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Abstract
The RoboHelper project has the goal of developing assistive robots for the elderly. One crucial component of such a robot is a
multimodal dialogue architecture, since collaborative task-oriented human-human dialogue is inherently multimodal. In this paper,
we focus on a specific type of interaction, Haptic-Ostensive (H-O) actions, that are pervasive in collaborative dialogue. H-O actions
manipulate objects, but they also often perform a referring function.

We collected 20 collaborative task-oriented human-human dialogues between a helper and an elderly person in a realistic
setting. To collect the haptic signals, we developed an unobtrusive sensory glove with pressure sensors. Multiple annotations
were then conducted to build the Find corpus. Supervised machine learning was applied to these annotations in order to develop
reference resolution and dialogue act classification modules. Both corpus analysis, and these two modules show that H-O actions
play a crucial role in interaction: models that include H-O actions, and other extra-linguistic information such as pointing gestures,
perform better.

For true human-robot interaction, all communicative intentions must of course be recognized in real time, not on the basis of
annotated categories. To demonstrate that our corpus analysis is not an end in itself, but can inform actual human-robot interaction,
the last part of our paper presents additional experiments on recognizing H-O actions from the haptic signals measured through the
sensory glove. We show that even though pressure sensors are relatively imprecise and the data provided by the glove is noisy, the
classification algorithms can successfully identify actions of interest within subjects.

c© 2015 Published by Elsevier Ltd.
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1. Introduction

In face-to-face human-human communication, interactions are spontaneously multimodal: interlocutors speak to
each other, they use hand and body gestures, and eye gaze, to express their intentions. When people collaborate on
physical or virtual tasks, they also act on objects, and on each other. Since these actions involve physical contact
(touch), we will refer to them as haptic actions. It is widely held that interpreting the mix of audio-visual signals is
essential to communicating [1]. Gestures and haptic actions are an important part of such dialogues. However, while
the role of pointing gestures has been broadly explored [2, 3, 4], the role that haptic actions play in an interaction has
not been investigated to the same extent.
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Given the inherent multimodality of human-human collaborative dialogues, Human-Robot Interaction (HRI) needs
to incorporate multimodality as well. A robot needs to be able to interpret and generate different kinds of gestures
as well as haptic actions. Besides making the interaction natural, multimodal dialogues have other advantages [5]:
multimodality reduces errors, makes the dialogue more robust because of mutual disambiguation, and it brings more
efficient performance to various tasks.

In this paper, we focus on a specific type of interactions that has hardly been studied in the context of multimodal
dialogues: Haptic-Ostensive (H-O) actions [6], haptic actions that manipulate objects and may simultaneously refer
to the manipulated objects.1 Our main contributions are two-fold:

1. Corpus Collection and Analysis (Section 3). We present the ELDERLY-AT-HOME corpus of human-human
collaborative dialogues, collected in the context of performing Activities of Daily Living (ADLs) [7]. ADLs are
activities such as getting up from a bed or chair, getting dressed, preparing dinner etc., that are essential for a
person to remain living independently. Our corpus analysis highlights the role of H-O actions. We believe this
is the first extensive corpus analysis of H-O actions.2

2. Multimodal Dialogue Processing (Section 4). We then discuss two components of our dialogue processing
model: the reference resolution module, and the dialogue act classifier. In both components, H-O actions and
extra-linguistic information in general, play a crucial role.

Finally, we take our work one step further, and move beyond the realm of purely symbolic dialogue processing that
is not connected to acting in the real world. Our reference resolution model and the dialogue act classifier include H-O
actions, however those models are based on humanly annotated H-O actions. Needless to say, to make further progress
in HRI, H-O actions need to be recognized from the haptic signals, namely, the dialogue processing work needs to
be grounded in the real world. Section 5 presents our initial results in this regard. The experiments on recognizing
H-O actions from haptic signals we describe are based on additional data we collected in the same realistic setting of
the ELDERLY-AT-HOME corpus. We show how the models derived from this additional dataset can productively be
used to recognize a large subset of the H-O actions relevant to the ELDERLY-AT-HOME corpus.

The experiments described in Section 5 support our contention that the extensive corpus analysis and modeling
we did is not an end in itself, but has concrete potential for HRI, and not only in the sense that robots should take into
account H-O actions. The fact that some H-O actions can be automatically recognized from human data is significant
for a number of reasons. First, in building a corpus like the ELDERLY-AT-HOME corpus, manual annotation con-
sumes significant amount of time and limits the size of the corpus. Automatic recognition makes the process much
faster and the corpus potentially larger (as demonstrated by [8], that we will discuss below). HRI is largely driven by
our understanding of human-human communication and corpora are the primary tool through which such a commu-
nication can be studied. Second, the prevailing paradigm for HRI, learning from demonstration [9, 10, 11], is heavily
data driven. Devices like the glove and the automatic recognition algorithms we will discuss will play an important
role in the process, even though they will not necessarily be used for everyday interaction.

2. Related Work

Research on spoken dialogue systems has been progressing for at least forty years, and many systems exist,
from prototypes to commercial strength (please see [12] for a recent overview). Very early on, researchers realized
that modalities other than speech play very important roles in interaction, and started integrating them into their
computational models [13, 14, 15]. It is impossible to do justice to this large body of work within the space constraints
of a paper. We will therefore focus on research that has addressed two important tasks within multimodal dialogue
processing, referential expressions interpretation, and dialogue act recognition. Since our focus is on H-O actions, we
will more broadly also review literature on the role of haptics in human communication, and its modeling within HRI.

Before we proceed, a clarification as concerns terminology. We will study two main types of extra-linguistic
communication. The first is deictic gestures which are generally understood as ’pointing gestures’ that indicate
real, implied or imaginary persons, objects, directions, etc., and are strongly related to their environment or ’gesture

1Definition of ostensive: “ Directly or clearly demonstrative” (http://www.oxforddictionaries.com/us/definition/american english/ostensive).
2In due course, we will release the ELDERLY-AT-HOME corpus, which we believe will constitute a substantial contribution to the community.
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space’.3 Deictic (or pointing) gestures are normally conceived as not involving contact with the object pointed to. In
contrast, haptic actions, the other important type of the multimodal interaction that we study, involve contact with an
object as their inherent feature. H-O actions are a subset of haptic actions, which manipulate objects (as opposed to
purely touching an object, e.g. pointing by making contact on a touch screen).4

Finally, we will talk about an utterance as an uninterrupted chain of spoken or written language5 – namely, we
will take as utterance the whole spoken contribution of one speaker before the floor moves to the other speaker (an
utterance can then comprise zero, one or more units that can be termed sentences from a syntactic point of view).

Also note that whereas the models we will focus on in this section all rely on humanly annotated data, we will
discuss annotation schemas later on in Section 3.2.

2.1. Multimodal Reference Resolution
Reference resolution aims at resolving referring expressions to the entities that they refer to (referents). The

rationale for this task is that it is essential for many NLP applications to understand which entities are talked about,
and that the same entity can be referred to through different linguistic referring expressions [16]. In fact, reference
resolution for text is a standard module for many open source NLP toolkits: OpenNLP,6 NLTK,7 and GATE. 8

Referring expressions in multimodal dialogue systems are more challenging to resolve, but also richer. Firstly,
the utterances may be informal, ungrammatical, disfluent or incomplete; secondly, people spontaneously use hand
gestures, body gestures, eye gaze and actions to interact with other people. To wit, in the following example from our
corpus, the referent for that one is the pot that HEL(per) takes out from the cabinet; the referent for there is the cabinet
which ELD(erly) is pointing to:

ELD: Can you get me a pot?

HEL: (opens cabinet, takes out pot)

ELD: Not that one, try over there (points to different cabinet)

As observed by many ([2, 3, 4, 17] inter alia), in a multimodal corpus, the antecedents of linguistic referring
expressions are often introduced via gestures. Crucially from a computational point of view, including hand gestures
information improves the performance of the reference resolution module [18, 19]. Sources of information different
from hand gestures are important as well. For example, [20, 21, 22] integrated eye gaze into the reference resolution
task. Subsequent experimental results showed a significant improvement when eye gaze was included in the feature
set.

Researchers have mostly focused on the impact of deictic gestures on reference resolution. As mentioned, deictic
gestures are normally understood as not involving contact with the object pointed to; however, a range of other inter-
actions exist, where not only is an object touched, but manipulated in some fashion as well. In their groundbreaking
work, Foster et al. [6] explored the role of Haptic-Ostensive (H-O) actions in a collaborative task.9 They noted that
these actions manipulate objects and can also be used to refer to the objects ostensively. They reported that about
36% of the initial linguistic references in their corpus (476 of 1333) were accompanied by such H-O actions. In the
short excerpt from our corpus included above, both opening the cabinet and taking out the pot count as H-O actions,
because they both introduce a potential referent, the cabinet and the pot, into the dialogue context.

We build on Foster et al. work [6]. We are the first to explore H-O actions in a completely natural setting – Foster
et al.’s experiments take place either in a virtual shared space where two human subjects solve a tangram problem; or
with one human interacting with a humanoid robot to solve a building block construction task. We are also the first
to integrate H-O actions in computational models of both referring expressions and dialogue act recognition. Please
note that whereas the role of haptic actions has been previously explored ([15, 24, 25] inter alia), these gestures are
confined to making contact with a touch screen with pointing or “lasso” gestures.

3http://multimodalityglossary.wordpress.com/gesture/
4In reality, haptic actions are gestures and pointing gestures are actions. However, we use the term action only for haptics and the term gesture

only for pointing gestures to keep with current terminology in linguistics and robotics, and to keep the references to the two distinct.
5http://www.oxforddictionaries.com/us/definition/american english/utterance
6http://incubator.apache.org/opennlp/
7http://www.nltk.org/
8https://gate.ac.uk/
9But see [23] as concerns incorporating the action of picking up an object into reference resolution.
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2.2. Multimodal Dialogue Act Recognition
Another component of many dialogue systems is Dialogue Act recognition, which attempts to uncover the speaker’s

intention behind an utterance. The notion of a Dialogue Act (DA) [26] is derived from the philosophical notion of
a speech act [27]. In computational terms, DA recognition is often cast in terms of DA classification, in which a
speaker’s utterance is labelled with one (or more) of the possible DAs. As for reference resolution, DA classification
in a multimodal environment is more challenging. First, an utterance may not directly follow another spoken utter-
ance, but rather a pointing gesture or a haptic action. Likewise, the next move is not necessarily a spoken utterance, it
can be a pointing gesture or a H-O action only, or a multimodal utterance. Third, when people use gestures and actions
together with utterances, the utterances become shorter, hence the textual context that has been used to advantage in
models of written text is impoverished.

Several corpora tagged for dialogue acts have been produced ([28, 29, 30, 31] inter alia), and a large body of
research has addressed the problem of recognizing DAs from linguistic form, including [32, 33, 34, 35]. Some of
these models also include acoustic features, for example prosody, and show that DA recognition improves when such
features are included [36, 37, 38].

As for reference resolution, we focus on models of DA recognition that include extra-linguistic features, which
have more recently started to attract interest. For example, [39] discovered that integrating facial expression could
significantly improve the recognition of several dialogue act categories, whereas [40] showed that automatically rec-
ognized postural features may help to disambiguate DAs.

Not many researchers have explored the impact of gestures on DA classification per se, however some papers
explore the role of gestures for recognizing intentions to e.g. perform specific actions in the domain.10 For example,
in [41] deictic gestures are used to recognize users’ intentions to perform actions (some linguistics, some domain) in
a visual interior decoration application.

Other researchers have investigated additional extra-linguistic features, in particular features of the context. Semi-
automatic DA classification was applied in [8] for situated social agents in a restaurant game: they trained a classifier
using 2% of the data, and used the trained model to annotate the remaining 98% of the data. The final model showed
strong predictive power and included the role of the person (waitress or customer), their general posture (sitting or
standing), who they are facing, and their location. As we will see, a triad of extra-linguistic features which includes
pointing gestures, H-O actions, and location will be included in our best DA classification models. The study in [8]
is notable for a second reason: they further investigated whether [p. 157] dialogue acts are useful building blocks for
learning patterns of interleaved utterances and physical actions. It is our goal as well, to ultimately develop a model
that can decide “what to do next”, be it an utterance, possibly accompanied by a gesture, or an action in the domain.

2.3. Haptic Recognition
The literature on the role of haptics and touch in human communication can be broadly divided into two categories.

The first studies communication through touch devices and primarily focuses on pointing and touch gestures that can
be detected by such devices. Design of touch interfaces is studied in e.g. [42, 43, 44, 45], and the integration with
speech has been addressed in e.g. [15, 24, 25] as mentioned earlier. Vibro-tactile displays provide an interesting
extension of this work to bi-directional haptic communication (see e.g. [46]). We again emphasize that the focus in
this work are haptic actions in general, and more specifically H-O actions. They involve touch, but they are distinct
from gestures used with touch displays.

The second body of work studies the role of touch in social interaction. It is well documented that humans com-
municate emotions through touch [47]. Several groups have developed artificial skin that can sense such interactions
and proposed various approaches to interpret them [48, 49, 50, 51, 52]. Robot companions that provide social inter-
action have been proposed by [53, 54]. Our work is different since we are interested in collaborative rather than social
interactions.

Limited options exist for collecting data on actions that involve touch. Pressure or other sensors mounted either on
a hand/glove or embedded in objects have been used to recognize haptic information. For example, in [55], a sensory
glove has been used to recognize the type of grasp used by the subject. In [56], finger joint angles of a robotic hand

10There is of course a vast literature on recognizing human motion. However, here we are specifically focusing on deictic gestures and H-O
actions.
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are used to identify a set of 25 different objects, and in [57] the information from 45 pressure sensors mounted on
Lucs Haptic Hand II is used to classify six objects of different shapes. An array of pressure sensors has been used
in [58] to recognize a set of toys. In [59, 60], an object with embedded sensors was used as a user interface to virtual
environments. Some of these studies rely on various machine learning techniques for recognition, but none of them
studies H-O actions.

3. The ELDERLY-AT-HOME corpus

3.1. Data Collection

The RoboHelper Project [61], as the larger context of this research, focuses on the elderly care domain. Its ultimate
goal is that of building assistive robots that can help the elderly remain living independently at home. Such a robot
needs to be able to help the elderly person perform Activities of Daily Living (ADLs) [7], which include getting up
from a bed or chair, getting dressed, preparing dinner etc. These activities all require physical interaction between
the elderly and the robot. To develop our models we had to collect a new corpus since in this domain no multimodal
dialogue corpus exists which includes haptic data relevant to the interaction.11

Figure 1. Data Collection Experiments

The data collection experiments were conducted in a fully functional studio apartment at Rush University in
Chicago. Each experiment involved interaction between an ELDer and a HELper. The experiments focused on four
ADLs: ambulating; getting up from a bed or a chair; putting on shoes; and preparing dinner. Undoubtedly, preparing
dinner is the most complex ADL, since it comprises many subtasks, such as finding pots, opening cans and containers,
putting pots on a stove, cooking pasta, draining the pot, setting up the table, and cleaning the table afterwards. Two
students in gerontological nursing played the role of the HELper, both in pilot experiments and the experiments with
real subjects. In five pilot experiments, two faculty members played the role of the elderly person. In the fifteen real
experiments, the ELDer resided in an assisted living facility and was transported to the apartment mentioned above.

11Multimodal corpora that target ADLs such as CMU-MMAC [62] or CAET [63] are rich with signals of different sorts, e.g. motion capture or
depth information. However, they are either limited as concerns the kinds of activities they focus on and/or do not include haptic signals.
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All elderly subjects were highly functioning at a cognitive level and did not have any major physical impairment.
Figure 1 shows a video frame from the experiment recordings. We12 equipped the room with seven cameras to ensure
multiple points of view. During the experiments, both participants were wearing a microphone, and a data glove on
their dominant hand to collect haptics data.

We employed two gloves: the X-IST commercial glove, developed by noDNA and worn by the elderly subject,
and the glove that we developed, worn by the helper. During pre-pilot experiments (not included in the corpus), we
realized that the X-IST glove was not providing us with enough signals: this glove includes pressure sensors only
on its fingertips, but when a subject grasps an object, the fingertips actually don’t really touch the object, or at least,
not with enough force that a signal can be transmitted. An excellent overview of various other sensory gloves can
be found in [64]. They are primarily targeted at motion capture, none of them is suitable for collecting haptics data.
Hence we developed our own glove by attaching FlexiForce pressure sensors (Tekscan, USA) to a cotton glove (we
developed only one because fabricating the glove required considerable effort). These sensors are thin and light,
and favorably compare to other similar sensors in terms of precision and linearity [65, 66]. The sensors were placed
on every segment of each finger except for the middle segments of the thumb and the pinkie. We also placed four
pressure sensors on the palm. In total, 17 pressure sensors were attached to the glove (Figure 2). Additionally, a 6
degree of freedom inertial measurement unit (ITG3200/ADXL345, SparkFun Electronics, USA) was used to capture
hand tilt and acceleration. It was attached to the back of the palm. The glove is connected to a processor box based
on Arduino Mega microcontroller [67] through two 20 wire cables. All the electronics is placed in a small backpack
that the subject wears during the experiments (please see Figure 1). After reading sensor values, the microcontroller
transmits the data wirelessly to the computer using an Xbee module. The computer receives the glove data through
a USB XBee receiver module and stores it in a file with a time stamp for each data sample. The data is sampled at
around 70Hz.

Figure 2. The sensory glove developed in-house

The size of the collected video data is shown in Table 1. The number of subjects refers to the number of different
ELD’s and does not include the HEL. The five pilot experiments were included though, since the interactions in those
pilot experiments did not measurably differ from those with the real subjects. Usually one experiment lasted about 50
minutes (recording started after informed consent and after the microphones and data gloves were put on). Further,

12“We” refers to all the project members of the RoboHelper project, not just to the authors of this paper, since data collection was the result of a
collective effort from all [61].
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we eliminated irrelevant content such as interruptions, e.g., by the person who accompanied the elderly subjects, and
further explanations of the tasks. This resulted in about 15 minutes of what we call effective data for each subject; the
effective data comprises 4782 utterances (see Table 1) (recall that an utterance corresponds to one speaker’s spoken
turn, not to one single sentence).

Subjects Raw(Mins) Effective(Mins) Utterances
20 482 301 4782

Table 1. RoboHelper Distributional Statistics

The Find SubCorpus. As observed in the experiments, one type of activity was common to the majority of the subtasks
preparing dinner consists of: the subjects were frequently involved in finding and retrieving different types of objects
(pots, silverware, pasta) from all kinds of containers (drawers, cabinets, fridge). Such tasks were labeled as “Find”
tasks and are the focus of this work. Apart from their frequency, another reason for focusing on the “Find” tasks is to
avoid possible safety issues. Tasks such as helping the elderly person ambulate or putting on shoes would require the
robot to directly touch the elderly; while these issues are of much interest to the HRI community, they are outside the
scope of the work discussed in this paper.

We define a Find task as a continuous time span during which the two subjects are collaborating on finding objects.
A Find task could be initiated by a request from ELD or by a suggestion from HEL, and ends when they found what
they wanted, or (rarely), gave up. We manually annotated for the beginning and end of a Find task (see track FindTask
in Figure 4, to be discussed shortly). 137 Find tasks were extracted. The vast majority of them succeeded, with only
four failing: after several rounds of searching, the subjects still could not find what they wanted, and they agreed to
use an object other than what they had planned to use. The total length of the 137 Find tasks is about 1 hour and 24
minutes. This subcorpus comprises 1516 utterances, which include 6593 words (see Table 2). Collectively, the 137
Find tasks account for about 28% of the total length of our effective dialogues, and for about 32% of the total number
of utterances. It appears that these subtasks elicit slightly more interaction than other tasks.

Figure 3 shows a Find task example, where the subjects are collaboratively searching for a spoon in the kitchen.
The interaction has been annotated for pointing gestures, H-O actions and their targets, as we will describe next. In
the following, we will use Utti to refer to the spoken utterance in one turn, and Mi to refer in general to what occurs in
one turn of one participant. Whereas for a given i we sometimes have only either spoken utterance or pointing gesture
or H-O action, utterance and either pointing gesture or H-O action can co-occur, for example for turns 1, 2, 4, 8, 12 in
Figure 3. In Appendix B, we describe how we recognize whether a pointing gesture or H-O action is independent of
or associated with a spoken utterance.

3.2. The annotation process

We used Anvil [68], a multimodal annotation research tool, to process the collected data. Figure 4 shows the
annotation of the first 6 turns from Figure 3 (please note that the indices associated with utterances, pointing gestures
and H-O actions in Figure 4 are internally generated and do not match those used in Figure 3). Several types of
annotations were performed in different dimensions. Each dimension is implemented as a track in Anvil: these are
the blue rows in Figure 4. Further, attributes are used to label various features of a track, and are shown as labels in
rectangles on the track. The size of the rectangle corresponds to the time span of the attribute. One track was used to
mark Find tasks. For a Find task, its start and end points, and the object which the subjects were trying to find during
the task are marked (see track FindTask in Figure 4: the type of object looked for is spoon).

Two RoboHelper project members transcribed the spoken dialogues in the recorded experiment videos. The speech
of ELD and HEL was separated into different tracks in Anvil, as shown by the Utterance track in Figure 4 which is
subdivided into three: the HEL(per), the ELD(erly) and the mediator.13 The speech was segmented into utterances

13Recall that in our discussion of effective dialogue, we eliminated interventions by third parties between tasks; however this track has been
defined in case those interventions need to be ultimately annotated.
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Figure 3. Find Task Example

(turns) according to pauses. Due to reasons, such as mumbling, speech not clear, and the words the subjects used,
etc., the transcribing process took more than three hours for each subject.

Two types of annotations were performed on the transcribed data: linguistic as concerns referring expressions,
their antecedents, and dialogue acts; extra-linguistic features in the form of pointing gestures, H-O actions and mis-
cellaneous features such as subject location. To annotate extra-linguistic features, annotators looked at the videos, and
for H-O actions, also at the haptic data recordings (when available, please see Section 5).

It is not possible to fully explain all the components of the Anvil interface within the space constraints of a paper.
We will just note that annotations such as [D#3, D#4] refer to the objects pointed to, or manipulated; and that the
top right window shows the current item being annotated: turn 2 by the helper (Down there?) and its features, which
include markables, referential expressions and DA (Dialogue Act), to be discussed in Section 3.2.1.

Table 2 shows the counts of different events divided by type of participant (words were extracted automatically
from the transcribed dialogues, gestures and H-O actions were annotated as discussed below). It is apparent that: a)
pointing gestures and H-O actions were frequently used. Their total corresponds to 61% of the number of spoken
utterances. b) ELD performed 66% of pointing gestures, and HEL performed 97.5% of H-O actions.

ELD HEL Total
Utterances 756 760 1516

Words 3612 2981 6593
Pointing 219 113 332

H-O Actions 15 582 597

Table 2. Multimodal Event Statistics in the Find Corpus

Before we proceed further, we should clarify why, rather than using any existing annotation scheme, we developed
our own, albeit relying on previous efforts such as [69] for referential expressions and MapTask for dialogue acts
[28]. Indeed rich multimodal annotation schemes exist, for example MUMIN [70], the Behavior MarkUp Language
[71, 72] or the ISO 24617-2 standard [73]. The issue is that multimodality is an extremely complex phenomenon,
and understandably, none of these schemes is all encompassing. For example none of the just referenced schemes
include reference annotations of the kind we need here (although gestures can be semantically linked to their referents
in MUMIN [4]). As far as gestures are concerned, even if these gesture annotation schemes are extremely rich as
concerns annotating e.g. the shapes of the hands or other functional features, as far as we know, they do not address
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Figure 4. The Anvil annotation interface (as applied to Figure 3)
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Figure 5. Third Person Pronouns and Deictics Distributions

manipulative / referential function for haptic interaction (please see [74] for a very recent review of annotation schemes
that focus on gestures). As far as dialogue acts are concerned, some schemes such as DiaML (part of the ISO 24617-2
standard [73]) decompose utterances along a variety of dimensions, for example communicative function versus realm
(e.g. task vs social obligation). We still resort to a DA annotation that consists of primitive labels for several reasons:
first, annotating each utterance along several dimensions adds to the burden the annotators face, and it would have
required more resources that we could allocate to the coding task; second, we wished to compare our work with much
recent work that uses machine learning to develop DA classifiers, where DA labels are considered as primitive units.
Additionally, DA inventories like MapTask were specifically developed for task-oriented dialogues, as opposed to say
DiaML or the older DAMSL-Switchboard [31], which attempt to cover all types of conversations.

3.2.1. Linguistic Annotations
Coreference Annotation was done in order to support reference resolution, which as discussed in Section 2.1, aims
at resolving referring expressions to the entities that they refer to (referents). In essence, Coreference Annotation
concerns linking a referring expression to its closest referent in the data.

Our choices were based on the following distributional considerations. The subjects in our experiments frequently
used third person pronouns (it, them, they) and deictics (here, there, this, that, these, those). In the Find corpus,
827 out of 6593 words (12.5%) are third person pronouns and deictics. The distributions for different third person
pronouns and deictics are shown in Figure 5. Note that deictics can both be used as pronouns (e.g., all usages of this
in Figure 3) or as adjectives, as in that big red bowl. Figure 5 does not distinguish between deictics used as pronouns
or as adjectives, since they need to be resolved in both cases. However, Figure 5 distinguishes referential usage from
non referential usage. This is necessary because pronouns and deictics are also used pleonastically: e.g. in Yes, there
it is (Utt11 in Figure 3), there is not referential, but it is referential.

The coreference annotations followed a similar approach to [69], and included two phases of annotation: markable
annotations and coreference annotations proper. Simply put, markable annotation labels potential referential expres-
sions, and potential antecedents for referential expressions. In our case, markables comprise certain phrases (see
below), and all targets of pointing gestures and H-O actions (to be described in the next section). While the markable
annotations were semi-automatic, the coreference annotations were completely manual.

210



/ Computer Speech and Language 34 (2015) 201–232 211

Type Count
OBJ (Object) 762
PLC (Place) 616
NEITHER 262

Table 3. Markable Type Counts

Type Count
Pronouns and Deictics 827
Resolved Pronouns and Deictics 757
Textual Antecedent 218
Pointing Gesture Antecedent 266
H-O Antecedent 273

Table 4. Multimodal Coreference Annotation Statistics

To annotate for textual markables, the shallow parser from Apache OpenNLP Tools was used to chunk the ut-
terances into phrases. Most of the Noun Phrases (NPs) and Adverb Phrases (ADVPs) were automatically marked as
markables. NPs or ADVPs which contain first and second person pronouns, or questions words like “what”, “which”
and “where” were excluded.

After the automatic step, for each utterance, the accuracy of the automatically generated markable candidates
was checked. If any markable was missed, a markable would be inserted using the same notation format, with an
auto-increment markable index. Textual markables were also annotated for type, according to the distinction between
PLACE (unmovable objects) and OBJECT (movable objects), to be discussed more fully below. The counts for
different types of markables are shown in Table 3.

If a markable is a pronoun or a deictic, and hence a referential expression, then the annotators marked its corefer-
ence target, i.e. the closest markable to which it refers.

The statistics for coreference annotations in the Find corpus are shown in Table 4. Note that for only 757/827
(92%) were the annotators able to determine an antecedent. Interestingly, 71% of those 757 pronouns or deictics
referred to antecedents that had been introduced exclusively by pointing gestures or H-O actions (about 35% each).
This is an important point: pointing gestures and H-O actions need to be taken into account by any reference resolution
model, since if we neglect them, we would not be able to take into account their targets as potential referents for
referential expressions.

Dialogue Act Annotation. To understand how multimodality can affect dialogue, utterances were labeled using DA
labels. We adapted the DA inventory used by in the MapTask corpus [28]. 14 As we mentioned earlier, whereas
other DA inventories are available, we chose the MapTask inventory because it is simpler, and was developed for
task-oriented collaborative tasks.

The MapTask original set includes six initiating move labels and four response move labels.15 Initiating move
labels include: instruct, explain, check (when a speaker asks their interlocutor for confirmation), align (which checks
the attention or agreement of the partner), query-yn, query-w. Response move labels include: acknowledge, reply-y,
reply-n, reply-w.

However, the MapTask label inventory of DAs does not cover utterances that are used to respond to gestures and
actions, such as Utt11 in Figure 3. Hence, we devised three more tags, which apply only to statements that follow
a move composed exclusively of a pointing gesture or an H-O action, like M10: state-y, a statement which conveys
“yes”, such as Utt11 in Figure 3; state-n, a statement which conveys “no”, e.g., if Utt11 had been Wait, try the third
drawer.; state, still a statement, but not conveying acceptance or rejection, e.g., So we got the soup.

14http://groups.inf.ed.ac.uk/maptask/interface/expl.html#moves
15A twelfth pre-initiating move, ready, did not occur in our data; neither did a fifth response move, clarify.
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Figure 6. Dialogue Act Distribution, per Actor

Hence, the new DAs {state-y, state-n, state} are used to tag responses to actions, and the original DAs in {reply-y,
reply-n, reply-w} are used to tag responses to utterances. The distributions of DAs which appear in the Find corpus
is provided in Figure 6. The most frequent DA is Instruct, which accounts for 20.7% of the total DAs. As the figure
shows, for almost every dialogue act, the frequency of usage is quite different according to the actor (ELDerly person
or HELper).

3.2.2. Extra-Linguistic Annotations
We annotate for pointing gestures, H-O actions and subjects’ locations.
Pointing Gestures are defined as hand gestures (of the left or right hand) that indicate the targets of the gestures,

and for which there is no physical contact between the hand and the targets. The latter is the main distinction between
pointing gestures and H-O actions, since it is a defining feature of H-O actions that there is physical contact with the
manipulated objects. Among pointing gestures, we did not include head movements, or other body part movements,
which can also be used to indicate targets, since such occurrences are extremely rare in our corpus.

For a pointing gesture, two attributes are marked: the time span (indicated by the width of the corresponding
rectangle), and the target. The time span of a pointing gesture starts when the subject initiates the hand movement;
and ends when the subject starts to draw back the hand. To mark the physical targets of pointing gestures, a referring
index system was designed as follows.

• A compile time referring index is assigned to each object which can be considered as a PLACE, i.e., that belongs
to one of the following two categories:

– Objects with fixed locations, like cabinets, drawers, microwaves, fridges, etc. For example, in Figure 4,
all the indices of the form D#N where N is an integer, refer to different drawers.

– Objects which can be moved, but usually are not moved during the experiments, like the table

• A run time referring index is assigned for each object which is movable, and has many different instances, such
as cups, glasses, etc. The run time index is given during the annotation process, according to the object type
and the order of appearance in the experiment context. An example of the run time index is “Cup#1”, which
means the first cup appearing in the experiment.
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The most common type of pointing gesture has one identifiable target, which is usually indicated by a short time
stable hand pointing – see D#3 in the track Pointing/Helper in Figure 4. In some cases, pointing gestures have more
than one identifiable target. In this case, a set of referents is created, such as [D#3, D#4] in the track Pointing/Elderly.
This means the subject was rapidly moving the target from Drawer#3 to Drawer#4. Finally, there are pointing
gestures for which potential targets are not identifiable: ‘*” is then used as the referring index. For example, the
notation “#*” means the subject initiated a pointing gesture towards a totally unidentifiable target.

Haptic-Ostensive Actions. As mentioned, during the collaborative tasks which we are interested in, subjects physi-
cally interact with objects. Those physical contact actions often perform a referring function as well, by either adding
new entities to the discourse model or referring to an already established referent. For example, in Figure 3, the action
[Touch(HEL, Drawer1)] that accompanies Utt4 disambiguates This by referring to Drawer1, tantamount to a pointing
gesture; conversely, the action [Takeout(HEL, spoon1)] associated with Utt8 establishes a referent for spoon1. Fol-
lowing [6], we label Haptic-Ostensive (H-O) those actions that involve physical contact with an object, and that can
at the same time perform a referring function. Note that target objects here exclude the partner’s body parts, as when
HEL helps ELD get up from a chair.

No existing work that we know of identifies types of H-O actions. Hence, we had to define our own categories,
based on the following two principles: (1) The H-O types must be grounded in our data, namely, the definitions are
empirically based: these H-O actions are frequently observed in the corpus. (2) They are within the scope of what
we envisioned could be recognized from the haptic signals. As we will see in Sec. 5, the two sets of actions (the
annotated types and the recognized types) do coalesce to a certain degree. The five H-O action types we defined are:

• Touch: When the subject only touches the targets, no immediate further actions are performed

• Grasp-Show: A grasp occurs when the subject takes out or picks up an object, holds it stably for a short period
of time, and (in the judgement of the annotator) intentionally shows it to the other subject

• Grasp-No-Show: This occurs when the subject takes out or picks up an object but (in the judgement of the
annotator) the subject does not intentionally show it to the other subject

• Open: The open process starts when the subject has physical contact with the handle of the fridge, a cabinet or
a drawer, and starts to pull; ends when the physical contact is off

• Close: The close action starts when the subject has physical contact with the handle of the fridge, a cabinet or
a drawer, and starts to push; it ends when the physical contact is off

For H-O action annotation, both the video and the haptic data recordings (when available) were inspected by the
annotators. Three attributes are marked: time span, target and action type. The time span starts when the action
is initiated and ends when the action ends. The “Target” attribute is similar to the “Target” attribute in pointing
gesture annotation – see examples in the HoAction/Helper track in Figure 4. Since H-O actions are more accurate
than pointing gestures [6], the targets are all identifiable. Table 5 shows the distribution of H-O action types. Not
surprisingly given the nature of the task, ELD performs very few H-O actions.

ELD HEL Total
Touch 3 33 36

Grasp-Show 0 71 71
Grasp-No-Show 4 79 83

Open 5 227 232
Close 3 172 175
Total 15 582 597

Table 5. H-O actions types

213



/ Computer Speech and Language 34 (2015) 201–232 214

Category Kappa
Coreference 0.700
Dialogue Act 0.789
H-O actions 0.703

Pointing Gestures 0.751

Table 6. Kappa values for different annotation

Subject Location Annotations. It is intuitive that subjects’ different locations will trigger different dialogue behav-
iors. For instance, if two subjects are together, and one subject points to a close target, there will be no ambiguity for
the other subject; hence no clarification about the pointing gesture will be raised.

Because of the absence of 3-D modeling for the room, the subject location annotation is only based on experiment
videos. The room was divided into four areas: table, bed, kitchen, and lounge. Among those four areas, table and
kitchen areas were the most frequently used areas.

Three tracks were used in Anvil for the subject location annotation: one track for each subject, and if both subjects
appeared in the same location, a “Both” track was used (see Figure 4).

3.3. Intercoder Agreement

All the annotations just discussed rely on humans to make subtle distinctions. To test the reliability of human
annotations, the standard approach is to have multiple coders annotate the same subset of the corpus, and then compare
the annotations in the double coded part to calculate the agreement. To evaluate intercoder agreement, the kappa
coefficient of agreement, κ, has become the de facto standard for tagging tasks in recent years [75, 76, 77]. Cohen’s
Kappa [78] and Fleiss’ Kappa [79] are two main methods for calculating κ. In this research, we used Cohen’s Kappa.

15% of our data was double coded for pointing gestures, H-O actions and coreference, namely the dialogues from
three pairs of subjects, or 22 Find subtasks. Table 6 shows the κ scores for the main categories we annotated. All
values are in the range [0.70, 0.79]. These values are taken to exhibit a substantial agreement level [80], and given
the complexity of the tasks, they are in fact quite reasonable.

4. Haptic-Ostensive Actions in Multimodal Dialogue Processing

We will now illustrate the roles that H-O actions, and extra-linguistic information in general, play in processing
multimodal dialogues of the kind we collected. We first note that we subscribe to an information state approach to
dialogue processing [81, 82, 83, 84]. In this approach, the information state is an abstraction of the dialogue context
and the current state and intentions of the speakers. Crucially, such models include [85, p. 839] a set of update rules
that update the information state as dialogue acts are interpreted and [...] rules to generate dialogue acts.

Figure 7 shows the general architecture of our dialogue processor. The inputs (utterances, pointing gestures, H-O
actions) are an abstraction of what a speech processing module, a vision module and a haptic recognition module
would return: for the work described in this paper, they are the transcribed utterance and the annotated pointing
gestures / H-O actions. Our information state (search state) is much simplified with respect to general models such as
[82], and only reflects the state of the objects and locations that ELD and HEL are collaboratively searching for (recall
that we focus on Find tasks). Heuristic update rules update such state on the basis of the results of the coreference
resolution and dialogue act classifier (we do not have room to present them in this paper). The Next diamond is a
placeholder for the module that would decide what to do next, and generate a spoken utterance and / or a pointing
gesture / H-O action. This module is left for future work.

We will now focus on the two main modules of our dialogue processor, coreference resolution and dialogue act
classification. Our goal is to specifically highlight the contributions that H-O actions and other extra-linguistic features
play in these tasks.
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Figure 7. The Architecture of the Multimodal Dialogue Manager

4.1. Multimodal Coreference Resolution

Our multimodal coreference resolution system contains four modules: a referential classifier, a candidate pair
generator, a candidate pair classifier, and a heuristic referent decider. Given a third person pronoun or deictic P,

1. the referential classifier decides whether P is referential;
2. the candidate pair generator generates potential coreference candidate pairs < ri, P > for P;
3. the candidate pair classifier labels each candidate pair < ri, P > as either True or False; namely, if < ri, P > is

classified as true, ri is a true referent for P;
4. if module 3 results in more than one coreference pair classified as True, the referent decider chooses one

according to heuristic criteria.

Modules 1 and 3 were developed via supervised learning algorithms. Since our main interest was the role played
by multimodal features, and not, uncovering why a specific supervised method performs better than others, we exper-
imented with supervised learning algorithms that have been successfully deployed in similar language applications,
specifically Maximum Entropy (MaxEnt), SVM and Decision Trees. In all cases, MaxEnt performs the best, according
to more than one metric, and in a variety of settings, as we will detail below.

In the following we will discuss Modules 2-4. As concerns the first module, it decides whether P is referential or
not. Recall that it, there can be used pleonastically: e.g. in Yes, there it is (Utt11 in Figure 3), there is not referential,
but it is referential. The MaxEnt referential classifier achieves F-score=0.954 and will not be discussed further. This
classifier uses lexical information about P (the word itself and its POS tag) and its surrounding context (word and POS
tag bigrams and trigrams).

4.1.1. The coreference candidate pair generator
This module generates potential coreference candidate pairs < ri, P > for P. To measure the impact of point-

ing gestures and H-O actions for coreference resolution, we experimented with three different types of coreference
candidate pair generators.

• Textual only: For each P, we create pairs by pairing P with all the compatible textual markables within six
spoken turns (current turn plus five previous turns, skipping moves consisting only of pointing gestures or H-O
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actions – please refer to Appendix B for a description of how we apportion moves). 16 For example for P=it
in Utt11 in Figure 3, all compatible textual markables from the current utterance and back to Utt4 are included
(moves M10 and M6 consist of only H-O actions). This results in three candidate pairs: [<A spoon, it> (from
Utt7), < the spoon, it > (from Utt8), <the second drawer, it> (from Utt9)].

• Pointing Gesture/H-O actions (extra-linguistic): For each P, we create pairs by pairing it with the targets of all
compatible pointing gestures, or with the targets of all compatible H-O actions, or with the targets of both. The
compatible antecedents are the targets of pointing gestures or H-O actions that end within 4 seconds of the start
of the current utterance. 17 E.g. for H-O only, for P=it in Utt11, this results in: [< spoon1, it > (from M8),
< Drawer1, it > (from M10), < Drawer2, it > (from M10)]. Note that these referents come from the actions in
moves M10 and M8, not from any spoken words. That’s why Drawer1 is included, even if it is never spoken of.

• Combined: For each P, we create pairs by pairing it with both textual and pointing gesture/H-O markables.
Namely, the pairs generated under Combined are the union of the pairs generated by Textual only and Pointing
Gesture/H-O Action.

4.1.2. The Candidate Pair classifier
We implemented the candidate pair classification model with the following algorithms: MaxEnt, Decision Tree,

and Support Vector Machine (SVM). MaxEnt models were built using the MaxEnt18 package from the Apache
OpenNLP package. Decision Tree and SVM were run via J48 from Weka [86], and LibSVM [87], respectively.
All of the results reported below were calculated using ten-fold cross validation.

Recall that our datapoints are pairs < ri, P >, where ri is the markable that is a potential antecedent for the
pronoun/deictic P; the classifier will perform a binary classification, namely, whether < ri, P > is a true pair, i.e.,
whether ri is a true antecedent for P. In the following, U represents the utterance containing P, e.g. Utt11 in our
running example; whereas ANT represents either the utterance that contains ri, or the pointing/H-O action of which ri

is the target.
Table 7 summarizes the features that the Candidate Pair classifier uses. These features depend on the type of

ri. Some features are common to both textual and extra-linguistic antecedents (leftmost column in Table 7), while
others depend on the type. Hence, if ri is textual, < ri, P > will have all the features listed in the left and center
columns in Table 7; if it is the target of a pointing gestures, the pair will have the features in the leftmost column, plus
Object Agreement in the rightmost column; finally, if it is the target of a H-O action, the pair will have all the features
in the leftmost column, plus both features in the rightmost column. Full description of these features is contained
in Appendix A.

Independent from ri type ri type = Textual ri type = Extra-linguistic
Time distance Lexical Object agreement

Markable type agreement Markable Distance H-O type
Actor agreement Turn distance

Number agreement Sentence distance

Table 7. Features used by the Candidate Pair classifier, according to type of antecedent ri

4.1.3. The heuristic referent decider
It is the last step in the coreference resolution process for P, and it was derived based on observations of the data and
on experimentation. Its steps are:

1. Given a pronoun/deictic P, if the coreference pair classifier returns only one positive coreference pair for P
< ri, P >, return the markable ri in that pair as the referent.

16The history length of 5 turns was determined experimentally.
17Again the value 4 seconds was determined experimentally.
18http://maxent.sourceforge.net
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Pair Generator Algorithm Precision Recall F-Score Accuracy Resolved (out of 757)

Textual only
J48 0.0 0.0 0.0 0.951 0

SVM 0.0 0.0 0.0 0.951 0
MaxEnt 0.411 0.279 0.332 0.946 35

Pointing only
J48 0.854 0.896 0.875 0.910 222

SVM 0.835 0.815 0.825 0.879 200
MaxEnt 0.837 0.888 0.862 0.900 220

H-O only
J48 0.751 0.643 0.693 0.847 148

SVM 0.662 0.374 0.478 0.780 82
MaxEnt 0.719 0.0.6 0.654 0.829 135

Pointing + H-O
J48 0.772 0.722 0.747 0.850 329

SVM 0.745 0.689 0.716 0.833 299
MaxEnt 0.798 0.785 0.792 0.873 359

Combined
J48 0.610 0.409 0.489 0.882 236

SVM 0.742 0.520 0.612 0.908 289
MaxEnt 0.732 0.670 0.700 0.920 390

Table 8. Coreference Model Results

2. If there are multiple positive coreference pairs for P, we divide those positive pairs into two subsets, SAME
and OTHER. SAME comprises those coreference pairs where the speaker of P is the SAME as the speaker of
ANT, or as the actor of the pointing gesture / H-O action of which ri is the target. OTHER contains the pairs
associated with the other speaker. If SAME is not empty, choose SAME, otherwise OTHER.

3. If the chosen set contains pointing gesture/H-O action pairs, we choose the target of the closest pointing
gesture/H-O action pair. Otherwise, we choose the markable of the closest textual pair.

4.1.4. Experimental Results
Table 8 shows the results for experiments with different combinations of algorithms and coreference candidate

generators. In the coreference model experiments, we only generated candidate pairs for the 757 third person pronouns
and deictics which were annotated as resolvable (please see Table 4).

We used several metrics to measure the performance of our reference resolution process. The standard measures of
precision, recall, F-Score and accuracy are computed with respect to their performance on the generated coreference
pairs – namely, these measures are computed on the output of Module 3, the candidate pair classifier, which for a
single pronoun P, can return more than one candidate pair as True. The Resolved column instead is computed with
respect to the output of Module 4, after the heuristic decider has chosen one single referent among all the possible
ones that the candidate pair classifier has returned. Note that the True/False class distribution is very unbalanced,
since the vast majority of candidate pairs are labelled as False in the training set. Hence, in Table 8, whereas accuracy
has very high values, it is F-score and Resolved that provide a more meaningful measure of performance. The reader
should also keep in mind that the numbers of candidate pairs to classify changes across the five pair generators; hence
the only measure that is computed with respect to the same number of datapoints is Resolved, since the number of
deictics and pronouns P is constant (757). As a consequence, it is not meaningful to compare precision, recall, F-score
and accuracy across generators.

In terms of F-Measure, MaxEnt performs significantly better (p≤.005, using χ2) than the other two algorithms (De-
cision Tree and Support Vector Machine), for most coreference candidate pair generators. The MaxEnt model resolves
more pronouns/deictics, for the Textual only; Pointing + H-O; Combined generators.

As mentioned, our main question is to ascertain whether multimodal information, including H-O actions, is useful
to resolve referential expressions. Consider the row Textual only and the next group of three rows, pertaining to extra-
linguistic information. First, by just glancing through the results, it is clear that candidate pairs generated exclusively
via extra-linguistic antecedents are conducive to much better results than candidate pairs generated exclusively via
textual antecedents. When we consider extra-linguistic antecedents only, across all algorithms more pronouns are
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resolved when only Pointing antecedents are used as opposed to only H-O antecedents. However, it is when we pair
pronouns/deictics with markables which are targets of pointing gestures or H-O actions, that the performance of all
algorithms improve; MaxEnt achieves the best result, by correctly resolving almost half of the referential pronouns
and deictics (47.4%, 359/757). This shows the importance of using pointing gestures and H-O actions in multimodal,
task-oriented corpora like the Find corpus.

In contrast, when we only generate textual candidate pairs, J48 and SVM simply classify every pair to “False”,
which results in very high accuracy (0.951). As mentioned, the unbalanced training set is responsible for this high
accuracy, since 95.1% of the coreference pairs are negative examples. Since all of the pairs were classified as “False”,
there are no true-positive classifications, which in turn results in 0.0% precision and 0.0% recall. Whereas MaxEnt
does a little better, and successfully resolves 32 pronouns/deictics, still, this is barely 4% of the total pronouns.

When we Combine the three types of antecedents together, clearly, more candidate pairs will be generated with
respect to Textual only or Pointing/H-O. MaxEnt obtains the best result across all settings, for a total of 390/757
resolved pronouns (51%). Since the Combined model gives us the best results, it is the model used by the Coreference
Resolution component within our dialogue manager (see Figure 7).

In conclusion, we have shown that extra-linguistic information by itself can correctly solve almost half of the
pronouns; that textual information by itself is not helpful, but that when it is combined with non-textual information,
it results in a small improvement, of about 3.7%. As concerns the importance of including H-O actions, we have
shown that by including markables which are targets of H-O actions in addition to those which are targets of pointing
gestures, we increase the number of Resolved pronouns by 50% (359 as opposed to 222).

4.2. Multimodal Dialogue Act classification with Haptic-Ostensive Actions

Recall that in our framework, the DA classification problem means, to assign one of the thirteen DA labels we
discussed in Section 3.2.1 to the current spoken utterance Ui. We also use the notion of previous move Mi−1, which
can be another utterance, a pointing gesture, or a H-O action. At the same time, the current utterance Ui may be ac-
companied by a pointing gesture or by a H-O action. Appendix B describes the algorithm we developed to distinguish
between pointing gestures / H-O actions that constitute independent moves, or are associated with an utterance.

As for reference resolution, all the DA classification models we present are machine learning models. We will
again show that H-O actions, and also the structure of the dialogue, play a critical role. All of the experiments shared
the same features, which include features of the individual utterance Ui (both linguistic and extra-linguistic), and fea-
tures of the larger context: the dialogue history (what transpired before Ui) and the dialogue game to which Ui belongs
(a correlate of the hierarchical structure of dialogue). Table 9 summarizes the type of features we are considering.
Both lexico-syntactic and meta features still comprise more elementary features, to be described in Appendix C.

Utterance Dialogue Structure
Linguistic Extra-Linguistic Dialogue History Dialogue Game

Lexico-syntactic Pointing gesture Type of previous move Mi−1 Dialogue Game
H-O action Mi−1 actor
Location Same actor as Mi−1

Meta

Table 9. Different kinds of features used by the DA classifier

Classes of features commonly used in the literature are linguistic features of the utterance, and dialogue history.
Extra-linguistic features (other than standard meta features such as actor of the utterance or time length) and dialogue
game have not been used as extensively; H-O actions have never been used, as far as we know. Appendix C includes
the precise definition for all features, including subfeatures comprising utterance and meta features; here we only
briefly discuss the computation of the Dialogue game feature (DG), that models the hierarchical dialogue structure.
Some previous research on DA classification has shown that hierarchical dialogue structure encoded via the notion of
conversational games [88] significantly improves DA classification [32, 38, 89].

To extract the DG feature without explicit annotation, we rest on an approximation to the definition of Dialogue
Game from MapTask. In MapTask, a dialogue game was annotated as a sequence of utterances that starts with an
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Features MaxEnt NB J48
LX-SYN (Linguistic) .641 .453 .450
PT (Pointing) .228 .212 .212
H-O (Haptic-Ostensive) .272 .243 .212
LO (Location) .281 .259 .265
META (Meta) .342 .417 .392
DG (Dialogue Game) .189 .212 .212
DH (Dialogue History) .291 .284 .294
LX-SYN+PT .646 .453 .450
LX-SYN+PT+H-O .644 .456 .449
LX-SYN+PT+H-O+LO .666∗ .523∗ .536∗

LX-SYN+PT+H-O+LO+META .680 .563 .568
LX-SYN+PT+H-O+LO+META+DG .710∗∗ .591∗∗ .607∗∗

LX-SYN+PT+H-O+LO+META+DG+DH .746† .606 .627

Table 10. Dialogue Act Classification Accuracy

initiating move U1 and encompassed all utterances U2...Un up until the purpose of the game has been fulfilled, or
abandoned. In MapTask, initiating moves are instruct, explain, check, align, query-yn, query-w; the Dialogue Game
label is equated with the DA label of U1, for all utterances U1,U2...Un belonging to the specific Dialogue Game.

To compute the DG label, we use a just-in-time approach. For each Find subtask dialogue, we maintain a stack
for dialogue games. After an utterance is classified by our classifier as an initiating move, we assume the dialogue has
entered a new dialogue game, and push its DA label as the dialogue game to the top of the stack. Hence, when the
next utterance Ui is being classified for DA, the DG feature value used is the closest preceding initiating DA. The DG
label will not change until a new initiating move is found.

4.2.1. Experimental results
We employed supervised learning approaches, specifically: Maximum Entropy (MaxEnt), Naive Bayes (NB),

and J48 (Decision Tree). These algorithms are widely used for DA classification. Naive Bayes often provides a
more telling baseline than the simple majority class [38, 40, 90, 91]. We used the same packages we had used for
coreference resolution, MaxEnt from OpenNLP, and J48 from Weka; also the package for Naive Bayes came from
Weka. SVM which we used for coreference resolution, is inherently a binary rather than a multiclass classifier, and
hence, it is not frequently used for DA classification.

To evaluate feature effectiveness, we evaluated 512 feature combinations, namely, all feature combinations for
the seven feature groups from Table 9: lexico-syntactic (LX-SYN), pointing gesture (PT), H-O action (H-O), loca-
tion (LO), meta (META), dialogue game (DG), dialogue history (DH).19 It would be impossible to report all results
for 512 experiments. Similar to [40], we chose to report the results in Table 10, by showing the contributions of single
feature groups, and then incremental feature combinations by adding features to the most effective individual feature
group, LX-SYN. Please note that the omitted 499 combinations did not shed any additional light on the problem.

In Table 10, bold font indicates the feature set giving best performance for each column. The diacritics *, **
and † indicate significant improvements (always assessed with χ2). Specifically, * indicates significant improvement
with respect to the results obtained with LX-SYN only; ** indicates the next significant improvement; † indicates the
next significant improvement, which is obtained with MaxEnt after adding all feature groups together. The majority
baseline, which always assigns the most frequent tag INSTRUCT to every utterance, had an accuracy of 20.7% (see
Figure 6).

Overall, when all the features came into play, MaxEnt performed the best, and it significantly outperformed NB
and J48 (p<.005). Concerning features, contrary to what was observed for referring expressions, linguistic features

19We preferred to exhaustively try out all combinations, at least at the feature group level, rather than performing feature selection.
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(LX-SYN) were the most predictive as a feature type used by itself; however, when pointing gesture (PT), H-O fea-
tures (H-O) and location features (LO) were added together to linguistic features, we noticed a significant performance
improvement for all the models. None of the pointing gesture, H-O action and location features alone significantly
improved the results, but all three together did. This confirmed the finding of [8, 40] that extra-linguistic features
help DA classification. Since, as mentioned, we ran all possible feature combinations, we carefully examined the
combinations where exactly one of PT, H-O and Location feature group is ablated from the full experiment feature
set (LX-SYN+PT+H-O+LO+META+DG+DH). No significant difference was discovered.

As concerns the contribution of dialogue structure features, when the dialogue game feature (DG) was added to
the models, performance increased significantly for all the models: MaxEnt (p<.025), NB (p<.05), and J48 (p<.005).
This confirmed previous findings, including those by our group [32], that dialogue game features (DG) play a very
important role in DA classification, even via the simple approximation we used. At last, dialogue history (DH) features
further improved the performance for the MaxEnt model (p<.005), and resulted in the best performance.

4.3. Summary of reference resolution / dialogue act classification experiments

The main hypothesis we evaluated via developing models of reference resolution and of dialogue act recognition
was whether extra-linguistic features, and specifically H-O actions, play a significant role in these processes. Our
practical goal is of course to eventually deploy the best models we found in an assistive robot.

First, we have shown that in both cases extra-linguistic features provide crucial information that greatly improves
the models. For reference resolution, by including the targets of pointing gestures and H-O actions among the potential
referents, and using features of these targets, almost half of pronouns are correctly resolved, as opposed to barely
4% with only textual antecedents. For dialogue act classification, adding extra-linguistic features (PT+H-O+LOC)
provides significant improvement as well.

Whereas we are not the first to show that extra-linguistic features help, as far as we know we are the first to include
H-O actions, as arising in a real-world domain, in these models. As specifically concerns H-O actions, our results
show that they are effective, either on their own or in concert with other extra-linguistic features. For co-reference
resolution, even by themselves they help resolution: 20% of pronouns/ deictic are correctly resolved when using only
targets of H-O actions as antecedents, which is double the rate with only textual antecedents, even if it is lower than
when using only targets of pointing gestures. As already mentioned, models that include both pointing gestures and
H-O actions solve almost 50% of pronouns. For dialogue act classification, whereas we do not have evidence to
conclude whether one extra-linguistic feature is more important than the others, it is only when all three are together
that the best result is obtained.

All the experiments we have presented so far do include extra-linguistic features, but as we made clear, they were
run on annotated features – namely, neither pointing gestures had been automatically recognized via a vision module,
nor had H-O actions been automatically recognized from the haptic signals. It is clear that, for recognition to truly
occur in a physical domain, true vision and haptic recognition are necessary. Whereas within RoboHelper vision
efforts focused more on recognition of faces and objects20 [92, 93] and are not relevant to the current discussion, we
now turn to the experiments we performed to start tackling the issue of recognizing H-O actions from the haptic
signals. As we noted earlier, the experiments on H-O action recognition we will discuss serve as proof-of-concept
that grounding multimodal dialogue processing in true signals is feasible.

5. Recognizing Haptic-Ostensive actions

In the previous sections, we discussed analyses and models that highlight the role played by H-O actions. The
input to those models are H-O actions annotated by humans on the basis of the video stream and the haptic data.
Clearly, in order to use our models in HRI, we need to recognize H-O actions from the haptic signals. But grounding
the high-level, Natural Language component of the RoboHelper system we envision, in the physical world, is not the
only reason why recognizing H-O actions from haptic signals is necessary. To start with, among various annotations,
H-O actions require the most time. It is obvious that the task of annotating the corpus would be greatly simplified

20But not the objects in our videos.
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if H-O actions can be automatically recognized in the haptic data stream. Being able to recognize H-O actions from
haptic data would also directly enable learning by demonstration, a commonly used approach in HRI [9, 10, 11].

Two clarifications before we proceed. First, in our data collection, 97.5% of the H-O actions are performed by
the HELper, as shown in Table 5. This is a consequence of the specific type of task we focused on in the study
presented in this paper. In a realistic HRI scenario, the HELper would be the robot, and it is the H-O actions of
the ELDer that would need to be recognized. We claim that this does not diminish the value of our work. The
methodology that is presented in this paper is valid regardless where the recognition system resides. However, in
any long-term deployment of a robot, the number of H-O actions performed by the ELDer in these tasks would be
significant, especially because a robot should not just provide convenience for the ELDer but actually stretch their
capabilities [94]. Also, while working in the kitchen, there are a number of other activities such as a handover task or
a collaborative manipulation (think of a pot of water collaboratively moved to the stove) where the H-O actions are
equally performed by the ELDer. We have started to study these actions that we call haptic interaction, but we have
no room to discuss them in this paper.

Second, in an actual deployment of RoboHelper, it would clearly not be practical for a human to wear the sensory
glove to transmit haptic data to the robot. Some features of H-O actions could be detected using vision, although
clearly occlusions are challenging for vision; alternatively, embedded sensors in instrumented objects can be used,
as we have done in [95]; neither of these approaches though, can distinguish actually touching an object from being
close to it. However, as already mentioned earlier, a sensory glove is one of a few options to measure haptic data when
collecting a multimodal corpus. Second, a glove could clearly be used in collecting data for learning by demonstration.
That is why a methodology for automatically recognizing H-O actions from the glove data is directly useful for HRI.

Now turning to the haptic recognition experiments, our methodology to automatically recognize H-O actions
would preferably be demonstrated directly on the haptic data collected via the glove in our Find tasks. Unfortunately,
this was not possible because the collected haptic data turned out to be corrupt in some cases. A posteriori, we
identified several problems. In some cases, the communication was lost between the data collection module and the
computer used to store the data (the speech and video data was not affected). In other cases, the pressure sensor
data was corrupted due to an outer glove that was worn over the fabricated glove to help with the computer vision
algorithms (see the yellow gloves on the helper’s hands in Figure 1). We thus had to collect additional data to
develop the automatic recognition algorithms for H-O actions. We collected data in the same mock apartment at Rush
University where we had collected the ELDERLY- AT-HOME corpus. Machine learning techniques were applied to
the data to demonstrate that H-O actions can be successfully recognized.

The additional data we collected and the models we developed based on it, are informed by the following obser-
vations, related to the five H-O actions we had annotated for (Touch, Grasp-Show, Grasp-No-Show, Open, Close).

• It would be very easy to recognize Touch if HEL or ELD were not touching anything unless they are physically
interacting with an object; in this case, one would expect a clear increase in the pressure data on mostly the
fingertip of the index finger and possibly, on the fingertips of middle and ring fingers. However, we observed
that the participants’ hands were usually resting on a part of their body or some surface, when they were not
performing an H-O action. Furthermore, no matter the glove, even when the hand is idle the sensor readings
may be nonzero if the glove is folded. Hence, Touch per se is hard to recognize in the present scenario.

• As concerns H-O action recognition, Grasp-Show and Grasp-No-Show are the same: the pressure data does not
vary depending upon whether one subject is explicitly showing the grasped object to the other subject or not.

• The annotation scheme does not take into account one important dimension of variation of the pressure signals,
namely, the object that is grasped, or open, or closed.

Hence, whereas we will not recognize Touch per se, given the difficulties just discussed, we will distinguish a separate
Idle-Hand class; we will collapse Grasp-Show and Grasp-No-Show to a single class Grasp; and, for the purposes
of the experiments we will discuss here, we will not maintain the distinction between Open and Close (in additional
experiments, we found that Open and Close can be distinguished on the basis of the measurements we obtained via a
six degree-of-freedom inertial measurement unit attached to the back of the data glove [96]).

Apparently, we are left with three classes of H-O actions to be recognized. However, the task is more challenging
than distinguishing between three different action types, since these actions differ according to the objects they are ap-
plied to. In our experiments, this will result in seven different classes of H-O actions (please see Tables 11 through 15).
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Note that this subdivision nicely dovetails with the coreference resolution component of the dialogue manager, since
H-O actions have annotated targets, as we discussed in Section 3.2.2. Clearly, for a realistic HRI scenario, seven
action types are still too few. The work we present here is just the beginning of further modeling of the many other
haptic actions that the ELDERLY-AT-HOME corpus also includes. Some of those haptic actions pertain to the haptic
interactions we discussed at the beginning of this section; other naturally arise in our data when the HELper has to
directly touch the ELDer to help him/her ambulate, put on a sweater, or his/her shoes. It would not have been prudent,
or realistic, to include those other actions in this initial analysis, since issues of safety arise that are beyond the scope
of the work discussed in this paper.

5.1. NatVal and ForcedRep Datasets

Since the haptic data collected during the Find tasks turned out to be corrupt in some cases, we performed an
additional data collection, driven by two goals: (1) to collect naturalistic data as similar as possible to the ELDERLY-
AT-HOME corpus (same environment, same tasks) with coherent haptic signals, on which to evaluate the recognition
algorithms; and (2) to collect additional haptic data that would involve multiple repetitions of the same action in a
naturalistic setting. The problem with completely naturalistic data is that in practice the same haptic action is never
repeated: even when subjects open or close the same cabinet, their body position with respect to the cabinet subtly
varies from one instance to the next, and affects the haptic signals. Hence, haptic actions in the naturalistic setting
are rather sparse, and such variability poses a challenge for automatic recognition. In particular, we need at least two
instances of an action in order to perform recognition experiment so that one instance can be used for training, while
the other is used as a test data (please note that each action is a time series of samples). After our subjects were done
with the experiments mirroring the ELDERLY-AT-HOME corpus, we thus asked them to repeat certain actions. As a
result, the experiments produced two additional sets of data: the naturalistic data mirroring the ELDERLY-AT-HOME
corpus, that we call Naturalistic Validation (NatVal) set; and data with forced repetitions, which we call ForcedRep
set.

For our experiments, four pairs of subjects wear the same equipment as in the ELDERLY-AT-HOME data col-
lection, and perform the same ADLs. Our subjects were young adults (UIC students); one subject played the role of
the helper, and one the role of the elderly person. Additionally, at the end of the naturalistic tasks, we asked three
helpers to grasp kitchen items and open/close cabinets/drawers multiple times. The helper wore the data glove we had
developed, mirroring the ELDERLY-AT-HOME data. Video of the experiments was recorded through the cameras
we had installed in the mock apartment. This video was then synchronized with the glove data using the time stamps
of the glove data. Since the haptic data was not uniformly sampled, we subsampled it at 50Hz after removing outliers.
The data was subsequently filtered with a moving average filter using a 1 second window to remove noise.

Table 11 presents the frequency distribution of actions among the four HELper subjects (HEL1 through HEL4),
in the NatVal set. Table 12 presents the frequency distribution of H-O actions in the ForcedRep set. Note that HEL1
is not included in Table 12 because this subject was not asked to repeat actions.

Table 11. Frequency distribution of actions in the NatVal set
HEL 1 HEL 2 HEL 3 HEL 4 Total

Open/Close Cabinet 13 13 24 17 67
Open/Close Drawer 16 0 17 4 37
Open/Close Fridge 0 4 0 0 4
Grasp Plate 3 4 2 8 17
Grasp Pot 8 6 5 4 23
Grasp Small Items 3 6 4 4 17
Idle Hand 8 4 8 2 22
Total 51 33 60 39 187

From a haptic data point of view, a Grasp action and Open/Close actions are inherently different: the former
is static while the latter are dynamic. In other words, while after contact with the object has been established, the
different samples that are part of a Grasp action are very similar (the sensor readings don’t change much), Open/Close
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Table 12. Frequency distribution of actions in the ForcedRep set
HEL 2 HEL 3 HEL 4 Total

Open/Close Cabinet 3 0 15 18
Open/Close Drawer 20 11 8 39
Open/Close Fridge 6 0 0 6
Grasp Plate 11 23 9 43
Grasp Pot 0 0 31 31
Grasp Small Items 8 14 0 22
Idle Hand 0 4 30 34
Total 48 52 93 193

Figure 8. Top, Middle, Bottom Sensors on the Ring Finger: Readings During Opening of a Cabinet

are better seen as a time varying sequence of pressure sensor readings, as shown in Figure 8 (Top, Middle, Bottom
in Figure 8 refer to the sensors on each of the three phalanxes of the ring finger, see the glove in Figure 2). Hence,
we experimented with two supervised learning algorithms for time sequences, RISq [97] and Dynamic Time Warping
(DTW) [98]. Since the results of the two algorithms were not statistically significantly different, we only report DTW
results here.

5.2. H-O action recognition experiments
We performed three classification experiments, which are progressively more challenging: (1) using cross-validation

on ForcedRep set; (2) using cross-validation on NatVal set; and (3) using the ForcedRep set to train a model, which
was in turn used to classify the NatVal set. In all cases, the classification was performed within a subject. In other
words, the training data and the test data in each experiment came from the same subject. Note that in the experiments,
the Grasp actions are executed in different configurations, for example Grasp Plate can be executed with one hand,
with one hand and another person, with both hands, with both hands and another person, or grasping three plates with
both hands: for the purpose of this paper, these are treated as the same action.

1. Cross-validation on ForcedRep set. Table 13 shows the recognition results for the DTW algorithm when both
training data and test data came from the ForcedRep set. We used between 50% and 90% of the data for training
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(depending on whether we had at least 10 instances of the action or not), and the rest as test data. Training and test
data came from the same subject. The experiments were repeated 10 times or until each data combination could be
used for testing, whichever was lower. While not shown in Table 13, opening and closing actions (Cabinet, Drawer
and Fridge) are at times confused with each other but they are well separated from the other actions. In this case,
accuracy is very high since 94.8% of the actions are classified into the right group.

Table 13. Confusion Matrix for Cross-Validation on the ForcedRep set
Open/

Close
Cabinet

Open/

Close
drawer

Open/

Close
Fridge

Grasp
Plate

Grasp
Pot

Grasp
Small
Items

Idle
Hand Total

Open/Close Cabinet 18 0 0 0 0 0 0 18
Open/Close Drawer 0 38 0 0 1 0 0 39
Open/Close Fridge 0 0 6 0 0 0 0 6

Grasp Plate 0 0 0 42 1 0 0 43
Grasp Pot 0 0 0 0 31 0 0 31

Grasp Small Items 5 0 0 0 3 44 0 52
Idle Hand 0 0 0 0 0 0 4 4

Total 23 38 6 42 36 44 4 193

2. Cross-validation on NatVal set. Table 14 shows the recognition frequencies for the DTW algorithm when both
training data and test data came from the NatVal set. As above, we used between 50% and 90% of the data for
training, and the rest as test data. The experiments were repeated 10 times or until each data combination could be
used for testing, whichever was lower. As above, opening and closing of a cabinet were at times confused with each
other but these actions are well separated from the other actions; the same is true for opening/closing of drawers.
Overall 68.4% of the total of 187 H-O actions are correctly classified to the right group. In our earlier work, we also
demonstrated successful classification of different H-O actions within one group (for example, for manipulation of
planar objects, distinguishing grasping a plate alone or with another person) [99].

Table 14. Confusion Matrix for Cross-Validation on the NatVal set
Open/

Close
Cabinet

Open/

Close
Drawer

Open/

Close
Fridge

Grasp
Plate

Grasp
Pot

Grasp
Small
Items

Idle
Hand Total

Open/Close Cabinet 53 5 3 0 1 0 5 67
Open/Close Drawer 2 28 0 0 0 3 4 37
Open/Close Fridge 0 0 4 0 0 0 0 4

Grasp Plate 4 2 0 6 0 3 2 17
Grasp Pot 4 1 0 1 17 0 0 23

Grasp Small Items 5 2 0 2 2 5 1 17
Idle Hand 1 4 0 1 0 1 15 22

Total 69 42 4 13 20 12 25 187

3. Training across sets: ForcedRep used to recognize NatVal. In our final experiment we used the data from the
ForcedRep set as training data and the data from the NatVal set as testing data. In a sense, this is the most logical
experiment: we collected repeated instances of the actions of interest performed in the natural environment; we then
use those actions to classify the actions occurring during unstructured interaction, which introduces much greater
variability.

The recognition frequencies are shown in Table 15. Note that as before, the training data and the test data were
always from the same subject. The number of actions is reduced to 102 from the original 183 in Table 11 because
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ForcedRep data was not collected for HEL1; and, for HEL3, repeated Open/Close Cabinet data was not collected. In
this case, 58.8% of the 102 H-O actions are classified as belonging to the right group. Not surprisingly, performance is
worse than for cross-validation on the ForcedRep set, but not too much lower than the performance for cross-validation
on the NatVal set.

Table 15. Confusion Matrix when training on ForcedRep, but testing on NatVal
Open/

Close
Cabinet

Open/

Close
drawer

Open/

Close
Fridge

Grasp
Plate

Grasp
Pot

Grasp
Small
Items

Idle
Hand Total

Open/Close Cabinet 20 4 0 5 1 0 0 30
Open/Close Drawer 0 26 0 1 0 3 0 30
Open/Close Fridge 0 1 3 0 0 0 0 4

Grasp Plate 0 5 0 4 3 5 0 17
Grasp Pot 0 0 0 0 2 2 0 4

Grasp Small Items 0 2 0 0 0 5 0 7
Idle Hand 0 7 0 0 1 2 0 10

Total 20 45 3 10 7 17 0 102

6. Conclusions and Future work

This paper described research to study the roles of multimodal events, including pointing gestures and Haptic-
Ostensive actions, in collaborative task oriented multimodal human-human dialogues in the elderly care domain.
We described the process of building the ELDERLY-AT-HOME corpus, including data collection and transcription,
and annotations at many levels for its Find subcorpus. We ran reference resolution experiments and dialogue act
classification experiments to investigate the roles of pointing gestures and H-O actions. The experiments show that
H-O actions play a crucial role in interaction. To ground our corpus analysis and modeling in the physical world,
we performed further data collection to study whether (some) H-O actions can be automatically recognized from the
haptic data collected through a sensory data glove instrumented with pressure sensors. Machine learning experiments
were conducted that showed that the H-O actions of interest can be recognized within subjects, even though pressure
sensors are relatively imprecise and the data provided by the sensory glove is noisy.

The work has several direct implications for HRI. To start with, we demonstrated that pressure sensors can provide
useful information about the haptic actions that are part of a multimodal interaction. Next, we showed that H-O
actions, a subset of haptic actions, play a crucial role in reference resolution and dialogue act classification. In turn,
the ELDERLY-AT-HOME corpus is one of the few multimodal corpora, if not the only one, that contains haptic data
of the sort we describe: it will constitute a substantial contribution to the community when we release it. Finally, the
algorithms we developed for automatic recognition of H-O actions from the haptic data can be directly used to expand
the ELDERLY-AT-HOME corpus as new data is collected, and can provide the input for learning by demonstration in
the assistive robotics domain.

However, several issues need to be resolved to make the work fully usable from an HRI perspective. From
a dialogue management point of view, our current information state is very simple, and only reflects the state of
the objects and locations that ELDer and HELper are collaboratively searching for. Additionally, we mentioned in
Section 4 that Next in Figure 7 is a placeholder for the module that would decide what to do next, and generate a
spoken utterance and / or a pointing gesture / H-O action. Some mileage can be obtained by addressing what to do
next at a purely symbolic level, and by applying machine learning to this task too, on the sequences of turns that occur
in our corpus. However, this module should clearly be informed by feedback from the robot as well, since tasks that
are considered primitive at the dialogue level result in further decompositions – for example Can you get me a pot
results in HEL moving towards the cabinets before opening any of them.

A crucial future step concerning H-O action recognition from the haptic signals, is to study recognition across
subjects, when training data and test data do not come from the same individual. Additional data has been collected
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in a laboratory setting for this purpose. Further, as we discussed in Section 5, several other haptic actions exist in our
data, that we have only started to explore. Some of them pertain to haptic interaction, when two agents collaboratively
manipulate objects; some of them pertain to the HELper directly touching the ELDer, as when helping the ELDer with
ambulating or with putting on clothing.

One intriguing issue is the fact that Grasp-Show and Grasp-No-Show cannot be distinguished from a haptic point
of view, and given the current state of the art of vision algorithms, it is doubtful they may be distinguished visually.
Further analysis should be conducted to assess whether in the annotated data, this distinction affects coreference.
For example, is it the case that when a referential expression has the target of a Grasp action as referent, it is in
fact Grasp-Show, rather than Grasp-No-Show? If that is the case, there may be cues in the surrounding context, for
example the type of the previous move, and in the information state of the dialogue, that could allow us to recognize
the true ostensive intention behind such actions.

Finally, and equally important is to test the developed methodology on a robotic platform. A preliminary im-
plementation has been completed in ROS [100], including a real-time implementation of the H-O action recognition
algorithms [101]; experiments with a Nao robot [102] are under development. An important question that will be
addressed is whether H-O actions can inform coreference resolution and dialogue act classification even when they
are recognized automatically and thus with lower accuracy.
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Appendix A. Coreference Pair classifier features

Coreference pairs with textual or extra-linguistic antecedents share a common set of features (the feature domain
is in parenthesis) - ANT is the utterance where the textual markable ri occurs, or the pointing gesture/H-O action of
which ri is the target.

• Time distance (discrete, in seconds): The distance between the time spans of U and of ANT. If the two spans
overlap, the distance is 0.

• Actor agreement (boolean): If the speaker of U and the speaker or actor of ANT are the same.

• Markable type agreement (boolean): If the markable type (OBJECT, PLACE, or NEITHER) of P is compatible
with the type of ri.

• Number agreement (boolean): If the number of P is the same as that of ri.

For coreference pairs with textual antecedents, we use the following additional features. ANT here is only the
utterance where the textual markable ri occurs.

• Lexical (vector): The words and part-of-speech tags in ri and in P, and whether they share (some of) the same
words.

• Utterance turn distance (integer): The turn distance between U and ANT; if U and ANT are in the same turn,
the distance is 0

• Sentence distance (integer): if U and ANT are in the same turn, the distance between the two sentences where
ri and P respectively appear

• Markable distance (integer): how many markables occur between ri and P.

For coreference pairs with extra-linguistic antecedents, we used the following additional features. Recall that in this
case, ANT is only the pointing gesture/H-O action of which ri is the target.
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• Object agreement (boolean): If the deictic P is contained in a phrase, such as “this big blue bowl”, whether the
head noun “bowl” matches the object type of ri.

• H-O Action type (discrete): If ri is target of an H-O action (not of a pointing gesture), the type of the H-O action
(Touch, Grasp-Show, Grasp-No-Show, Open, Close).

Appendix B. Algorithm to compute moves

As noted in Section 4.2, a pointing gesture or H-O action may be independent moves or may accompany a spoken
utterance Ui. We developed an algorithm that distinguishes between the two cases. In turn, the algorithm makes use
of additional annotations on pointing gestures / H-O actions that we will briefly describe here. Note that just using
timespans is not sufficient. It is not necessarily the case that utterance U is associated with gesture / H-O action G if
their timespans overlap.

First, we assign to each utterance, pointing gesture and H-O action a unique event index, so that we can refer to
these events with their indices. For pointing gestures and H-O actions, we define two more attributes: “associates”
and “follows”. If a pointing gesture or H-O action is associated with an utterance, the “associates” value will be the
index of that utterance; by default, the “associates” value is empty. If a pointing gesture or H-O action independently
follows an utterance, the “follows” value will be that utterance’s index. E.g., H-O action 6 (“Open”) in Figure 3 is
marked with “follows [5]”. For utterances, we only mark the “follows” attribute. If an utterance directly follows a
pointing gesture or H-O action, we use the index of the pointing gesture or H-O action as the “follows” value. By
default, the “follows” attribute of an utterance is empty. It means that an utterance follows the immediate previous
utterance. The annotation of “associates” and “follows” was done by our coders by looking at the video, and based on
their human judgement.

We define a move as any combination of related utterances, pointing gestures and H-O actions, performed by the
same subject. On the basis of the event relation annotations, we can compute the dialogue’s move flow using the
following algorithm.

1. Order all the utterances in a Find task session by the utterance start time
2. Until all the utterances are processed, for each unprocessed utterance ui:

(a) If ui follows a pointing gesture or H-O action, that pointing gesture or H-O action forms a new move mk;
add mk to the sequence before ui

(b) Find all the pointing gestures and H-O actions labelled as associates of ui. These events form the move mi

together with ui

(c) Recursively find the events which follow the last generated move, together with all their associated events
to form another move

The third and recursive step is necessary to properly apportion to moves, gestures that follow one another, without
being associated with an utterance. For example consider Utti with a pointing gesture P associated with it, and
immediately followed by an H-O action O. O would be recognized as a separate move by step 3.

Appendix C. Dialogue Act Classification features

Utterance features. Lexico-Syntactic (LX-SYN) are the most widely used features for DA classification [32, 36, 38,
39, 40, 103, 104, 90], and include:

• Number of sentences (integer) and number of words (integer) in the utterance. The Apache OpenNLP library 21

was used to detect sentences and tokenize them.

• Lexical (vector): Unigrams of the words and part-of-speech tags in Ui. The words were processed using the
morphology tool from the Stanford parser [105].

21http://opennlp.apache.org/
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• Lexical choice (two boolean features): Whether Ui contains WH words (e.g., what, where); whether Ui contains
yes/no words (e.g., yes, no, yeah, nope).

• Syntactic (vector): The top node and its first two child nodes from the sentence parse tree. If Ui contains
multiple sentences, only the last sentence is used. Sentences are parsed using the Stanford parser.

Extra-linguistic features include:
Pointing gesture feature (PT) (boolean): whether the actor of Ui is making a pointing gesture.
Haptic-Ostensive feature (H-O) (discrete): the type of the H-O action performed by the speaker of Ui if any; null

otherwise.
Location features (LO) (vector) includes the locations of the two actors, whether they were in the same location,

and whether the actor of Ui changed the location during the utterance.
Meta features (META) are extracted from Ui’s meta information. Previous research had shown that the utterance

meta information such as the utterance speaker helped classify DAs [104, 91].

• The actor who spoke Ui (discrete, HEL or ELD)

• The time length of Ui (seconds)

• The distance of Ui from the beginning of the dialogue (integer)

Dialogue structure features. Dialogue history features (DH) model what happened before Ui [38, 32]. We encoded:

• The actor of the previous move Mi−1 (discrete, HEL or ELD) – what precedes Ui can be a spoken utterance, but
also a pointing gesture or a H-O action;

• Whether Mi−1 has the same actor as Ui (boolean)

• The type of Mi−1 (discrete): if it is an utterance, its DA label; if it is a H-O action, the type of H-O action; if it
is a pointing gesture, a label that indicates this.

The computation of the Dialogue game feature (DG) was described in Section 4.2.
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[95] E. Noohi, M. Žefran, Quantitative measures of cooperation for a dyadic physical interaction task, in: 2014 14th IEEE-RAS International

Conference on Humanoid Robots (Humanoids), 2014, pp. 469–474.
[96] M. Javaid, Communication through physical interaction: Robot assistants for the elderly, Ph.D. thesis, University of Illinois at Chicago

(2014).
[97] S. Franzini, J. Ben-Arie, Speech recognition by indexing and sequencing, in: International Conference of Soft Computing and Pattern

Recognition (SoCPaR), 2010, pp. 93–98.
[98] H. Sakoe, S. Chiba, Dynamic programming algorithm optimization for spoken word recognition, IEEE Transactions on Acoustics, Speech

and Signal Processing, 26 (1) (1978) 43–49.
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