications observed in IDS have no effect on speech intelligibility

but instead may express affect or aim at getting the infant’s attention [89, 295]. Thus, Pet Directed Speech (PDS)

demonstrates expressive intonation patterns like IDS, but no similar hyper-articulation [47, 265, 17]. Conversely, FDS

and MDS sometimes exhibit exaggerated segmental and prosodic cues similar to IDS, but lack expressive intonation

[44, 221, 219, 26, 300, 45] and in the case of ‘acted’ MDS reduced f0 range has been observed [199].

Another social adaptation to consider in the framework of speech enhancement is that of alignment (also re-

ferred to as speech accommodation or phonetic convergence). Indeed, it is now well known that people tend to

partially imitate each other when they interact, at the postural level as well as at respiratory, phonetic or lexical lev-

els [212, 224, 74, 151, 11, 14, 202, 12, 13]. This ‘convergence’ phenomenon – and its counterpart, divergence – is

believed to be primarily driven by social motivations, such as the desire to yield positive affective evaluation by the

interlocutor [118]. Nevertheless, this adaptation can also be considered as a strategy of speech enhancement, as it

helps to harmonise phonetic and lexical repertoires between the speech partners and may therefore contribute towards

successful communication [238].

4. Speech production changes in modified speech

In this section we identify and categorise, according to the taxonomy introduced in section 2, the large body of

previous work which has attempted to describe how speech changes as a response to interlocutor and environmental

factors. The identification of speech production changes with each of these levels of processing is not perfect: certain

speech production modifications can be expected to improve intelligibility by acting at more than one of these levels

(e.g., a slower speech rate can increase the likelihood of salient information escaping masking, decrease cognitive
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load and at the same time contribute to more canonical speech cues). In these cases, we have described the speech

modification at what we consider to be the processing level where the change is most effective.

4.1. Promoting audibility

Preserving and promoting audibility is the main problem in perturbed environments (noise, distance, filtering). To

compensate for such environments it has been argued that talkers aim to ‘expand speech sonority’ [21] by increasing

their vocal intensity, reallocating speech energy in the frequency domain and enhancing speech modulation over time.

Such strategies can in fact be detrimental to the clarity of phonetic cues [239, 255, 146].

4.1.1. Increased intensity

A global increase of speech intensity is observed in LS [e.g., 312, 172, 79, 278, 32, 146, 48] and HIDS [236],

as well as in speech produced at distance [310, 201, 104, 230, 105], with vocal intensity increasing as a quasi-linear

function of noise level or distance to the listener [168, 161, 172, 79, 73, 115, 104, 230].

4.1.2. Raised f0 and spectrum shift towards medium frequencies

The increase in vocal intensity is accompanied by a raised f0 [278, 30] and a flatter spectral tilt, resulting in

enhanced speech energy in medium and high frequencies [241, 236, 273, 278, 203, 146, 290, 48, 242]. These

modifications in average f0 and spectrum can simply be considered as direct consequences of an increase in vocal

effort [293, 279]. Nevertheless, the sensitivity of the human ear to sound pressure level is frequency-dependent and is

at its maximum around 3 kHz, so that these modifications in f0 and spectrum may result from an attempt to improve

audibility. Furthermore, speech produced in noise displays not only a flatter spectral tilt, but also a specific boost in

the amplitude of higher formants around 3-4 kHz [114], similar to the spectrum ‘ring’ observed in stage actors [22],

which may help in projecting the voice to a distant listener. Although speakers who are intrinsically more intelligible

than others do not necessarily produce speech with greater vocal intensity, they typically demonstrate enhanced speech

energy in the 1-3 kHz frequency band compared to less intelligible speakers [165].

Although IDS is not produced with increased vocal effort but rather at comfortable level [19], it is also commonly

characterised by a significant rise in average f0 [36]. This increase depends on the child’s age, gender and hearing

experience [216, 157, 319]. While f0 increases are observed in a great variety of languages, both tonal [292, 319] or

non-tonal [274, 245, 126, 19], there is some evidence that they are not a universal feature of babytalk [250]. A similar

f0 increase is also observed in PDS [47] but not in FDS [221, 300], supporting the idea that a higher f0 may have an

affective or attentional function rather than one of speech enhancement.

4.1.3. Enhanced voiced sounds

Vowels and voiced consonants with formant structure (nasals, liquids) are the most robust sounds to energetic

masking by a broadband noise [146] and to sound attenuation with distance [233]. In LS and speech produced at

distance, speakers increase the intensity and duration of vowels more than consonants [79, 273, 278, 203, 146, 48,

148, 33, 114], but sonorants are no more enhanced than voiceless consonants. Conversely, HIDS is characterized by
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a relative boost in intensity for consonants [236, 36], especially for voiceless consonants [49]. Interestingly, IDS also

has a higher vowel to consonant ratio (in both intensity and duration) compared to conversational speech [227], even

though in that case there is no masking to compensate for. Other formant-related changes observed include increased

formant amplitudes in HIDS [236] and narrower formant bandwidths in clear forms of speech [165].

4.1.4. Spectro-temporal energy reallocation

To a first approximation, the amount of energetic masking is determined by level differences across time and

frequency between speech and masker. When speaking in noise, a speaker might therefore use either a boosting

or bypass strategy to decrease the amount of energetic masking. Boosting would entail increasing speech level in

those time-frequency regions where the background noise would otherwise be more intense than the speech, while

the bypass strategy would operate by shifting energy concentrations in time and frequency to regions where the

background noise is less intense. Of course, any reallocation of speech energy is constrained by both articulatory

constraints and the need to preserve phonetic cues.

Speech adaptation in noisy environments is indeed significantly influenced by the type of noise [79, 203, 291,

110, 186, 144, 114]. At comparable sound pressure levels (in dB SPL), white and broadband maskers induce greater

increases in vocal intensity, average f0 and energy above 1kHz than multi-talker babble noise [114]. However, when

noise types are compared at similar perceived loudness (in dB A), white noise, speech shaped noise, music noise or

driving noise do not induce significantly different adaptations in vocal effort [147, 291, 144].

Some studies [203, 147] provided evidence for boosting strategies, demonstrating greater increases of speech

energy in frequency bands containing high levels of masker energy. In a single talker experiment comparing speech

adaptation to broadband noises filtered by different band-pass filters, the increase in vocal intensity varied with noise

spectral tilt for a constant masker level [147].

Other studies have suggested that bypass strategies are operative, showing increases in spectral center of gravity

(CoG) when speaking in low-pass noises (multi-babble noise, driving noise or low-pass filtered broadband noise)

[110, 186, 187, 114]. There is also evidence that some speakers specifically adjust their f0 and F1 in local energy

minima of a multi-talker noise [110, 114]. However, speakers do not decrease the CoG of their speech spectrum

when speaking in high-pass filtered noises [187], calling into question the existence of active bypass strategies. At

a temporal level, talkers also reduce the overlaps between speech and background in fluctuating noise backgrounds

(competing talker and speech modulated noise) [58].

4.2. Increasing coherence

In contrast to perceptual studies of factors which promote the formation of coherent auditory descriptions of

objects [39, 25], relatively little work has been done to explore what changes talkers make (or are capable of making)

to increase the coherence of their speech in the face of competing sound sources. Some related work is reviewed here,

but even in these cases it is far from clear whether the talker’s goal is to facilitate speech separation and perceptual

organisation for listeners.
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4.2.1. Increased speech modulation in amplitude and frequency

It is known that a voice is better detected in – and in some cases segregated from – an intense background when

it demonstrates large amplitude dynamics [29, 135], temporal fluctuations [140] and increased frequency modulation

(e.g., large vibrato, enhanced intonation) [191, 140]. Both LS and naturally-produced clear speech typically exhibit

enhanced low-frequency modulations of the intensity envelope [165, 114].

Speakers exaggerate f0 modulation in many forms of modified speech. Larger pitch excursions are observed in

IDS [121, 91, 126, 217, 274, 313, 246, 159], FDS [221, 300] and LS [33, 110, 114]. In IDS, this enhancement of

pitch modulations varies as a function of the child’s age and gender [274, 158, 216]. In tone languages, these supra-

segmental modifications of f0 are likely to interfere with tone clarity. When talking to infants, speakers appears to

prioritise exaggerated intonation contours, while reducing tonal information [221, 223]. On the contrary, in LS and

FDS, speakers enhance tonal contrasts in priority to supra-segmental information [221, 223, 326]. Exaggeration of

f0 modulation is observed in IDS for a number of European languages, Japanese and tone languages [126, 92, 169,

158, 84]. However, further examination reveals some cross-linguistic variations in the use of pitch range [92], in the

specific enhancement of prosodic cues to phrase and utterance boundaries [95, 113, 315, 115], and in the preservation

of rhythm specificities [227].

4.2.2. Informational masking

Informational masking (IM) refers to any reduction in intelligibility once energetic masking in the auditory pe-

riphery has been accounted for. IM has many facets, including the difficulty of determining which audible components

belong to the target source, a problem which is especially acute when the target and masker are similar in properties

such as f0 or vocal tract length. In principle, a talker might reduce IM through modifications that increase the distance

between their own speech and that of the background in a number of ways such as adopting a different f0 range or

mean vocal output level to avoid clashing with the masker, or by simply changing spatial location to provide binaural

cues for an interlocutor. However, the amount of informational masking has not yet been demonstrated to have any

significant effect on speech adaptation to a noisy environment. Indeed, Lombard effects are very similar in the pres-

ence of competing speech and speech-modulated noise [58]. In a multitalker background, vocal effort increases with

the number of talkers [186], i.e., with the amount of energetic masking in spite of the decrease in IM that accompanies

an increase in the number of talkers. Talkers also make temporal adjustments in the face of potential informational

maskers, but do so by decreasing the amount of temporal overlap with the masker [58, 10], which can be expected to

increase IM. It seems likely that for a talker, minimising energetic masking takes priority over reducing IM.

4.3. Enhancing linguistic information
4.3.1. Segmental cues: vowels

In the acoustic space of the first two formant frequencies (F1 and F2), the distance between vowel categories

increases in HIDS [49, 236, 87, 165], IDS [323, 248, 4, 169, 34, 47, 156], speech addressed to children with learning

disabilities [36], FDS [206, 207, 300] and MDS [44, 219, 45]. In IDS, this expansion varies with child age and
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development [248]. At the articulatory level, lip and jaw movements are exaggerated: vowels are articulated with

globally more open and spread lips [236, 178, 125], with greater peak velocities of lip movements [193].

However, not all vowels in an utterance are hyper-articulated, but only those in stressed syllables [1]. Furthermore,

vowel space modification in IDS, FDS and MDS does not appear to be part of an homogeneous expansion of the whole

vowel system. Instead, only the extrema of the vowel system /a,i,u/ are hyper-articulated, whereas internal phonemic

contrasts like [i-I] are not enhanced, and may be reduced [67]. Furthermore, speaking clearly neither reduces the

within-category dispersion nor increases the degree of coarticulation [34].

Hyper-articulation is also observed in speech produced in response to environmental changes, but differs from that

obserbed in IDS, FDS or MDS. In LS [278, 32, 110, 111], speech produced at distance [176] and prosodic focus [21],

the main articulatory modification consists in a global increase of jaw and lip aperture for all categories of vowels

[262, 111] and a global amplification of lip opening and closing gestures [154, 71, 112, 96]. As a result, the vowel

system is shifted towards higher first formant frequencies rather than exhibiting a global expansion in (F1, F2) space.

Despite this shift, most speakers demonstrate an enhanced contrast between open and closed vowels, along the F1

dimension, as well as enhanced visible contrasts in lip opening, rounding and protrusion [145, 111]. At low noise

levels, speakers are also able to enhance the contrast in F2 between front and back vowels, resulting in an increased

vowel space as for IDS, FDS or MDS [145, 231]. At moderate and high noise levels, however, the F2 contrast

is systematically reduced [231], exhibiting decreased rather than exaggerated tongue movements and lip spreading

[111, 116].

Finally, the duration contrast between tense /i,u/ and lax /I,U/ vowels is enhanced in IDS for languages such as

English, in which vowel duration is an additional discriminative cue [160].

Contrary to the ‘hyperspace’ hypothesis [142], the density of a vowel system does not appear to influence the

degree of its expansion in modified forms of speech. Thus, vowel hyper-articulation in IDS is comparable in English,

Spanish [34], Croatian [269], and Finnish [123, 124], although these last three languages have fewer vowels than

English.

4.3.2. Segmental cues: consonants

Changes in voice onset time (VOT) for plosives have been reported in HIDS [49, 236], IDS [15, 281, 80, 280, 283]

and LS [131]. VOT changes enhance the contrast between voiced and voiceless plosives for some speakers only

[189, 283] who rely on this cue as listeners [149]. Other speakers, who rely more on f0 at the onset of the following

vowel for this discrimination, enhance instead that contrast in clear speech [149]. Changes in the VOT of plosive

consonants depend more on speaker than language [123, 124].

Fricative consonants are produced with enhanced contrast in the first spectral moment in MDS [190] and speech

addressed to older infants (12-14 months) but not younger infants (4-6 months) [66]. However, speakers do not

enhance this contrast in noise [131] and may in fact reduce it [231].

Information-bearing formant transitions are generally longer in HIDS [49], while both citation and clear speech
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exhibit steeper F2 transitions [207].

Finally, vowel quality and length are additional cues to discriminate voiced and voiceless consonants in some

languages, such as English, in which vowels are shortened when followed by voiceless consonants, as compared to

when followed by a voiced one. However, this phonological contrast is not enhanced in FDS, and has been found to

decrease in LS [258].

4.3.3. Other segmental cues: tones and signs

The enhancement of audible contrasts between phonological categories extend to tone languages. Like vowels,

tone contrasts are exaggerated in both IDS [180, 181, 319, 182, 318, 46] and FDS [221], and tone enhancement

varies with a child’s age and development [182]. In contrast, tones are not more contrasted when speaking in noise but

instead produced at higher pitch [326]. The amplification of phonetic gestures also extends to sign languages, in which

hand movements are exaggerated when a deaf parent interact with their deaf infant compared to when communicating

with deaf adults [82, 192].

4.3.4. Prosodic cues

In addition to the possible coherence-related function of f0 modulations described in section 4.2.1, raised f0 and

exaggerated f0 modulation can have different linguistic and communicative functions. Our focus is on their role – in

combination with other prosodic cues such as syllable lengthening, variations in vocal intensity – in speech parsing.

Several studies support the idea that speakers enhance segmentation cues in modified forms of speech. First, speakers

exaggerate syllabification in noise, speech produced at a distance and in HIDS, both by increasing the modulation of

the syllable’s intensity envelope and by inserting inter-syllabic pauses [110, 114]. Likewise, speakers globally insert

more and longer pauses in HIDS [236, 138, 139], to children with learning disabilities [36, 164], to infants [92] or

in noise [115]. These pauses are inserted especially before words starting with weak syllables [68] and before phrase

boundaries [92, 138]. In IDS, exaggeration of pause duration decreases with the age of the infant [159].

In many languages, syllable lengthening is a boundary cue to the end of a word, phrase or utterance, with greater

lengthening associated with higher prosodic levels [20, 143]. In IDS, HIDS and LS, the final vowels or syllables

of words [2], phrases [95, 113, 115, 159] and sentences [95, 54, 113, 115] are further lengthened compared to that

observed in conversational speech.

Pitch rises or falls complement syllable lengthening to mark lexical, phrase or utterance boundaries. Thus, a

pitch lowering marks the end of a declarative utterance in many languages. In French, a bi-tonal LH* (low-high)

primary accent marks the end of accentual phrases within the utterance [143], while in Japanese, a pitch rise marks

their beginning [309]. In French, a secondary LHi (low-high initial) accent can be found within an accentual phrase

[143] and its ‘elbow’ in the f0 contour marks the boundary between the beginning of a content word and its preceding

determiner [314]. In IDS and LS, speakers exaggerate these intonation cues to sentence, phrase and word boundaries

[221, 95, 113, 315, 115].

Lexical stress in languages such as English can also be used as a perceptual cue to word segmentation [93]. Parents
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enhance lexical stress when speaking to infants older than 11 months by lending additional stress to strong syllables

[308].

4.4. Decreasing cognitive effort

The goal of communication is not to produce speech sounds and gestures but to use them to transmit a message.

Thus, improving the audibility and the phonetic clarity of speech sounds and gestures is not the only way to improve

speech intelligibility. Another potential strategy is to reduce message complexity by approaches such as utterance

simplification, increasing redundancy over time or over different modalities, or by attracting the listener’s attention to

those parts of the utterance containing the most important information.

4.4.1. Slower speech rate

A slower speech rate is typically observed in IDS [126, 313, 246], FDS [221, 300], MDS [44, 219, 45], HIDS

[236], speech addressed to children with learning disabilities [36], and speech produced at distance [310, 105]. Such

a decrease in speech rate is also generally observed in LS [241, 146, 148, 155], although this is not true of all speakers

[155, 110]. The reduction in the rate at which information is transmitted also applies to sign languages: deaf parents

sign at a significantly slower rate when they address their deaf infants compared to the rate used to interact with deaf

adult friends [82, 192].

However, a global decrease in speech rate does not necessarily reflect an attempt to improve the reception of

phonetic information. Indeed, rate reduction comes mainly from more frequent and longer pauses within the speech

stream, with a lesser role for speech segment lengthening [236]. Furthermore, not all segments benefit from speech

rate reductions: vowels are lengthened much more than consonants [273, 146, 48] and in LS consonants may even be

shortened [146, 48, 155, 186, 114].

4.4.2. Reduction in utterance complexity

IDS is characterised by a reduced vocabulary [50, 249] and by more frequent use of common and short words

[234, 249, 324]. The lexicon addressed to children with Down syndrome also presents fewer function words but more

onomatopoeias, and demonstrates less lexical variability than the lexicon addressed to typically developing children

of the same age [324].

Similarly, speech addressed to hearing impaired children [50, 138, 139], to children with Downs syndrome [324]

and to non-native adult listeners [184, 185] has shorter sentences, with less syntactic and morphological complexity

than for children with normal hearing and typical development. In response to mis-comprehension, talkers tend to

reformulate their utterance using a simpler syntactic structure [304, 303].

Parents talk to their young children with incomplete sentences, with skipped prepositions, pronouns and articles,

again mirroring utterances produced by the children themselves [324]. This kind of imitation is supported by other

evidences of syntactic [38] and semantic [117] co-ordination between adult speakers in dialogue interaction [although

contrary observations have been reported, e.g., 132].

11



4.4.3. Emphasising important or novel information

At a lexical level, IDS exaggerates f0 peaks even more on focus words [90] and enhances the existing contrast in

f0 and intensity between content and function words [75], to the point that function words are often skipped [324].

In noise too, words bearing information about agents, objects or locations are stressed in comparison to verbs or

determiners [113, 110, 226].

The first occurrence of a word is produced with longer duration than subsequent repetitions of this same word

[101, 100, 23]. Similarly, frequent words in a language are produced with shorter duration and reduced articulation,

compared to less frequent words [327, 23]. In IDS, parents emphasise new words relative to the rest of the utterance

[94].

4.4.4. Increase in redundancy

In both spoken and sign languages, parents repeat their own utterances [50] or the same signs [82, 192] signifi-

cantly more frequently when addressing to HI children, than normal hearing children or deaf adults.

In adverse noisy environments, some speakers enhance more their lip articulatory movements when their interlocu-

tor can see them, compared to when the interlocutor can only hear them [96]. However, not all speakers demonstrate

this strategy [116].

5. Perceptual consequences of speech modification

While speech production changes as a function of communicative situation, there is no guarantee that the observed

modifications have a beneficial effect on speech communication itself, and especially on message intelligibility. We

detail below evidence of communicative benefits from modifications, first organised by modification context and

subsequently by the speech characteristic believed to be responsible for the benefit.

5.1. Benefits as a function of modification type

HIDS benefits speech perception by listeners with severe hearing loss both in quiet [235] and in simulated

noisy/reverberant environments [228, 299]. However, in adverse listening conditions, while HIDS improves intel-

ligibility globally, it does not appear to improve the recognition and discrimination of segments [87]. HIDS also

benefits elderly listeners with moderate hearing loss in noise and reverberation [263], and in both audio and audiovi-

sual domains [134]. However, no relationship was found between the amount of benefit and the degree of hearing loss

in elderly listeners [134]. HIDS also improves speech perception by normal-hearing listeners in noise/reverberation

[49, 228, 299, 87, 163, 86], in audio-only, audiovisual and visual-only domains [107, 106, 133, 108], at both a global

and segmental level [235]. The intelligibility benefit of HIDS increases with language experience, being larger for

native than non-native listeners [35], and for adults compared to school-age children [36]. Independent of the type of

listener, benefits typically increases with the level of acoustic degradation of the environment [228].

LS globally improves the intelligibility of words and sentences in the audio domain [76, 278, 242, 53, 186],

although the degree of Lombard gain varies both with the type and level of the noise used to induce the Lombard
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effect [186]. No evidence was found to support the idea that LS utterances would be more intelligible when perceived

in the same background noise as the one in which they were produced [186]. LS also benefits non-native listeners to

a similar degree as native listeners, but when presented to the former group in noise-free conditions results in a small

loss in intelligibility [57]. At the segment level, all studies apart from [146] showed an increased intelligibility of

vowels and consonants produced in noise in the audio domain. However, the intelligibility gain from the inclusion of

visual information is weaker in LS that in speech produced in silence [53, 71, 305].

Concerning IDS, the use of exaggerated acoustic characteristics in the early preverbal period is assumed to primar-

ily aim at attracting the infant’s attention and encouraging interaction [257, 256, 274]. Indeed, numerous studies have

shown that infants pay more attention to IDS [e.g., 88, 316, 229, 150, 62, 78] and demonstrate increased brain activity

when listening to it [325, 211]. It seems probable that f0 variations are mainly responsible for this increased attention,

as babies show similar preference for sinewaves reproducing IDS intonation [63]. IDS is also believed to facilitate the

recognition and discrimination of phonetic cues by infants, and to help them develop phonological representations.

Indeed, infants’ discrimination of sound categories appears to be directly related to their parents’ vowel space area

[180] and more globally to the distribution of acoustic cues they are exposed to [198, 197]. The exaggeration of

audio and visual contrasts in IDS has been shown to improve infants’ discrimination of vowels [296] and to enable

them perceive non-native phonemes that they do not perceive in Adult Directed Speech form [218]. Finally, IDS also

helps young children recognize words [272] and maintain that recognition over the longer term [266]. The perceptual

benefits of IDS for other listeners is controversial: non-native listeners benefitted from IDS in their acquisition of new

words [120], an observation that [321] failed to replicate.

5.2. Perceptual effects of modified speech

For the specific perceptual effects of clear speech, see also the review in [298].

5.2.1. Intensity increases

The increased intensity of forms such as LS naturally explains part of the intelligibility gain over speech produced

in quiet, but other aspects are also responsible given that a significant Lombard gain remains even when intensity

differences are removed [76, 278, 146, 186]. The increase of vocal intensity can affect intelligibility in other ways.

Increased vocal effort is accompanied by an increased f0, a flattening of spectral tilt in the medium-high frequency

region, by larger mouth and jaw movements, and by a higher F1 frequency [254, 262, 293, 279]. While spectral tilt

changes can be beneficial (see below), some of the concomitant acoustic modifications are detrimental to segment

intelligibility [239, 255].

5.2.2. Spectral energy distribution

Shifts in the spectral energy distribution towards the mid-frequency region, as observed in LS, is very effective in

enhancing intelligibility in noise [267, 187]. However, the artificial boost of speech energy between 1 kHz and 3 kHz,

as observed in the most intelligible talkers, accounts poorly for their intelligibility [166].
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5.2.3. Changes in mean f0 and f0 contour

The increased average f0 observed in LS, HIDS and speech produced at a distance does not contribute to the

intelligibility benefits brought by these kinds of speech in quiet or in noise [31, 37, 162, 8, 129, 16, 188, 199].

Synthesis of natural f0 contour variations can improve intelligibility in comparison to a flat contour [174, 173, 311].

However, the wider f0 range observed in IDS, LS and FDS does not improve infants’ ability to recognize words [272]

and appears not to contribute to the intelligibility benefits of these forms of speech [162, 199].

5.2.4. Slower speech rate

Although clear speech can be produced at a ‘normal’ speech rate, the clear speech intelligibility benefit is modu-

lated by speech rate: increased by a slower speech rate, and decreased by a faster speech rate [163]. Speech rate is one

of the modifications of IDS that significantly improve infants’ ability to recognize words [272] and that may explain

some of the prosody-related intelligibility gain of IDS, FDS, HIDS and LS [199]. However, the artificial slowing of

speech does not lead to significant intelligibility improvements [261, 122, 205, 237, 299, 213, 61]. No systematic

correlation has been found between speech rate and the intrinsic intelligibility of speakers [64, 31, 37, 129].

5.2.5. Pausing

The more frequent insertion of pauses has been related to increased intelligibility [236, 36]. However, the artifi-

cial insertion of pauses in conversational speech is not an effective speech enhancement technique [299] and in one

study led to reductions in keyword scores for sentence material [287], probably due to the disruption of listeners’

expectations.

5.2.6. Vowel enhancement

Based on observations of written English [264, 175], consonants are commonly thought to carry more information

about sentence intelligibility than vowels. However, apart from [220], it has been found that vowel information enables

better recovery of spoken utterances than consonant information [55, 153, 98, 99]. Additionally, the narrowing of

formant bandwidths has been related to the intrinsic intelligibility of speakers [165].

5.2.7. Vowel space changes

Vowel space expansion in the audio domain and the exaggeration of visible articulatory movements of the lips is

related to improved recognition and discrimination of vowels, syllables and words by infants [180, 272] and in noise

[107, 133, 18, 87, 108, 252]. However, the intrinsic intelligibility of a speaker does not appear to be systematically

related to greater vowel dispersion [31, 37, 130, 129]. Artificial boosting of the amplitude of F2 and F3 has been

found to improve intelligibility in noise for normal hearing listeners, but not for those with hearing impairment [162].

5.2.8. VOT

A clear relation has been established between longer VOT and the intelligibility benefits of clear speech at normal

speaking rates [165]. However, variations in VOT do not have any effect on the intrinsic intelligibility of speakers

[31] nor on the intelligibility benefits of HIDS [204, 200].
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6. Speech modification algorithms

Our review of algorithmic modifications to speech follows the taxonomy introduced in section 2 used to classify

human speech modifications. Unsurprisingly perhaps, most of the available algorithms for improving speech intelligi-

bility operate on the speech signal, and therefore, in the main, aim to improve audibility in noise (section 6.2). There

are some examples of modifications at higher levels though, especially in the case of spoken dialogue systems. Before

examining the algorithms themselves (sections 6.2-6.5), we discuss some of the assumptions and constraints which

apply to these techniques.

6.1. Preliminaries
6.1.1. Assumptions

Although sharing the aim of maintaining a target level of intelligibility under challenging conditions, speech

modification differs from speech enhancement in that it assumes the existence of a noise-free speech signal. For

example, while a considerable amount of work has been done to improve the intelligibility of speech through hearing

aids, they of course operate on a speech-and-noise mixture – speech enhancement – so fall out of scope for this

review. However, where such algorithms specifically target speech, and could be expected to offer intelligibility gains

if applied to clean speech before mixing with noise, we included them (although their performance in this scenario

may not have been tested). It must also be noted that methods that improve intelligibility for the hearing-impaired

will not necessarily help normal-hearing subjects.

The kind of speech modifications we consider also differ from active noise cancellation approaches in that we

assume the noise signal cannot be modified. However, it should be noted that modifications to the speech signal can

be designed to mask information in the masker (e.g., the allocation of energy to the speech signal in spectro-temporal

regions whose effect is to mask masker transients). This idea is explored further in [9].

6.1.2. Constraints

Two constraints are assumed in most modification algorithms. While increasing speech level is included for

completeness, in general the modifications of interest are those that, on average, operate without level or loudness

increases. Secondly, durational adjustments (e.g., segment lengthening) are possible, but without resulting in an

excessive increase in overall duration.

Application of these constraints leads to side-effects and tradeoffs that are not always apparent when considering

speech modifications in isolation. For example, boosting formants leads to reduced energy away from formants, and

lengthening vowels or inserting pauses requires increases in speech rate elsewhere. More generally, modifications

that are designed to be beneficial in noise may distort speech when applied in quiet conditions, and might even

reduce intelligibility for those groups (e.g., non-native, hearing-impaired or young listeners) whose performance is

already below ceiling in noise-free conditions (see, e.g., [57]). Our focus in this review is on intelligibility rather than

naturalness.
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6.1.3. Types of speech output

The specific modifications that can be applied to speech will depend on the type of speech itself. For delayed

live speech, the range of modifications is limited in practice to those changes that can be applied to short segments

of the speech signal (e.g., range compression or spectral filtering). For pre-recorded natural speech, content and style

information can be extracted offline, allowing for a greater range of modifications at deployment time (e.g., vowel

space expansion, f0 range expansion). For speech generated from text, a full spectrum of modifications is available,

including high-level modifications such as choice of syntactic form or lexical substitution. The boundaries between

live-recorded and recorded-synthetic are not always clear cut. For instance, if sufficient delay is permitted, higher-

level linguistic information could in principle be extracted from live speech. Similarly, lexical substitutions might be

considered for pre-recorded natural speech by generating words as a result of adapting synthesis models on fragments

of the pre-recorded speech.

6.1.4. Knowledge of the context

Knowing something about the context (e.g., masker or target listener) can, in principle, permit the use of modifi-

cations that are tailored to the specific masking pattern or known listener deficits. For some application domains there

is a realistic prospect of acquiring detailed noise estimates, either online or offline (e.g., transport-related noise in

railway stations where the output devices are fixed) while for others the options are more limited (e.g., environmental

noise for mobile devices). Modification candidates differ in the degree of detail required in estimates of context. For

instance, for masking noise, this might range from high resolution spectral information in successive time-frames

through long-term masker spectral profiles to complete noise-independence. For target listeners, variables such as

first language or age might be required to tune a given type of modification.

6.2. Promoting audibility

This approach to improving intelligibility is the most obvious and the methods in this category are some of the

simplest to implement, with many being possible in real time with low latency.

6.2.1. Increase intensity

Global increases in intensity may be placed under the listener’s control, or may be made automatically. When

the attack and decay times of dynamic amplitude compression (section 6.2.5) are very long (seconds rather than

milliseconds), it may be known as Automatic Gain Control (AGC) and can be widely found on personal music

players and in-car audio systems to even-out the volume of different material or to adjust the volume according to

an external control signal. Thus, AGC can be made noise-dependent, with the amount of intensity increase being set

in accordance with ambient noise, or directly from another source, such as a vehicle’s speed. This approach may be

employed on mobile phones, enabling the speech received to remain audible to the listener as the noise environment

changes. Whilst this does reduce the dynamic range of the signal, AGC is better categorised as producing relatively

slow adjustments to overall intensity rather than rapid short-term modifications.
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The system described in [225] modified the amplitude of salient words (by which they simply mean content

words) using a fixed increase of 4 dB. Although this was motivated by experimental evidence from human speech,

no experimental results are provided as to the effectiveness of this modification on the intelligibility of the synthetic

speech.

6.2.2. Decrease spectral tilt

Simple high-pass filtering will decrease spectral tilt. If this is followed by energy normalisation back to the original

signal energy, this also effectively boosts transients (section 6.2.7) because low-frequency energy is reduced.

[328] uses spectral shaping that includes a decrease in spectral tilt to improve the intelligibility of speech in noise.

This is then combined with dynamic range compression (DRC – section 6.2.5). Combining spectral shaping with

DRC (and, crucially, in that order) makes a lot of sense, since in unmodified speech the bulk of the signal energy

is in the low frequencies and this consumes much of the available headroom when boosting the amplitude of the

waveform. This has long been recognised in music production, where it is common to split signals into several non-

overlapping frequency bands and to apply DRC (known there as compression) to each band separately (and with

different thresholds and ratios), before re-combining them. Similarly, high-pass filtering is a standard procedure in

audio recording, production and broadcast, removing those low frequency components that would consume headroom

(of either the transmission channel, storage medium, or reproduction apparatus) but contribute little to perceived

quality.

While hearing aid processing in general is out of scope of this paper, the findings reported in [72] are still of

interest. It is noted that patients’ preferred settings for quality are not the same as those that give maximum intelligi-

bility. This is relevant to the design of intelligibility-boosting algorithms because it implies that some loss of quality

may reasonably be incurred when maximising intelligibility gain. Encouragingly, [72] also found that there were two

simple strategies that worked for everyone, independent of patterns of individual hearing loss: a uniform boost (i.e.,

the increasing intensity strategy), or a 6dB/octave high-pass filter (i.e., reducing spectral tilt). However, the evidence

is not completely clear, with [136] finding no significant differences for high/low frequency boosts in hearing aids.

6.2.3. Narrow formant bandwidths

As [215] points out, even simple high-pass filtering effectively boosts the second formant relative to the first

formant, thus enhancing intelligibility due to the greater importance of F2 frequency. More targeted, specific formant

enhancement of course requires reasonably accurate estimates of formant frequencies, which will always be prone to

error. [28] describes real-time formant peak sharpening and tests it on hearing-impaired listeners, producing small

gains in intelligibility. Enhancement is performed using variable-centre-frequency bandpass filters, and it is noted that

choosing the bandwidth involves a compromise between wide filters offering little enhancement versus narrow filters

that can lead to sudden amplitude variation as a consequence of harmonic peaks moving in and out of bandwidth (and

we presume, although not mentioned in the paper, also because of errors in formant tracking). [3] follows on from

[28] and demonstrates modest benefits to normal hearing listeners too in the presence of multi-talker babble. The
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benefits were only for vowel perception.

6.2.4. Sparsify energy

Although there do not appear to be algorithms that deliberately sparsify speech signals, the vocoders used in

speech coding and statistical parametric speech synthesis do this unintentionally: fine detail is removed, harmonic

structure may be over-emphasised and useful redundancy is lost through the processes of spectral envelope estimation

and modelling. It seems unlikely that this has positive benefits on intelligibility and, indeed, it is plausible that it

is this lack of redundancy that makes synthetic speech intelligibility degrade much more rapidly than that of natural

speech as SNR worsens. [28] proposes one form of sparsification in which speech is resynthesised using a very simple

two-formant filter and suggests there could be benefits for listeners with poor frequency resolution, although this was

not tested.

Intriguingly, an attempt to find optimal static spectral weightings [288], described below (section 6.2.9), did

produce sparse representations which improved speech intelligibility by around 2 dB in a large-scale evaluation [60].

6.2.5. Dynamic amplitude compression

Depending on the application and the attack and decay times employed, dynamic amplitude compression (or

Dynamic Range Compression – DRC) goes under a variety of names. Slow-response systems are commonly known

as Automatic Gain Control. In audio and especially music production, with generally fast (1-10 msec) attack times, it

is widely called ‘compression’ or occasionally ‘companding’.

Both an AGC, which aims to provide a standard speech level, and an automatic level compensator (ALC), which

modifies the speech level in response to ambient noise level, are using in the ‘interphone’ (headset-based communi-

cation for face-to-face situations with extremely high ambient noise levels, such as inside a noisy military vehicle)

described by [294]. The AGC reduces the dynamic range of the amplitude of the speaker’s speech to compensate for

variations in their speech – a simple form of speech modification – whilst the ALC promotes audibility in the listener’s

varying noise conditions – a simple form of listener-dependent behaviour.

Reducing the dynamic range of signals is ubiquitous in broadcast and recorded media production, for both music

and speech. In such a compressor, when the level of the input signal exceeds a user-defined threshold, its amplitude

starts to be attenuated at a user-defined ratio. Inertia is applied to the attenuation control via controllable attack and

release times.

One problem with all forms of dynamic amplitude compression is that any background noise present in speech

pauses will be boosted in amplitude. Short attack and long release times can mitigate this, but very short attack times

mean that transients will be eliminated. For speech signals this can lead to the loss of initial consonants: [294] suggest

that users say an ‘expendable word’ at the start of each speech period! Modern systems are able to employ small

delays to implement lookahead in order to avoid this mistreatment of transients. Actively boosting transients has been

used to increase intelligibility (section 6.2.7). As described in section 6.2.2, [328] uses spectral shaping followed by

dynamic range compression to improve the intelligibility of speech in noise.
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Extreme forms of dynamic amplitude compression can be found. With the threshold set just below the clipping

level and a very high compression ratio, one obtains a ‘brick-wall limiter’. This is essentially what is used in [215]

(their figure 2). If too much gain is applied, the waveform becomes clipped (in either analogue or digital domains). It

has been found that this may slightly enhance intelligibility in some circumstances [243] although [167] shows that a

fast limiter is more effective than clipping.

6.2.6. Increase/decrease f0

There are many methods for modifying the fundamental frequency of speech, either directly in the time domain

(e.g., using TD-PSOLA [210]), or on a coded representation of speech, as in Dudley’s vocoder [77], or using one of

many modern methods such as harmonic-plus-noise models [276] or the STRAIGHT vocoder [152]. Whilst these

methods are widely employed to manipulate f0 for the purposes of prosodic modifications, few automatic systems

have the express intention of increasing intelligibility. A number of investigations into the effects of f0 modification

[188, 302] have found no benefits. [225], already mentioned in section 6.2.1 modified the f0 of content words using a

fixed increase of 20 Hz. However, its effectiveness was not evaluated.

Recently, [306] modified speech by seeking the change in f0 which optimised a ‘glimpse’ proportion measure of

enegetic masking [56]. In general, the outcome was a reduction in f0, probably caused by the increased number of

resolved harmonics that such a change produces. While the objective intelligibility measure predicted a modest gain,

a later listener-based evaluation [59] demonstrated modest losses in actual intelligibility.

6.2.7. Boost transients

[247] found transient-boosting methods can improve intelligibility of speech in noise (recordings of an aircraft

auxiliary power unit) presented at various SNRs from -30 dB to -10 dB, and that gains were still seen when combining

this with active noise-cancelling headphones. Although the best-performing method was inspired by a dynamic time-

varying filter approach, in order to obtain real-time performance this was approximated as a simple fixed filter, which

amounts to attenuation below 700Hz and mid- and high-frequency boosting. So, although the method does boost

transients, as any high-pass filtering would, it is not actually detecting them in the speech. A more sophisticated

method in the same study using wavelet decomposition of the speech – which did target transient regions more

specifically than the fixed filter – offered lesser gains. Distortions introduced by that method may have counteracted

the benefits of transient boosting. From the results available in [247] and from simple spectral shaping, it is not

possible to separate out the effects of a general high-frequency boost from specific localised transient boosting. [322]

also found that increasing the intensity of transients relative to steady-state regions increased intelligibility.

6.2.8. Steady-state suppression

Pre-processing of the speech signal by steady-state suppression has been attempted in order to reduce the smearing

of energetic speech parts (e.g., vowels) into subsequent segments, which results in forward masking in reverberant

environments. However, a modulation filtering technique operating at a syllable rate produced no clear intelligibility

benefit [6, 170].
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6.2.9. Spectral profile modification

Spectral profile modification is a generalisation of high-pass filtering, spectral tilt or centre of gravity changes and

is typically the outcome of an optimisation procedure based on avoiding energetic masking by a known noise. The

response obtained during optimisation depends, of course, on the spectral resolution. In a relatively low-resolution

approach, [285] sought the optimal linear time-invariant filter which maximised an approximation to the Speech In-

telligibility Index [5]. In another low-resolution technique, [232] reallocated energy by modifying the speech with a

simple filterbank, adjusting the filter gains to maximise intelligibility as measured using automatic speech recognition.

[289] also sought a static spectral filter but at a much higher resolution based on a 55-channel gammatone auditory

filterbank. Their optimisation process employed a genetic algorithm which attempted to maximise the glimpse pro-

portion [56] across a corpus of speech, independently for different maskers and SNRs. A striking outcome was

the finding, hinted at earlier, that as the SNR decreases, the optimal filter became increasingly sparse, focusing the

boosting of energy in 3 or 4 widely-separated frequency bands.

6.2.10. Energy reallocation

Energy reallocation is more general still, denoting techniques that shift energy in both frequency and time. A

study by [286] compares various manually-designed energy reallocation strategies and found that boosting the SNR

of selected frequency bands gave the largest gains but also tended to reduce the speech quality the most (both measured

only with objective measures). As in the method in [259], it is most effective to carefully choose to improve the SNR

only of regions where improvement is possible: that is, to avoid processing clean speech or speech that is much lower

amplitude than the competing noise signal such that no amount of boosting will improve its audibility.

In [284], energy is reallocated in energy over time and frequency guided by a spectro-temporal auditory model.

The temporal aspects of the processing result in transient enhancement (see section 6.2.7). Improvements in intelli-

gibility are claimed, although only objective measures are presented. [268] reallocated energy across time only, from

voiced regions to unvoiced regions, under a constant energy constraint (per word), compared this with a high-pass

filter that reallocated energy across frequency only, and obtained intelligibility improvements for around half of the

16 speakers compared in their listening test.

The approach of [301] reallocates energy within frames via manipulation of a cepstral representation of the spectral

envelope, in order to optimise a computational model of intelligibility based on the number of glimpses of the speech

signal [56].

6.3. Increasing coherence

While there have been numerous laboratory studies within the domain of auditory scene analysis which demon-

strate the value – or otherwise – of specific organisational cues such as those which encode fundamental frequency

[see 69, for a review], there have been surprisingly few explicit engineering attempts to modify speech with the aim

of increasing coherence, perhaps due to the paucity of observations of coherence-inducing modifications in speech

production.
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We speculate that synthetic speech generated using waveform concatenation has impaired coherence due to use of

recorded units in mismatching contexts, and that this could be one reason that this type of synthetic speech is typically

less intelligible than natural speech whereas synthetic speech generated using statistical models driving a vocoder can

be as intelligible as natural speech [320], even under certain additive noise conditions [282, 59].

6.4. Enhancing linguistic information

While in practice it is straightforward for a text-to-speech system to enhance salient linguistic information (e.g.,

via lexical repetition or adding references to previous information) very few studies have been carried out to explore

the benefits of this class of modification. For instance, it is common in limited-domain automatic speech recognition

systems, where the application design permits, to select a word vocabulary that minimises recognition errors [244].

This can be achieved by choosing words that are less confusable [65] or that are robust to speaker effects such as

disfluency or prosodic variation [119]. This could easily be applied in the case of speech output systems.

6.4.1. Vowel space changes

[209] used conventional model adaptation methods from HMM-based speech synthesis to modify vowels, mak-

ing them either more (hypo-articulated) or less (hyper-articulated) close to the neutral vowel. Intelligibility (only

measured objectively using SII and not in a listening test) was successfully improved for the hyper-articulated case.

6.5. Decreasing cognitive effort
6.5.1. Durational changes

As with f0 modifications, many algorithms are available for modifying speech rate and pause durations, globally

or at a finer level [210, 276, 152]. However, the evidence for possible benefits is mixed, as reviewed earlier (sec-

tion 5.2.4). One system [9] that did produce clear benefits – more than 4 dB – in the presence of a fluctuating masker

used durational expansion to shift salient speech information (defined by the Cochlear-scaled Spectral Entropy metric;

[275]) in time to avoid epochs of more intense noise. However, the same duration changes did not produce gains when

mixed with a stationary masker, suggesting that the noise avoidance rather than slower speech rate was responsible

for the benefits.

6.5.2. Pause insertion

[287] explored the insertion of pauses at word boundaries in order to avoid intense masker epochs, under a

constant-duration constraint which meant that speech rate was increased to accommodate pause insertion. However,

this led to a significant reduction in intelligibility, probably due to a reduction in predictability of word boundaries in

noise.

6.5.3. Message simplification

Natural language generation systems can adjust the length and complexity of the sentences they produce, to target

certain listener types. This is a large field and we do not attempt a survey of it here. As two illustrative examples, [141]

manipulated the complexity of referring expressions to suit different end users and [251] showed that more complex

sentences (containing more information) led to better task completion.
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6.5.4. Emphasise information-bearing elements

One study that did take attempt to enhance linguistically-relevant information was in the system described by

[225], where the simple modifications to f0, amplitude and duration performed were applied only to content words,

thus emphasising the main information bearing elements of the sentence. No detailed evaluation was provided to

demonstrate whether this is effective although a 7% intelligibility benefit is mentioned.

7. Summary

Table 1 catalogues the 46 speech modifications which have emerged during the course of this review, identifying

in each case whether it has been observed in a talker’s speech production, whether it forms the basis for a speech

modification algorithms, and finally if – to the best of our knowledge – it is beneficial to listeners.

One striking feature evident from this catalogue is lack of behavioural studies on possible benefits of certain

types of modification, especially those at the levels of cognitive effort. Cognitive load is known to affect both speech

perception [194, 196] – where, for instance, it changes the balance between the roles on acoustic and lexical factors in

word segmentation – and in production [e.g., 85, 83]. See [195] for a recent review of the effect of adverse conditions,

including cognitive load, on speech perception.

The absence of speech modification algorithms aimed at increasing coherence has already been noted. In fact,

examination of the auditory scene analysis literature suggests many possible avenues for making speech more robust

in the presence of competing sources. For instance, contrasting mean intensity between a target and background

speech signal might help a listener’s scene analysis task, even when this places the target speech at a negative SNR

[41]. Similarly, there have been many studies of the benefit of f0 differences in speech-on-speech mixtures (see

[27, 7, 277]) and of the value of spatial separation between target and masker (see [40, 127]). Note that in some of

these cases good estimates of masker properties will be required.

A further task for future studies is to incorporate higher levels of linguistic information into modified speech,

something which requires access to the intended message and is therefore limited in practice to text-to-speech systems.

Obvious approaches in dialog systems include the use of repetition, filled pauses and back-channels as well as the

choice of words known to resist masking.

The speech modification approaches listed in table 1 focus on modifying speech to promote its intelligibility or

to decrease the cognitive effort required to process it. However, speech modifications could, in principle, be used to

reduce the detrimental effect of a masker. This might be achieved by reallocating excess speech energy in time and

frequency in order to ‘mask the masker’, focusing on masker transients or, in the case of speech maskers, those epochs

estimated to convey salient information.

It is tempting to use the proposals listed in table 1 as a menu from which arbitrary combinations can be selected.

Indeed, positive results might be expected from the combination of spectral and temporal approaches, with addi-

tional benefits perhaps deriving from modifications targeted at the message level. However, further studies are needed
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Table 1: Speech modifications

Modification talkers algorithms beneficial Notes

Promoting audibility
Increase intensity 3 3 3

Decrease spectral tilt 3 3 3

Shift spectral centre of gravity 3 3 3

Narrow formant bandwidth 3 3 3

Sparsify energy 3 3 but not for f0 [52]
Dynamic amplitude compression 3 3

Increase f0 3 3 7

Decrease f0 3 7

Boost transients 3

Change relative segment intensity 3 3

Change relative segment duration 3 3

Change pause duration 3

Steady-state suppression 3 7 can be harmful [59]
Spectral profile modification 3 3 3 particularly for mid-freqs
Temporal energy reallocation 3 3 3

Spectro-temporal energy reallocation 3 3

Increasing coherence
Modulate amplitude 3 7

Modulate f0 3 7

Flatten f0 range 3 7 may have helped in [199]
Contrast with masker location 3

Contrast with masker f0 3

Contrast with masker intensity 3

Contrast with interlocutor intensity 3

Change gender 3

Enhancing linguistic information
More prototypical vowels 3 3 3

More prototypical consonants 3 3

Expand vowel space 3 3 3

Enhance prosodic cues 3

Enhance word segmentation cues 3

Enhance discourse-level segments 3

Decrease neighbourhood density 3

Insert lexical/phrasal repetition 3 for IDS

Decreasing cognitive effort
Decrease speech rate 3 3 7

Insert pauses 3 3 3 but not always [299, 287]
Insert additional disfluencies 3 7

Simplify syntactic structure 3 3

Emphasise new/information-bearing elements 3 3 3 1st occurrence more intelligible [109]
Decrease word complexity 3

Increase word predictability 3 e.g., [253, 307]
Decrease vocabulary size 3

Decrease sentence length 3 for IDS
Add reference to previous information 3 for IDS
Repeat interlocutor speech 3

Increase redundancy 3 3 e.g., visual cues
Provide backchannel feedback 3

Align with interlocutor 3 3 e.g., intensity, f0, speech rate, lexical use, accent
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on possible antagonistic effects of combining multiple modification methods. For example, while dynamic ampli-

tude compression has proved to be a successful technique, applying it alongside other temporal energy reallocation

methods which operate by unmasking weaker signal epochs may be counter-productive. Likewise, combinations that

are not physiologically-coherent, such as increasing vocal effort and decreasing F1, might have negative effects on

intelligibility as they may sound unnatural to a listener and consequently lead to attentional disturbance.

Finally, we note that since in many listening scenarios adequate intelligibility is maintained simply by increasing

output level, the purpose of speech modification is often considered to reside in using any gain in dB to resist this

tactic, i.e., ‘turning down the volume’. However, the headroom gained by the modification can be spent in other ways.

For example, instead of reducing output level, information rate might be increased by speeding up speech, or the need

for repetition (in the case of public address systems) might be reduced.
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[323] Zajdó, K. (2006). Patterns of vowel space utilization in Hungarian caregiverese addressed to young children: An evaluation of the MIPhI

model. In 7th International Seminar on Speech Production (pp. 99–106). Belo Horizonte MG, Brasil.
[324] Zampini, L., Fasolo, M., & D’Odorico, L. (2012). Characteristics of maternal input to children with Down syndrome: A comparison with

vocabulary size and chronological age-matched groups. First language, 32, 324–342.

32



[325] Zangl, R., & Mills, D. L. (2007). Increased brain activity to infant-directed speech in 6-and 13-month-old infants. Infancy, 11, 31–62.
[326] Zhao, Y., & Jurafsky, D. (2009). The effect of lexical frequency and Lombard reflex on tone hyperarticulation. J. Phon., 37, 231–247.
[327] Zipf, G. K. (1929). Relative frequency as a determinant of phonetic change. Harvard Studies in Classical Philology, 40, 1–95.
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