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Abstract

In this article we investigate what representations of acoustics and word usage are most suitable 

for predicting dimensions of affect|AROUSAL, VALANCE, POWER and EXPECTANCY|in 

spontaneous interactions. Our experiments are based on the AVEC 2012 challenge dataset. For 

lexical representations, we compare corpus-independent features based on psychological word 

norms of emotional dimensions, as well as corpus-dependent representations. We find that corpus-

dependent bag of words approach with mutual information between word and emotion dimensions 

is by far the best representation. For the analysis of acoustics, we zero in on the question of 

granularity. We confirm on our corpus that utterance-level features are more predictive than word-

level features. Further, we study more detailed representations in which the utterance is divided 

into regions of interest (ROI), each with separate representation. We introduce two ROI 

representations, which significantly outperform less informed approaches. In addition we show 

that acoustic models of emotion can be improved considerably by taking into account annotator 

agreement and training the model on smaller but reliable dataset. Finally we discuss the potential 

for improving prediction by combining the lexical and acoustic modalities. Simple fusion methods 

do not lead to consistent improvements over lexical classifiers alone but improve over acoustic 

models.
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1. Introduction

In this article we set out to compare a variety of representations of lexical usage and 

acoustics for dimensional affect analysis in spontaneous speech. The goal of our work is to 

establish which of these representations are most suitable for predicting individual affective 

dimensions and to what extent they can combine to further improve prediction.
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Our experiments are carried out on the AVEC (audio-visual emotion recognition grand 

challenge) 2012 shared task (Schuller et al., 2012) for continuous prediction of multi-

dimensional affective states from non-segmented spontaneous speech. The task is to 

recognize the affect dimensions of (AROUSAL, EXPECTNCY, POWER, VALENCE) 

continuously on the multimodal SEMAINE database (McKeown et al., 2012) of naturalistic 

video and audio of human-agent interactions, in terms of audio analysis, video analysis, or 

combination of them.

In this article we describe in detail and further expand the work on lexical and acoustic 

analysis which was part of our official submission to the AVEC 2012 challenge, achieving 

the best results on the word-level prediction competition (Savran et al., 2012). We use the 

same training and test corpus definitions as the AVEC 2012 challenge; the results are 

therefore comparable with the challenge benchmarks and with results published by other 

particpants.

For lexical analysis, we rely on manual speech transcripts to extract features. We experiment 

with a domain-independent resource, the ANEW (Affective Norms of English Words) 

dictionary Bradley and Lang (2010), which provides human ratings of words for the 

AROUSAL, VALENCE, and DOMINANCE dimensions. We also test domain-dependent 

techniques which exploit the mutual information between words and the opposing ends of 

dimensional scales. Such information has been successfully used in prior work on natural 

emotional speech, but in non-sparse representations. We demonstrate that sparse 

representation using mutual information between words and dimension as weights is more 

powerful for the task at hand.

For acoustic analysis, we use forced alignment between the audio and the manual transcripts 

to introduce a novel representation which proves to be highly advantageous for capturing 

affect-related cues in the voice. We predict emotion on the utterance level, but introduce the 

notion of regions of interest and compute the long-term statistics of acoustic features of 

frames that fall in different regions separately. The main motivation is to capture the 

changes that occur in the regions of speech corresponding to lexical stress. These 

representations better capture the intuition that affective cues can be expressed to a greater 

extent in some regions than others, and, thus, increase the discriminating power of acoustic 

features. In addition, we address a question related to how affect should be modeled which 

has never been studied before. We show that by training classifiers on acoustic information 

only from the regions for which annotators agree on the affect label results in a much better 

model. Prior work has shown that training and testing on data for which annotators agree 

leads to higher performance (Litman and Forbes-Riley, 2006). We in contrast show that we 

can improve the results on the full test set, as originally labeled either reliably or unreliably, 

by using only reliably annotated data in training. Our results contribute strong evidence that 

automatic prediction of emotion benefits from carefully motivated representations.

Finally, we present experiments with simple decision-level fusion techniques to combine the 

two modalities. Many studies have discussed the advantage of exploiting jointly acoustic 

and lexical information, particularly in the prediction of the VALENCE dimension, i.e. 

classification of negative versus non-negative utterances (Lee and Narayanan, 2005a), 
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discriminating anger utterance from neutral (Batliner et al., 2000) or other emotional speech 

(Schuller et al., 2004; Polzehl et al., 2011). We show that while decision-level fusion works 

better than feature-level fusion, simple fusion techniques do not lead to consistent 

improvements over the stronger lexical modality.

2. Affect Database

We used the AVEC 2012 Grand Challenge dataset, which is a subset of free publicly 

available SEMAINE corpus (McKeown et al., 2012). It contains multi-modal recordings and 

provides video, audio, and manual speech transcripts of dyadic communications between 

people and virtual characters role-played by human operators. Each of the four virtual 

characters has a preselected emotionally stereotyped behavior: Prudence is even-tempered 

and sensible, Poppy is happy and outgoing, Spike is angry and confrontational, and Obadiah 

is sad and depressive. In our work we do not use the identity of the virtual agents for 

prediction of the other interlocutor’s affective state.1

The challenge dataset contains 95 sessions of data from 24 recordings. Most recordings 

consist of four sessions of conversations of the same person with all four virtual characters. 

These are split into three non-overlapping partitions of training, development and testing 

subsets. Each subset consists of about 8 recordings from 8 different users. The summary of 

the dataset is given in Table 1.

All sessions in the AVEC dataset were annotated by two to eight annotators (with the 

majority annotated by six raters) for four dimensions of affect: AROUSAL, 

EXPECTANCY, POWER, and VALENCE. These dimensions were identified as the most 

important ones for distinguishing among a range of emotional states (Fontaine et al., 2007). 

The dimension of AROUSAL can be described as overall inclination of activation ranging 

from calming to exciting; the dimension of EXPECTANCY, also known as anticipation, 

ranges from unpredictable to familiar; the dimension of POWER can be interpreted in terms 

of potency-control related to the feeling of power or weakness; and the dimension of 

VALENCE refers to the pleasantness which ranges from highly positive to highly negative.

Each rater annotated the above four dimensions continuously, with continuous value on 

every frame (20 ms) by using the FeelTrace tool (Cowie et al., 2000). The ground-truth of 

the frame-level challenge labels were obtained by taking the average of the annotations over 

all raters. In addition, word-level labels are also provided by calculating the mean value of 

the frame-level labels on the entire word. The experiments we present in this paper are 

evaluated on the word-level affect prediction task.

In our work we aim to develop accurate models of vocal expressions of emotional states. We 

hypothesize that a way to achieve this goal is to rely only on data labeled with high 

agreement, thus reliably linking audio features with perceptually recognizable changes in 

expressed affect. For this purpose here we further analyze the inter-rater agreement of 

multiple labelers using the measurement of Cronbach’s alpha (George and Mallery, 2003). 

Table 2 gives the distribution of inter-rater agreement on the training and development 

1Other studies have productively exploited this information (Soladié et al., 2012).
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partitions of the challenge data. We group these according to different alpha levels of 

unacceptable (alpha < 0.5), acceptable (alpha < 0.7), and good (alpha > 0.8). Alpha depends 

on the number of raters, so we list this information as well. We do not give information 

about the test partition in this analysis, since the individual labels of different raters on that 

part of the data are still not publicly available. As we will show later in Section 5.2, using 

only the reliably labelled data in training markedly improves performance on the full test set 

with original annotations of varying reliability.

In general, raters have higher agreement on POWER and VALENCE, lower on AROUSAL 

and EXPECTANCY. In addition, the ground-truth labels tends to be more reliable as the 

number of raters increases.

3. Lexical Representation

In this section we analyze lexical content, as given by the manual transcripts and its 

association with levels of affect dimensions AROUSAL, EXPECTATION, POWER and 

VALENCE. We study a variety of representations, including domain-specific statistics and 

domain-independent psychological norms for three of the affect dimensions.

3.1. PMI features

We first consider pointwise mutual information (PMI) (Fano, 1961), which gives an insight 

about affective connotations of different words. Specifically, we calculate the PMI between 

a word and a given affect dimension. In prior work PMI has been successfully applied for 

categorical emotion recognition between anger and non-anger utterances (Lee and 

Narayanan, 2005b). Later work showed that PMI representations of lexical content does not 

have much advantage compared to bag of word approaches in three different corpora 

(Polzehl et al., 2011). However, both of these studies derive a single feature from PMI, 

corresponding to a weighted sum for all words in the utterance. In contrast in most semantic 

processing applications, PMI is used for feature selection and as weights for individual 

words in sparse bag of words representations (Turney and Pantel, 2010). Here we compare 

the non-sparse representations used in prior work on emotion recognition with the sparse, 

PMI-weighted representation, and show that the latter is considerably more powerful.

Computing PMI between a word w and a dimension of affect ε is straightforward when 

affect is coded as binary presence or absence of a given property. In the AVEC 2012 data, 

however, AROUSAL, EXPECTATION, POWER and VALENCE are coded as continuous 

variables. We transform these into binary labels in order to compute PMI. To do this, we 

computed the average value of each affect dimension over all words in the dataset. Then the 

binary labels are assigned depending on whether the continuous label for a word is above or 

below the overall average. Class 1 is assigned if the original value is above the sample 

average and class 0 is assigned if the original value is below the average. We calculate 

mutual information on the combined training and development set. Having a larger set for 

computing such co-occurrance statistics is important, especially for lexical analysis, in order 

to mitigate to some extent the expected issues of unseen (out of vocabulary) words and low 

counts.
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Now the PMI between a word and a binary emotion dimension can be calculated as

(1)

P(ε) is the prior probability of an affect dimension and P(εjw) is the conditional probability 

of the affect dimension given the word w. Both probabilities are computed directly from 

counts on the combined training and development data.

For each word w in the training set and for each affect dimension (AROUSAL, 

EXPECTATION, POWER and VALENCE) we compute two PMI values: one for 

association between the word and class 0, which corresponds to low values for the affect 

dimension, and class 1, which corresponds to high values. Table 3 lists examples of the ten 

words with the highest PMI that are associated with low (class 0) and high (class 1) values 

of the affect dimensions. For instance, “bloody”, “anxious”, and “fighting” carry strong 

negative connotation, while “interesting”, “holiday”, and “love” are typical positive words, 

based on the analysis of PMI on the dimension of VALENCE on the AVEC dataset. The 

words associated with the other dimensions are not that easily interpretable. Some of the 

words associated with low arousal, such as “anxious”, “inside” and “rain” can intuitively be 

associated with low inclination for physical activity but others such as “language” and 

“three” are rather opaque. Regardless of the lack of intuitive interpretation for the PMI 

features, we will see in later experiments that they lead to the best prediction on the test data.

PMI-based features can be used for either word-level or turn-level represenations:

WL PMI: Word level PMI. This representation consist of two components, each equal 

to the PMI that the word has with the low (0) and high (1) classes of the dimension we 

wish to predict.

TL PMI: Turn level PMI. Similarly to the word level PMI, the turn-level PMI 

representation also consists of only two features. They are computed as the average of 

word-level PMI of all words in the turn. In testing, the values for each turn are 

calculated by taking the average only for words that appeared in training, ignoring any 

other word.

For the word-level representation, any unseen words will be smoothed by the feature vector 

of their preceding words. For the turn-level representation, if a turn in testing consist entirely 

of words that did not appear in training, we take the values from the preceding turn as 

features. Compared with word level PMI, the turn level representation may help produce 

more robust prediction and partially overcome the out-of-vocabulary (OOV) problems 

caused by the appearance of words in the test data that did not occur in the training data.

3.2. Sparse lexical features

The turn level sparse lexical features are inspired by conventional bag of words 

representations in which texts are represented as sparse vectors of occurrence counts of 

words from a predefined vocabulary. Here, we investigate four lexical representations with 

various sparse feature spaces with different vocabulary.
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Sparse BOW: Bag-of-word features. The feature space is defined by a selected number 

of words. The representation of utterance has value zero for words not in the utterance, 

1 for words that do appear in it.

Sparse PMI: Sparse lexical representation with PMI selected words. This 

representation is similar to the BOW one, however the value of the component 

corresponding to a particular word is equal to the PMI between the word and the affect 

dimension that is being predicted.

Sparse ANEW: Sparse lexical representation with words in the ANEW dictionary. The 

values are the norms from the dictionary, equal to the average rating of multiple people, 

indicating the extent to which they associate the work with a given dimension.

TF.IDF: Term Frequency–Inverse Document Frequency features. The feature space is 

defined by all words in the training data. The values of components are determined by 

the term frequency–normalized word counts. The inverse document frequency for 

words is determined by the number of all conversations and the number of 

conversations that contain the particular word.

Bag-of-words (BOW) is one of the commonly used feature in information retrieval and text 

classification tasks. For the feature space in this representation we consider only the words 

which appear at least three times in the training data; there are 1,048 such words. Words 

occurring fewer times are discarded. Each turn is represented by a vector of length 1,048, 

each component corresponding to one of the words. The value of the component is 1 if the 

corresponding word occurs in the speaker turn and 0 for if the word does not appear in the 

utterance.

In Sparse PMI, we use a different set of 1,000 words for each affect dimension. These are 

the 500 words with highest PMI for class 0 and class 1 respectively. Each turn is represented 

by 1,000 features with the corresponding PMI values for words that occur in the speaker 

turn and zeros for words which do not appear in the utterance. Table 4 compares the pre-

defined vocabularies in Sparse BOW and Sparse PMI representations on the four affective 

dimensions. It is clear that more than 50% of the words are different in these representations, 

in all affective dimension except for AROUSAL.

Sparse ANEW employs the vocabulary of the Affective Norms for English Words (ANEW) 

(Bradley and Lang, 2010), which provides a set of normative emotional ratings for a large 

number of words in English, in the affective dimensions of AROUSAL, POWER, and 

VALENCE. In ANEW, the level of affective connotation of about 2,500 words were defined 

in terms of perceptual test in a psychology study. As Table 5 reveals, the association 

between words and affect dimensions are much more easily interpretable in the ANEW 

dictionary than in the dictionary derived using PMI. In that table we list the words with 

highest and lowest average human rating for the three dimensions covered in ANEW.

However only 564 of the words in normed in the ANEW dictionary appeared in the AVEC 

training data set. Consequently, in the Sparse ANEW representation, each turn is 

represented by 564 features with the normative emotional ratings values for words that occur 

in the speaker turn and zeros for words which do not appear in the utterances.
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TF.IDF is another conventional representation used in information retrieval tasks. In this 

study, we build the feature space by considering all 2,992 words that appeared in the training 

dataset; each turn is represented by a vector of length 2,992.

4. Audio Representation

In the present study, the super-segmental approach is applied to extract fixed-length feature 

vectors for each speech chunk. We use the openSMILE toolkit (Eyben et al., 2010) to obtain 

a comprehensive set of acoustic features in terms of low–level descriptors (LLD) and their 

various statistics over the turn. In Table 6 we list the 26 prosodic and spectral LLDs we 

considered in this study. For each of these, the 19 functional statistics listed in the second 

column are also computed, as well as the first order delta coefficients.

We study the predictive power of two types of acoustic features, one from standard 

representations at different granularity and one from regions of interest (ROI) that have 

different potentials for expressive prosody. The first type corresponds to traditional super-

segmental acoustic features composed of various statistics of acoustic parameters (low–level 

descriptors) computed over the entire speech chunks. The second type are ROI acoustic 

features, for which we first divide the whole speech chunk into sub-segments in terms of 

distinct phonemes or word classes. Then all chunks corresponding to a region category are 

concatenated together and acoustic features are extracted from that new concatenated 

acoustic sequence. The feature vectors for all ROIs are concatenated to obtain the 

representation of the entire utterance.

4.1. Traditional super-segmental acoustic features

We first consider the conventional super-segmental acoustic analysis on speech chunks with 

different granularity: word-level and turn-level. In word-level analysis, we extract acoustic 

features from the speech signal descriptors of each word and the prediction is also 

performed on every single word.

In the turn-level analysis, features are calculated to characterize the emotion content in turns 

and affect dimensions are estimated for each turn. This decision is motivated by the 

assumption that any changes in audio features within the same turn creates an effect so that 

the utterance is perceived as conveying particular affective states, but it is the same mix of 

emotions conveyed in the entire utterance.2 In the AVEC challenge data, speaker turns are 

short, 4–5 seconds on average, so it is reasonable to expect that they have consistent emotion 

profiles. To evaluate word-level estimation, we simply assign the estimation obtained for the 

turn as the value for all constituent words.

4.2. Class-based acoustic features

We analyze the behavior of two ROI acoustic representations which we describe in this 

section.

2Work on anger recognition has also shown that individual words can be perceived as angry when heard by listeners in isolation, but 
the full utterance sounds neutral, indicating the need for utterance-level context even for people (Cauldwell, 2000).
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Phoneme ROI: acoustic features captured on distinct phoneme classes. Here features 

are computed separately for regions of the utterances corresponding to consonants, 

stressed vowels and unstressed vowels.

Accent ROI: acoustic features captured on distinct classes of words. Here we 

characterize words according to whether they are typically accented or deaccented in 

conversational speech.

In the traditional turn-level representation, features are extracted from 20ms frames and 

values for each feature are summarized as functional statistics of all frames in the utterance. 

In class-level representation, features are computes over different type of phone/word 

classes that correspond to a particular ROI. In the ideal situation, we will have precise 

manual segmentation of smaller acoustic units, i.e., phonemes, words, which respect to 

every particular ROI. In this study, automatic forced alignment is applied to segment this 

large portion of speech data into words and phonemes.

In the Phoneme ROI analysis, we first perform Viterbi-based forced alignment between the 

manual transcript and the audio to detect the start time and end time of each phoneme, as 

well as the presence of lexical stress for each vowel in the speech data (Young et al., 2006). 

After that, for each spoken turn, we divide the entire speaker turn into three new regions 

associated with the three distinct phoneme classes of stressed vowels, unstressed vowels and 

consonants, by concatenating phonemes into these three phoneme classes accordingly. 

Finally, Phoneme ROI features can be extracted by computing statistics of spectral 

measurements from these new acoustic signals of concatenated phonemes corresponding to 

different phoneme classes.

In prior work on categorical emotion estimation, Phone ROI spectral features have proven to 

be complementary to turn-based features, with superior performance as a standalone class 

(Bitouk et al., 2010; Lee et al., 2004). In the work presented here, we analyze the 

effectiveness of ROI spectral features for the estimation of continuous emotion dimensions. 

Our Phoneme ROI features are the concatenated features of turn-level prosodic and class-

level spectral features. Their performance will be discussed in Session 5.2.

Accent ROI features have not been studied in emotion prediction before our work. In the 

Phoneme ROI representation we identify through forced alignment if a vowel is stressed or 

unstressed, as realized in the specific utterance. In the Accent ROI instead we use 

information about entire words, i.e. if the words tend to be realized with a pitch accent in 

spoken utterances or not. Specifically we use the words that tend to be deaccented in 

conversational speech as one class and all other words fall in the second class. The list of 

words that are deaccented more often then expected by chance in a sample of conversational 

speech (Godfrey et al., 1992) are taken from the accent ratio dictionary (Nenkova et al., 

2007) created for pitch accent prediction. Words that tend to be deaccented include words 

from different parts of speech such as “would”, “me”, “then”, “them”, “though”, “make”, 

“just”, “said”, “much”, “has”, “way”, “when”, “where”, “take” etc. In expressive and 

affective speech the realization of such words may change. For example words that are 

normally deaccented may be accented. In sad or fearful speech the opposite phenomenon 
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may occur. By separating the two ROIs we remove the noise in acoustic variation related to 

linguistic phrase realization and are more likely to capture affect-related changes.

Similarly to what we performed in the Phoneme ROI analysis, we group words into two 

classes accordingly. Accent ROI features are extracted by computing statistics of spectral 

and prosody measurements from the concatenated parts of the spoken turns corresponding to 

the two word classes.

The performance of forced alignment is important for the two ROI acoustic representations 

we introduced. If the alignment is not accurate, it may generate odd artifact on the phoneme/

word boundaries. However, for most of the case, we believe that the alignment is reliable, 

and it would not seriously affect the accuracy of the following frame-level feature extraction 

(i.e., extraction of MFCC) on the new speech signal with concatenate phonemes/words. The 

other issue, even with perfect segmentation is the discontinuity of representation at the 

concatenation points. For some features, like pitch and intensity, calculating summary 

statistics and shape over the concatenated region is informative. For example changes of 

pitch only on the segments that bear pitch accent actually abstracts away the variation of 

change in pitch that is required for the realization of the utterance. For other features some 

of the shape-related feature (slope, curvature) would be less meaningful. So in the 

experiments presented here we calculate only spectral features for the ROIs and compute 

prosodic features on the entire turn.3

5. Continuous Affect Recognition Experiments

Two sub-challenges are addressed in the AVEC 2012 grand challenge: the fully continuous 

sub-challenge (FCSC) and the word-level sub-challenge (WLSC). The FCSC involves fully 

continuous affect recognition, where the level of affect has to be predicted at frame-level, 

for every moment of the recording no matter if the user is speaking or listening. The WLSC 

focuses on the prediction of the level of affective dimensions at word level, only when the 

user is speaking. In the present study, since we are interested in how levels of affective 

states are associated with the speech-related features, we only consider the task of the 

WLSC in the voice-based scenario.

We address the task of automatic continuous affect recognition as a regression problem. 

Table 7 summarizes different acoustic and lexical representations we introduced in the 

previous section. For each type of features, we use Support Vector Regression (SVR) with 

linear kernel for regression. In order to increase the generality of the regression models, we 

make use of all available data by combining the training and development partitions together 

in the training phrase. For each set of regression models, we first optimized the SVR 

parameters in terms of cross-validation with Leave-One-Subject-Out (LOSO) paradigm. 

Then the SVR regressors are trained on the combined set with the optimized parameters. 

The performance of the regression models are evaluated in terms of the cross-correlation 

between the ground-truth labels and the predictions, on the same testing partition as defined 

in the AVEC challenge.

3In-depth feature selection and analysis studies can be performed to better understand the behavior of the ROI representations but 
these are outside the scope of the current article.
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5.1. Affect perdition via lexical representation

Table 8 compares the correlation performances of various lexical indicators on the test 

partition. We can see that the correlation scores on the WL PMI is the lowest among all 

lexical models, for every affective dimension. The correlation score is extremely low on all 

dimensions except for VALENCE. Single word information has low predictive power for 

affective states. This result is consistent with what we observed in Table 3, where the 

example word do not show interpretable association with affect dimensions except for 

VALENCE.

We can obtain remarkable improvement with the TL PMI models which take into account 

turn-level mutual information contributed by several words in the spoken turn. We further 

observe substantial improvements from the sparse lexical models, except for the Sparse 
ANEW. Compared with averaged correlation coefficient of 0.091 of the TL PMI, the high 

dimensional Sparse BOW, Sparse PMI, and TF.IDF obtain about double absolute 

improvement for almost all affect dimensions. These three representations achieve average 

scores of 0.182, 0.214, and 0.177 respectively cross all dimensions.

The Sparse ANEW representation performs worst among the four sparse lexical models, 

due to the mismatch of the lexicon defined in the ANEW dictionary and the vocabulary of 

the AVEC dataset. Only about 25% of the words in the AVEC data had been given 

normative ratings on the dimension of AROUSAL, POWER, and VALENCE in the ANEW 

dictionary. As a results, 46.2% of all speaker turns in the AVEC dataset consist entirely of 

out of vocabulary words which are not in the ANEW dictionary. In these cases, in both 

training and testing, we take the affect prediction from the preceding turn as the prediction 

for the current turn, assuming continuity of the emotional state when no evidence for chance 

has been presented. Consequently, the relatively poor performance of Sparse ANEW model 

may be partially related to the high percentage of turns consisting entirely of out of 

vocabulary words. Moreover, we notice that the Sparse ANEW model achieves much 

higher correlation scores on POWER and VALENCE than on AROUSAL. It obtains scores 

of 0.125 and 0.129 on POWER and VALENCE respectively, which is comparable with that 

of TL PMI, despite the huge sparsity issues with ANEW. This suggests that the level of 

affective connotation of specific words is more robustly related to the affective states of 

POWER and VALENCE across different corpora, while the level of activation of target 

words may vary considerably.

Similarly, we also analyze the occurrence of the complete OOV turns in the Sparse BOW, 

Sparse PMI and TF.IDF representations. The corresponding percentage of the OOV turns 

in the test partition is shown in Table 8. Since we consider all word occurrences in the 

training and development partitions for TF.IDF, we notice only 1.1% OOV turns in the test 

partition. Surprisingly, although we only consider the frequent words which appear at least 

three times for the Sparse BOW, we observe similar level of 1.5% OOV turns in the test 

partition, which is actually lower than we might have expected. On the other hand, we 

observe noticeably higher rate of OOV turns in the Sparse PMI representations. The 

percentage of OOV turns of Sparse PMI also markedly vary for different affective 

dimensions, from 4.8% of AROUSAL to 23.1% of POWER. This happens because we 
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selected different words based on the PMI values to construct the lexical feature space for 

different affective states.

In addition, our results indicate that the Sparse PMI features obtain the best continuous 

recognition performance among all lexical representations, although we observe relatively 

high OOV rate in this representation. They yield noticeably higher affect recognition 

accuracy compared to Sparse BOW and TF.IDF features for most of the affective states, 

i.e., AROUSAL, EXPECTANCY and POWER. The only exception is the recognition of the 

affective dimension of VALENCE, where Sparse BOW and TF.IDF perform better. We 

believe that this is due to the higher OOV rate of 12.2% observed in Sparse PMI.

Finally, in order to evaluate the statistical significance of the difference between the best 

lexical representations (Sparse PMI ) and the alternative lexical features that we studied, we 

perform a non-parametric two sided Wilcoxon sign-rank test (Wilcoxon, 1945). For each of 

the four affect dimensions, we take the 32 individual correlation scores for each test 

conversation and we perform a paired test to compare the change of correlation per 

individual conversation. In addition, we also perform an overall test for significance, 

considering all affect dimensions simultaneously, combining correlation scores of different 

affect dimensions for the test. We show the corresponding p-values in Table 9.

It is clear that the Sparse PMI features are significantly better than the non-sparse ones, 

e.g., WL PMI, on all affect dimensions. Among all sparse features, the Sparse PMI 
features show different levels of significance in improvements on various affective states. 

For example, they consistently outperform all other sparse lexical features on POWER while 

the difference on VALENCE is not significant. Overall, the best Sparse PMI features 

systematically outperform the Sparse ANEW and TF.IDF with p-value 0.005 and 0.02, 

while its improvements over Sparse BOW is not significant (p-value 0.14).

5.2. Affect perdition via acoustic representation

In Table 10 we compare the affect recognition performance on the test partition of various 

acoustic features introduced in Session 4. A single prediction is obtained for each utterance, 

then each word in the utterance is assigned the same affective value. The prediction is 

evaluated as the average word-level correlation across all sessions.

Consistent with what we observed in the lexical representations, the traditional Turn-level 
super-segmental acoustic features significantly outperform the Word-level features: 

correlations for the Turn-level features are more than five times greater than these for 

Word level prediction. Prior work on emotion classification tasks has documented that 

larger units of analysis are beneficial for emotion classification (Vlasenko et al., 2008). Our 

results of word-level and turn-level acoustic and lexical features further prove the 

superiority of the larger units for the tasks of continuous affect recognition. Our experiments 

with ROI-based features however reveal that specific regions of the turn may still carry 

more reliable information about the expression of affect.

ROI-based acoustic features provide substantial performance improvements over the 

conventional Turn-level features in most of the cases, with the exception of the recognition 
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of the affective dimension of AROUSAL with Accent ROI acoustic features. For example, 

the performance gain is as high as 144% for the recognition of the affective dimension 

POWER and 61% for recognition of affective state EXPECTANCY with Accent ROI 
features respectively in terms of correlation coefficients.

In addition, although we observe slightly higher average correlation scores of 0.136 for 

Accent ROI than the 0.126 achieved by Phoneme ROI features, our results also indicate 

that the Accent ROI features do not provide consistent improvement over Phoneme Class 
features on different affective dimensions. Different ROI-based features lead to best 

performance on each of the four affect dimensions. The Accent ROI features are much 

better than Phoneme ROI features for EXPECTANCY, while the Phoneme ROI features 

outperform Accent ROI features for AROUSAL. The two types of ROI-based features 

exhibit relatively similar performance for POWER and VALENCE.

One of the difficult aspects for emotion and affect recognition on spontaneous speech is the 

uncertainty inherent in the labeling of the data. However, to the best of our knowledge, 

effects of the uncertainty of the labeling for continuous affect recognition on spontaneous 

speech have not been explored for the prediction of affect.

We hypothesize that if the human raters are uncertain about the annotations, the model of 

affect recognition will be affected by the noise and will overfit values that do not correspond 

to any realistic perceptual correlates of affect. In other words, lower inter-rater agreement in 

the training set would also lead to lower recognition performance in the testing.

As we discussed in Session 2, many conversation sequences in the AVEC dataset have 

relatively low inter-rater agreement, particularly in the affective dimension of AROUSAL 

and EXPECTANCY. In order to investigate how continuous affective states recognition 

performance is affected by the reliability of labeling, we differentiate reliable data from 

unreliable ones with uncertain human labels and perform robust training with relatively 

small portion of reliable data with high inter-rater agreement.

Specifically, for each affect dimension we first analyze the reliability of annotations in terms 

of the inter-rater agreement on every session. If any session has inter-rater agreement score 

lower than the threshold of acceptable level (a < 0.7), this session will be classified as 

unreliable data and therefore removed from the training set. If any session obtains inter-rater 

agreement score higher than the threshold of good (a > 0.8), the whole session will be 

classified as reliable data and therefore kept in the training phrase. Furthermore, for the 

session with the inter-rater agreement between the level of acceptable and good (0.7 < a < 

0.8), we further examine the pair-wise correlations of any two individual raters. If most of 

the pair-wise correlations are on the lower side, the session will be treated as unreliable and 

excluded from robust training, otherwise it will be included as part of the training data.

For ease of comparison, we also give the affect recognition performance on exactly the same 

testing partitions, for the two best acoustic representations of Phoneme ROI and Accent 
ROI with reliable training, in Table 10. As we expected, compared with the results obtained 

with the full set of data, we achieve noticeable improvement on both Phoneme ROI and 
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Accent ROI features based on robust training with reliable data. This is a remarkable 

improvement given that the size of the reliable training data is much smaller than that of the 

whole set without selection. The largest improvement is in the prediction of the AROUSAL 

dimesion.

Finally, similarly to what we did for lexical representations, we also perform two sided 

Wilcoxon sign-rank test for statistical significance between the best performing Accent ROI 
reliable and the other acoustic representations. The p-values are listed in Table 11.

For the traditional super-segmental acoustic features, these results further confirm that turn-

level acoustic features are systematically and consistently better than the word-level ones, 

with highly significant differences between them and our best Accent ROI reliable for all 

affect dimensions. In addition, in overall comparison between turn-level and Accent ROI 
reliable acoustic features proves the advantage of our proposed ROI-based features, with p-

value of 0.003. Compared to the standard turn-level representations, the best features 

perfrom significantly better on EXPECTANCY and POWER. The differences in individual 

dimensions between the different ROI representations is not significant.

6. Combination of different indications

Now we turn to discuss the combination of acoustic and lexical modalities for continuous 

affect recognition. The performance of the combined multimodal affect recognition system 

is likely to be highly associated with the performance of the uni-modal systems, the 

redundancy among modalities and the effectiveness of the applied fusion methods. We study 

these issues in this section.

The extent to which different modalities agree with each other or differ in their prediction 

can be measured by computing the correlation between predictions from different models. 

Fusing models that differ in their prediction is more likely to lead to improvements in joint 

multi-modal prediction. In general we expect that different affect recognition models will 

give similar predictions if they are trained with features that capture similar sources of 

information. In such case, impressive improvements would not be expected even from 

powerful fusion techniques over single modalities, for example in combining all the lexical 

representations, since the prediction of these will be highly correlated.

In order to investigate the relationship between different acoustic and lexical indicators, we 

compute the cross-correlation between the output predictions obtained from different 

indicators. Table 12 gives averaged correlation scores (over four affective dimensions) of 

different lexical and acoustic indicators. Here, we only consider various turn-level acoustic 

features and sparse lexical representations, since they are the most likely candidates for 

fusion because they have been proven much better than the word-level acoustic features and 

two dimensional PMI features respectively. In addition, we do not consider the predictions 

from TF.IDF representations, because we established they are very similar to the Sparse 
BOW results.

Clearly, the predictions from different types of lexical representations are highly correlated 

with each other, with correlation of 0.660 between Sparse PMI and Sparse BOW. 
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Similarly the predictions from the two ROI-based representations have average correlation 

of 0.701 and that between turn-level acoustic and ROI representations is over 0.6. 

Correlations between the predictions from different types of indicators|lexical or acoustic|are 

low, for example 0.240 between Sparse PMI and Phoneme ROI.

For various sparse lexical representations, as we expected, Sparse BOW and Sparse PMI 
are relatively similar to each other, while Sparse ANEW is rather different. On the other 

hand, the correlation scores obtained between the two ROI-based acoustic representations is 

slightly better than that with conventional turn-level super-segmental acoustic features. The 

highest correlation of 0.701 is between two different class-based acoustic features, 

suggesting that these seemingly different representations in fact covey similar information.

Next, we select for the fusion study one of each acoustic and lexical representations by 

considering the performance of the single representation and the correlation between the two 

modalities we wish to combine. Compared with Sparse BOW, Sparse PMI representations 

show advantage in both better affect recognition performance and lower correlation with 

acoustic information. On the other hand, Phoneme ROI and Accent ROI exhibit 

comparable performance in both respects. Finally, we pick Sparse BOW and Phoneme 
ROI for the fusion experiments we describe next. The correlation between the predictions of 

these two indicators is 0.240, and this relatively low score shows the potential of 

improvement from fusion.

In Table 13 we compare the performance of early-stage feature fusion and late-stage fusion. 

In the first, both types of features are combined to train a regression model. We examine two 

approaches for late-stage: we combine the prediction obtained from acoustic and linguistic 

indicators with decision fusion by averaging the individual prediction or use the predictions 

as features in an SVR. The correlations of predictions for each affective dimension between 

two individual modalities are also listed in the table.

For early-stage feature fusion, we train SVR with linear kernel with one feature vector 

concatenating acoustic and linguistic features. We perform speaker-independent LOSO 

cross-validation on the training and development partitions to determine the hyper-

parameters for SVR.

Consistent with the finding in Polzehl et al. (2010), we can see that the early-stage feature 

fusion shows inferior results, while the fusion performs slightly better than the acoustic 

models but much worst than the lexical models. The two late-stage fusion systems show 

comparable performance in general. The SVR combination marginally outperforms the 

averaging fusion methods on average. Compared with the best single modality of Sparse 
PMI, we obtain insignificant improvements on VALENCE and POWER with SVR fusion. 

On the other hand, there is no change of performance on EXPECTANCY and performance 

drops on AROUSAL. This may be because the high correlation of 0.479 and negative 

correlation of −0.010, between acoustic and linguistic modalities, observed on 

EXPECTANCY and AROUSAL respectively.
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7. Discussions

In this paper, we explored various acoustic and lexical representations for predicting 

AROUSAL, EXPECTANCY, POWER and VALENCE affect dimensions in spontaneous 

conversations.

In Lee and Narayanan (2005a), emotional salience based on mutual information between 

words and emotion classes has been found useful to classify negative and non-negative 

emotions in real-world call center dialog application. On the other hand, Polzehl et al. 

(2011)’s work indicate the advantage of word-level and bi-gram emotional salience over 

standard bag-of-word sparse representations, in distinguishing anger from non-anger 

utterances on databases with low word-per-turn rate of 2–3 words. However, in our study, 

we show the superiority of sparse representations in continuous affect recognition in a 

corpus with longer spoken turns containing 15 words in average. Moreover, we achieve 

further improvements by jointly using sparse representations and mutual information.

We also notice that the conversation domain poses a challenge for generic characterization 

of affective content in lexical usage. The corpus-independent sparse lexical representations 

show relatively poor performance due to the fact that many words in the testing set were not 

present in the general corpus-independent ANEW dictionary.

We also address the problem of what unit of acoustic analysis is most suitable to predict 

dimensions of affect in spontaneous conversations. We first confirm prior findings that the 

longer utterance-level features are more predictive than word-level features, consistent with 

the finding in Vlasenko et al. (2008) on emotion classification tasks. Furthermore, we 

indicate that the affective cues are expressed to a greater extent in some regions of the 

utterance. We divide the turn into regions of interest for acoustic analysis by considering 

pitch accent realization in two different ways. Both ROI representations show substantial 

improvements over less informed utterance-level features. It is also interesting to note that 

the prediction of the two ROI representations is highly correlated with each other, since they 

convey similar information in different ways. Last but not least, we find that the 

performance of acoustic models is influenced by the inter-annotator agreement on the 

training data. We divide the original training data into two groups of reliable and unreliable 

partitions according to the agreement among different raters and obtain improvements by 

using only reliably annotated data in training instead of making use of the larger but noisier 

training set.

As in any study involving two rather different views of the data|lexical or acoustic 

modalities in our case|it is tempting to ask which of these broad classes of representation is 

the better one. Our work however clearly demonstrates that instead we ought to focus on 

refining the representations within each modality, i.e. how a modality is represented 

influences performance more than the choice of modality itself.

The combination of different sources of information together for emotion and affect 

prediction is a challenging task. D’Mello and Kory (2012) reviews 30 studies on both 

unimodal and multimodal affect detection and concludes that the improvements obtained of 

multimodal systems over unimodal ones were much lower on natural or seminatural data, 
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only 4.39% improvement on average. In our study, we achieved modest improvement on 

VALENCE and POWER by decision fusion with SVR, while this simple fusion method did 

not show consistent improvements on AROUSAL and EXPECTANCY. However, we 

observe relatively low correlation between the prediction from acoustic and lexical 

indicators. This suggests that the proposed acoustic and lexical representations are 

complementary to each other and the potential for improvement for fusion is high.

Finally, we compared our performance with the AVEC 2012 benchmarks and other 

participants. The baseline system and most participants applied both video and audio 

analysis in the challenge, while the lexical information was not included in their analysis. 

The baseline audio-visual system trained on the union of word-level high-dimensional 

super-segmental acoustic features and LBP image features obtains a correlation of 0.015 

(Schuller et al., 2012), which is much lower than our scores of 0.152 and 0.214 obtained on 

the best acoustic and lexical representations respectively. Ozkan et al. (2012) applied co-

HMM fusion with low-dimensional video (smile, gaze, head tilt), acoustic (energy, 

articulation rate, F0, Peak slope, Spectral stationarity), and scale time features. Their best 

performance on word-level prediction is 0.200 which is the second place in the word-level 

competition. Compared with that we report improvements due to the stronger prediction 

power of lexical representations. The promising performance suggests the need for including 

lexical information in prediction of affect dimension in spontaneous conversions in future 

application, which has received relatively little attention before. Our proposed multimodal 

affect recognition system with audio, lexical, and video analysis won the word-level 

prediction competition in AVEC 2012 challenge, obtaining impressive improvement from 

multimodality via much more advanced fusion methods with particle filtering (Savran et al., 

2012).
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Cao et al. Page 18

Table 1

Overview of the AVEC Grant Challenge dataset

Training Development Testing

Number of sessions 31 32 32

Duration in total 2.79 h 2.5 h 2.27 h

Number of speakers 7 8 8

Number of turns 1,232 1,145 941

Number of words in total 20,183 16,311 13,856

Average no. of words per turn 16.38 14.25 14.72

Vocabulary size 2,109 1,887 1,759

Average turn length in seconds 5.16 4.65 4.36

Average word durations (s) 0.262 0.276 0.249
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Cao et al. Page 19

Table 2

Distribution of inter-rater agreement, given in ranges of alpha, with different numbers of raters in the training 

and development partitions of the AVEC challenge dataset.

AROUSAL EXPECTANCY POWER VALENCE

2 raters

a < 0.5 (unacceptable) 28.60% 64.30% 28.60% 35.70%

a > 0.7 (acceptable) 28.60% 7.10% 35.70% 35.70%

a > 0.8 (good) 0% 0% 14.30% 28.60%

6 raters

a < 0.5 (unacceptable) 25.80% 29% 6.50% 9.70%

a > 0.7 (acceptable) 51.60% 32.30% 87.10% 77.40%

a > 0.8 (good) 22.50% 9.70% 38.70% 45.20%

8 raters

a < 0.5 (unacceptable) 8.30% 8.30% 0 0

a > 0.7 (acceptable) 75% 41.70% 66.70% 83.30%

a > 0.8 (good) 41.70% 33.30% 58.30% 66.70%
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Cao et al. Page 20

Table 3

Words with highest PMI with affective dimensions transformed into binary classes

Class AROUSAL EXPECTANCY POWER VALENCE

0 - low anxious house depressed bloody

0 - low inside that hello tha

0 - low opinion deadline extra world

0 - low optimism goes inherently annoy

0 - low rains write rude insurance

0 - low three writing smiling reference

0 - low language general travel annoys

0 - low change magical unfortunate anxious

0 - low guess rest expect constructive

0 - low realise job face fighting

1 - high afternoon let’s write interesting

1 - high drawer anxious idea bye

1 - high funny balance lights it’ll

1 - high pissed care buy weekend

1 - high spain everything’s goes tree

1 - high spanish face language holidays

1 - high win funny calm phd

1 - high car pain tree together

1 - high annoys supposed opportunity she

1 - high buy truth saw love
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Table 4

Comparison of the selected vocabulary in Sparse BOW and Sparse PMI representations on the four affective 

dimensions.

No. of words AROUSAL EXPECTANCY POWER VALENCE

BOW and PMI C0 shared 326 282 235 179

BOW and PMI C1 shared 343 181 284 311

BOW unique words 379 585 529 558
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Cao et al. Page 22

Table 5

Words with highest/lowest ANEW ratings for each affective dimension

Rating AROUSAL POWER VALENCE

low boring rejection rape

low relaxed humiliation suicide

low relax robbery funeral

low paper helplessness cancer

low fatigued insecure rejection

low tired loss murderer

low lazy failure miserable

low sign disability suffocate

low sleep miserable torture

low quiet famine unhappy

high rage me triumphant

high orgasm leader love

high rollercoaster winner paradise

high thrill confident loved

high enraged admired joy

high explosion win miracle

high terrified king funny

high killer complete humor

high win choice laughter

high ecstatic excellence award
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Cao et al. Page 23

Table 6

Features used for emotion recognition: low-level descriptors (LLD) and functions

LLD (26) Functionals (19)

Prosody features:
intensity, loudness, F0, F0 envelope, 
probability of voicing, zero-crossing rate

max, min, mean, standard deviation, liner regression: offset, slope, linear, quadratic error 
extremes: value, range relative position, skewness, kurtosis, quartile 1–3, 3 inter-quartile ranges

Spectral features:
MFCC 1–12, LSF 1–8
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Table 7

Summary of lexical and acoustic features evaluated in the affect prediction experiments

Lexical representations Number of features Acoustic representations Number of features

WL PMI 2 Word-level 988

TL PMI 2 Turn-level 988

Sparse BOW 1048 Phoneme ROI 2508

Sparse PMI 1000 Accent ROI 1976

Sparse ANEW 548

TF.IDF 2992
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