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Abstract

Previous studies support the idea of merging auditory-based Gabor features with deep learning architectures to achieve robust
automatic speech recognition, however, the cause behind the gain of such combination is still unknown. We believe these
representations provide the deep learning decoder with more discriminable cues. Our aim with this paper is to validate this hypothesis
by performing experiments with three different recognition tasks (Aurora 4, CHiME 2 and CHiME 3) and assess the discriminability
of the information encoded by Gabor filterbank features. Additionally, to identify the contribution of low, medium and high temporal
modulation frequencies subsets of the Gabor filterbank were used as features (dubbed LTM, MTM and HTM respectively). With
temporal modulation frequencies between 16 and 25 Hz, HTM consistently outperformed the remaining ones in every condition,
highlighting the robustness of these representations against channel distortions, low signal-to-noise ratios and acoustically challenging
real-life scenarios with relative improvements from 11 to 56% against a Mel-filterbank-DNN baseline. To explain the results, a
measure of similarity between phoneme classes from DNN activations is proposed and linked to their acoustic properties. We find
this measure to be consistent with the observed error rates and highlight specific differences on phoneme level to pinpoint the benefit
of the proposed features.
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1. Introduction

Over the last decade there have been major advances in auto-
matic speech recognition (ASR), which mainly have promoted
ubiquitous speech enhanced technologies in our daily lives.

The approaches to transcribe speech into words have changed
in several ways throughout the years. Not even 10 years ago,
the use of hidden Markov models (HMM) to represent speech as
sequence of time-varying states and Gaussian mixture models
(GMM) to statistically fit the acoustic input to these states was
widely adopted as the standard for ASR; actually, due to the
implementation of discriminative training methods to optimize
HMM classification (Povey, 2005), (He et al., 2008), GMM-
HMM recognizers yielded the best performance among other
systems.

Recently, however, deep neural networks (DNNs) have suc-
cessfully replaced GMMs in both small and large vocabulary
tasks (Mohamed et al., 2011, 2012),(Pan et al., 2012), (Seide
et al., 2011), (Sainath et al., 2011) for reasons better explained
in (Hinton et al., 2012).
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In spite of all aforementioned advances, ASR performance
still lags far behind its human counterpart, especially in noisy
and reverberant environments, thereby preventing the further
development of technologies empowered by ASR, regardless
how appealing or necessary they might be. To bridge this gap,
researchers have focused on two different, but not mutually
exclusive, strategies: developing better back-ends and extract-
ing more informative discriminable features. For a thorough
overview of noise-robust techniques successfully implemented
in ASR research, refer to (Li et al., 2014).

Concerning DNNs, one recipe to accomplish the former goal
is relatively straightforward, it involves the trade-off between
lowering the error and generalization (much like many other
machine learning algorithms) and depends on how the system
performs on a cross-validation set. On the one hand if the
purpose is to minimize the loss function, the course of action is
to increase the model complexity, i.e. increase the number of
parameters either the number of neurons per layer or the depth
of the network by adding additional layers.

On the other hand if the loss function of the cross-validation
set increases (a situation known as overfitting), there is a need
for more training examples. In some cases the amount of avail-
able data is limited and despite the vast advances in computing
software and hardware, training times do not scale well on deep
architectures; for those cases, the second objective seems to be
more accessible. As the healthy human ear is still unmatched in
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its robustness (Lippmann, 1997), (Scharenborg, 2007), (Meyer
and Kollmeier, 2010), mimicking its principles improves exist-
ing feature extraction methods for ASR; better representations,
in turn, could potentially lead to a broader understanding of the
underlying principles of human auditory processing.

The use of feature extraction techniques inspired by the au-
ditory system have previously demonstrated a boost in speech
recognition performance. Even the most widely used Mel fre-
quency cepstral coefficients (MFCC) or features resulting from
the perceptive linear predictive (PLP) analysis of speech (Her-
mansky, 1990), intrinsically implement biological findings. Ow-
ing to the glottal source of speech low frequencies have more en-
ergy therefore a pre-emphasis stage equalizes the signal power;
both features use a different scale for frequency warping de-
rived from psychoacoustic measurements (the Mel scale for
MFCC and the Bark scale for PLP). Non-linear functions are
applied for amplitude compression mimicking loudness percep-
tion of the auditory system (the logarithm for MFCC and an
intensity-loudness power law for PLP features, respectively).
Additionally, in PLP several properties of hearing concerning
asymmetries in frequency selectivity and equal loudness are
simulated in more detail resulting into a closer auditory-like
spectrogram than the log-Mel used in MFCC.

In order to increase the recognizer robustness to channel dis-
tortions and other convolutional noise sources, MFCC and PLP
features were extended by processing mechanisms such as cep-
stral mean normalization and RASTA processing (Hermansky
and Morgan, 1994), the latter consists of bandpass filtering the
compressed spectral amplitudes to emphasize transients, imi-
tating the auditory periphery tendency to focus on the relative
values of an acoustic input.

Conversely, temporal evolution of specific spectral energy
bands has been captured by temporal patterns (TRAPS) and
hidden activation TRAPS (HATS) (Hermansky and Morgan,
1994) features to detect underlying phonetic class structures usu-
ally taking long-time segments (1 second) compared to spectral
analysis (10 ms). The hypothesis grounding the development of
TRAPS and HATS suggest the spectral information perceived
by the human auditory system serves not as classifier but as a
frequency sub-band selector of the region most dominated by
the target signal and thus temporal analysis of such bands is how
the utterance is decoded in the cortex.

Kim and Stern (2009), proposed an algorithm to calculate
power normalized cepstral coefficients (PNCC) as an alternative
to the conventional MFCC. The calculation of PNCC integrates a
Gammatone filterbank to better approximate the place-frequency
mapping of the basilar membrane (Patterson et al., 1992) as op-
posed to the triangular filters form MFCC, it also replaces their
logarithmic non-linearity with a power function derived from
physiological observations of auditory nerve firings to fit the
dynamic dependency of the input sound level and the perceived
loudness used to compress the output of the Gammatone fil-
terbank; additionally, based on a ratio between arithmetic and
geometric power mean PNCC are able to filter some of the
background noise. A much broader overview of auditory-based
feature extraction methods is exposed by Stern and Morgan
(2012).

Further physiologic and psychoacoustic research (Qiu et al.,
2003) (Mesgarani et al., 2007) have shown the existence of neu-
rons in the primary auditory cortex A1 of mammals specifically
tuned to specific temporal or spectral modulations, and in some
cases exhibit diagonal sensitivity patterns (such as vowel tran-
sients in speech). Spectro-temporal receptive fields (STRFs) are
estimated patterns for time-frequency representations of stimuli
optimally driving a neuron (or a group of neurons). To model
such patterns, two-dimensional Gabor filters were consequently
developed to model patterns observed in STRFs (Qiu et al.,
2003), owing to the localized spectro-temporal patterns explic-
itly coded in A1. Kleinschmidt and Gelbart (2002) investigated
if a set of those psychoacoustically parametrized filters, could
extract meaningful information for robust ASR.

A challenge when designing filters for ASR is to determine
a set of suitable parameters to produce a robust feature set able
to deal with environmental noise, low signal-to-noise ratios,
reverberation or even channel distortions. Schädler et al. (2011)
proposed a Gabor filterbank based on specific physiologically-
motivated temporal and spectral modulation frequencies, which
resulted in relative improvements of the word error rate (WER)
by 30 − 45% compared to a MFCC baseline for ASR (Meyer
et al., 2012), and 21% for speaker identification (Lei et al.,
2012).

In similar studies, a multitude of Gabor filters were employed
to cover a wide range of modulation frequencies, and parsed as
input to a large number of neural nets for merging the feature
streams (Zhao and Morgan, 2008). Ezzat et al. (2007), based on
2D discrete cosine transforms, extracted spectro-temporal infor-
mation to transform time-frequency patches of a spectrogram.

Previously, we explored the applicability of Gabor filters ar-
ranged in a filterbank as input to DNN-HMM back-end on the
Aurora 4 task , which resulted in relative improvements of al-
most 20% over standardized filterbank features and 60% over
MFCC results (Castro Martinez et al., 2014). Meanwhile, Chang
and Morgan (2014), using a different convolutional neural net-
work initialized with a different set of Gabor filters, obtained
fruitful results on the same task as well as in a re-noised version
of wall street journal. Subsequently, Baby and van Hamme
(2015) proposed yet another auditory-based feature extraction
method, which consist in low-frequency amplitude modulated
spectrograms computed from low-passed-filtered half-way recti-
fied signals; together with a DNN-HMM back-end, obtaining
very similar WERs as we did for Aurora 4 and 19.6% phone
error rate on the TIMIT corpus.

These studies support the idea of merging auditory-based fea-
tures with deep learning architectures to get the best of both
worlds, however, the cause behind the gain of such combina-
tion is still unknown. We believe the benefit comes from these
representations which provide the deep learning decoder with
more discriminable cues for the speech recognition task. Our
aim with this paper is to validate this hypothesis by lowering the
baseline word error rates (WER) in three different recognition
tasks (Aurora 4, CHiME 2 and CHiME 3) and assess the discrim-
inability of the features encoded by Gabor filters. We pursue the
latter objective analyzing the activations obtained from the DNN
through a robust metric of separability in feature space. The
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indicated measure is the similarity between classes; being those
the clustered context dependent triphone HMM states mapping
to the same phoneme.

The remainder of this paper is structured as follows: we de-
scribe in detail the Gabor filterbank, along with the baseline
features, the setup of the deep neural network and the criteria
used for the analysis in the methods section. Results are pre-
sented in the following section, then a brief discussion depicting
the results and the paper conclusions afterwards.

2. Methods

In this section we describe the auditory-based ASR features,
i.e., Gabor features and the baseline filterbank features, the
speech corpora, as well as the hybrid classification system which
comprises a deep neural network and hidden Markov models. In
the final part of this section, we present a method to assess the
relevance of the auditory-based input streams for deep learning
in comparison to the baseline features.

2.1. Gabor Filterbank features

Inspired by observations in spectro-temporal receptive fields
in the auditory cortex (cf. previous section), we used a set of
two-dimensional Gabor filters arranged in a filterbank to extract
ASR features from speech signals. The procedure, depicted in
Fig. 1, consists of three stages:

Initially, logarithmic Mel-spectrograms were extracted from
the speech signals following the ETSI Distributed Speech Recog-
nition Standard (201 108 v1.1.3 2003) with the only difference
of using 31 frequency channels instead of 23. For the signals
with a sampling frequency of 16 kHz, it provides a similar fre-
quency resolution as the common 23 channels for 8 kHz data
employed, for instance, in the Aurora 2 task (Hirsch and Pearce,
2000). Log-Mel-spectrograms were chosen as a starting point
because they approximate the logarithmic compression of am-
plitudes and the non-linear frequency mapping of the auditory
system. In the second stage, the spectrograms were convolved
with every 2D filter in a modified version of the Gabor filterbank
from (Schädler et al., 2011).

A Gabor filter is the product of a complex sinusoid function
(1) and traditionally a Gaussian window; we replaced the latter
with a Hann window (2) to obtain better recognition scores due
to better modulation frequency characteristics, as reported in
(Meyer et al., 2012). The periodicity of the carrier sinusoid was
defined by the radian frequencies ωn and ωk (n and k denoting
time and frequency index, respectively), which allowed the Ga-
bor filters to be tuned to particular spectro-temporal directions,
as well as purely temporal (ωk = 0) or purely spectral (ωn = 0)
modulations.

The number of oscillations for the localized filters was kept
constant for all filters, with a value of 3.5 as suggested by
Schädler et al. (2011). This procedure is similar to wavelet
processing and would result in infinitely large filters for mod-
ulation frequencies of zero; hence, all filters were limited to a
maximum size (in this case 69 frequency channels and 99 time
frames). The envelope width was parametrized by the window

lengths Wn and Wk and the center frequency channel k0 and
center time frame n0.

s(n, k) = exp
(
iωn(n − n0) + ωk(k − k0)

)
(1)

h(n, k) =
1
4

[
1 − cos

(2π(n − n0)
Wn + 1

)][
1 − cos

(2π(k − k0)
Wk + 1

)]
(2)

The Gabor filterbank contains a set of temporal, spectral
and spectro-temporal filters to cover a wide range of modulation
frequencies. Because frequency mapping is approximately linear
at frequencies below 800 Hz rather than strictly logarithmic,
spectral modulation frequencies are expressed in cycles per
channel2. The specific modulation frequencies were chosen so
that the transfer functions of the filters exhibit a constant overlap
in the modulation frequency domain.

To account for modulations arising from syllable structure
in spoken language, temporal modulations of 2.4 and 3.9 Hz
were included as in the slightly modified filterbank presented
in (Meyer et al., 2011) in addition to higher modulations also
considered by Schädler et al. (2011). This resulted in 59 pairs of
spectral and temporal modulation frequencies.

With 59 spectro-temporal filters and 31 frequency channels,
the resulting feature vectors would have been be rather high-
dimensional (1829 components). However, filters with a large
spectral extent produce highly correlated output between ad-
jacent channels hence relatively small changes in the feature
values when shifted by one frequency channel. Therefore, many
frequency channels of larger filters were discarded from the
feature matrix, while all channels were conserved for filters with
the smallest spectral extent. This was achieved by choosing the
channel centered on 1 kHz (which should contain information
relevant for speech recognition) as well as channels obtained
by shifting the current filter by one fourth of its spectral size
and preserving its center frequency channel. Furthermore, as
the Mel-spectrogram spectral size is smaller than the biggest Ga-
bor filters, zero-padding was implemented to match the spectral
content for the 2D convolution and to preserve the same number
of features per frame without introducing significant boundary
effects, the initial and last frame columns were padded on both
temporal ends respectively.

The shifting value was selected based on the minimum win-
dow overlap needed for a perfect reconstruction of the spec-
trogram according to Nyquist-Shannon theorem. Alternative
methods such as LDA and PCA were analyzed in Schädler et al.
(2011). Critical sampling is designed to discard only redundant
information, thus the number of selected channels lied between 1
(for ωk = 0 cycles/channel) and 31 (ωk = +−0.25 cycles/channel),
and the feature dimension was reduced to 657.3

2Another unit could be cycles per mel, we opted for cycles per channel
because it takes into account the mel scaling and also placing mel-frequency
channels into bins. The mel-definition used in this work comes from the ETSI
implementation calculated as follows: Mel(x) = 2595 log10

(
1 + x

700

)
3The original code used for feature extraction can be found in this repository:

https://github.com/m-r-s/reference-feature-extraction
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Figure 1: Gabor filterbank feature extraction procedure. The input log Mel-spectrogram is convolved by each of the 59 filters in the filterbank starting from the top
and from left to right; the one taken as example below shows the contribution of this particular filter, the output is critically sampled and concatenated vertically
giving the final 657-dimensional the complete feature vector representation.

2.2. Gabor Filterbank Subgroups

Given the wide range of spectral and temporal modulation
frequencies taken into account in the Gabor filterbank, we be-
came interested in knowing which particular set of filters is most
relevant for DNN-based speech recognition. Hence, we divided
the original filters into sets with low, medium and high temporal
modulation frequencies, which resulting features are referred
to as LTM (derived from filters with temporal modulations of
2.4 and 3.9 Hz), MTM (6.2 and 9.9 Hz) and HTM (15.7 and
25 Hz), respectively. Because critical sampling only removes
spectral channels, all 3 subgroups are left with exactly the same
channels.

Earlier experiments using a GMM-HMM recognizer and the
Gabor filterbank indicated each individual 2D filter contributes
to the noise robustness observed on the Aurora 2 task (Schädler
et al., 2011), so we expected subgroups to perform worse than
the full dataset. The filters selected from the complete set are
highlighted in Fig. 2.

There were mainly two reasons for choosing this type of subdi-
vision: first, our spectral modulations are given in cycles/channel
and thus are more difficult to interpret and compare results than
our temporal modulations in Hz. Secondly, lower temporal mod-
ulation frequencies have consistently been remarked as being
most important in speech perception and recognition in the lit-
erature, which can be re-evaluated with this subdivision. It is
important to mention how selecting a particular center frequency
as temporal modulation does not necessarily exclude (only atten-
uates) the rest of the frequencies in the spectrum as the Gabor
filters are broadband.

Kanedera et al. (1998, 1999) concluded the most useful lin-
guistic information come from modulation frequencies com-
ponents in the range of 2 to 16 Hz (with 4 Hz as predominant
component), and components above or below this range could
degrade recognition accuracy. Drullman et al. (1994a,b) mea-
sured the perception of speech synthesized with several temporal

envelopes for each frequency band and established the interval
of modulation spectrum components between 4 Hz and 16 Hz
to be the most critical for speech intelligibility; additionally,
they reported a marginal contribution of modulation frequencies
above 16 Hz when the lower components were present. Further-
more, the feature extraction procedure developed by Tchorz and
Kollmeier (1999) performed the best on temporal modulations
around 6 Hz. All these studies provide strong reasons to expect
LTM to outperform HTM.

Owing to the critical sampling, the feature vectors extracted
with the Gabor filterbank do not contain an equal amount of
channels from each filter, i.e. the number of bands produced by
the convolution of the log-Mel-spectrogram with each filter de-
pends on the size of the filter, however, as each aforementioned
subgroup includes all the spectral modulation frequencies, the
dimension of output is 202 for every subgroup.

2.3. Baseline

Raw Mel-Filterbank features have been found to outperform
MFCC features in recognizers with DNN-based architectures
and hence serve as baseline features (Mohamed et al., 2012):
Log-mel-spectral coefficients (MFSC) are obtained from the 31
channels of the same spectrogram used for calculating the Gabor
features. As these filterbank representations include more in-
formation of the original Mel-spectrogram than MFCCs (where
only the first 13 bands are selected), a DNN is less constrained
to create any structure of the input data; thus provides us a better
contrast for our ”hand-crafted” features.

A conventional triphone GMM-HMM recognizer was built
prior to the deep neural network in order to obtain target labels
via force-alignment. Per speaker a single feature-space maxi-
mum likelihood linear regression transform was calculated to
train this model adaptively.
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Figure 2: Gabor filterbank subgroups.

2.4. DNN implementation

The deep neural network (DNN) was based on the one de-
scribed in (Vesel et al., 2013). Recognition experiments were
conducted using the Kaldi ASR toolkit (Povey et al., 2011). Due
to the capability of unsupervised pre-training using Restricted
Boltzmann Machines (RBM), which provides a deep hierarchi-
cal representation of the training data, we opted for Karel’s
recipe.

In principle, this implementation can be summarized in two
phases: pre-training and cross-entropy tuning. On the former
phase, a stack of RBMs, also known as a deep belief network
(DBN) (Mohamed et al., 2012), was trained in a greedy fashion
one layer at a time using contrastive divergence as described by
Hinton (2010).

On the latter phase, serving as a backbone for the final net-
work, the DBN was fine-tuned to classify frames into triphone-
states using an independent (development) set and the cross
entropy between the network output and the labels as a cost
function.

The training was done in up to 20 epochs (stopping when
the relative improvement was lower than 0.001). The start-
ing learning rate was 0.008 (halving it every time the relative
improvement was lower than 0.01) and no momentum nor regu-
larization techniques (such as L1&L2) were applied. A soft-max
layer of approximately 2000 units was attached to the end of the
DNN to output the most likely posterior probabilities of each
context-dependent HMM state.

The resulting DNN had 2048 sigmoid neurons on each of the
six hidden layers. Optimization via stochastic gradient descent
was performed on a graphics processing units for speeding pur-

poses. The size of the input layer varied depending on the type
of the feature, for any given one 11 frames are spliced to provide
a context of +−5 frames.

In a nutshell, for every feature a GMM system was trained
without changing any baseline configurations (except for the fea-
ture themselves) to provide the alignment of context dependent
states to frames; then pre-training is performed to initialize the
DNN, which uses the class labels provided by the GMM system;
after fine-tuning the DNN is retrained, only this time it uses the
labels produced by the DNN instead.

2.5. Discriminability Criteria

Usually ASR Systems are evaluated in terms of the word error
rate over a testing set. As we wanted to have a better under-
standing of the particular relationship between deep learning and
auditory-based features we decided to observe the activations
from the DNN output layer instead of analyzing the features
separately.

Phoneme discriminability characterizes the performance of
the learned representations even if the DNN is trained to deliver
scaled probabilities of the senone HMM states, because each
transition can be seen as a branch of a correspondent decision
tree. The roots of those trees are the central phoneme of the
trained triphones and are used to create phoneme classes from
the clustered branches.

We selected a list of phonemes in the ARPA format (ARPA-
BET) and gathered a group of activations corresponding to only
the frames labeled as the phonemes in this list. The corpora used
for this analysis had a disparate number of examples for each
phone, so we created separate lists, one for the large vocabu-
lary tasks (i.e, Aurora 4 and CHiME 3) and a different one for
CHiME 2.

Labels were taken from the clean sets when possible to ensure
they convey the spoken message; for Aurora 4 using the given
clean close-microphone condition; for CHiME 3, as there are
no available clean labels, we used the ones produced by the
force-alignment from the best performing setup; the CHiME 2
clean labels were used from forced alignment system detailed in
(Kabir et al., 2010).

Owing to the high dimensionality of the activations, a mea-
sure of separability robust to reparametrization was needed. As a
criterion for assessing how well a particular feature separates the
input into distinguishable classes we chose the cosine similarity.
For being L2 based, this metric is invariant to rotation of the
coordinate system and thus allowed us to compare the discrim-
inability among the different features. The cosine similarity is
defined as:

S (~v1, ~v2) =
~v1 · ~v2

‖~v1‖‖~v2‖
(3)

Where each vector is the centroid of all the gathered examples
for a given phoneme class (mean and variance normalized),
the numerator is the inner product between the correspondent
phoneme classes and the denominator is the product of their
norm. The cosine similarity measures the relationship between
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two vectors represented by a value between 0 and 1; the closer
this value gets to 0 the wider the angle formed by these two
vectors.

Generally, the similarity represents how close the phoneme
manifolds are projected in the hyperspace, therefore a higher
value increases the difficulty for phoneme separation performed
by the DNN. Classes with a larger distance are less likely to be
confused, conversely smaller angles (similarity values close to 1)
lead to higher misclassifications. By calculating the similarities
between every phoneme in the list with each other, we obtained
the similarity matrices shown in the following section.

These matrices would ideally be identity matrices, so the
more a similarity matrix resembles an identity matrix the better
the classification capabilities of the system. For each corpus a
similarity matrix was calculated to get a better understanding of
the relevance of the information encoded by the auditory-based
features in combination with the DNN for the recognition task.

2.6. Corpora

We performed a series of speech recognition experiments
using different Corpora to prevent the system configuration
and post-analysis from being adapted to a particular task. The
Aurora 4 Corpus and the one used for the 3rd CHiME (Compu-
tational Hearing in Multisource Environments) Challenge are
both derived from the same large vocabulary continuous speech
recognition task, namely Wall Street Journal (Garofalo et al.,
2007); the latter, however, also contains real recordings in noisy
environments which provides more realistic data for the analysis.

The small vocabulary GRID-based corpus originated from the
2nd CHiME Challenge was of particular interest for us because
the test set is available in multiple signal-to-noise ratios (SNRs)
and therefore enables an analysis across different noise levels,
furthermore, being a short vocabulary task allow to detect if there
is a particular effect from the vocabulary size or the language
model.

2.6.1. Aurora4
The Aurora 4 framework (Parihar et al., 2004) was used to

assess the impact of additive noise from different sources and the
effect of channel distortions; it is a large vocabulary continuous
speech recognition task derived from the standard LDC Wall
Street Journal (WSJ0) corpus. We opted for the multicondition
set for training, which consists of 7137 utterances from 83 in-
dependent speakers, one half of the 16 kHz files were recorded
with the close-talk Sennheiser HMD-414 microphone, the other
half using one of 18 different types of microphones.

Each half was further subdivided; no noise was added to one
fourth (893 utterances) while the remaining three-fourths (2676
utterances) were corrupted with one of six different types of
noise (car, babble, restaurant, street, airport and train) at ran-
domly selected SNR conditions between 10 and 20 dB. The test
set included in the framework was extracted from the WSJ0
5, 000 word closed-vocabulary task which consists of 330 utter-
ances from 8 speakers repeated in the same 14 conditions used
in the train set at 5 to 15 dB SNR.

2.6.2. CHiME3
For the third CHiME Challenge (Barker et al., 2015), sen-

tences contained in the WSJ0 corpus were recorded using a
6-microphone tablet in four real-life scenarios: caf, street junc-
tion, public transport and pedestrian area. Additionally, the task
includes also simulated noisy utterances to assess the value of
generated data, as it is easier and cheaper to obtain and could be
potentially useful for training purposes.

A total of 12 US English speakers (6 male and 6 female)
ranging in age from 20 to 50 years were recorded after short
test sessions to ensure each speaker performed the reading task
correctly. An interface showed the talkers approximately 100
sentences to be read; those were recorded in an isolated booth
(which served as basis for the simulated data) and in each lo-
cation as described above. The training set comprised 1600
real noisy utterances (4 speakers x 100 sentences x 4 scenarios),
whereas the development and test set consist of the same 410
and 330 utterances from the WSJ0 corpus, randomly divided in
4 subgroups and read on each scenario, resulting in 1640 and
1320 utterances respectively.

We used only the ”noisy” set (utterances from the frontal
closest microphone Channel 5) for training and testing to exclude
from the analysis uncontrolled gains as a result of the speech-
enhancement technique.

2.6.3. CHiME2-GRID
The CHIME2-GRID dataset (Vincent et al., 2013) from the

second CHiME challenge was included for two main reasons:
to have an estimate of the class separation performance from
auditory based features and deep learning over different SNR
levels and to verify if the proposed set up performed well on
small vocabulary tasks. The GRID corpus (Cooke et al., 2006),
from which this data was extracted, consist of 6-word sequences
read by 34 speakers of the form: <command:4> <color:4>
<prepos.:4> <letter:25> <digit:10> <adverb:4>, (e.g. ”bin
green at C 5 now”) where the numbers in brackets indicate the
number of choices per word.

These utterances were generated using binaural noise record-
ings from a head and torso simulator in a living room and mixed
with the GRID data at 6 different SNR levels from −6 dB to 9 dB
in steps of 3 dB. Moreover, each utterance was convolved with
a set of head impulse responses simulating speaker movements
and reverberation to make the task more realistic. We used the
isolated noisy 16 kHz 500 utterances from each of 34 speakers
as the training set, and the 600 utterances at each of the 6 SNR
conditions as test sets.

3. Results

We experimentally confirm the effectiveness of auditory-
based Gabor features across three different speech recognition
tasks. The performance in terms of word error rate (WER) for
four Gabor feature sets (full filterbank and the three subgroups
according to the temporal modulation frequencies) and the fil-
terbank baseline is presented in Table 1

For simplicity the 14 conditions from Aurora 4 were grouped
into 4 subsets: ”A” and ”B” correspond to the clean and noisy
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recorded using the close-talk microphone, respectively, and like-
wise ”C” and ”D” for the clean and noisy utterances with differ-
ent channel characteristics introduced by the different secondary
microphones. The CHiME 3 rows come from the real-recordings
(real) and the simulated data (simu) parts of the test set. The bot-
tom rows are the WER from the CHiME 2 test set, the number
in parentheses indicates the corresponding SNR.

The features obtained from Gabor filters with low temporal
modulations (LTM) produce notably the worse results in all three
tasks. Conversely, the representations derived from filters from
high temporal modulations (HTM) perform consistently better
than all the others in each task. The second to best features for
all conditions, except Aurora 4 ”A”, are the ones extracted from
medium temporal modulation Gabor filters (MTM), whereas
the complete Gabor filterbank (Gabor) produced features robust
in noisy environments but not as good as the ones from raw
filterbank (MFSC) in cleaner scenarios.

MFSC Gabor LTM MTM HTM

Aurora 4 (A) 3.9 3.9 12.4 4.6 3.0

Aurora 4 (B) 7.5 8.5 21.2 7.8 5.6

Aurora 4 (C) 12.3 8.8 20.4 9.0 6.3

Aurora 4 (D) 22.2 19.2 34.6 18.4 15.4

CHiME 3 (simu) 23.3 30.8 41.6 20.2 15.2

CHiME 3 (real) 36.0 40.1 50.8 26.6 21.0

CHiME 2 (9dB) 4.8 6.1 7.3 4.9 4.4

CHiME 2 (0dB) 12.6 12.3 15.4 11.9 10.7

CHiME 2 (-6dB) 26.0 20.3 25.3 20.6 19.9

Table 1: Word Error Rates for the three speech recognition tasks comparing
the baseline and the auditory-based Gabor features processed with Deep Neural
Networks

The whole Gabor filterbank yields similar results as MFSC
on conditions ”A” and ”B” of the Aurora 4 framework; on condi-
tions ”C” and ”D” the effect of different channel characteristics
can be appreciated as the WER decreases drastically even in the
absence of additive noise. The WER increase from condition
”C” to ”D” is almost uniform (9 − 10%) for all features except
LTM and is considerably larger than the one from ”A” to ”B”.

Concerning the CHiME 3 task, the WER difference between
the real and the simulated test sets can be used to quantify the
generalization capabilities of the systems trained on different
features because the generated data do not entirely capture the
acoustic complexity of a real-life scenario. For MFSC features
this difference is the biggest.

For the small vocabulary task, auditory-based Gabor features
show robustness against low SNRs (except LTM); for Gabor
and MTM this advantage is revealed when lowering the SNR
below 0 dB, whereas HTM yield lower WERs even at positive
levels. MTM perform almost the same as MFSC at 9 dB and
0 dB The actual assignment evaluated in the first track of the
CHiME 2 Challenge was to correctly recognize the letter and

digit tokens. To relate the recognition scores to the post-analysis
shown in Fig. 4, where more phoneme samples were needed, we
based our WER scores on the whole utterances.

To test whether the low temporal modulation filters are the
culprits for the higher WER, we decided to restrict network-
related optimization effects with the following configurations
on Aurora 4: a) LTM + HTM (referred to as LHTM); b) MTM
+ HTM (MHTM); c) features produced by DC filters + HTM
(DCHTM), the former being the filters with temporal modulation
frequency of 0; d) random noise + HTM (RHTM) and e) a
matrix of 0’s + HTM (ZHTM). The last two set-ups contain
either uniformly distributed numbers in the range of [−1 - 1] or
the an equal number of zeros, both matching the size of HTM,
thus making all configurations but the third one equidimensional.
Average WERs are shown in Table 2.

LHTM MHTM DCHTM RHTM ZHTM HTM

Aurora 4 13.10 11.55 11.35 11.02 10.75 9.66

Table 2: Average Word Error Rates for the Aurora 4 task comparing HTM and
5 additional configurations: LTM + HTM (LHTM), MTM + HTM (MHTM),
features produced by DC filters + HTM (DCHTM), random noise + HTM
(RHTM) and a matrix of 0’s + HTM (ZHTM)

HTM outperformed the remaining configurations. Adding
LTM drastically increases the error, more so than MTM, features
from DC filters, zeros or even 0’s. Random noise is slightly
more detrimental than 0’s as a complement to HTM; likewise
MHTM performs worse than DCHTM. Only average results
are shown as the same trend is observed consistently over each
condition shown in Table 1.

Owing to the performance of HTM, a post-analysis was imple-
mented using the discriminability criterion described in section
2.5. Fig. 3 shows the similarity matrices of MFSC and HTM on
the Aurora 4 task. In order to reduce the bandwidth of the matri-
ces, the phonemes were arranged through an implementation of
the sparse reverse Cuthill-McKee ordering (Gilbert et al., 1992).
For readability a threshold of cos(45◦) was set in order to filter
out the angles wider than 45◦; thus the non-zero elements repre-
sent similarity values above 0.7, which are likely candidates for
phoneme confusions. A clear distinction is remarked between
consonants on the upper left corner and vowels on the lower
right. Both features produced almost the same similarity patterns
for vowels, in this corner, the most noticeable confusions are
between phones: /EY/ & /IY/, /AA/ & /AO/, /AE/ & /EH/ and
/L/ & /OW/.

For consonants MFSC produced more confusions than HTM.
The highest similarities between 2 phonemes occur among cases:
/T/ & /D/ for both features; the values on cases /P/ & /B/, /DH/
& /B/, /T/ & /K/, /P/ & /K/ and /M/ & /N/ are predominantly
higher for MFSC. A pattern of multiple confusions appears on
the MFSC figure for phones: /V/, /D/ and /DH/ with respect
to /T/, /K/, /N/, /P/ and /B/; whereas on HTM figure the same
pattern has almost vanished (except for /D/ & /T/ and /DH/ &
/B/). Phonemes /P/ & /F/ yield almost the same similarity for
both features.

Fig. 4 shows the similarity matrices of MFSC on the left
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MFSC HTM

Figure 3: Similarity matrices of MFSC (left) and HTM (right) from the Aurora 4 corpus. For readability a lower threshold was set to cos(45◦) so that angles wider
than 45◦ would be ignored.

side and HTM on the right side calculated from the CHiME 2
framework. The upper row containing figures (a) and (b) were
computed using the test set at 9 dB SNR and −6 dB on lower row
with figures (c) and (d). This time the threshold was set at 60◦ as
the number of phonemes were reduced, thus the matrix elements
represent values above the similarity value of 0.5. Nevertheless,
we still refer to elements whose similarity value is above 0.7 as
confusions.

For MFSC the similarity between the phoneme classes /Z/
& /S/ is high even at 9 dB and greater than the one of HTM.
There is also a strong similarity of phonemes /B/ & /G/ for both
features, but in Fig. 4 (c) the value gets closer to 1. With respect
to phoneme /F/ there are high similarities with phonemes /B/ and
/P/ for MFSC features whereas these values are below threshold
in Fig. 4 (b) and almost so in Fig. 4 (d) for HTM.

At −6 dB SNR several confusions appear on MFSC among
the pairs of phonemes /R/ & /L/, /IH/ & /UW/ and /IH/ & /R/
and on HTM between the phonemes /R/ & /W/. In Fig. 4 (c) a
noisy pattern, comparable to the one formed on phonemes /V/,
/D/ and /DH/ in Fig. 3 for MFSC, can be observed forming on
phoneme /F/ with respect to almost every phoneme from /N/ to
/S/ (except phoneme /L/); this pattern is once again diminished
for HTM (Fig. 4 (d)).

Another noticeable likely confusion among the four graphs
is the one between /B/ & /P/; for both conditions (i.e. 9 dB
and −6 dB), however, the similarity increased twice as much
for MFSC from 0.86 to 0.96 compared to HTM in which case
the value went from 0.80 to 0.85. A similar pattern occurred
in phonemes /IY/ & /UW/ and /T/ & /S/. Conversely, between
phonemes /IY/ & /IH/ and /N/ & /AW/ the same deterioration of
approximately 0.05 units was observed on both features when
the SNR lowered 15 dB.

To further explain the robustness of HTM an extra set of
experiments was conducted: firstly, for the most challenging
scenarios in Aurora 4 (for instance, using a secondary micro-
phone in a train station additive noise), both the features and
the activations were analyzed to inspect saliency of features for
specific speech sounds and to review the resulting performance
in terms of phoneme classification on basis of the posteriorgram.

We found high temporal modulations produced a more confi-
dent decision (based on the activation strength) of the accurate
label. Fig. 5 exemplifies this analysis condensing the evaluation
performed on the activations under the worst performing sce-
narios. To analyze the structure of the projected classes from a
trained setup, we recurred to the visualization technique called
t-distributed stochastic neighbor embedding (t-SNE) proposed
by Van der Maaten and Hinton (2008), which allowed us to
observe the distribution of the target classes in low-dimensional
manifolds.

Secondly, we gathered main confusion patterns from the ac-
tivations produced by all features in the CHiME 2 task. Fig. 6
summarizes the most relevant confusion patterns on HTM and
MFSC over all SNR conditions of the test set. Overall, the simi-
larity value decreases when the SNR increases which supports
the idea of more separable projections leads to better recognition
scores.

Among the phonemes studied, the most confusable patterns
were /B/ & /P/, closely followed by /Z/ & /S/ for MFSC and
/G/ & /B/ for HTM, peaking at a highest similarity of 0.83 for
HTM and 0.91 for MFSC corresponding to an estimated mini-
mal separation between classes of approximately 33◦ and 24◦

respectively. The following pairs seem to be equally challeng-
ing for both features: /T/ & /S/ and to a lesser extent, /G/ & /B/
and /G/ & /P/. The pair of phonemes /V/ & /T/ is clearly more
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Figure 4: Similarity matrices of MFSC (left) and HTM (right) from the CHiME 2 Corpus. On the upper row the SNR is 9 dB and −6 dB on the lower row. For
readability a lower threshold was set to cos(60◦) so that angles wider than 60◦ would be ignored.

discernible for MFSC; the opposite trend is observed in the case
of /B/ & /P/, /Z/ & /S/, /B/ & /F/ and /F/ & /P/.

4. Discussion

The results presented in Table 1 clearly show how exploiting
a particular set of Gabor filters with high temporal modulation
frequencies in combination with a deep neural network pro-
vides a boost in performance on three different recognition tasks.
HTM yielded the lowest error rates, even in clean conditions
where the baseline MFSC achieve already a high accuracy.

Meyer and Kollmeier (2010) used an stochastic approach to
determine Gabor filter parameters relevant for ASR and found
positive contributions for a wide range of temporal modulations
frequencies from 2 to 25 Hz. Similarly, RASTA-PLP features, a
range of 2.6−20 Hz was found to be useful. Hence, we expected
the subgroups with a limited modulation range to perform worse
than the complete Gabor filterbank, especially because fully
connected DNNs are capable of handling correlated signals
more effectively than traditional models. The results, however,
show otherwise; both MTM and HTM outperform the whole
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are the features of this 53-frame segment, the t-SNE projections in the middle representing the discriminability per frame in the 5 phoneme classes, finally the
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CHiME 2 task for MFSC and HTM at different SNR conditions.

filterbank.
Moreover, the inclusion of lower temporal modulation fre-

quencies (2 − 4 Hz) seems to severely harm the representations
extracted by the Gabor filterbank as LTM features yield the
highest WER in all conditions and corpora. This is in contrast
to previous studies Kanedera et al. (1998, 1999), Drullman et al.
(1994a,b) and Tchorz and Kollmeier (1999) that indicate high
temporal modulation frequencies (above 16 Hz) to deteriorate
performance on speech related tasks, from perception, recog-
nition and intelligibility. Ganapathy and Omar (2014) arrived
to a similar conclusion, their band-pass filtering results suggest
15 Hz is an optimal upper cut-off limit for speech recognition

performance in noisy conditions.
Kanedera et al. (1998) found 4 Hz to be the dominant compo-

nent encoding the most useful linguistic information. In contrast
to these contributions, the proposed high temporal modulations
for Gabor processing do not filter out sharply contiguous re-
gions among the spectra; by design the Gabor filterbank contain
constant-Q filters, therefore their bandwidth is proportional to
the center modulation frequency.

In other words the higher the modulation frequency the
broader the bandwidth. So even both subgroups of filters reach
contiguous frequencies, the gain of the individual transfer func-
tion is higher in neighboring frequencies for filters with higher
central modulation frequency4.

We argue one of the reasons focusing on 16 and 25 Hz as a
center frequency boosts recognition performance is because the
produced features mimic the important strategy found in human
listening to rely on localized patterns in the time-frequency rep-
resentation (glimpsing), as pointed out in (Cooke, 2006), where
the target signal dominates the noise, hence speech-relevant in-
formation can be extracted from the glimpses encoded in HTM.

The size of filters presumably also plays an important role:
Given that low temporal modulation filters have the largest tem-
poral extent in the Gabor filterbank, they produce stronger tem-
poral smearing which might prevent the DNN from extracting
phoneme-specific patterns. Neurons in the first layer compute a
linear function of the input; feeding them with shorter segments
of the spectrogram (i.e. smaller filters) allows higher layers
containing non-linearities to learn more sparse and distributed

4For more details about the individual gain of each filter we refer the reader
to (Schädler et al., 2011)
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features, thus resulting in fewer confusions as discussed below.
Recently, Chait et al. (2015) conducted experiments to support

the idea of multi-time resolution processing taking place in
human speech perception. Their findings disprove low temporal
modulations as sufficient for speech recognition and remark the
need of a model to include higher modulation frequencies as
well. Such a combination has been tested (on a GMM-HMM
recognizer) by Hermansky and Fousek (2005) extending the
RASTA processing (mentioned in Section 1) with a bank of
two-dimensional filters to incorporate temporal trajectories of
critical-band spectrograms; this step is followed by a TANDEM
feature extraction. Albeit an akin approach to feature extraction
with the complete Gabor filterbank; in this work, we found
higher temporal modulations alone the most beneficial for ASR.

Each recognition task evaluated different aspects, for instance,
Aurora 4 highlights the effect of additive noise and channel
distortions at positive SNR levels. The changes in WER between
conditions ”A” and ”B” as well as ”C” and ”D” represent the
effect of additive noise. In the same way the detriment from
”A” to ”C” and ”B” to ”D” measures the effect of different
channel characteristics. The complete Gabor set appears to be
more robust against channel distortions compared to MFSC with
consistent improvements for test sets C and D. This robustness
is preserved for HTM plus a higher robustness against additive
noise with an average relative improvement of 29% is achieved
over the MFSC baseline.

Among the features shown in Table 2, HTM has the lowest
number of feature components and yielded the lowest WER, sug-
gesting there is not a significant effect in the recognition scores
due to dimensionality. Concatenating random noise to HTM de-
creases performance slightly more than just adding zeros which
reflects the capacity of the network to ignore uninformative
input.

Surprisingly, the combination of HTM and the features ex-
tracted from DC filters resulted into lower WER than when
combining MTM and HTM, even though the former was the sec-
ond best feature from the ones compare in Table 1. We assume
the MHTM combination contains more redundant components
than DCHTM, which should have a detrimental effect.

Several successful approaches have been reported on the Au-
rora 4 task focusing on improved speech enhancement or feature
extraction in deep learning systems: For instance, an exemplar-
based speech enhancement proposed by Baby and van Hamme
(2015) resulted in a WER of 11.9%. Chang and Morgan (2014)
investigated Gabor filters in convolutional deep neural networks
and obtained a 16.6% WER.

Similarly, improved net architectures have been investigated:
(Rennie et al., 2014) trained an order statistic network with an
annealed version of the dropout regularization method obtaining
10.0% WER. Geiger et al. (2014) achieved a 13.3% WER by im-
plementing a long short-term memory recurrent neural network
(for its ability to exploit temporal context) in combination with
a non-negative matrix factorization for speech enhancement.
Mitra et al. (2014) worked on both approaches and switched
the fully connected deep neural network for one with convolu-
tional layers together with vocal tract length normalization and
lowered the WER on all conditions using a uniformly weighted

combination of 5 acoustic features (WER: 14.1%).
With a relatively simple approach of replacing the feature

extraction, a WER of 9.7% was obtained in this study, which
potentially could be further reduced by combining it with the
above-mentioned methods (especially regarding more elaborate
net architectures and regularization methods).

The CHiME 3 corpus focuses on the application of speech
recognition technologies in real-world scenarios and sets a
benchmark for comparing the value of artificially generated data
for training and testing purposes. Among the features tested,
HTM yielded the lowest WER difference between the real and
simulated test data, which indicates an improved generalization
when combining DNNs with these features. Additionally, be-
cause both Aurora 4 and CHiME 3 tasks are based on WSJ and
share some acoustic scenarios, conditions ”D” (noisy, different
microphone characteristics) from the former should be compa-
rable with the (simu) condition from the latter. This is not the
case for LTM and the whole Gabor filterbank which suggests
the non-shared noises could particularly harm LTM and thus the
whole Gabor filterbank as well.

Concerning the third CHiME challenge itself, every system
in the top 10 made several substantial changes to the baseline
including augmentation of training data, speech enhancement,
denoising, feature extraction, and improving or replacing the
acoustic and language models. The top-ranked (Yoshioka et al.,
2015) included a pre-processing model based on spectral mask-
ing and beamforming; however, the deep learning architectures
were trained on MFSC features. Vu et al. (2015) focused mainly
on speech enhancement via non-negative matrix factorization
and beamforming as well and also replaced the HMM decoder
for a recurrent neural network.

From the previous challenge, Moritz et al. (2013) indicated
the modules developed in a hearing research environment were
compatible and provided an incremental gain when combined;
therefore the aforementioned systems could potentially benefit
from the inclusion of auditory-based features as we show in this
work.

Owing to the relatively low grammatical complexity in the
first track of the CHiME 2 Challenge, the contribution of the
language model can be delimited, thus the WER depends more
on the acoustic model trained on the features we want to compare.
In this task, the error rates at the lowest SNR highlights the
robustness of auditory-based features. Given that our error
rates include complete utterances (not exclusively the letters and
digits tokens), they are not directly comparable to the studies
submitted to the challenge.

To get a better understanding of how relevant is the informa-
tion provided to the DNN, the similarity analysis was conducted.
It revealed HTM are able to better separate phoneme classes,
potentially resulting in fewer confusions during classification.
To support the results obtained from this analysis, we recurred
to acoustic properties defined by Jakobson and Halle (1956)
(referred as distinctive features).

Using these binary properties most confusions can be ex-
plained based on spectral properties of the phoneme classes;
for instance, vowels and approximants confusions are not suffi-
ciently covered in Jakobson/s distinctive features scheme. Even
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if there are articulatory and perceptual properties can be used
to describe these classes, some confusion patterns observed on
Fig. 4 (c) such as: /IH/ & /UW/, /IY/ & /UW/ and /IH/ & /R/ are
unexpected as the phonemes involved are acoustically far apart
from each other.

The similarity analysis on the Aurora 4 corpus (shown in
Fig. 3) exposed the discrimination capabilities of baseline MFSC
and HTM. Because the distribution of vowels in the multidi-
mensional space produce similar patterns for both features, we
focused on consonant confusions to explain the improvements
obtained with HTM, starting with the high-similarity pair /T/ &
/D/. Both phonemes share many acoustic properties, except the
former has longer duration, reduced voice onset time, and higher
total amount of energy with greater spread across the spectrum
(typical characteristics of the disctintive feature known as tense)
and the latter, being voiced, presents periodic low frequency
excitation.

The same distinction applies to the /P/ & /B/ confusion, addi-
tionally, both phonemes have a energy in the lower frequencies
(property denominated grave) but only the /B/ presents energy
on the closure phase, hence a steep transition is formed from
the occlusion to the burst. This spectral change is enhanced by
spectro-temporal features, thus we believe it is the main factor
for the low number of confusions with HTM.

In terms of acoustic properties, /K/ differs from /T/ in being
compact and grave; the first property refers to the concentration
of energy in a particular region of the spectrum. Once again,
the smaller confusion from HTM could be due to an accurate
detection of the spectral transition from burst to aspiration in
frequencies below 2 kHz. Between /P/ & /K/, the key distinction
is the diffuse spectrum (opposed to compact) of the former;
therefore, this pair of phonemes is spectrally more similar than
/T/ & /K/ and thus has a higher similarity value.

The consistent confusion pattern observed among the plosives
with /V/, /D/ and /DH/ presumably arises from their shared prop-
erty voiced. The periodic low frequency excitation, spectral tilt
and burst frequency of stop consonants is severely deteriorated
by additive noise even at medium signal-to-noise ratios. MFSC
features encode the energy from the frequency bands so this
effect is particularly harmful to these features.

Finally, the similarity analysis on the CHiME 2 allowed us to
directly observe which confusions appear by decreasing the SNR.
Note the analysis does not include the CHiME 3 corpus because
there is no clean data for the real recordings, which hinders
generating high-quality phoneme labels with forced alignment
as well as the calculation of the phoneme cluster statistics. In
spite of sharing several phoneme confusions with Aurora 4, there
are some others to consider: /Z/& /S/ share almost all distinctive
features except /Z/ is voiced, this property can be adequately
encoded by filters with a high spectral modulation. /B/ & /G/ are
voiced stops and their spectra bear some resemblance, although,
in the case of /G/ it is compact.

The phoneme /T/ is discontinuous meaning there is an abrupt
spectral transition, whereas /S/ is strident presenting high energy
noise dominated by high frequencies. While conceptually HTM
could detect the abrupt transition of /T/, this property is mostly
unnoticeable in isolation because it shows before the phoneme

is pronounced. For the /IY/ & /IH/ confusion, the former is
tense, which is a difficult distinctive feature to represent by
either feature (also shown in Fig. 3 for the /T/ & /D/ confusion),
as a longer temporal context might be needed and could account
for appearing in all conditions.

In Fig. 4 (c), a consistent confusion pattern occurs for
phoneme /F/ with respect to almost every phoneme from /N/ to
/S/ (except phoneme /L/); this noisy pattern is due to the nega-
tive the discontinuous property, which is presumably why this
pattern is not present in Fig. 4 (d). The confusion pair /P/ & /F/
is noticeable in all conditions despite being as well distinctively
discontinuous. We think a possible reason is that in some cases,
for individual frames of 25ms duration, the spectrum of the
frication phase in /P/ resembles the one of a short /F/; for some
other cases the sudden transient from the closure to the frication
phase or from the frication to the aspiration phase of the /P/ is
better detected by HTM, hence the lower similarity value.

5. Conclusions

The present study assessed the contribution of Gabor features
in combination with deep learning architectures. We found a sub-
group of filters within the Gabor filterbank capable of reducing
even further the word error rates in the three different recognition
tasks (Aurora 4, CHiME 2 and CHiME 3). The proposed HTM
outperformed the MFSC baseline. These features are capable of
detecting quick spectro-temporal transitions within 40 ms time
windows and exhibited robustness against channel distortions,
low signal-to-noise ratios and acoustically challenging real-life
scenarios; they also perform better on clean-conditions.

Because the gains presented in Table 1 come from a relatively
simple feature exchange, i.e. no additional speech enhancement,
dereverberation or denoising techniques are applied, we assume
it is straightforward to further improve the performance by com-
bining one or more approaches including alternative deep learn-
ing approaches such as more elaborate net architectures and
regularization methods.

The discriminability of MFSC and HTM was evaluated
through the similarity analysis and explained in terms of distinc-
tive spectral properties. The most relevant findings can be sum-
marized as follows: Phonemes characterized as grave, discon-
tinuous or compact exhibit spectro-temporal transients, hence
they are less likely to be confused by HTM features. voiced con-
sonants create consistent confusion patterns for MFSC features.
tense phonemes are equally hard to distinguish for both features.
The confusions of obstruent consonants are more representative
of the performance difference between HTM and MFSC fea-
tures in the presence of additive noise and channel distortions.
Overall HTM features produced a more separable distribution
of phones.

Finally, in this study we show DNN-based speech recognizers
trained with Gabor features, particularly the ones exclusively
using high temporal modulation filters, yield lower error rates
as these features enhance the discriminability between the target
classes.
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