
1

Building DNN Acoustic Models for Large
Vocabulary Speech Recognition

Andrew L. Maas, Peng Qi, Ziang Xie, Awni Y. Hannun, Christopher T. Lengerich, Daniel Jurafsky, Andrew Y. Ng,

Abstract—Deep neural networks (DNNs) are now a central
component of nearly all state-of-the-art speech recognition sys-
tems. Building neural network acoustic models requires several
design decisions including network architecture, size, and train-
ing loss function. This paper offers an empirical investigation on
which aspects of DNN acoustic model design are most important
for speech recognition system performance. We report DNN clas-
sifier performance and final speech recognizer word error rates,
and compare DNNs using several metrics to quantify factors
influencing differences in task performance. Our first set of exper-
iments use the standard Switchboard benchmark corpus, which
contains approximately 300 hours of conversational telephone
speech. We compare standard DNNs to convolutional networks,
and present the first experiments using locally-connected, untied
neural networks for acoustic modeling. We additionally build
systems on a corpus of 2,100 hours of training data by combining
the Switchboard and Fisher corpora. This larger corpus allows us
to more thoroughly examine performance of large DNN models
– with up to ten times more parameters than those typically
used in speech recognition systems. Our results suggest that a
relatively simple DNN architecture and optimization technique
produces strong results. These findings, along with previous work,
help establish a set of best practices for building DNN hybrid
speech recognition systems with maximum likelihood training.
Our experiments in DNN optimization additionally serve as a
case study for training DNNs with discriminative loss functions
for speech tasks, as well as DNN classifiers more generally.

I. INTRODUCTION

DEEP neural network (DNN) acoustic models have driven
tremendous improvements in large vocabulary contin-

uous speech recognition (LVCSR) in recent years. Initial
research hypothesized that DNNs work well because of un-
supervised pre-training [1]. However, DNNs with random
initialization yield state-of-the-art LVCSR results for several
speech recognition benchmarks [2], [3], [4]. Instead, it appears
that modern DNN-based systems are quite similar to long-
standing neural network acoustic modeling approaches [5],
[6], [7]. Modern DNN systems build on these fundamental
approaches but utilize increased computing power, training
corpus size, and function optimization heuristics. This paper
offers a large empirical investigation of DNN performance on
two LVCSR tasks to understand best practices and important
design decisions when building DNN acoustic models.

Recent research on DNN acoustic models for LVCSR
explores variations in network architecture, optimization tech-
niques, and acoustic model training loss functions. Due to
system differences across research groups it can be difficult,
for example, to determine whether a performance improvement

Department of Computer Science, Stanford University, Stanford, CA, 94305
USA e-mail: amaas@cs.stanford.edu.

is due to a better neural network architecture or a different op-
timization technique. Our work aims to address these concerns
by systematically exploring several strategies to improve DNN
acoustic models. We view the acoustic modeling DNN com-
ponent as a DNN classifier and draw inspiration from recent
DNN classification research on other tasks – predominantly
image classification. Unlike many other tasks, DNN acoustic
models in LVCSR are not simply classifiers, but are instead
one sub-component of the larger speech transcription system.
There is a complex relationship between downstream task
performance, word error rate (WER), and the proximal task of
training a DNN acoustic model as a classifier. Because of this
complexity, it is unclear which improvements to DNN acoustic
models will ultimately result in improved performance across
a range of LVCSR tasks.

This work empirically examines several aspects of DNN
acoustic models in an attempt to establish a set of best
practices for creating such models. Further, we seek to un-
derstand which aspects of DNN training have the most impact
on downstream task performance. This knowledge can guide
rapid development of DNN acoustic models for new speech
corpora, languages, computational constraints, and language
understanding task variants. Furthermore, we not only ana-
lyze task performance, but also quantify differences in how
various DNNs transform and represent data. Understanding
how DNNs process information helps us understand under-
lying principles to further improve DNNs as classifiers and
components of large artificial intelligence systems. To this end,
our work serves as a case study for DNNs more generally as
both classifiers and components of larger systems.

We first perform DNN experiments on the standard Switch-
board corpus. We use this corpus to analyze the effect of
DNN size on task performance, and find that although there
are 300 hours of training data we can cause DNNs to over-
fit on this task by increasing DNN model size. We then
investigate several techniques to reduce over-fitting including
the popular dropout regularization technique. We next analyze
neural network architecture choices by comparing deep convo-
lutional neural networks (DCNNs), deep locally untied neural
networks (DLUNNs), and standard DNNs. This comparison
also evaluates alternative input features since convolutional
approaches rely on input features with meaningful time and
frequency dimensions.

To explore DNN performance with fewer constraints im-
posed by over-fitting, we next build a baseline LVCSR system
by combining the Switchboard and Fisher corpora. This results
in roughly 2,100 hours of training data and represents one of
the largest collections of conversational speech available for

ar
X

iv
:1

40
6.

78
06

v2
 [

cs
.C

L
]

 2
0

Ja
n

20
15

2

academic research. This larger corpus allows us to explore
performance of much larger DNN models, up to ten times
larger than those typically used for LVCSR. Using this larger
corpus we also evaluate the impact of optimization algorithm
choice, and the number of hidden layers used in a DNN with a
fixed number of total free parameters. We analyze our results
not only in terms of final task performance, but also compare
sub-components of task performance across models. Finally,
we quantify differences in how different DNN architectures
process information.

Section II outlines the steps involved in building neural
network acoustic models for LVCSR, and describes previous
work on each step. This process outline contextualizes the
questions addressed by our investigations, which we present
in Section III. Section IV describes the neural network ar-
chitectures and optimization algorithms evaluated in this pa-
per. Section V presents our experiments on the Switchboard
corpus, which focus on regularization and network dense
versus convolutional architectural choices. We then present
experiments on the combined Switchboard and Fisher corpora
in Section VII which explore the performance of larger and
deeper DNN architectures. We compare and quantify DNN
representational properties in Section IX, and conclude in
Section X.

II. NEURAL NETWORK ACOUSTIC MODELS

DNNs act as acoustic models for hidden Markov model
(HMM) speech recognition systems using the hybrid HMM ap-
proach. A hybrid HMM system largely resembles the standard
HMM approach to speech recognition using Gaussian mixture
model (GMM) acoustic models. A full overview of LVCSR
systems is beyond the scope of this work, so we instead refer
to previous articles for an overview of HMM-based speech
recognition systems [8], [9], [10], [11], [12].

Our work focuses on the acoustic modeling component of
the LVCSR system. The acoustic model approximates the
distribution ppx|yq which is the probability of observing a
given short span of acoustic features, x, conditioned on an
HMM state label, y. The acoustic input features represent
about 25ms of audio in most LVCSR systems. The HMM
state labels y for LVCSR are senones – clustered, context-
dependent sub-phonetic states. A hybrid HMM system uses a
neural network to approximate ppx|yq in place of a GMM.

A neural network does not explicitly model the distribution
ppx|yq required by the HMM. Instead, we train neural net-
works to estimate ppy|xq, which allows us to view the neural
network as a classifier of senones given acoustic input. We
can use Bayes’ rule to obtain ppx|yq given the neural network
output distribution ppy|xq,

ppx|yq “
ppy|xqppxq

ppyq
. (1)

The distribution ppyq is the prior distribution over senones,
which we approximate as the empirical distribution of senone
occurrence in the training set. This is easy to obtain as it
is simply a normalized count of senones in the training set.
We usually can not tractably estimate probability of acoustic
features, ppxq. This represents the probability of observing a

particular span of acoustic features – a difficult distribution
to model. However, because our acoustic features x are fixed
during decoding the term ppxq is a constant, albeit unknown,
scaling factor. As a result we drop the term and instead provide
the HMM with an unscaled acoustic model score,

ppy|xq

ppyq
. (2)

This term is not a properly formed acoustic model probability,
but it is sufficient to perform HMM decoding to maximize
a combination of acoustic and language model scores. The
decoding procedure introduces an acoustic model scaling term
to empirically adjust for the scaling offset introduced by using
un-normalized probabilities.

Using neural networks as acoustic models for HMM-based
speech recognition was introduced over 20 years ago [5], [7],
[13]. Much of this original work developed the basic ideas
of hybrid HMM-DNN systems which are used in modern,
state-of-the-art systems. However, until much more recently
neural networks were not a standard component in the highest
performing LVCSR systems. Computational constraints and
the amount of available training data severely limited the pace
at which it was possible to make progress on neural network
research for speech recognition. Instead, Gaussian mixture
models were the standard choice for acoustic modeling as
researchers worked to refine the HMM architecture, decoding
frameworks, and signal processing challenges associated with
building high-performance speech recognizers.

While GMMs and their extensions produced gains on
benchmark LVCSR tasks over the span of many years, the
resulting systems became increasingly complex. Many of
the complexities introduced focused purely on increasing the
representational capacity of GMM acoustic models. In parallel
to this effort, there was a resurgence of interest in neural
networks under the new branding of deep learning within the
machine learning community. Work in this area focused on
overcoming optimization issues involved in training DNNs by
applying unsupervised pre-training to obtain a better initial-
ization for supervised learning tasks [14], [15].

DNNs provided an interesting path forward for acoustic
modeling as neural networks offer a direct path to increasing
representational capacity, provided it is possible to find a
good set of DNN parameters. Early experiments with DNNs
used fairly small phoneme recognition tasks using monophone
recognition systems and small datasets like TIMIT [16]. In
2011 researchers demonstrated that DNNs can also be applied
to LVCSR systems with context-dependent triphone states,
rather than monophone states. This innovation, coupled with
the larger representational capacity of DNNs as compared to
GMMs, yielded substantial reductions in WER on multiple
challenging LVCSR tasks [17], [18]. Within two years DNN
acoustic models showed gains on challenging tasks within the
LVCSR systems of Microsoft, Google, and IBM [2].

Several factors are attributed to the success of modern DNN
approaches as compared to previous work with hybrid acoustic
models. Specifically the large total number of network param-
eters, increased number of hidden layers, and initialization
by pre-training were thought to drive performance of mod-

3

ern hybrid HMM systems. Researchers quickly established
that hybrid HMMs work much better when using context-
dependent triphones in place of monophones [1]. Initializing
DNN weights with unsupervised pre-training was initially
thought to be important for good performance, but researchers
later found that purely supervised training from random initial
weights yields nearly identical final system performance [19].
Using DNNs with many hidden layers and many total pa-
rameters has generally found to be beneficial [20], but the
role of hidden layers and total network size is not generally
understood.

Having defined our hybrid HMM system and how we use
the neural network output ppy|xq within the complete LVCSR
system, we next focus on how we build neural networks to
model the senone distribution ppy|xq. To better understand the
detailed aspects related to building and using neural network
acoustic models for LVCSR we break the process into a series
of modeling and algorithmic choices. This set of steps allows
us to better contextualize previous work, and further convey
what aspects of the process are not yet fully understood. We
define the process as five steps:

1) Label Set. The set of labels for our acoustic model
are defined by the baseline HMM-GMM system we
choose to use. Early work in neural network acoustic
models used context-independent monophone states. Re-
cent work with DNN acoustic models established that
context-dependent states are critical to success [17],
which is generally true of modern LVCSR systems.
Several variants of context-dependent states exist, and
have been tried with DNN acoustic models. In this work
we use context-dependent triphone senones created by
our baseline HMM-GMM system.

2) Forced Alignment. Our training data originally contains
word-level transcriptions without time alignments for
words. We must assign a senone label to each acoustic
input frame in each training utterance. We use a forced
alignment of the ground-truth transcriptions to generate
a sequence of senone labels for each utterance which is
consistent with the word transcription for the utterance.
Generating a forced alignment is a standard step of
training any HMM-based system. The standard approach
to hybrid speech recognition creates a forced alignment
of the training data using an HMM-GMM system [11].
The aligned data is then used to train a neural network
acoustic model. Previous work found that using a trained
HMM-DNN system to realign the training data for a
second round of DNN training produces small gains
in overall system performance [21]. This process has
more recently been generalized to yield an HMM-
DNN training procedure which starts with no forced
alignment but repeatedly uses a DNN to realign the
training data [22]. In our experiments we used a single
forced alignment produced by the baseline HMM-GMM
system as this the most standard approach when building
DNN acoustic models.

3) Neural Network Architecture. The size and structure
of neural networks used for acoustic modeling is by

far the largest difference between modern HMM-DNN
systems and those used before 2010. Modern DNNs
use more than one hidden layer, making them deep.
As a general property, depth is an important feature for
the success of modern DNNs. Several groups recently
found replacing the standard sigmoidal hidden units with
rectified linear units in DNNs leads to WER gains and
simpler training procedures for deep architectures [23],
[24], [25].
Neural networks with only a single hidden layer perform
worse than their deeper counterparts on a variety of
speech tasks, even when the total number of model
parameters is held fixed [21], [20], [26]. Whether deeper
is always better, or how deep a network must be to
obtain good performance, is not well understood both
for speech recognition and DNN classification tasks
more generally. The total number of parameters used
in modern DNNs is typically 10 to 100 times greater
than neural networks used in the original hybrid HMM
experiments. This increased model size, which translates
to increased representational capacity, is critical to the
success of modern DNN-HMM system. It is not clear
how far we can push DNN model size or depth to
continue increasing LVCSR performance.
Size and depth are the most fundamental architectural
choices for DNNs, but we can also consider a variety
of alternative neural network architectures aside from a
series of densely-connected hidden layers. DCNNs are
an alternative to densely-connected networks which are
intended to leverage the meaningful time and frequency
dimensions in certain types of audio input features.
Recent work with DCNNs found them to be useful
first on phoneme recognition tasks but also on LVCSR
tasks when used in addition to a standard DNN acoustic
model [27], [28], [29]. DCNNs change the first and
sometimes second hidden layers of the neural network
architecture, but otherwise utilize the same densely-
connected multilayer architecture of DNNs.
Perhaps a larger architectural change from DNNs are
deep recurrent neural networks (DRNNs) which in-
troduce a temporally recurrent hidden layer between
hidden layers. The resulting architecture has outputs
which no longer process each input context window
independently, reflecting the temporal coherence and
correlation of speech signals. DRNNs are a modern
extension of the time-delay neural network first used
for phoneme recognition by [30] and recurrent network
approach of [31]. Modern recurrent network approaches
to acoustic modeling have shown some initial success
on large vocabulary tasks [32], and tasks where limited
training data is available [33], [34], [35], [36]. The long
term impact of DRNNs for HMM-DRNN systems is not
yet clear as both the DRNN and HMM reason about
the temporal dynamics of the input, which may intro-
duce redundancy or interference. Researchers continue
to propose and compare many architectural variants for
acoustic modeling and other speech-related tasks [37].

4) Neural Network Loss Function. Given a training set

4

of utterances accompanied by frame-level senone labels
we must choose a loss function to use when training our
acoustic model. The space of possible loss functions is
large, as it also includes the set of possible regulariza-
tion terms we might use to control over-fitting during
training. The default choice for DNN acoustic models
is the cross entropy loss function, which corresponds to
maximizing the likelihood of the observed label given
the input. Cross entropy is the standard choice when
training DNNs for classification tasks, but it ignores the
DNN as a component of the larger ASR system. To
account for more aspects of the overall system, discrim-
inative loss functions were introduced for ASR tasks.
Discriminative loss functions were initially developed
for GMM acoustic models [38], [39], [40], [41], but
were recently applied to DNN acoustic model training
[4], [3], [42]. Discriminative training of DNN acoustic
models begins with standard cross entropy training to
achieve a strong initial solution. The discriminative loss
function is used either as a second step, or additively
combined with the standard cross entropy function. We
can view discriminative training as a task-specific loss
function which produces a DNN acoustic model to better
act as a sub-component of the overall ASR system.
For whatever loss function we choose, we can ad-
ditionally apply one or more regularization terms to
form the final training objective function. Regulariza-
tion is especially important for DNNs where we can
easily increase models’ representational capacity. The
simplest form of regularization widely applied to DNNs
is a weight norm penalty, most often used with an
`2-norm penalty. While generally effective, developing
new regularization techniques for DNNs is an area of
active research. Dropout regularization [2] was recently
introduced as a more effective regularization technique
for DNN training. Recent work applied dropout regular-
ization for DNN acoustic models, and found it beneficial
when combined with other architectural changes [23].

5) Optimization Algorithm. Any non-trivial neural net-
work model leads to a non-convex optimization problem.
Because of this, our choice of optimization algorithm
impacts the quality of local minimum found during
optimization. There is little we can say in the general
case about DNN optimization since it is not possible to
find a global minimum nor estimate how far a particular
local minimum is from the best possible solution. The
most standard approach to DNN optimization is stochas-
tic gradient descent (SGD). There are many variants
of SGD, and practitioners typically choose a particular
variant empirically. While SGD provides a robust default
choice for optimizing DNNs, researchers continue to
work on improving optimization algorithms for DNNs.
Nearly all DNN optimization algorithms in popular use
are gradient-based, but recent work has shown that
more advanced quasi-Newton methods can yield better
results for DNN tasks generally [43], [44] as well as
DNN acoustic modeling [3]. Quasi-Newton and similar
methods tend to be more computationally expensive per

update than SGD methods, but the improved optimiza-
tion performance can sometimes be distributed across
multiple processors more easily, or necessary for loss
functions which are difficult to optimize well with SGD
techniques. Recently algorithms like AdaGrad [45] and
Nesterov’s Accelerated Gradient (NAG) were applied to
DNNs for tasks outside of speech recognition, and tend
to provide superior optimization as compared to SGD
while still being computationally inexpensive compared
to traditional quasi-Newton methods [46].
Amount of time required for training is an important
practical consideration for DNN optimization tasks.
Several groups have designed and implemented neural
network optimization procedures which utilize graphics
processing units (GPUs) [47], [48], [49], clusters of
dozens to hundreds of computers [50], [51], [52], or
clusters of GPUs [53]. Indeed, training time of neu-
ral networks has been a persistent issue throughout
history, researchers often utilized whatever specialized
computing hardware was available at the time [54],
[55]. Modern parallelized optimization approaches often
achieve a final solution of similar quality to a non-
parallelized optimization algorithm, but are capable of
doing so in less time, or for larger models, as compared
to non-parallelized approaches.

III. QUESTIONS ADDRESSED IN THIS WORK

At each stage of neural network acoustic model design and
training there is a tremendous breadth and depth of prior
work. Researchers often focus on improving one particular
component of this pipeline while holding all other components
fixed. Unfortunately, there is no well-established baseline for
the acoustic model building pipeline, so performance improve-
ments of, for example, a particular architectural variant are
difficult to assess from examining the literature. Our examines
the relative importance of several acoustic model design and
training decisions. By systematically varying several critical
design components we are able to test the limits of certain
architectural choices, and uncover which variations among
baseline systems are most relevant for LVCSR performance.
We specifically address the following questions in this work:

1) What aspects of neural network architecture are most
important for acoustic modeling tasks? We investigate
total network size and number of hidden layers using
two corpora to avoid overfitting as a confounding factor.
We build DNNs with five to ten times the total number
of free parameters of DNNs used in most previous work.
We also compare optimization algorithms to test whether
more modern approaches to stochastic gradient descent
are a driving factor in building large DNN acoustic
models.
We additionally compare a much broader architectural
choice – locally-connected models versus the stan-
dard densely-connected DNN models. Recent work has
found improvements when using DCNNs combined with
DNNs for acoustic modeling, or when applying DCNNs
to audio features with sufficient pre-processing [29]. We

5

use two types of input features to compare DNNs with
DCNNs. We present the first experiments DLUNNs for
acoustic modeling. DLUNNs are a generalized version
of DCNNs which are still locally connected but learn
different weights at each location in the input features
rather than sharing weights at all locations.

2) How can we improve the test set generalization of DNN
acoustic models? Our experiments on DNN architecture
choices reveal that increasing model size easily leads
to overfitting issues. We evaluate several modifications
to DNN training to improve the generalization perfor-
mance of large DNNs. We include dropout, a recently
introduced regularization technique, as well as early
stopping, which has been used in neural network training
for many years. Finally, we propose and evaluate early
realignment, a training technique specific to acoustic
modeling, as a path towards improving generalization
performance.

3) Do large, deep DNNs differ from shallow, smaller
DNNs in terms of phonetic confusions or information
processing metrics? DNN acoustic models are clearly
successful in application but we do not yet understand
why they perform well, or how they might be improved.
We analyze the WER and classification errors made by
large DNN acoustic models to test what improvements
in sub-tasks ultimately lead to overall system WER
improvements. Further, we look at information encoding
metrics to quantify how information encoding changes
in larger or deeper DNNs.

We address each of these questions in separate experiments
using the Switchboard 300 hour corpus and a combined
2,100 hour corpus when appropriate for the experiment. In
Section IV we describe the DNN, DCNN, and DLUNN archi-
tecture computations used in this work. Section V addresses
questions of model size and overfitting on the Switchboard
corpus while Section VI uses the same baseline Switchboard
system to compare DCNN and DLUNN architectures to DNNs
and baseline GMMs. Section VII presents experiments using
the larger training corpus to explore issues of model size,
DNN depth, and optimization algorithm. Sections VIII and IX
analyze the performance and coding properties of DNNs
trained on the large combined corpus to better understand how
large DNNs encode information, and integrate into LVCSR
systems.

IV. NEURAL NETWORK COMPUTATIONS

To address the stated research questions we employ three
different classes of neural network architecture. Each architec-
ture amounts to a different set of equations to convert input
features into a predicted distribution over output classes. We
describe here the specifics of each architecture, along with the
loss function and optimization algorithms we use.

A. Cross Entropy Loss Function

All of our experiments utilize the cross entropy classifica-
tion loss function. For some experiments we apply regulariza-
tion techniques in addition to the cross entropy loss function to

improve generalization performance. Many loss functions spe-
cific to speech recognition tasks exist, and are a topic of active
research. We choose to focus only on cross entropy because
training with cross entropy is almost always the first step,
or an additional loss function criterion, when experimenting
with more task-specific loss functions. Additionally, the cross
entropy loss function is a standard choice for classification
tasks, and using it allows our experiments to serve as a case
study for large scale DNN classification tasks more generally.

The cross entropy loss function does not consider each
utterance in its entirety. Instead it is defined over individual
samples of acoustic input x and senone label y. The cross
entropy objective function for a single training pair px, yq is,

´

K
ÿ

k“1

1ty “ ku log ŷk, (3)

where K is the number of output classes, and ŷk is the
probability that the model assigns to the input example taking
on label k.

Cross entropy is a convex approximation to the ideal 0-1
loss for classification. However, when training acoustic models
perfect classification at the level of short acoustic spans is
not our ultimate goal. Instead, we wish to minimize the word
error rate (WER) of the final LVCSR system. WER measures
mistakes at the word level, and it is possible to perfectly
transcribe the words in an utterance without perfectly clas-
sifying the HMM state present at each time step. Constraints
present in the HMM and word sequence probabilities from
the language model can correct minor errors in state-level
HMM observation estimates. Conversely, not all acoustic spans
are of equal importance in obtaining the correct word-level
transcription. The relationship between classification accuracy
rate at the frame level and overall system WER is complex
and not well understood. In our experiments we always report
both frame-level error metrics and system-level WER to elicit
insights about the relationship between DNN loss function
performance and overall system performance.

B. Deep Neural Network Computations

A DNN is a series of fully connected hidden layers which
transform an input vector x into a probability distribution ŷ
to estimate the output class. The DNN thus acts as a function
approximator for the conditional distribution ppy|xq. A DNN
parametrizes this function using L layers, a series of hidden
layers followed by an output layer. Figure 1 shows an example
DNN.

Each layer has a weight matrix W and bias vector b. We
compute vector h1 of first layer activations of a DNN using,

hp1qpxq “ σpW p1qTx` bp1qq, (4)

where W p1q and bp1q are the weight matrix and bias vectors
respectively for the first hidden layer. In this formulation each
column of the matrix W p1q corresponds to the weights for
a single hidden unit of the first hidden layer. Because the
DNN is fully connected, any real-valued matrix W forms a
valid weight matrix. If we instead choose to impose partial

6

x

hp1q hp2q

¨ ¨ ¨

hpL´1q

ŷ

Fig. 1. A DNN with 5-dimensional input, 3-dimensional hidden layers, and 7-
dimensional output. Each hidden layer is fully connected to the to the previous
and subsequent layer.

connectivity, we are effectively constraining certain entries in
W to be 0.

Subsequent hidden layers compute their hidden activation
vector hpiq using the hidden activations of the previous layer
hpi´1q,

hpiqpxq “ σpW piqThpi´1q ` bpiqq. (5)

In all hidden layers we apply a point-wise nonlinearity
function σpzq as part of the hidden layer computation. Tradi-
tional approaches to neural networks typically use a sigmoidal
function. However, in this work we use rectified linear units
which were recently shown to lead to better performance in
hybrid speech recognition as well as other DNN classification
tasks[23], [24], [25]. The rectifier nonlinearity is defined as,

σpzq “ maxpz, 0q “

#

zi zi ą 0

0 zi ď 0
. (6)

The final layer of the DNN must output a properly formed
probability distribution over the possible output categories.
To do this, the final layer of the DNN uses the softmax
nonlinearity, which is defined as,

ŷj “
exppW

pLqT
j hpL´1q ` b

pLq
j q

řN
k“1 exppW

pLqT
k hpL´1q ` b

pLq
k q

. (7)

Using the softmax nonlinearity we obtain the output vector
ŷ which is a well-formed probability distribution over the N
output classes. This distribution can then be used in the loss
function stated in Equation 3, or other loss functions.

Having chosen a loss function and specified our DNN
computation equations, we can now compute a sub-gradient of
the loss function with respect to the network parameters. Note
that because we are using rectifier nonlinearities this is not a
true gradient, as the rectifier function is non-differentiable at
0. In practice we treat this sub-gradient as we would a true
gradient and apply gradient-based optimization procedures to
find settings for the DNN’s parameters.

This DNN formulation is fairly standard when compared
to work in the speech recognition community. The choice of
rectifier nonlinearities is a new one, but their benefit has been
reproduced by several research groups. Fully connected neural
networks have been widely used in acoustic modeling for over
20 years, but the issues of DNN total size and depth have not
been thoroughly studied.

C. Deep Convolutional Neural Networks

The fully-connected DNN architecture presented thus far
serves as the primary neural network acoustic modeling choice
for modern speech recognition tasks. In contrast, neural net-
works for computer vision tasks are often deep convolutional
neural networks (DCNNs) which exploit spatial relationships
in input data [56], [57]. When using spectrogram filter bank
representations of speech data, analogous time-frequency rela-
tionships may exist. The DCNN architecture allows for param-
eter sharing and exploiting local time-frequency relationships
for improved classification performance. DCNNs follow a con-
volutional layer with a pooling layer to hard-code invariance
to slight shifts in time and frequency. Like fully connected
neural network acoustic models, the idea of using localized
time-frequency regions for speech recognition was introduced
over 20 years ago [30]. Along with the modern resurgence of
interest in neural network acoustic models researchers have
taken a modern approach to DCNN acoustic models. Our
formulation is consistent with other recent work on DCNN
acoustic models [29], but we do not evaluate specialized
feature post-processing or combining DNNs with DCNNs to
form an ensemble of acoustic models. Instead, we ask whether
DCNNs should replace DNNs as a robust baseline recipe for
building neural network acoustic models.

Like a DNN, a DCNN is a feed-forward model which
computes the conditional distribution ppy|xq. The initial layers
in a DCNN use convolutional layers in place of the standard
fully-connected layers present in DNNs. Convolutional layers
were originally developed to enable neural networks to deal
with large image inputs for computer vision tasks. In a
convolutional model, we restrict the total number of network
parameters by using hidden units which connect to only a
small, localized region of the input. These localized hidden
units are applied at many different spatial locations to obtain
hidden layer representations for the entire input. In addition to
controlling the number of free parameters, reusing localized
hidden units at different locations leverages the stationary
nature of many input domains. In the computer vision domain,
this amounts to reusing the same edge-sensitive hidden units
at each location of the image rather than forcing the model to
learn the same type of hidden unit for each location separately.

Figure 2 shows a convolutional hidden layer connected to
input features with time and frequency axes. A single weight
matrix W1 connects to a 3x3 region of the input and we
compute a hidden unit activation value using the same rectifier
nonlinearity presented in Equation 6. We apply this same
procedure at all possible locations of the input, moving one
step at a time across the input in both dimensions. This process
produces a feature map hp1,1q which is the hidden activation
values for W1 at each location of the input. The feature map
itself has meaningful time and frequency axes because we
preserve these dimensions as we convolve across the input
to compute hidden unit activations.

Our convolutional hidden layer has a feature map with
redundancies because we apply the hidden units at each
location as we slide across the input. Following the convo-
lutional layer, we apply a pooling operation. Pooling acts as

7

Time

Fr
eq
ue
nc
y

W1

W1

x h*
1:c h1:c

max()

Time

Fr
eq
ue
nc
y

W1,(1,1)

W1,(1,2)

x h*
1:c h1:c

max()

Fig. 2. Convolution and pooling first layer architecture. Here the filter size is 5ˆ5, and the pooling dimension is 3ˆ3. Pooling regions are non-overlapping.
Note that the 5ˆ 5 filters applied to each position in the convolution step are constrained to be the same. For max-pooling, the maximum value in each 3ˆ 3
grid is extracted.

a down-sampling step, and hard-codes invariance to slight
translations in the input. Like the localized windows used
in the convolutional layer, the pooling layer connects to a
contiguous, localized region of its input – the feature map
produced by a convolutional hidden layer. The pooling layer
does not have overlapping regions. We apply this pooling
function to local regions in each feature map. Recall that
a feature map contains the hidden unit activations for only
a single hidden unit. We are thus using pooling to select
activation values for each hidden unit separately, and not
forcing different hidden units to compete with one another. In
our work, we use max pooling which applies a max function
to the set of inputs in a single pooling region. Max pooling is
a common choice of pooling function for neural networks in
both computer vision and acoustic modeling tasks [58], [27],
[29]. The most widely used alternative to max pooling replaces
the max function with an averaging function. Results with max
pooling and average pooling are often comparable.

The overall architecture of a DCNN consists of one or more
layers of convolution followed by pooling followed by densely
connected hidden layers and a softmax classifier. Essentially
we build convolution and pooling layers to act as input to
a DNN rather than building a DNN from the original input
features. It is not possible to interleave densely connected
and convolutional hidden layers because a densely connected
hidden layer does not preserve spatial or time-frequency
relationships in their hidden layer representations. The DCNN
architecture contains more hyper-parameters than a standard
DNN because we must select the number of convolutional
layers, input region size for all convolution and pooling layers,
and pooling function. These are additional hyper-parameters
to the choices of depth and hidden layer size common to all
types of deep neural network architectures.

D. Deep Local Untied Neural Networks

DCNNs combine two architectural ideas simultaneously –
locally-connected hidden units and sharing weights across

multiple hidden units. We need not apply both of these ar-
chitectural ideas simultaneously. In a deep local untied neural
network (DLUNN) we again utilize locally-connected hidden
units but do not share weights at different regions of the
input. Figure 3 shows an example DLUNN architecture, which
differs only from a DCNN architecture by using different
weights at each location of the first hidden layer. When
applying a local untied hidden layer to Mel-spectrum time-
frequency input features the hidden units can process different
frequency ranges using different hidden units. This allows
the network to learn slight variations that may occur when a
feature occurs at a lower frequency versus a higher frequency.

In DLUNNs, the architecture is the same as in the con-
volutional network, except that filters applied to different
regions of the input are not constrained to be the same. Thus
untied neural networks can be thought of as convolutional
neural networks using locally connected computations and
without weight-sharing. This results in a large increase in
the number of parameters for the untied layers relative to
DCNNs. Following each locally united layer we apply a max
pooling layer which behaves identically to the pooling layers
in our DCNN architecture. Grouping units together with a max
pooling function often results in hidden weights being similar
such that the post-pooling activations are an invariant feature
which detects a similar time-frequency pattern at different
regions of the input.

E. Optimization Algorithms

Having defined several neural network architectures and the
loss function we wish to optimize, we must specify which
gradient-based algorithm we use to find a local minimum
of our loss function. We consider only stochastic gradient
techniques in our work as batch optimization, which requires
computing the gradient across the entire dataset at each step,
is impractical for the datasets we use. There are several
variants of stochastic gradient techniques, many with different
convergence properties when applied to convex optimization
problems. Because neural network training is a non-convex

8

Time

Fr
eq
ue
nc
y

W1

W1

x h*
1:c h1:c

max()

Time

Fr
eq
ue
nc
y

W1,(1,1)

W1,(1,2)

x h*
1:c h1:c

max()

Fig. 3. Locally connected untied first layer architecture. Here the filter size is 5ˆ5, and the pooling dimension is 3ˆ3. Pooling regions are non-overlapping.
Unlike the convolutional layer shown in Figure 2, the network learns a unique 5ˆ5 set of weights at each location. The max pooling layer otherwise behaves
identically to the pooling layer in a convolutional architecture.

problem, it is difficult to make general statements about
optimality of optimization methods. Instead, we consider the
choice of optimization algorithm as a heuristic which may lead
to better performance in practice. We consider two of the most
popular stochastic gradient techniques for our neural network
training.

The first optimization algorithm we consider is stochastic
gradient with classical momentum (CM) [59], [60]. This tech-
nique is probably the most standard optimization algorithm
choice in modern neural network research. To minimize a cost
function fpθq classical momentum updates amount to,

vt “ µvt´1 ´ ε∇fpθt´1q (8)
θt “ θt´1 ` vt, (9)

where vt denotes the accumulated gradient update, or velocity,
ε ą 0 is the learning rate, and the momentum constant
µ P r0, 1s governs how we accumulate the velocity vector over
time. By setting µ close to one, one can expect to accumulate
the gradient information across a larger set of past updates.
However, it can be shown that for extremely ill-conditioned
problems, a high momentum for classical momentum method
might actually cause fluctuations in the parameter updates.
This in turn can result in slower convergence.

Recently the Nesterov’s accelerated gradient (NAG) [61]
technique was found to address some of the issues encountered
when training neural networks with CM. Both methods follow
the intuition that accumulating the gradient updates along
the course of optimization will help speed up convergence.
NAG accumulates past gradients using an alternative update
equation that finds a better objective function value with
less sensitivity to optimization algorithm hyper-parameters on
some neural network tasks. The NAG update rule is defined
as,

vt “ µt´1vt´1 ´ εt´1∇fpθt´1 ` µt´1vt´1q (10)
θt “ θt´1 ` vt. (11)

Intuitively, this method avoids potential fluctuation in the

optimization by looking ahead to the gradient along the update
direction. For a more detailed explanation of the intuition
underlying NAG optimization for neural network tasks see
Figure 7.1 in [62]. In our work, we treat optimization algo-
rithm choice as an empirical question and compare CM with
NAG on our acoustic modeling task to establish performance
differences.

V. SWITCHBOARD 300 HOUR CORPUS

We first carry out LVCSR experiments on the 300
hour Switchboard conversational telephone speech corpus
(LDC97S62). The baseline GMM system and forced align-
ments are created using the Kaldi open-source toolkit1 [63].
The baseline recognizer has 8,986 sub-phone states and 200k
Gaussians. The DNN is trained to estimate state likelihoods
which are then used in a standard hybrid HMM/DNN setup.
Input features for the DNNs are MFCCs with a context of
˘10 frames. Per-speaker CMVN is applied and speaker adap-
tation is done using fMLLR. The features are also globally
normalized prior to training the DNN. Overall, the baseline
GMM system setup largely follows the existing s5b Kaldi
recipe and we defer to previous work for details [4]. For
recognition evaluation, we report on a test set consisting of
both the Switchboard and CallHome subsets of the HUB5
2000 data (LDC2002S09) as well as a subset of the training
set consisting of 5,000 utterances.

A. Varying DNN Model Size

We first experiment with perhaps the most direct approach
to improving performance with DNNs – making DNNs larger
by adding hidden units. Increasing the number of parameters in
a DNN directly increases the representational capacity of the
model. Indeed, this representational scalability drives much of
the modern interest in applying DNNs to large datasets which
might easily saturate other types of models. Many existing

1http://kaldi.sf.net

9

experiments with DNN acoustic models focus on introducing
architecture or loss function variants to further specialize
DNNs for speech tasks. We instead ask the question of whether
model size alone can drive significant improvements in overall
system performance. We additionally experiment with using a
larger context window of frames as a DNN input as this should
also serve as a direct path to improving the frame classification
performance of DNNs.

1) Experiments: We explore three different model sizes by
varying the total number of parameters in the network. The
number of hidden layers is fixed to five, so altering the total
number of parameters affects the number of hidden units in
each layer. All hidden layers in a single network have the
same number of hidden units. The hidden layer sizes are
2048, 3953 and 5984 which respectively yield models with
approximately 36 million (M), 100M and 200M parameters.
There are 8,986 output classes which results in the output
layer being the largest single layer in any of our networks. In
DNNs of the size typically studied in the literature this output
layer often consumes a majority of the total parameters in
the network. For example in our 36M parameter model the
output layer comprises 51% of all parameters. In contrast,
the output layer in our 200M model is only 6% of total
parameters. Many output classes occur rarely so devoting a
large fraction of network parameters to class-specific modeling
may be wasteful. Previous work explores factoring the output
layer to increase the relative number of shared parameters [64],
[65], but this effect occurs naturally by substantially increasing
network size. For our larger models we experiment with the
standard input of ˘10 context frames and additionally models
trained with ˘20 context frames.

All models use hidden units with the rectified linear non-
linearity. For optimization, we use Nesterov’s accelerated
gradient with a smooth initial momentum schedule which we
clamp to a maximum of 0.95 [46]. The stochastic updates are
on mini-batches of 512 examples. After each epoch, or full
pass through the data, we anneal the learning rate by half.
Training is stopped after improvement in the cross entropy
objective evaluated on held out development set falls below a
small tolerance threshold.

In order to efficiently train models of the size mentioned
above, we distribute the model and computation across sev-
eral GPUs using the distributed neural network infrastructure
proposed by [53]. Our GPU cluster and distributed training
software is capable of training up to 10 billion parameter
DNNs. We restrict our attention to models in the 30M - 200M
parameter range. In preliminary experiments we found that
DNNs with 200M parameters are representative of DNNs with
over one billion parameters for this task. We train models
for this paper in a model-parallel fashion by distributing
the parameters across four GPUs. A single pass through the
training set for a 200M parameter DNN takes approximately
1.5 days. Table I shows frame-level and WER evaluations of
acoustic models of varying size compared against our baseline
GMM recognizer.

2) Results: Table I shows results for DNNs of varying
size and varying amounts of input context. We find that
substantially increasing DNN size shows clear improvements

in frame-level metrics. Our 200M parameter DNN halves
the development set cross entropy cost of the smaller 36M
parameter DNN – a substantial reduction. For each increase
in DNN model size there is approximately a 10% absolute
increase in frame classification accuracy. Frame-level metrics
are further improved by using larger context windows. In all
cases a model trained with larger context window outperforms
its smaller context counterpart. Our best overall model in terms
of frame-level metrics is a 200M parameter DNN with context
window of ˘20 frames.

However, frame-level performance is not always a good
proxy for WER performance of a final system. We evaluate
WER on a subset of the training data as well as the final
evaluation sets. Large DNN acoustic models substantially
reduce WER on the training set. Indeed, our results suggest
that further training set WER reductions are possible by
continuing to increase DNN model size. However, the gains
we observe on the training set in WER do not translate to
large performance gains on the evaluation sets. While there
is a small benefit of using models larger than the 36M DNN
baseline size, building models larger than 100M parameters
does not prove beneficial for this task.

3) Discussion: To better understand the dynamics of train-
ing large DNN acoustic models, we plot training and eval-
uation WER performance during DNN training. Figure 4
shows WER performance for our 100M and 200M parameter
DNNs after each epoch of cross entropy training. We find
that training WER reduces fairly dramatically at first and
then continues to decrease at a slower but still meaningful
rate. In contrast, nearly all of our evaluation set performance
is realized within the first few epochs of training. This has
two important practical implications for large DNN training
for speech recognition. First, large acoustic models are not
beneficial but do not exhibit a strong over-fitting effect where
evaluation set performance improves for awhile before be-
coming increasingly worse. Second, it may be possible to
utilize large DNNs without prohibitively long training times
by utilizing our finding that most performance comes from
the first few epochs, even with models at our scale. Finally,
although increasing context window size improves all training
set metrics, those gains do not translate to improved test set
performance. It seems that increasing context window size
provides an easy path to better fitting the training function,
but does not result in the DNN learning a meaningful, gener-
alizable function.

B. Dropout Regularization

Dropout is a recently-introduced technique to prevent over-
fitting during DNN training [2]. The dropout technique ran-
domly masks out hidden unit activations during training, which
prevents co-adaptation of hidden units. For each example
observed during training, each unit has its activation set
to zero with probability p P r0, 0.5s. Several experiments
demonstrate dropout as a good regularization technique for
tasks in computer vision and natural language processing [57],
[66]. [23] found a reduction in WER when using dropout on a
10M parameter DNN acoustic model for a 50 hour broadcast

10

TABLE I
RESULTS FOR DNN SYSTEMS IN TERMS OF FRAME-WISE ERROR METRICS ON THE DEVELOPMENT SET AS WELL AS WORD ERROR RATES ON THE

TRAINING SET AND HUB5 2000 EVALUATION SETS. THE HUB5 SET (EV) CONTAINS THE SWITCHBOARD (SWBD) AND CALLHOME (CH) EVALUATION
SUBSETS. WE ALSO INCLUDE WORD ERROR RATES FOR THE FISHER CORPUS DEVELOPMENT SET (FSH) FOR CROSS-CORPUS COMPARISON.

FRAME-WISE ERROR METRICS WERE EVALUATED ON 1.7M FRAMES HELD OUT FROM THE TRAINING SET. DNN MODELS DIFFER ONLY BY THEIR TOTAL
NUMBER OF PARAMETERS. ALL DNNS HAVE 5 HIDDEN LAYERS WITH EITHER 2,048 HIDDEN UNITS (36M PARAMETERS), 3,953 HIDDEN UNITS (100M

PARAMETERS), OR 5,984 HIDDEN UNITS (200M PARAMS).

Model Size Layer Size Context Dev CrossEnt Dev Acc(%) Train WER SWBD WER CH WER EV WER

GMM Baseline N/A ˘0 N/A N/A 24.93 21.7 36.1 29.0

36M 2048 ˘10 1.23 66.20 17.52 15.1 27.1 21.2

100M 3953 ˘10 0.77 78.56 13.66 14.5 27.0 20.8
100M 3953 ˘20 0.50 85.58 12.31 14.9 27.7 21.4

200M 5984 ˘10 0.51 86.06 11.56 15.0 26.8 20.9
200M 5984 ˘20 0.26 93.05 10.09 15.4 28.5 22.0

0 2 4 6 8 10
10

15

20

25

30

Epoch

W
E

R

100M Test
200M Test
100M Train
200M Train

Fig. 4. Train and test set WER as a function of training epoch for systems
with DNN acoustic models of varying size. Each epoch is a single complete
pass through the training set. Although the training error rate is substantially
lower for large models, there is no gain in test set performance.

news LVCSR task. Dropout additionally yielded performance
gains for convolutional neural networks with less than 10M
parameters on both 50 and 400 hour broadcast news LVCSR
tasks [28]. While networks which employ dropout during
training were found effective in these studies, the authors
did not perform control experiments to measure the impact
of dropout alone. We directly compare a baseline DNN to
a DNN of the same architecture trained with dropout. This
experiment tests whether dropout regularization can mitigate
the poor generalization performance of large DNNs observed
in Section V-A.

1) Experiments: We train DNN acoustic models with
dropout to compare generalization WER performance against
that of the DNNs presented in Section V. The probability of
dropout p is a hyper-parameter of DNN training. In prelimi-
nary experiments we found setting p “ 0.1 to yield the best
generalization performance after evaluating several possible
values, p P t0.01, 0.1, 0.25, 0.5u. The DNNs presented with
dropout training otherwise follow our same training and eval-
uation protocol used thus far, and are built using the same

TABLE II
RESULTS FOR DNN SYSTEMS TRAINED WITH DROPOUT REGULARIZATION

(DO) AND EARLY REALIGNMENT (ER) TO IMPROVE GENERALIZATION
PERFORMANCE. WE BUILD MODELS WITH EARLY REALIGNMENT BY

STARTING REALIGNMENT AFTER EACH EPOCH STARTING AFTER EPOCH
TWO (ER2) AND EPOCH FIVE (ER5). WORD ERROR RATES ARE REPORTED

ON THE COMBINED HUB5 TEST SET (EV) WHICH CONTAINS
SWITCHBOARD (SWBD) AND CALLHOME (CH) EVALUATION SUBSETS.
DNN MODEL SIZES ARE SHOWN IN TERMS OF HIDDEN LAYER SIZE AND

MILLIONS OF TOTAL PARAMETERS (E.G. 100M)

Model SWBD CH EV

GMM Baseline 21.7 36.1 29.0

2048 Layer (36M) 15.1 27.1 21.2
2048 Layer (36M) DO 14.7 26.7 20.8

3953 Layer (100M) 14.7 26.7 20.7
3953 Layer (100M) DO 14.6 26.3 20.5
3953 Layer (100M) ER2 14.3 26.0 20.2
3953 Layer (100M) ER5 14.5 26.4 20.5

5984 Layer (200M) 15.0 26.9 21.0
5984 Layer (200M) DO 14.9 26.3 20.7

forced alignments from our baseline HMM-GMM system.
2) Results: Table II shows the test set performance of DNN

acoustic models of varying size trained with dropout. DNNs
trained with dropout improve over the baseline model for
all acoustic model sizes we evaluate. The improvement is a
consistent 0.2% to 0.4% reduction in absolute WER on the
test set. While beneficial, dropout seems insufficient to fully
harness the representational capacity of our largest models.
Additionally, we note that hyper-parameter selection was criti-
cal to finding any gain when using dropout. With a poor setting
of the dropout probability p preliminary experiments found no
gain and often worse results from training with dropout.

C. Early Stopping

Early stopping is a regularization technique for neural
networks which halts loss function optimization before com-
pletely converging to the lowest possible function value.
We evaluate early stopping as another standard DNN reg-
ularization technique which may improve the generalization

11

performance of large DNN acoustic models. Previous work by
[67] found that early stopping training of networks with large
capacity produces generalization performance on par with or
better than the generalization of a smaller network. Further,
this work found that, when using back-propagation for opti-
mization, early in training a large capacity network behaves
similarly to a smaller capacity network. Finally, early stopping
as a regularization technique is similar to an `2 weight norm
penalty, another standard approach to regularization of neural
network training.

1) Results: By analyzing the training and test WER curves
in Figure 4 we can observe the best-case performance of an
early stopping approach to improving generalization. If we
select the lowest test set WER the system achieves during
DNN optimization, the 200M parameter DNN achieves 20.7%
WER on the EV subset – only 0.1% better than the 100M
parameter baseline DNN system. This early stopped 200M
model achieves only a 0.5% absolute WER reduction over the
much smaller 36M parameter DNN. This suggests that early
stopping is beneficial, but perhaps insufficient to yield the full
possible benefits of large DNN acoustic models.

D. Early Realignment
We next introduce a potential regularization technique

which leverages the process by which training labels are
created for DNN acoustic model training. Acoustic model
training data is labeled via a forced alignment of the word-
level transcriptions. We test whether re-labeling the training
data during training using the partially-trained DNN leads to
improved generalization performance.

Each short acoustic span xi has an associated HMM state
label yi to form a supervised learning problem for DNN
training. Recall that the labels y are generated by a forced
alignment of the word-level ground truth labels w to the
acoustic signal x. This forced alignment uses an existing
LVCSR system to generate a labeling y consistent with the
word-level transcription w. The system used to generate the
forced alignment is, of course, imperfect, as is the overall
speech recognition framework’s ability to account for vari-
ations in pronunciation. This leads to a dataset D where
supervised training pairs pxi, yiq P D contain labels y which
are imperfect. We can consider a label yi as a corrupted version
of the true label y˚i . The corruption function which maps
y˚i to yi is difficult to specify and certainly not independent
nor identically distributed at the level of individual samples.
Such a complex corruption function is difficult to analyze
or address with standard machine learning techniques for
label noise. We hypothesize, however, that the noisy labels
y are sufficiently correct as to make significantly corrupted
labels appear as outliers with respect to the true labels y˚.
Under this assumption we outline an approach to improving
generalization based on the dynamics of DNN performance
during training optimization.

Neural networks exhibit interesting dynamics during opti-
mization. Work on early stopping found that networks with
high capacity exhibit behavior similar to smaller, limited
capacity networks in early phases of optimization [67]. Com-
bining this finding with the generally smooth functional form

of DNN hidden and output units suggests that early in training
a large capacity DNN may fit a smooth output function which
ignores some of the label noise in y. Of course, a large
enough DNN should completely fit the corruptions present in
y as optimization converges. Studies on the learning dynamics
of DNNs for hierarchical categorization tasks additionally
suggest that coarse, high-level output classes are fit first during
training optimization [68].

Realignment, or generating a new forced alignment using
an improved acoustic model, is a standard tool for LVCSR
system training. Baseline LVCSR systems using GMM acous-
tic models realign several times during training to iteratively
improve. While iterative realignments have been helpful in
improving system performance in single-layer ANN-HMM
hybrid models [5], realignment is typically not used with
large DNN acoustic models because of the long training times
of DNNs. However, realignment using a fully trained DNN
acoustic model often can produce a small reduction in final
system WER [2].

We evaluate early realignment which generates a new forced
alignment early in DNN optimization and then continues
training on the new set of labels. Because large capacity DNNs
begin accurately predicting labels much earlier in training,
early realignment may save days of training time. Further, we
hypothesize that a less fully converged network can remove
some label distortions while a more completely trained DNN
may already be fitting to the corrupt labels given by an
imperfect alignment.

1) Experiments: We begin by training an initial DNN using
the same HMM-GMM forced alignments and non-regularized
training procedures presented thus far. After training the DNN
using the initial HMM-GMM alignments for a fixed number
of epochs, we use our new HMM-DNN system to generate a
new forced alignment for the entire training set. DNN training
then proceeds using the same DNN weights but the newly-
generated training set labels. As in our other regularization
experiments, we hold the rest of our DNN training and
evaluation procedures fixed to directly measure the impact
of early realignment training. We train 100M parameter five
hidden layer DNNs and build models by realigning after either
two or five epochs.

In preliminary experiments we found that realignment after
each epoch was too disruptive to DNN training and resulted
in low quality DNN models. Similarly, we found that starting
from a fresh, randomly initialized DNN after realignment per-
formed worse than continuing training from the DNN weights
used to generate the realignment. We found it important to
reset the stochastic gradient learning rate to its initial value
after realignment occurs. Without doing so, our annealing
schedule sets the learning rate too low for the optimization
procedure to fully adjust to the newly-introduced labels. In
a control experiment, we found that resetting the learning
rate alone, without realignment, does not improve system
performance.

2) Results: Table II compares the final test set performance
of DNNs trained with early realignment to a baseline model
as well as DNNs trained with dropout regularization. Realign-
ment after five epochs is beneficial compared to the baseline

12

0 2 4 6 8 10
10

15

20

25

30

Epoch

W
E

R

Baseline Test
Realign Test
Baseline Train
Realign Train

Fig. 5. WER as a function of DNN training epoch for systems with DNN
acoustic models trained with and without label realignment after epoch 2.
A DNN which re-generates its training labels with a forced alignment early
during optimization generalizes much better to test data than a DNN which
converges to the original labels.

DNN system, but slightly worse than a system which realigns
after two epochs of training. Early realignment leads to better
WER performance than all models we evaluated trained with
dropout and early stopping. This makes early realignment
the overall best regularization technique we evaluated on the
Switchboard corpus. We note that only early realignment
outperforms dropout regularization – a DNN trained with
realignment after five epochs performs comparably to a DNN
of the same size trained with dropout.

3) Discussion: Figure 5 shows training and test WER
curves for 100M parameter DNN acoustic models trained with
early realignment and a baseline DNN with no realignment.
We note that just after realignment both train and test WER
increase briefly. This is not surprising as realignment substan-
tially changes the distribution of training examples. The DNN
trained with realignment trains for three epochs following
realignment before it begins to outperform the baseline DNN
system.

We can quantify how much the labeling from realignment
differs from the original labeling by computing the fraction
of labels changed. In early realignment 16.4% of labels are
changed by realignment while only 10% of labels are changed
when we realign with the DNN trained for five epochs.
This finding matches our intuition that as a large capacity
DNN trains it converges to fit the corrupted training samples
extremely well. Thus when we realign the training data with
a fully trained large capacity DNN the previously observed
labels are reproduced nearly perfectly. Realigning with a
DNN earlier in optimization mimics realigning with a higher
bias model which relabels the training set with a smoother
approximate function. Taken together, our results suggest early
realignment leverages the high bias characteristics of the initial
phases of DNN training to reduce WER while requiring
minimal additional training time.

Early realignment also shows a huge benefit to training
time compared to traditional realignment. The DNN trained

with realignment after epoch five must train an additional
three epochs, for a total of eight, before it can match the
performance of a DNN trained with early realignment. For
DNNs of the scale we use, this translates to several days of
compute time. The training time and WER reduction of DNNs
with early realignment comes with a cost of implementing and
performing realignment, which is of course not a standard
DNN training technique. Realignment requires specializing
DNN training to the speech recognition domain, but any
modern LVCSR system should already contain infrastructure
to generate a forced alignment from an HMM-DNN system.
Overall, we conclude that early realignment is an effective
technique to improve performance of DNN acoustic models
with minimal additional training time.

VI. COMPARING DNNS, DCNNS, AND DLUNNS ON
SWITCHBOARD

The experiments thus far modify DNN training by adding
various forms of regularization. We now experiment with
alternative neural network architectures – deep convolutional
neural networks (DCNNs) and deep local untied neural net-
works (DLUNNs).

A. Experiments

We trained DCNN and DLUNN acoustic models using the
same Switchboard training data as used for our DNN acoustic
model experiments to facilitate direct comparisons across
architectures. We evaluate filter bank features in addition to
the fMLLR features used in DNN training because filter bank
features have meaningful spectro-temporal dimensions for
local receptive field computations. All models have five hidden
layers and were trained using Nesterov’s accelerated gradient
with a smoothly increasing momentum schedule capped at
0.95 and a step size of 0.01, halving the step size after each
epoch.

For our DCNN and DLUNN acoustic models we chose a
receptive field of 9 ˆ 9 and non-overlapping pooling regions
of dimension 1ˆ3 (time by frequency). Our models with two
convolutional layers have the same first layer filter and pooling
sizes. The second layer uses a filter size of 3 ˆ 3 and does
not use pooling. These parameters were selected using results
from preliminary experiments as well as results from previous
work [28].

In the DCNNs one convolutional layer was used followed
by four densely connected layers with equal number of hidden
units, and similarly for the DLUNNs. Map depth and number
of hidden units were selected such at all models have approx-
imately 36M parameters. For DCNNs, the convolutional first
layer has a map depth of 128 applied to an input with ˘10
frame context. The following dense hidden layers each have
1,240 hidden units. Our 2 convolutional layer DCNN uses 128
feature maps in both convolutional layers and 3 dense layers
with 1,240 hidden units each. All DLUNNs use 108 filters at
each location in the first layer, and 4 hidden layers each with
1,240 hidden units.

The filter bank and fMLLR features are both 40-
dimensional. We ran initial experiments convolving filters

13

TABLE III
PERFORMANCE COMPARISON OF DNNS, DEEP CONVOLUTIONAL NEURAL NETWORKS (DCNNS), AND DEEP LOCAL UNTIED NEURAL NETWORKS

(DLUNNS). WE EVALUATE CONVOLUTIONAL MODELS WITH ONE LAYER OF CONVOLUTION (DCNN) AND TWO LAYERS OF CONVOLUTION (DCNN2).
WE COMPARE MODELS TRAINED WITH FMLLR FEATURES AND FILTER BANK (FBANK) FEATURES. NOTE THAT A CONTEXT WINDOW OF FMLLR

FEATURES HAS A TEMPORAL DIMENSION BUT NO MEANINGFUL FREQUENCY DIMENSION WHEREAS FBANK FEATURES HAVE MEANINGFUL
TIME-FREQUENCY AXES. AS AN ADDITIONAL CONTROL WE TRAIN A DCNN ON FEATURES WHICH ARE RANDOMLY PERMUTED TO REMOVE

MEANINGFUL COHERENCE IN BOTH THE TIME AND FREQUENCY AXES (FBANK-P AND FMLLR-P). WE REPORT PERFORMANCE ON BOTH THE HUB5
EVAL2000 TEST SET (EV) WHICH CONTAINS SWITCHBOARD (SWBD) AND CALLHOME (CH) EVALUATION SUBSETS.

Model Features Acc(%) SWBD WER CH WER EV WER

GMM fMLLR N/A 21.7 36.1 29.0

DNN fMLLR 60.8 14.9 27.4 21.2
DNN FBank 51.7 16.5 31.6 24.1

DCNN fMLLR 59.3 15.8 28.3 22.0
DCNN FBank 53.0 15.8 28.7 22.3

DCNN fMLLR-P 59.0 15.9 28.6 22.4
DCNN FBank-P 50.7 17.2 32.1 24.7

DCNN2 fMLLR 58.8 15.9 28.3 22.2
DCNN2 FBank 53.0 15.6 28.3 22.1

DLUNN fMLLR 61.2 15.2 27.4 21.3
DLUNN FBank 53.0 16.1 29.3 22.8

along frequency only, pooling along both frequency and time,
and overlapping pooling regions, but did not find that these
settings gave better performance. We ran experiments with a
context window of ˘20 frames but found results to be worse
than results obtained with a context window of ˘10 frames,
so we report only the ˘10 frame context results.

B. Results

Table III shows the frame-level and final system perfor-
mance results for acoustic models built from DNNs, DCNNs,
and DLUNNs. When using filter bank features, DCNNs and
DLUNNs both achieve improvements over DNNs. DCNN
models narrowly outperform DLUNN models. For locally
connected acoustic models it appears that the constraint of tied
weights in convolutional models is advantageous as compared
to allowing a different set of localized receptive fields to be
learned at different time-frequency regions of the input.

DLUNNs outperform DCNNs in experiments with fMLLR
features. Indeed, the DLUNN performs about as well as the
DNN. The DCNN is harmed by the lack of meaningful rela-
tionships along the frequency dimension of the input features,
whereas the more flexible architecture of the DLUNN is able
to learn useful first layer parameters. We also note that our
fMLLR features yield much better performance for all models
as compared with models trained on filter bank features.

In order to examine how much benefit using DCNNs to
leverage local correlations in the acoustic signal yields, we
ran control experiments with filter bank features randomly
permuted along both the frequency and time axes. The results
show that while this harms performance the convolutional
architecture can still obtain fairly competitive word error
rates. This control experiment confirms that locally connected
models do indeed leverage localized properties of the input
features to achieve improved performance.

C. Discussion
While DCNN and DLUNN models are promising as com-

pared to DNN models on filter bank features, our results with
filter bank features are overall worse than results from models
utilizing fMLLR features.

Note that the filter bank features we used are fairly simple
as compared to our fMLLR features as the filter bank features
do not contain significant post-processing for speaker adapta-
tion. While performing such feature transformations may give
improved performance, they call into question the initial moti-
vation for using DCNNs to automatically discover invariance
to gender, speaker and time-frequency distortions. The fMLLR
features we compare against include much higher amounts
of specialized post-processing, which appears beneficial for
all neural network architectures we evaluated. This confirms
recent results from previous work, which found that DCNNs
alone are not typically superior to DNNs but can complement
a DNN acoustic model when both are used together, or achieve
competitive results when increased amounts of post-processing
are applied to filter bank features [29]. In summary, we con-
clude that DCNNs and DLUNNs are not sufficient to replace
DNNs as a default, reliable choice for acoustic modeling
network architecture. We additionally conclude that DLUNNs
warrant further investigation as alternatives to DCNNs for
acoustic modeling tasks.

VII. COMBINED LARGE CORPUS

On the Switchboard 300 hour corpus we observed limited
benefits from increasing DNN model size for acoustic model-
ing, even with a variety of techniques to improve generaliza-
tion performance. We next explore DNN performance using
a substantially larger training corpus. This set of experiments
explores how we expect DNN acoustic models to behave when
training set size is not a limiting factor. In this setting, over-
fitting with large DNNs should be less of a problem and we can

14

more thoroughly explore architecture choices in large DNNs
rather than regularization techniques to reduce over-fitting and
improve generalization with a small training corpus.

A. Baseline HMM system

To maximize the amount of training data for a conversa-
tional speech transcription task, we combine the Switchboard
corpus with the larger Fisher corpus [69]. The Fisher corpus
contains approximately 2,000 hours of training data, but has
transcriptions which are slightly less accurate than those of
the Switchboard corpus.

Our baseline GMM acoustic model was trained on features
that are obtained by splicing together 7 frames (3 on each side
of the current frame) of 13-dimensional MFCCs (C0-C12) and
projecting down to 40 dimensions using linear discriminant
analysis (LDA). The MFCCs are normalized to have zero mean
per speaker2. After obtaining the features with LDA, we also
use a single semi-tied covariance (STC) transform on the fea-
tures. Moreover, speaker adaptive training (SAT) is done using
a single feature-space maximum likelihood linear regression
(fMLLR) transform estimated per speaker. The models trained
on the full combined Fisher+Switchboard training set contain
8725 tied triphone states and 3.2M Gaussians.

The language model in our baseline system is trained on
the combination of the Fisher transcripts and the Switchboard
Mississippi State transcripts. Kneser-Ney smoothing was ap-
plied to fine-tune the back-off probabilities to minimize the
perplexity on a held out set of 10K transcript sentences from
Fisher transcripts. In preliminary experiments we interpolated
the transcript-derived language model with a language model
built from a large collection of web page text, but found no
gains as compared with using the transcript-derived language
model alone.

We use two evaluation sets for all experiments on this
corpus. First, we use the same Hub5’00 (Eval2000) corpus
used to evaluate systems on the Switchboard 300hr task. This
evaluation set serves as a reference point to compare systems
built on our combined corpus to those trained on Switchboard
alone. Second, we use the RT-03 evaluation set which is
more frequently used in the literature to evaluate Fisher-trained
systems. Performance of the baseline HMM-GMM system is
shown in Table IV and Table V. 3

B. Optimization Algorithm Choice

To avoid exhaustively searching over all DNN architecture
and training parameters simultaneously, we first establish the
impact of optimization algorithm choice while holding the
DNN architecture fixed. We train networks with the two
optimization algorithms described in Section IV-E to deter-
mine which optimization algorithm to use in the rest of the
experiments on this corpus.

2This is done strictly for each individual speaker with our commit r4258 to
the Kaldi recognizer. We found this to work slightly better than normalizing
on a per conversation-side basis.

3The implementation of our baseline HMM-GMM system is available in the
Kaldi project repository as example recipe fisher_swbd (revision: r4340).

1) Experiments: We train several DNNs with five hidden
layers, where each layer has 2,048 hidden units. This results
in DNNs with roughly 36M total free parameters, which is
a typical size for acoustic models used for conversational
speech transcription in the research literature. For both the
classical momentum and Nesterov’s accelerated gradient op-
timization techniques the two key hyper-parameters are the
initial learning rate ε and the maximum momentum µmax. In
all cases we decrease the learning rate by a factor of 2 every
200,000 iterations. This learning rate annealing was chosen
after preliminary experiments, and overall performance does
not appear to be significantly affected by annealing schedule.
It is more common to anneal the learning rate after each
pass through the dataset. Because our dataset is quite large
we found that annealing only after each epoch leads to much
slower convergence to a good optimization solution.

2) Results: Table IV shows both WER performance and
classification accuracy of DNN-based ASR systems with vari-
ous optimization algorithm settings. We first evaluate the effect
of optimization algorithm choice. We evaluated DNNs with
µmax P 0.9, 0.95, 0.99 and ε P t0.1, 0.01, 0.001u. For both
optimization algorithms DNNs achieve the best performance
by setting µmax “ 0.99 and ε “ 0.01.

In terms of frame level accuracy the NAG optimizer nar-
rowly outperforms the CM optimizer, but WER performance
across all evaluation sets are nearly identical. For both op-
timization algorithms a high value of µmax is important for
good performance. Note most previous work in hybrid acoustic
models use CM with µmax “ 0.90, which does not appear to
be optimal in our experiments. We also found that a larger
initial learning rate was beneficial. We ran experiments using
ε ě 0.05 but do not report results because the DNNs diverged
during the optimization process. Similarly, all models trained
with ε “ 0.001 had WER more than 1% absolute higher on
the EV test set as compared to the same architecture trained
with ε “ 0.01. We thus omit the results for models trained
with ε “ 0.001 from our results table.

For the remainder of our experiments we use the NAG
optimizer with µmax “ 0.99 and ε “ 0.01. These settings
achieve the best performance overall in our initial experiments,
and generally we have found the NAG optimizer to be some-
what more robust than the CM optimizer in producing good
parameter solutions.

C. Scaling Total Number of DNN Parameters

We next evaluate the performance of DNNs as a function of
the total number of model parameters while keeping network
depth and optimization parameters fixed. This approach di-
rectly assesses the hypothesis of improving performance as
a function of model size when there is sufficient training
data available. We train DNNs with 5 hidden layers, and
keep the number of hidden units constant across each hid-
den layer. Varying total free parameters thus corresponds to
adding hidden units to each hidden layer. Table V shows the
frame classification and WER performance of 5 hidden layer
DNNs containing 36M, 100M, 200M, and 400M total free
parameters. Because it can be difficult to exactly reproduce

15

TABLE IV
RESULTS FOR DNNS OF THE SAME ARCHITECTURE TRAINED WITH VARYING OPTIMIZATION ALGORITHMS. PRIMARILY WE COMPARE STOCHASTIC

GRADIENT USING CLASSICAL MOMENTUM (CM) AND NESTEROV’S ACCELERATED GRADIENT (NAG). WE ADDITIONALLY EVALUATE MULTIPLE
SETTINGS FOR THE MAXIMUM MOMENTUM (µmax). THE TABLE CONTAINS RESULTS FOR ONLY ONE LEARNING RATE (ε “ 0.01) SINCE IT PRODUCES

THE BEST PERFORMANCE FOR ALL SETTINGS OF OPTIMIZATION ALGORITHM AND MOMENTUM. WE REPORT PERFORMANCE ON BOTH THE HUB5
EVAL2000 TEST SET (EV) WHICH CONTAINS SWITCHBOARD (SWBD) AND CALLHOME (CH) EVALUATION SUBSETS. WE ALSO EVALUATE

PERFORMANCE ON THE RT03 (RT03) SWITCHBOARD TEST SET FOR COMPARISON WITH FISHER CORPUS SYSTEMS.

Optimizer µmax Acc(%) SWBD WER CH WER EV WER RT03 WER

GMM N/A N/A 21.9 31.9 26.9 39.5

CM 0.90 52.51 18.3 27.3 22.8 39.0
CM 0.95 54.20 17.1 25.6 21.4 38.1
CM 0.99 55.26 16.3 24.8 20.6 37.5

NAG 0.90 53.18 18.0 26.7 22.3 38.5
NAG 0.95 54.27 17.2 25.8 21.5 39.6
NAG 0.99 55.39 16.3 24.7 20.6 37.4

DNN optimization procedures, we make our DNN training
code available online 4. Our DNN training code comprises
only about 300 lines of Python code in total, which should
facilitate easy comparison to other DNN training frameworks.

Overall, the 400M parameter model performs best in terms
of both frame classification and WER across all evaluation
sets. Unlike with our smaller Switchboard training corpus
experiments, increasing DNN model size does not lead to
significant over-fitting problems in WER. However, the gain
from increasing model size from 36M to 400M, more than a
10x increase, is somewhat limited. On the Eval2000 evaluation
set we observe a 3.8% relative gain in WER from the 100M
DNN as compared to the 36M DNN. When moving from the
100M DNN to the 200M DNN there is relative WER gain of
2.5%. Finally the model size increase from 200M to 400M
total parameters yields a relative WER gain of 1%. There are
clearly diminishing returns as we increase model size. The
trend of diminishing relative gains in WER also occurs on the
RT03 evaluation set, although relative gains on this evaluation
set are somewhat smaller overall.

Frame classification rates on this corpus are much lower
overall as compared with our Switchboard corpus DNNs. We
believe this corpus is more challenging due to more overall
acoustic variation, and errors induced by quick transcriptions.
Even our largest DNN leaves room for improvement in terms
of frame classification. In Section VIII we explore more
thoroughly the frame classification performance of the DNNs
presented here.

D. Number of Hidden Layers

We next compare performance of DNN systems while
keeping total model size fixed and varying the number of
hidden layers in the DNN. The optimal architecture for a
neural network may change as the total number of model
parameters changes. There is no a priori reason to believe that
5 hidden layers is optimal for all model sizes. Furthermore,
there are no good general heuristics to select the number of
hidden layers for a particular task. Table V shows DNN system

4For DNN training code, see <upon acceptance>

performance for DNNs with 1, 3, 5, and 7 hidden layers for
DNNs of at multiple total parameter counts.

The most striking distinction in terms of both frame clas-
sification and WER is the performance gain of deep models
versus those with a single hidden layer. Single hidden layer
models perform much worse than DNNs with 3 hidden layers
or more. Among deep models there are much smaller gains
as a function of depth. Models with 5 hidden layers show
a clear gain over those with 3 hidden layers, but there is
little to no gain from a 7 hidden layer model when compared
with a 5 hidden layer model. These results suggest that for
this task 5 hidden layers may be deep enough to achieve
good performance, but that DNN depth taken further does not
increase performance. It’s also interesting to note that DNN
depth has a much larger impact on performance than total
DNN size. For this task, it is much more important to select
an appropriate number of hidden layers than it is to choose an
appropriate total model size.

For each total model size there is a slight decrease in frame
classification in 7 layer DNNs as compared with 5 hidden layer
DNNs. This trend of decreasing frame-level performance is
also present in the training set, which suggests that as networks
become very deep it is more difficult to minimize the training
objective function. This is evidence for a potential confounding
factor when building DNNs. In theory deeper DNNs should
be able to model more complex functions than their shallower
counterparts, but in practice we found that depth can act as
a regularizer due to the difficulties in optimizing very deep
models.

VIII. WER AND FRAME CLASSIFICATION ERROR
ANALYSIS

We now decompose our task performance metrics of frame
classification accuracy and WER into their constituent compo-
nents to gain a deeper understanding of how models compare
to one another. This analysis attempts to uncover differences
in models which achieve similar aggregate performance. For
example, two systems which have the same final WER may
have different rates of substitutions, deletions, and insertions
– the constituent components of the WER metric.

16

TABLE V
RESULTS FOR DNNS OF VARYING TOTAL MODEL SIZE AND DNN DEPTH. WE REPORT PERFORMANCE ON BOTH THE HUB5 EVAL2000 TEST SET (EV)

WHICH CONTAINS SWITCHBOARD (SWBD) AND CALLHOME (CH) EVALUATION SUBSETS. WE ALSO EVALUATE PERFORMANCE ON THE RT03 (RT03)
SWITCHBOARD TEST SET FOR COMPARISON WITH FISHER CORPUS SYSTEMS. WE ADDITIONALLY REPORT FRAME-LEVEL CLASSIFICATION ACCURACY

(ACC) ON A HELD OUT TEST SET TO COMPARE DNNS AS CLASSIFIERS INDEPENDENT OF THE HMM DECODER.

Params Nun. Layers Layer Size Acc(%) SWBD WER CH WER EV WER RT03 WER

GMM N/A N/A N/A 21.9 31.9 26.9 39.5

36M 1 3803 49.38 21.0 30.4 25.8 43.2
36M 3 2480 54.78 17.0 25.8 21.4 38.2
36M 5 2048 55.37 16.2 24.7 20.6 37.4
36M 7 1797 54.99 16.3 24.7 20.7 37.3

100M 1 10454 50.82 19.8 29.1 24.6 42.4
100M 3 4940 56.02 16.3 24.8 20.6 37.3
100M 5 3870 56.62 15.8 23.8 19.8 36.7
100M 7 3309 56.59 15.7 23.8 19.8 36.4

200M 1 20907 51.29 19.6 28.7 24.3 42.8
200M 3 7739 56.58 16.0 24.0 20.1 37.0
200M 5 5893 57.36 15.3 23.1 19.3 36.0
200M 7 4974 57.28 15.3 23.3 19.3 36.2

400M 5 8876 57.70 15.0 23.0 19.1 35.9

Figure 6 shows decomposed WER performance of HMM-
DNN systems of varying DNN size. Each HMM-DNN system
uses a DNN with 5 hidden layers, these are the same HMM-
DNN systems reported in Table V. We see that decreases in
overall WER as a function of DNN model size are largely
driven by lower substitution rates. Insertions and deletions
remain relatively constant across systems, and are generally
the smaller components of overall WER. Decreased substi-
tution rates should be a fairly direct result of improving
acoustic model quality as the system becomes more confident
in matching audio features to senones. While the three WER
sub-components are linked, it is possible that insertions and
deletions are more an artifact of other system shortcomings
such as out of vocabulary words (OOVs) or a pronunciation
dictionary which does not adequately capture pronunciation
variations.

We next analyze performance in terms of frame-level clas-
sification grouped by phoneme. When understanding senone
classification we can think of the possible senone labels as
leaves from a set of trees. Each phoneme acts as the root of
a different tree, and the leaves of a tree correspond to the
senones associated with a the tree’s base phoneme.

Figure 7 shows classification percentages of senones
grouped by their base phoneme. The DNNs analyzed are the
same 5 hidden layer models presented in our WER analysis of
Figure 6 and Table V. The total height of each bar reflects its
percentage of occurrence in our data. Each bar is then broken
into three components – correct classifications, errors within
the same base phoneme, and errors outside the base phoneme.
Errors within the base phoneme correspond the examples
where the true label is a senone from a particular base phone,
e.g. ah, but the network predicts an incorrect senone label also
rooted in ah. The other type of error possible is predicting a
senone from a different base phoneme. Together these three
categories, correct, same base phone, and different base phone,

Sub Del Ins WER
0

5

10

15

20

25

36M
100M
200M
400M

Fig. 6. Eval2000 WER of 5 hidden layer DNN systems of varying
total parameter count. WER is broken into its sub-components – insertions,
substitutions, and deletions.

additively combine to form the total set of senone examples
for a given base phone.

The rate of correct classifications is non-decreasing as a
function of DNN model size for each base phoneme. The
overall increasing accuracy of larger DNNs comes from small
correctness increases spread across many base phonemes.
Across phonemes we see substantial differences in within-
base-phoneme versus out-of-base-phoneme error rates. For
example, the vowel iy has a higher rate of within-base-
phoneme errors as compared to the fairly similar vowel ih.
Similarly, the consonants m, k, and d have varying rates of
within-base versus out-of-base errors despite having similar
total rates of base phoneme occurrence in the data. We
note that our DNNs generally exhibit similar error patterns

17

ah t n iy ih ay s ow uw r l m d k ey ae z er y eh w dh ao f aa p b hh v ng aw g th sh jh ch uh oy zh
0

1

2

3

4

5

6

7

P
er

ce
nt

ag
e

Correct
Same center phone
Different center phone

Fig. 7. Senone accuracy of 5 hidden layer DNN systems of varying total parameter count. Accuracy is grouped by base phone and we report the percentage
correct, mis-classifications which chose a senone of the same base phone, and mis-classifications which chose a senone of a different base phone. The total
size of the combined bar indicates the occurrence rate of the base phone in our data set. Each base phone has five bars, each representing the performance
of a different five layer DNN. The bars show performance of DNNs of size 36M 100M 200M and 400M from left to right. We do not show the non-speech
categories of silence, laughter, noise, or OOV which comprise over 20% of frames sampled.

to those observed with DNN acoustic models on smaller
corpora [70]. However, due to the challenging nature of our
corpus we observe overall lower phone accuracies than those
found in previous work. Performance as a function of model
size appears to change gradually and fairly uniformly across
phonemes, rather than larger models improving upon only
specific phonemes, perhaps at the expense of performance on
others.

IX. ANALYZING CODING PROPERTIES

Our experiments so far focus on task performance at varying
levels of granularity. These metrics address the question of
what DNNs are capable of doing as classifiers and when in-
tegrated with HMM speech decoding infrastructure. However,
we have not yet completely addressed the question of how
various DNN architectures achieve their various levels of task
performance. While the DNN computation equations presented
in Section IV describe the algorithmic steps necessary to
compute predictions, there are many possible settings of the
free parameters in a model. In this section we offer a descrip-
tive analysis of how our trained DNNs encode information.
This analysis aims to uncover quantifiable differences in how
models of various sizes and depths encode input data and
transform it to make a final prediction.

A. Sparsity and Dispersion

Our first analysis focuses on the sparsity patterns of units
with each hidden layer of a DNN. We compute the empirical
lifetime sparsity of each hidden unit by forward propagating
a set of 512,000 examples through the DNN. We consider a
unit as a active when its output is non-zero, and compute

the fraction of examples for which a unit is active as its
lifetime activation probability. This value gives the empirical
probability that a particular unit will activate given a random
input drawn from our sample distribution. For each hidden
layer of a network, we can plot all hidden units’ lifetime
activation probabilities sorted in decreasing order to get a sense
for the distribution of activation probabilities within a layer.
This plotting technique, sometimes called a scree plot, helps
us understand how information coding is distributed across
units in a hidden layer. Figure 8 shows a set of scree plots for
5 hidden layer DNNs of varying total model size.

From a coding theory perspective, researchers often discuss
DNNs as learning efficient codes which are both sparse and
dispersed. Sparsity generally refers to relatively few hidden
units in a hidden layer being active in response to an input.
Sparsity is efficient and seems natural given modern DNN
structures in which hidden layer size is often much larger than
input vector dimensionality. Dispersion refers to units within a
hidden layer equally sharing responsibility for coding inputs.
A representation with perfect dispersion would appear flat in a
scree plot. A scree plot also visualizes sparsity as the average
height of representation units on the y axis.

Generally we see that in all model sizes sparsity increases in
deeper layers of the DNN. The first hidden layer is noticeably
more active on average as compared with every other layer in
the DNN, in most cases by almost a factor of two. Beyond the
first layer, activation probability per layer decreases slightly as
we look at deeper layers of the DNN. The changes in activation
probability per layer within deeper hidden layers are fairly
minor, which suggest that a representation is transformed but
not continually compressed.

Dispersion is similar within layers of a particular DNN size.

18

500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5

1000 2000 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5

1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5

2000 4000 6000 8000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5

Fig. 8. Empirical activation probability of hidden units in each hidden layer layer of 5 hidden layer DNNs. Hidden units (x axis) are sorted by their probability
of activation. We consider any positive value as active (hpxq ą 0). Each sub-figure corresponds to a different model size of 36M, 100M, and 200M total
parameters from left to right.

Generally the representations appear fairly disperse, with a
mostly flat curve for each hidden layer and only a few units
which are on or off for a large percentage of inputs at each tail.
There does appear to be a slight trend of increasing dispersion
in deeper layers of the DNN, especially in larger models.

Most importantly, we do not observe a significant set of
permanently inactive units as DNNs grow in total number of
parameters. In larger DNNs the representation remains fairly
disperse, with only a small set of units which are active for less
than 1% of inputs. This is an important metric because adding
more parameters to a DNN is only useful in so far as those
parameters are actually used in encoding and transforming
inputs.

Given the task performance differences observed as a
function of DNN depth for a fixed number of total DNN
parameters, we also compare scree plots as a function of DNN
depth to better understand their coding properties. Figure 9
shows scree plots for DNNs with 1, 3, 5, and 7 hidden layers
for DNNs of total size 36M, 100M, and 200M. We observe
a general trend of average activation probability decreasing in
subsequent hidden layers of DNNs at each size. This is not
true, however, for models with 7 hidden layers, which have
slightly less sparse activations on average in layers 6 and 7
as compared to layer 5. As we compare models across total
model size we find that larger models are more sparse than
smaller models. Larger models also tend to be slightly more
dispersed on average compared with smaller models.

B. Code Length

Our sparsity and dispersion metrics serve as indicators
for how hidden units within each layer behave. We now
focus on code length, which analyzes each hidden layer as
a transformed representation of the input rather than focusing
on individual units with each hidden layer. For a given input
we compute the number of non-zero hidden unit activations in
a hidden layer. We can then compute the average code length

for each hidden layer over a large sample of inputs from our
dataset. Figure 10 shows average code length for each hidden
layer of DNNs of varying depth and total size.

As we compare code length across models of varying total
parameter size, we see that larger DNNs use more hidden
units per layer to encode information at each hidden layer.
This trend is especially evident in the first hidden layer, where
100M parameter models use nearly twice the code length as
compared to 36M models. In deeper layers, we again observe
that models with more parameters have greater code length.
It is unclear to what extend the longer codes are capturing
more information about an input, which in turn should en-
able greater classification accuracy, versus redundancy where
multiple hidden units encode overlapping information.

Code length in deeper versus more shallow models of the
same total size exhibit an interesting trend. DNNs of increasing
depth show a generally decreasing or constant code length
per layer, except in the case of our 7 hidden layer DNNs.
In 7 hidden layer DNNs, the deepest models we trained, code
length decreases until it reaches a minimum at layer 5, but then
increases in layers 6 and 7. This trend is evident in models
of 36M, 100M, and 200M total parameters. We note that this
trend of decreasing code length followed by increasing code
length is correlated with the lack of improvement of 7 hidden
layer models as compared to 5 hidden layer models. More
experiments are needed to establish whether code length in
deeper models is more generally correlated to diminishing task
performance.

X. CONCLUSION

The multi-step process of building neural network acoustic
models comprises a large design space with a broad range
of previous work. Our work sought to address which of the
most fundamental DNN design decisions are most relevant
for final ASR system performance. We found that increasing
model size and depth are simple but effective ways to improve

19

WER performance, but only up to a certain point. For the
Switchboard corpus, we found that regularization can im-
prove the performance of large DNNs which otherwise suffer
from overfitting problems. However, a much larger gain was
achieved by utilizing the combined 2,100hr training corpus as
opposed to applying regularization with less training data.

Our experiments suggest that the DNN architecture is quite
competitive with specialized architectures such as DCNNs and
DLUNNs. The DNN architecture outperformed other archi-
tecture variants in both frame classification and final system
WER. While previous work has used more specialized features
with locally connected models, we note that DNNs enjoy
the benefit of making no assumptions about input features
having meaningful time or frequency properties. This enables
us to build DNNs on whatever features we choose, rather than
ensuring our features match the assumptions of our neural net-
work. We found that DLUNNs performed slightly better and
DCNNs, and may be an interesting approach for specialized
acoustic modeling tasks. For example, locally untied models
may work well for robust or reverberant recognition tasks
where particular frequency ranges experience interference or
distortion.

We trained DNN acoustic models with up to 400M pa-
rameters and 7 hidden layers, comprising some of the largest
models evaluated to date for acoustic modeling. When trained
with the simple NAG optimization procedure, these large
DNNs achieved clear gains on both frame classification and
WER when the training corpus was large. An analysis of
performance and coding properties revealed a fairly gradual
change in DNN properties as we move from smaller to larger
models, rather than finding some phase transition where large
models begin to encode information differently from smaller
models. Overall, total network size, not depth, was the most
critical factor we found in our experiments. Depth is certainly
important with regards to having more than one hidden layer,
but differences among DNNs with multiple hidden layers
were fairly small with regards to all metrics we evaluated.
At a certain point it appears that increasing DNN depth
yields no performance gains, and may indeed start to harm
performance. When applying DNN acoustic models to new
tasks it appears sufficient to use a fixed optimization algorithm,
we suggest NAG, and cross-validate over total network size
using a DNN of at least three hidden layers, but no more than
five. Based on our results, this procedure should instantiate
a reasonably strong baseline system for further experiments,
by modifying whatever components of the acoustic model
building procedure researchers choose to explore.

Finally, we note that a driving factor in the uncertainty
around DNN acoustic model research stems from training
the acoustic model in isolation from the rest of the larger
ASR system. All models trained in this paper used the cross
entropy criterion, and did not perform as well as DNNs
trained with discriminative loss functions in previous work.
We hypothesize that large DNNs will become increasingly
useful as researchers invent loss functions which entrust larger
components of the ASR task to the neural network. This allows
the DNN to utilize its function fitting capacity to do more than
simply map acoustic inputs to HMM states.

We believe a better understanding of task performance
and coding properties can guide research on new, improved
DNN architectures and loss functions. We trained DNNs
using approximately 300 lines of Python code, demonstrating
the feasibility of fairly simple architectures and optimization
procedures to achieve good system performance. We hope that
this serves as a reference point to improve communication and
reproducibility in the now highly active research area of neural
networks for speech and language understanding.

REFERENCES

[1] G. Dahl, D. Yu, L. Deng, and A. Acero, “Context-Dependent Pre-trained
Deep Neural Networks for Large Vocabulary Speech Recognition,” IEEE
Transactions on Audio, Speech, and Language Processing, 2011.

[2] G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. Sainath, and B. Kingsbury, “Deep neural
networks for acoustic modeling in speech recognition,” IEEE Signal
Processing Magazine, vol. 29, no. November, pp. 82–97, 2012.

[3] B. Kingsbury, T. Sainath, and H. Soltau, “Scalable minimum Bayes
risk training of deep neural network acoustic models using distributed
hessian-free optimization,” in Interspeech, 2012.

[4] K. Veselỳ, A. Ghoshal, L. Burget, and D. Povey, “Sequence-
discriminative training of deep neural networks,” in INTERSPEECH,
2013, pp. 2345–2349.

[5] H. Bourlard and N. Morgan, Connectionist Speech Recognition: A
Hybrid Approach. Norwell, MA: Kluwer Academic Publishers, 1993.

[6] H. Hermansky, D. Ellis, and S. Sharma, “Tandem connectionist feature
extraction for conventional hmm systems,” in ICASSP, vol. 3. IEEE,
2000, pp. 1635–1638.

[7] S. Renals, N. Morgan, H. Bourlard, M. Cohen, and H. Franco, “Con-
nectionist probability estimators in hmm speech recognition,” IEEE
Transactions on Speech and Audio Processing, vol. 2, no. 1, pp. 161–
174, 1994.

[8] M. Gales and S. Young, “The application of hidden markov models
in speech recognition,” Foundations and Trends in Signal Processing,
vol. 1, no. 3, pp. 195–304, 2008.

[9] S. Young, G. Evermann, M. Gales, T. Hain, D. Kershaw, X. Liu,
G. Moore, J. Odell, D. Ollason, D. Povey et al., The HTK book. Entropic
Cambridge Research Laboratory Cambridge, 1997, vol. 2.

[10] G. Saon and J. Chien, “Large-vocabulary continuous speech recognition
systems: A look at some recent advances,” IEEE Signal Processing
Magazine, vol. 29, no. 6, pp. 18–33, 2012.

[11] B. Gold, N. Morgan, and D. Ellis, Speech and audio signal processing:
processing and perception of speech and music. John Wiley & Sons,
2011.

[12] D. Jurafsky and J. H. Martin, Speech and language processing: An
introduction to natural language processing, computational linguistics,
and speech recognition. Prentice Hall, 2000.

[13] J. L. McClelland and J. L. Elman, “The trace model of speech percep-
tion,” Cognitive psychology, vol. 18, no. 1, pp. 1–86, 1986.

[14] G. Hinton, S. Osindero, and Y. W. Teh, “A fast learning algorithm for
deep belief nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554,
2006.

[15] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. A. Manzagol,
“Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion,” The Journal of Machine
Learning Research, vol. 11, pp. 3371–3408, 2010.

[16] A. Mohamed, G. Dahl, and G. Hinton, “Acoustic modeling using
deep belief networks,” Audio, Speech, and Language Processing, IEEE
Transactions on, no. 99, 2010.

[17] G. Dahl, D. Yu, and L. Deng, “Large vocabulary continuous speech
recognition with context-dependent DBN-HMMs,” in ICASSP, 2011.

[18] N. Jaitly, P. Nguyen, A. Senior, and V. Vanhoucke, “Application of
pretrained deep neural networks to large vocabulary speech recognition,”
in INTERSPEECH, 2012.

[19] D. Yu and L. Deng, “Deep neural network-hidden markov model hybrid
systems,” in Automatic Speech Recognition. Springer, 2015, pp. 99–
116.

[20] D. Yu, M. Seltzer, J. Li, J. Huang, and F. Seide, “Feature Learning in
Deep Neural Networks Studies on Speech Recognition Tasks,” in ICLR,
2013.

20

[21] F. Seide, G. Li, and D. Yu, “Conversational speech transcription using
context-dependent deep neural networks.” in Interspeech, 2011, pp. 437–
440.

[22] A. Senior, G. Heigold, M. Bacchiani, and H. Liao, “Gmm-free dnn
acoustic model training,” in ICASSP. IEEE, 2014, pp. 5602–5606.

[23] G. Dahl, T. Sainath, and G. Hinton, “Improving Deep Neural Networks
for LVCSR using Rectified Linear Units and Dropout,” in ICASSP, 2013.

[24] M. Zeiler, M. Ranzato, R. Monga, M. Mao, K. Yang, Q. Le, P. Nguyen,
A. Senior, V. Vanhoucke, J. Dean, and G. Hinton, “On Rectified Linear
Units for Speech Processing,” in ICASSP, 2013.

[25] A. Maas, A. Hannun, and A. Ng, “Rectifier Nonlinearities Improve Neu-
ral Network Acoustic Models,” in ICML Workshop on Deep Learning
for Audio, Speech, and Language Processing, 2013.

[26] N. Morgan, “Deep and wide: Multiple layers in automatic speech recog-
nition,” IEEE Transactions on Audio, Speech, and Language Processing,
vol. 20, no. 1, pp. 7–13, 2012.

[27] O. Abdel-Hamid, A. rahman Mohamed, H. Jang, and G. Penn, “Applying
convolutional neural networks concepts to hybrid nn-hmm model for
speech recognition,” in ICASSP, 2012.

[28] T. Sainath, B. Kingsbury, A. Mohamed, G. Dahl, G. Saon, H. Soltau,
T. Beran, A. Aravkin, and B. Ramabhadran, “Improvements to Deep
Convolutional Neural Networks for LVCSR,” in ASRU, 2013.

[29] T. N. Sainath, B. Kingsbury, G. Saon, H. Soltau, A. rahman
Mohamed, G. Dahl, and B. Ramabhadran, “Deep Convolutional
Neural Networks for Large-Scale Speech Tasks,” Neural Networks,
2014. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0893608014002007

[30] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang,
“Phoneme recognition using time-delay neural networks,” Acoustics,
Speech and Signal Processing, IEEE Transactions on, vol. 37, no. 3,
pp. 328–339, 1989.

[31] T. Robinson and F. Fallside, “A recurrent error propagation network
speech recognition system,” Computer Speech & Language, vol. 5, no. 3,
pp. 259–274, 1991.

[32] H. Sak, O. Vinyals, G. Heigold, A. Senior, E. McDermott, R. Monga,
and M. Mao, “Sequence discriminative distributed training of long short-
term memory recurrent neural networks,” in Interspeech, 2014.

[33] H. Sak, A. Senior, and F. Beaufays, “Long short-term memory recurrent
neural network architectures for large scale acoustic modeling,” in
Interspeech, 2014.

[34] A. Graves, A. Mohamed, and G. Hinton, “Speech recognition with deep
recurrent neural networks,” in ICASSP. IEEE, 2013, pp. 6645–6649.

[35] O. Vinyals, S. V. Ravuri, and D. Povey, “Revisiting recurrent neural
networks for robust asr,” in ICASSP. IEEE, 2012, pp. 4085–4088.

[36] C. Weng, D. Yu, S. Watanabe, and B. Juang, “Recurrent deep neural
networks for robust speech recognition,” ICASSP, 2014.

[37] L. Deng, G. Hinton, and B. Kingsbury, “New types of deep neural
network learning for speech recognition and related applications: An
overview,” in ICASSP. IEEE, 2013, pp. 8599–8603.

[38] L. B. Bahl, P. de Souza, and R. P. Mercer, “Maximum mutual in-
formation estimation of hidden markov model parameters for speech
recognition,” in ICASSP. IEEE, 1986.

[39] D. Povey, D. Kanevsky, B. Kingsbury, B. Ramabhadran, G. Saon,
and K. Visweswariah, “Boosted mmi for model and feature-space
discriminative training,” in ICASSP. IEEE, 2008, pp. 4057–4060.

[40] V. Valtchev, J. Odell, P. C. Woodland, and S. J. Young, “Mmie training of
large vocabulary recognition systems,” Speech Communication, vol. 22,
no. 4, pp. 303–314, 1997.

[41] J. Kaiser, B. Horvat, and Z. Kacic, “A novel loss function for the overall
risk criterion based discriminative training of hmm models,” in ICSLP,
2000.

[42] H. Su, G. Li, D. Yu, and F. Seide, “Error back propagation for sequence
training of context-dependent deep networks for conversational speech
transcription,” in ICASSP, 2013, pp. 6664–6668.

[43] J. Martens, “Deep learning via hessian-free optimization,” in ICML,
2010, pp. 735–742.

[44] J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, Q. V. Le, and A. Y. Ng,
“On optimization methods for deep learning,” in ICML, 2011, pp. 265–
272.

[45] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for
online learning and stochastic optimization,” The Journal of Machine
Learning Research, vol. 12, pp. 2121–2159, 2011.

[46] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the Importance
of Momentum and Initialization in Deep Learning,” in ICML, 2013.

[47] K. Oh and K. Jung, “Gpu implementation of neural networks,” Pattern
Recognition, vol. 37, no. 6, pp. 1311–1314, 2004.

[48] Z. Luo, H. Liu, and X. Wu, “Artificial neural network computation on
graphic process unit,” in IJCNN. IEEE, 2005, pp. 622–626.

[49] R. Raina, A. Madhavan, and A. Y. Ng, “Large-scale deep unsupervised
learning using graphics processors.” in ICML, vol. 9, 2009, pp. 873–880.

[50] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. Le, M. Mao,
M. Ranzato, A. Senior, P. Tucker, K. Yang, and Y. Ng, “Large Scale
Distributed Deep Networks,” in ICML, 2012.

[51] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman, “Project adam:
Building an efficient and scalable deep learning training system,” in 11th
USENIX Symposium on Operating Systems Design and Implementation,
2014, pp. 571–582.

[52] I. Chung, T. N. Sainath, B. Ramabhadran, M. Picheny, J. Gunnels,
V. Austel, U. Chauhari, and B. Kingsbury, “Parallel deep neural network
training for big data on blue gene/q,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE, 2014, pp. 745–753.

[53] A. Coates, B. Huval, T. Wang, D. Wu, A. Ng, and B. Catanzaro, “Deep
Learning with COTS HPC Systems,” in ICML, 2013.

[54] D. Ellis and N. Morgan, “Size matters: An empirical study of neural
network training for large vocabulary continuous speech recognition,”
in ICASSP. IEEE, 1999, pp. 1013–1016.

[55] C. S. Lindsey and T. Lindblad, “Survey of neural network hardware,”
in SPIE Symposium on OE/Aerospace Sensing and Dual Use Photonics.
International Society for Optics and Photonics, 1995, pp. 1194–1205.

[56] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
Learning Applied to Document Recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[57] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” in NIPS, 2012.

[58] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional
deep belief networks for scalable unsupervised learning of hierarchical
representations,” in ICML. ACM, 2009, pp. 609–616.

[59] D. Plaut, “Experiments on learning by back propagation.” 1986.
[60] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal

representations by error propagation,” Parallel distributed processing:
explorations in the microstructures of cognition, volume 2: psychological
and biological models, vol. 76, p. 1555, 1986.

[61] Y. Nesterov, “A method of solving a convex programming problem with
convergence rate o (1/k2),” in Soviet Mathematics Doklady, vol. 27,
no. 2, 1983, pp. 372–376.

[62] I. Sutskever, “Training recurrent neural networks,” Ph.D. dissertation,
University of Toronto, 2013.

[63] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, K. Veselý,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz, J. Silovsky,
and G. Stemmer, “The kaldi speech recognition toolkit,” in ASRU, 2011.

[64] H. Liao, E. McDermott, and A. Senior, “Large scale deep neural network
acoustic modeling with semi-supervised training data for YouTube video
transcription,” in ASRU, 2013.

[65] T. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ramabhadran,
“Low-Rank Matrix Factorization for Deep Neural Network Training with
High-Dimensional Output Targets,” in ICASSP, 2013.

[66] S. Wager, S. Wang, and P. Liang, “Dropout Training as Adaptive
Regularization,” in NIPS, 2013.

[67] R. Caruana, S. Lawrence, and L. Giles, “Overfitting in Neural Nets:
Backpropagation, Conjugate Gradient, and Early Stopping,” in NIPS,
2000.

[68] A. Saxe, J. McClelland, and S. Ganguli, “Learning Hierarchical Category
Structure in Deep Networks,” in CogSci, 2013.

[69] C. Cieri, D. Miller, and K. Walker, “The fisher corpus: a resource for the
next generations of speech-to-text.” in LREC, vol. 4, 2004, pp. 69–71.

[70] Y. Huang, D. Yu, C. Liu, and Y. Gong, “A comparative analytic study on
the gaussian mixture and context dependent deep neural network hidden
markov models,” in Interspeech, 2014.

http://www.sciencedirect.com/science/article/pii/S0893608014002007
http://www.sciencedirect.com/science/article/pii/S0893608014002007

21

1000 2000 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7

2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1000 2000 3000 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1000 2000 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7

0.5 1 1.5 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2000 4000 6000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1000 2000 3000 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7

Fig. 9. Empirical activation probability of hidden units in each hidden layer layer of DNNs with varying numbers of hidden layers. Each row contains
DNNs of 36M (top), 100M (middle), and 200M total parameters (bottom). From left to right, each sub-figure shows a DNN with 1, 3, 5, and 7 hidden layers.
Hidden units (x axis) are sorted by their probability of activation. We consider any positive value as active (hpxq ą 0).

22

36M 1L 36M 3L 36M 5L 36M 7L 100M 1L 100M 3L 100M 5L 100M 7L 200M 1L 200M 3L 200M 5L 200M 7L
0

500

1000

1500

2000

2500

1 1 2 3 1 2 3 4 5 1 2 3 4 5 6 7 1 1 2 3 1 2 3 4 5 1 2 3 4 5 6 7 1 1 2 3 1 2 3 4 5 1 2 3 4 5 6 7

Fig. 10. Effective code length for each hidden layer in DNNs with varying total size and depth. We compute the number on non-zero hidden unit activations
for a given input, and then average over a large sample of inputs. Plots show the average number of units active in each hidden layer of DNNs of varying
depth and total size. Within each sub-plot layers are ordered left to right from first to final hidden layer.

	I Introduction
	II Neural Network Acoustic Models
	III Questions Addressed in This Work
	IV Neural Network Computations
	IV-A Cross Entropy Loss Function
	IV-B Deep Neural Network Computations
	IV-C Deep Convolutional Neural Networks
	IV-D Deep Local Untied Neural Networks
	IV-E Optimization Algorithms

	V Switchboard 300 Hour Corpus
	V-A Varying DNN Model Size
	V-A1 Experiments
	V-A2 Results
	V-A3 Discussion

	V-B Dropout Regularization
	V-B1 Experiments
	V-B2 Results

	V-C Early Stopping
	V-C1 Results

	V-D Early Realignment
	V-D1 Experiments
	V-D2 Results
	V-D3 Discussion

	VI Comparing DNNS, DCNNs, and DLUNNS on Switchboard
	VI-A Experiments
	VI-B Results
	VI-C Discussion

	VII Combined Large Corpus
	VII-A Baseline HMM system
	VII-B Optimization Algorithm Choice
	VII-B1 Experiments
	VII-B2 Results

	VII-C Scaling Total Number of DNN Parameters
	VII-D Number of Hidden Layers

	VIII WER and Frame Classification Error Analysis
	IX Analyzing Coding Properties
	IX-A Sparsity and Dispersion
	IX-B Code Length

	X Conclusion
	References

