
Discriminative Subspace Modeling of SNR and Duration
Variabilities for Robust Speaker Verification

Na LIa, Man-Wai MAKa, Wei-Wei LINa, Jen-Tzung CHIENb

a Dept. of Electronic and Information Engineering, The Hong Kong Polytechnic
University, Hong Kong SAR of China

bDept. of Electrical and Computer Engineering, National Chiao Tung University, Taiwan

Abstract

Although i-vectors together with probabilistic LDA (PLDA) have achieved a
great success in speaker verification, how to suppress the undesirable effects
caused by the variability in utterance length and background noise level is
still a challenge. This paper aims to improve the robustness of i-vector based
speaker verification systems by compensating for the utterance-length vari-
ability and noise-level variability. Inspired by the recent findings that noise-
level variability can be modeled by a signal-to-noise ratio (SNR) subspace
and that duration variability can be modeled as additive noise in the i-vector
space, we propose to add an SNR factor and a duration factor to the PLDA
model. In this framework, we assume that i-vectors derived from utterances
with comparable durations share similar duration-specific information and
that i-vectors extracted from utterances within a narrow SNR range have
similar SNR-specific information. Based on these assumptions, an i-vector
can be represented as a linear combination of four components: speaker,
SNR, duration, and channel. A variational Bayes algorithm is developed to
infer this latent variable model via a discriminative subspace training pro-
cedure. In the testing stage, different variabilities are compensated when
computing the likelihood ratio. Experiments on Common Conditions 1 and
4 in NIST 2012 SRE show that the proposed model outperforms the conven-
tional PLDA and SNR-invariant PLDA. Results also show that the proposed
model performs better than the uncertainty-propagation PLDA (UP-PLDA)
for long test utterances.
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1. Introduction1

In text-independent speaker verification, i-vectors [6] have become the2

most popular feature representation in recent years. Inspired by the joint3

factor analysis (JFA) [15, 17, 18] framework, both the speaker and unde-4

sirable information (e.g. channel, additive noise, and so on) were com-5

pressed into a low-dimensional subspace called the total variability sub-6

space, through which utterances with variable durations can be represented7

as low-dimensional i-vectors of fixed-length. Such a representation converts8

a speaker verification problem to an ordinary biometric pattern recogni-9

tion problem similar to face recognition and fingerprint recognition. Based10

on the i-vector representation, many statistical techniques have been ap-11

plied to deal with the mismatch between the training and test utterances.12

For example, linear discriminant analysis (LDA) [2] followed by within-class13

covariance normalization (WCCN) [12] were applied to i-vectors to compen-14

sate for session variability; then cosine distance between the target speaker’s15

i-vector and test i-vector was used as the similarity measure between the tar-16

get speaker and the test speaker. More recently, probabilistic LDA (PLDA)17

[31] was employed to suppress the channel- and session-variability within the18

i-vector space. Typically, i-vectors were preprocessed by a series of transfor-19

mations – WCCN, length normalization [7], and LDA – before presenting20

the i-vectors to a Gaussian PLDA model.21

Although the i-vector/PLDA framework performs well in suppressing22

session variability, it still has the following limitations: (1) the ability of23

PLDA in modeling the variability arising from utterances of different SNRs24

is limited; (2) i-vectors extracted from short utterances are less reliable than25

those extracted from long utterances [19], leading to performance degrada-26

tion when only short utterances are available.27

One of the main focuses of NIST 2012 SRE is robust speaker verification28

in which the SNR and length of enrollment and test utterances have substan-29

tial variation. To improve the noise robustness of i-vector/PLDA systems,30

several methods have been proposed. In [10], clean and noisy utterances31

were pooled together to train a robust PLDA model. Garcia-Romero et al.32

[8] employed multi-condition training to train multiple PLDA models, one33

for each condition. A robust system was then constructed by combining all34

of the PLDA models according to the posterior probability of each condition.35

In [23, 24], a mixture of SNR-dependent PLDA was proposed so that each36

mixture focuses on a small range of SNRs. During verification, the mixtures37

cooperated with each other to deal with utterances of various noise levels.38

By assuming that i-vectors derived from utterances falling within a narrow39
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SNR range should share similar SNR-specific information, we have recently40

proposed to add an SNR-subspace to the conventional PLDA model, result-41

ing in SNR-invariant PLDA [21, 20]. With the added SNR subspace, the42

SNR-invariant PLDA can capture both speaker, noise-level, and channel43

variabilities embedded in the i-vectors.44

The problem of duration variability in utterances has attracted atten-45

tion in the community because an i-vector extracted from a short utterance46

should not be treated as being equally reliable as an i-vector extracted from47

a long utterance. The reason is that the posterior distribution of hidden48

variables in the i-vector extractor is a Gaussian whose covariance matrix is49

related to the utterance duration. The shorter the utterance is, the larger50

the covariance will become, leading to greater uncertainty in the estimated51

i-vector.52

The issue of duration variability has been addressed to a certain ex-53

tent in the past. For example, Sarkar et al. [32] investigated how duration54

mismatches affect the optimal choice of the duration of training utterances55

for estimating the parameters of i-vector systems. In [19], the uncertainty56

arising from the i-vector extraction process was propagated into a PLDA57

model. This method did not treat an i-vector as the maximum a posteri-58

ori point estimate, but rather as a random vector whose uncertainty was59

represented by the posterior covariance matrix of the latent factors. The60

shorter the utterance, the larger the posterior covariances. By propagating61

this information into PLDA and using a loading matrix to model the vari-62

ability due to duration variation, the resulting PLDA model better handled63

the length-variability than the conventional PLDA model. Cumani et al.64

[5, 4] did not map an utterance to a single i-vector, but instead mapped it65

to the posterior distribution of i-vectors. Then, the likelihood of two speech66

segments coming from the same speaker was obtained by integrating out all67

possible i-vectors based on the i-vector posterior density.68

Hasan et al. [11] found that duration variability could be modeled as ad-69

ditive noise in the i-vector space. A short-utterance variance normalization70

technique and a short-utterance variance modeling approach were proposed71

in [14] to compensate for utterance-length variability. In [34], a weight72

associated with the utterance’s duration was added to the corresponding73

i-vector; then duration-weighted means, covariance matrix, and within-class74

scatter matrix were computed; finally, principal component analysis (PCA)75

and WCCN were applied using these duration-weighted terms to take utter-76

ance duration into account. Motivated by the belief that i-vectors derived77

from long utterances are more reliable [19] and therefore their corresponding78

covariances in the PLDA model should be smaller, Cai et al. [3] proposed to79
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regularize the PLDA covariance matrix by scaling it by a duration-dependent80

exponential term. On top of this duration-dependent covariance regular-81

ization, Hong et al. [13] introduced a quality measure function for score82

calibration, which effectively compensated for the score shift due to dura-83

tion mismatch. In [36], a denoising autoencoder was used to compensate84

for the phonetic imbalance in short utterances. Given a short utterance, the85

autoencoder received an i-vector and a phonetic vector (the utterance’s zero-86

order statistics) as input and produced an output comprising an i-vector as87

if it were produced by a phonetically balance utterance. The autoencoder88

was trained by using the i-vectors and phonetic vectors derived from many89

short-long utterance pairs.90

This paper focuses on improving the robustness of the state-of-the-art91

i-vector/PLDA systems when duration mismatch and SNR mismatch be-92

tween the training and test utterances occur simultaneously. According to93

[11, 14], duration variability in the i-vectors can be modeled as additive94

noise in i-vector space. If the i-vector extracted from a long utterance is95

considered as “clean”, the i-vector extracted from a short utterance can96

be considered as “noisy”. Inspired by this observation, we propose a new97

method to deal with the mismatch caused by the variabilities in SNR and98

duration. Our proposal is motivated by the success of SNR-invariant PLDA99

in dealing with SNR mismatch [21, 20]. More specifically, we attempt to100

make the i-vector/PLDA framework more resilient to SNR and duration101

variabilities by introducing two discriminant subspaces – namely SNR sub-102

space and duration subspace – to the PLDA models. These subspaces are103

trained discriminatively by exploiting the SNR and duration information in104

the training utterances. Through joint discriminative training, these sub-105

spaces enable the new PLDA models to capture not only speaker and channel106

variabilities, but also SNR and duration variabilities. In the proposed model,107

the speaker component, SNR component, and duration component live in108

three different subspaces which can be inferred according to the variational109

Bayes procedure. During the verification stage, SNR variability, duration110

variability, and channel variability are marginalized out when the likelihood111

ratio is computed.112

The organization of this paper is as follows: Section 2 describes the i-113

vector/PLDA speaker verification. Based on different assumptions, a new114

method of estimating the parameters of duration-invariant PLDA and two115

new scoring methods are proposed in Section 3. The proposed modeling116

method, namely SNR- and duration-invariant PLDA, is explained for robust117

speaker verification in Section 4. The experimental results and analysis of118

the proposed framework are detailed in Section 5 and Section 6, respectively.119
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Finally, conclusions are drawn in Section 7.120

2. I-vector/PLDA Speaker Verification121

2.1. Conventional PLDA122

In the conventional i-vector/PLDA framework [16], an i-vector xij is123

regarded as an observation generated from a linear model [31, 30]:124

xij = m + Vhi + Grij + εij (1)

where m is the global mean of i-vectors, V defines the speaker subspace, G125

defines the channel subspace, hi and rij are the latent factors depending on126

the speaker and session respectively, and εij denotes a residual term which127

follows a Gaussian distribution N (ε|0,Σ). Typically, Σ is a diagonal matrix128

aiming to model any remaining variation that cannot be described by VVT
129

and GGT.130

According to [16, 7], the PLDA model in Eq. 1 can be divided into two131

parts: (1) the speaker part (m + Vhi) that depends on the i-th speaker132

only and (2) the channel part (Grij + εij) that depends not only on the133

i-th speaker but also on the j-th session. As i-vectors are of sufficiently134

low dimension, the term Grij can be absorbed into Σ if the latter is a full135

covariance matrix. Accordingly, the Gaussian PLDA model can be simplified136

as follows [33]:137

xij = m + Vhi + εij , (2)

where εij ∼ N (0,Σ) with Σ being a full covariance matrix. This paper138

adopts this simplified model.139

2.2. SNR-invariant PLDA140

To enhance the robustness of i-vector/PLDA, we have recently proposed141

an SNR-invariant PLDA model (SI-PLDA) [21, 20] to deal with SNR mis-142

match. In this model, training utterances are first divided into K groups143

according to their SNRs. As a result, each of the training i-vectors is asso-144

ciated with one SNR group. Denote xk
ij as the j -th i-vector from speaker i145

in the k -th SNR group. Then, xk
ij is expressed as:146

xk
ij = m + Vhi + Uwk + εkij , (3)

where m is the global mean of i-vectors, V defines the speaker subspace, hi147

is a latent speaker factor with a standard normal prior, U defines the SNR148

subspace, wk is a latent SNR factor with a standard normal prior, εkij is a149
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Figure 1: (a) Arrangement of training i-vectors in the multi-condition training of
conventional PLDA. Each small square represents an i-vector. While the training
set comprises two SNR groups, PLDA training ignores the group labels and sums
over the statistics across both groups. (b) Arrangement of training i-vectors in
SNR-invariant PLDA. Each small cube represents an i-vector. For the i-th speaker,
there are Hi(k) i-vectors from the k-th SNR group. Training in SNR-invariant
PLDA considers the group labels and sums over the statistics within individual
groups.

residual term with distribution N (ε|0,Σ). In [21, 20], Σ is a full covariance150

matrix aiming to model the channel variability.151

The key difference between the conventional PLDA (Eq. 1) and SNR-152

invariant PLDA (Eq. 3) is that the former uses a channel subspace (G) to153

model channel variability, whereas the latter uses an SNR subspace (U) to154

capture the variability due to noise level differences. As a result, the SNR155

latent factors (wk in Eq. 3) depend on the SNR groups, whereas the session156

latent factor (rij in Eq. 1) depends on the speaker and session.157

Fig. 1 illustrates how the labels (speaker and SNR groups) can be used158

in training these two types of PLDA models. As can be seen, in the conven-159

tional PLDA (Fig. 1(a), Eq. 1, and Eq. 2), the i-vectors for each speakers160

are treated equally regardless of which SNR group they come from. On161

the other hand, in SI-PLDA (Fig. 1(b) and Eq. 3), i-vectors derived from162

utterances of similar SNR are grouped together in a vertical slice. These163

extra SNR labels, together with the speaker labels, help to suppress the164

SNR variability in the i-vectors.165

3. Duration-invariant PLDA166

According to [11, 14], duration variability in the i-vectors can be modeled167

as additive noise in i-vector space. Inspired by the success of SI-PLDA in168
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handling SNR variability, we propose to handle duration variability by a169

duration-invariant PLDA (DI-PLDA).170

3.1. Generative Model and EM Formulation171

Assume that we have a set of i-vectors172

X = {xp
ij |i = 1, . . . , S; j = 1, . . . ,Hi(p); p = 1, . . . , P}

obtained from S speakers, where xp
ij is the j-th utterance from speaker i173

at the p-th duration group. For the i -th speaker, there are Hi(p) i-vectors174

from the p-th duration group. Eq. 3 becomes DI-PLDA if the SNR-related175

term is replaced by a duration-related term, i.e.,176

xp
ij = m + Vhi + Ryp + εpij , (4)

where R defines the duration subspace, yp is a latent duration factor with177

a standard normal distribution. Other terms have the same meaning as in178

Eq. 3.179

In [21], the latent factors hi and yp are assumed to be posteriorly in-180

dependent. In this paper, we consider hi and yp are posteriorly dependent181

and use variational Bayes methods [2] to derive EM algorithms for training182

the SI-PLDA and DI-PLDA models.183

Denote Ni =
∑P

p=1Hi(p) as the number of training utterances from the184

i -th speaker and Bp =
∑S

i=1Hi(p) as the number of the training utterances185

in the p-th duration group. Given an old estimate of the model parameters186

θ = {m,V,R,Σ}, we aim to find a new estimate θ′ that maximizes the187

auxiliary function:188

Q(θ′|θ) = Eq(h,y)

{
ln p(X ,h,y|θ′)

∣∣∣∣X ,θ}
= Eq(h,y)

{∑
ijp

ln [p(xp
ij |hi,yp,θ

′)p(hi,yp)]

∣∣∣∣X ,θ} ,

(5)

where h = {h1, . . . ,hs}, y = {y1, . . . ,yp}, and q(h,y) is the variational189

posterior density of h and y. To maximize Q(θ′|θ), we differentiate Q(θ′|θ)190

with respect to the model parameters {m,V,R,Σ} and set the resulting191

derivatives to 0. This leads to192

m =
1

N

S∑
i=1

P∑
p=1

Hi(p)∑
j=1

xp
ij (6)
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V′ =


S∑

i=1

P∑
p=1

Hi(p)∑
j=1

[
(xp

ij −m)〈hi|X 〉 −R〈yph
T
i |X 〉

]
 S∑

i=1

P∑
p=1

Hi(p)∑
j=1

〈hih
T
i |X 〉

−1
(7)193

R′ =


S∑

i=1

P∑
p=1

Hi(p)∑
j=1

[
(xp

ij −m)〈yp|X 〉 −V〈hiy
T
p |X 〉

]
 S∑

i=1

P∑
p=1

Hi(p)∑
j=1

〈ypy
T
p |X 〉

−1
(8)194

Σ′ =
1

N

S∑
i=1

P∑
p=1

Hi(p)∑
j=1

[
(xp

ij−m)(xp
ij−m)T−V〈hi|X 〉(xp

ij−m)T−R〈yp|X 〉(xp
ij−m)T

]
(9)

where N =
∑S

i=1Ni =
∑P

p=1Bp.195

Eq. 6–Eq. 9 constitute the M-step of the EM algorithm. To update196

the model parameters in the M-step, we need to estimate the posterior197

distribution of hi and yp. These posteriors can be obtained through the198

variational Bayes method as explained below.199

We approximate the true posterior p(h,y|X ) by a variational posterior
q(h,y) and write the marginal likelihood of X as

ln p(X ) =

∫ ∫
q(h,y) ln p(X )dhdy

=

∫ ∫
q(h,y) ln

[
p(h,y,X )

p(h,y|X )

]
dhdy

=

∫ ∫
q(h,y) ln

[
p(h,y,X )

q(h,y)

]
dhdy +

∫ ∫
q(h,y) ln

[
q(h,y)

p(h,y|X )

]
dhdy

= L(q) +DKL(q(h,y)‖p(h,y|X )). (10)

In Eq. 10, DKL(q||p) is the KL-divergence between distributions q and p and200

L(q) =

∫ ∫
q(h,y) ln

[
p(h,y,X )

q(h,y)

]
dhdy (11)

is the variational lower bound of the marginal likelihood. Since KL-divergence201

is non-negative, we can maximize the marginal likelihood through maximiz-202

ing the lower bound with respect to q(h,y). The maximum occurs when203

q(h,y) equals the true posterior p(h,y|X ). Then, we assume that the ap-204
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proximated posterior q(h,y) can be factorized as follows:205

ln q(h,y) = ln q(h) + ln q(y) =
S∑

i=1

ln q(hi) +
P∑

p=1

ln q(yp). (12)

By maximizing the lower bound L(q) in Eq. 11, we obtain [2, 35]206

ln q(h) = Eq(y){ln p(h,y,X )}+ const

ln q(y) = Eq(h){ln p(h,y,X )}+ const,
(13)

where Eq(y) means taking expectation with respect to y using q(y) as the207

density.208

Note that ln q(h) in Eq. 13 can be written as209

ln q(h) =
∑

i
ln q(hi) = 〈ln p(h,y,X )〉y + const

= 〈ln p(X|h,y)〉y + 〈ln p(h,y)〉y + const

=
∑

ijp

〈
lnN (xp

ij |m + Vhi + Ryp,Σ)
〉
yp

+
∑

i
〈lnN (hi|0, I)〉y

+
∑

p
〈lnN (yp|0, I)〉yp + const

= −1

2

∑
ijp

(xp
ij −m−Vhi −Ry∗p)

TΣ−1(xp
ij −m−Vhi −Ry∗p)−

1

2

∑
i
hT
i hi + const1

=
∑

i

[
hT
i VTΣ−1

∑
jp

(xp
ij −m−Ry∗p)−

1

2
hT
i

(
I +

∑
p
Hi(p)VTΣ−1V

)
hT
i

]
+ const.

(14)
where y∗p ≡ 〈yp|X 〉yp is the posterior mean of yp in the previous iteration210

and 〈.〉yp denotes the expectation with respect to yp.211

By reading off hi in Eq. 14 and comparing with
∑

i ln q(hi), we note that212

q(hi) is a Gaussian with the following mean vector and precision matrix:213

Eq(hi){hi|X} = 〈hi|X 〉 =
(
L
(1)
i

)−1
VTΣ−1

P∑
p=1

Hi(p)∑
j=1

(xp
ij −m−Ry∗p)

1〈lnN (yp|0, I)〉yp is the differential entropy of normal distribution and is independent
of hi, see Chapter 8 in [28].
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and214

L
(1)
i ≡ I +

P∑
p=1

Hi(p)VTΣ−1V.

As a result, the second-order moment required in the M-step can be com-215

puted as follows:216

〈hih
T
i |X 〉 =

(
L
(1)
i

)−1
+ 〈hi|X 〉〈hi|X 〉T.

Similarly, the posterior mean and second-order moment of yp can also be217

obtained by comparing the terms in ln q(yp) with a Gaussian distribution.218

The M-step also requires the posterior moment 〈hiy
T
p |X 〉, which can be219

approximated by using variational Bayes principle:220

p(hi,yp|X ) ≈ q(hi)q(yp), (15)

where both q(hi) and q(yp) are Gaussians. Based on the law of total expec-221

tation [1], the factorization in Eq. 15 gives222

〈yph
T
i |X 〉 ≈ 〈yp|X 〉〈hi|X 〉T

〈hiy
T
p |X 〉 ≈ 〈hi|X 〉〈yp|X 〉T.

Therefore, the equations for the variational E-step are as follows:223

L
(1)
i = I + NiV

>Σ−1V i = 1, . . . , S (16)

224

L(2)
p = I + BpR

>Σ−1R p = 1, . . . , P (17)
225

〈hi|X 〉 = (L
(1)
i )−1V>Σ−1

P∑
p=1

Hi(p)∑
j=1

(xp
ij −m−Ry∗p) (18)

226

〈yp|X 〉 = (L(2)
p )−1R>Σ−1

S∑
i=1

Hi(p)∑
j=1

(xp
ij −m−Vh∗i ) (19)

227

〈hih
T
i |X 〉 = (L

(1)
i )−1 + 〈hi|X 〉〈hi|X 〉T (20)

228

〈ypy
T
p |X 〉 = (L(2)

p )−1 + 〈yp|X 〉〈yp|X 〉T (21)
229

〈yph
T
i |X 〉 ≈ 〈yp|X 〉〈hi|X 〉T (22)

230

〈hiy
T
p |X 〉 ≈ 〈hi|X 〉〈yp|X 〉T (23)
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Algorithm 1 shows the procedure of training a duration-invariant PLDA231

model.

Algorithm 1 Variational Bayes EM Algorithm for Duration-Invariant PLDA

Input:

Development data set consisting of i-vectors X = {xp
ij |i = 1, . . . , S; j = 1, . . . , Hi(p); p =

1, . . . , P}, with identity labels and duration group labels.

Initialization:

y∗
p ← 0;

Σ← 0.01I;

V,R← eigenvectors of PCA projection matrix learned using data set X ;

Parameter Estimation:

1) Compute m via Eq. 6;

2) Compute L
(1)
i and L

(2)
p according to Eq. 16 and Eq. 17, respectively;

3) Set y∗
p to the posterior mean of yp. Compute the posterior mean of hi using Eq. 18;

4) Use the posterior mean of hi computed in Step 3 to update the posterior mean of yp

according to Eq. 19;

5) Compute the other terms in the E-step (Eq. 20–Eq. 23);

6) Update the model parameters using Eq. 7 to Eq. 9;

7) Go to Step 2 until convergence;

Return: the parameters of the duration-invariant PLDA model θ = {m,V,R,Σ}.

232

3.2. Likelihood Ratio Scores233

If the durations of target and test utterances are not known (or not234

used), the likelihood ratio score can be computed in the same manner as235

in SI-PLDA [21]. Because the duration ` is usually known in practice, the236

likelihood ratio score can be also computed as follows:237

SLR(xs,xt|`s, `t) = ln
p(xs,xt|same-speaker, `s, `t)

p(xs,xt|different-speakers, `s, `t)
, (24)

where xs and xt denote the target-speaker’s i-vector and test i-vector, respec-238

tively, and `s and `t denote the durations of the corresponding utterances.239

Based on different assumptions on the posterior density of yp, we pro-240

pose two methods to calculate the score. They are derived in the following241

subsections.242
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3.2.1. Duration Factors with a Sharp Posterior Density243

Assume that the duration ` of an utterance belongs to the p-th duration244

group and that the posterior density of yp is sharp at its mean y∗p.2 Then,245

the marginal-likelihood of i-vector x can be written as:246

p(x|` ∈ p-th duration group) =

∫
h
p(x|h,y∗p)p(h)dh

=

∫
h
N (x|m + Vh + Ry∗p,Σ)N (h|0, I)dh

= N (x|m + Ry∗p,VVT + Σ),
(25)

where y∗p ≡ 〈yp|X 〉 is the posterior mean of yp. Given a test i-vector xt and247

a target i-vector xs, we can use Eq. 25 to compute the likelihood ratio score:248

SLR(xs,xt|`s, `t) = ln
p(xs,xt|same-speaker, `s, `t)

p(xs,xt|different-speakers, `s, `t)

= ln

N
([

xs

xt

] ∣∣∣∣ [m + Ry∗ps
m + Ry∗pt

]
,

[
Ψ Σac

Σac Ψ

])
N
([

xs

xt

] ∣∣∣∣ [m + Ry∗ps
m + Ry∗pt

]
,

[
Ψ 0
0 Ψ

])
=

1

2
[x̄T

s Qx̄s + 2x̄T
s Px̄t + x̄T

t Qx̄t] + const

(26)

where

x̄s = xs −m−Ry∗ps

x̄t = xt −m−Ry∗pt

Q = Ψ−1 − (Ψ−ΣacΨ
−1Σac)

−1

P = Ψ−1Σac(Ψ−ΣacΨ
−1Σac)

−1

Ψ = VVT + Σ; Σac = VVT.

3.2.2. Duration Factors with a Moderately Sharp Posterior249

If the duration ` of an utterance falls on the p-th duration group and250

the posterior density of yp is moderately sharp and follows a Gaussian251

2This occurs when the number of training i-vectors Bp in the p-th duration group is
large, as suggested by Eq. 17.
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N (yp|µ∗p,Σ∗p),3 the marginal-likelihood of i-vector x is:252

p(x|` ∈ p-th duration group) =

∫
h

∫
yp

p(x|h,yp)p(h)p(yp)dhdyp

=

∫
h

∫
yp

N (x|m + Vh + Ryp,Σ)N (h|0, I)N (yp|0, I)dhdyp

=

∫
yp

N (x|m + Ryp,VVT + Σ)N (yp|0, I)dyp

= N (x|m + Rµ∗p,VVT + RΣ∗pR
T + Σ),

(27)
where µ∗p can be computed according to Eq. 19 and Σ∗p can be estimated253

from the inverse of L
(2)
p in Eq. 17. Given a test i-vector xt and a target254

i-vector xs, the likelihood ratio score can be computed as:255

SLR(xs,xt|`s, `t) = ln
p(xs,xt|same-speaker, `s, `t)

p(xs,xt|different-speakers, `s, `t)

= ln

N
([

xs

xt

] ∣∣∣∣ [m + Rµ∗ps
m + Rµ∗pt

]
,

[
Σs Σac

Σac Σt

])
N
([

xs

xt

] ∣∣∣∣ [m + Rµ∗ps
m + Rµ∗pt

]
,

[
Σs 0
0 Σt

])
=

1

2
[x̄T

s As,tx̄s + 2x̄T
s Bs,tx̄t + x̄T

t Cs,tx̄t] + const

(28)

where

x̄s = xs −m−Rµ∗ps ; x̄t = xt −m−Rµ∗pt

As,t = Σ−1s − (Σs −ΣacΣ
−1
t Σac)

−1

Bs,t = Σ−1s Σac(Σt −ΣacΣ
−1
s Σac)

−1

Cs,t = Σ−1t − (Σt −ΣacΣ
−1
s Σac)

−1

Σs = VVT + RΣ∗psR
T + Σ; Σt = VVT + RΣ∗ptR

T + Σ; Σac = VVT.

4. SNR- and Duration-invariant PLDA256

This section describes a new modeling approach, namely SNR- and257

duration-invariant PLDA (SDI-PLDA), for robust speaker verification. Un-258

3This occurs when the number of training i-vectors Bp in the p-th duration group is
moderate, as suggested by Eq. 17.
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like conventional Gaussian PLDA and SNR-invariant PLDA, the proposed259

model has three labeled latent factors representing speaker-specific, SNR-260

specific and duration-specific information, respectively.261

4.1. Generative Model262

The SNR- and duration-invariant PLDA is inspired by the notion of263

Gaussian PLDA in which i-vectors from the same speaker should share a264

speaker latent factor. Similarly, this method is based on two hypotheses:265

(1) i-vectors derived from utterances that fall within a narrow SNR range266

should share similar SNR-specific information; and (2) i-vectors extracted267

from utterances with comparable durations should share similar duration-268

specific information.269

To confirm the first hypothesis, we plotted three groups of i-vectors on270

the first 3 principal components in Fig. 2(a), where each group corresponds271

to a specific SNR-level shown in the legend. To ensure that the cluster272

displacement is not caused by speaker variability, each group contains the273

i-vectors from the same set of speakers. Evidently, the i-vectors form three274

clusters, one for each SNR group. To illustrate the the second hypothesis,275

we display three groups of i-vectors on their first 3 principal components276

in Fig. 2(b), where each group corresponds to one duration range shown in277

the legend. To ensure that the variability in i-vectors is not due to noise-278

level and speaker variabilities, all of the i-vectors were obtained from clean279

telephone conversations and each duration group comprises the same set of280

target speakers. Evidently, the i-vectors form three clusters and the locations281

of the clusters depend on the duration range.282

From a modeling standpoint, both SNR-specific and duration-specific283

information can be captured using latent factors just like speaker factor in284

conventional PLDA model. We refer to these latent factors as SNR factor285

and duration factor in the remainder of this paper.286

Under the above assumptions, an LDA- or NFA-projected i-vector [21]287

can be regarded as an observation generated from a linear generative model288

that comprises four components: (1) speaker component, (2) SNR compo-289

nent, (3) duration component, and (4) channel variability and the remaining290

variability that cannot be captured by the first three components. Assume291

that we have a set of D-dimensional NFA-projected i-vectors X = {x̂kp
ij |i =292

1, . . . , S; k = 1, . . . ,K; p = 1, . . . , P ; j = 1, . . . ,Hik(p)} obtained from S293

speakers, where x̂kp
ij is the j -th i-vector from speaker i, and k and p index to294

the SNR and duration groups to which the corresponding utterances belong,295
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Figure 2: (a) Projection of i-vectors derived from utterances with different SNR-
levels on their first three principal components. (b) Projection of i-vectors derived
from variable-length utterances on their first three principal components.

respectively. In the proposed model, x̂kp
ij can be expressed as:296

x̂kp
ij = m + Vhi + Uwk + Ryp + εkpij , (29)

where m is a D×1 vector representing the global offset, hi is a Q1×1 vector297

denoting the speaker factor with prior distribution N (h|0, I), wk is a Q2×1298

vector denoting the latent SNR factor with a prior distribution of N (w|0, I),299

yp is a Q3 × 1 vector denoting the latent duration factor with a standard300

normal prior, εkpij is a D × 1 vector denoting the residue which follows a301

Gaussian distribution N (ε|0,Σ), V is a D×Q1 matrix whose columns span302

the speaker subspace, U is a D ×Q2 matrix whose columns span the SNR303

subspace, and R is a D × Q3 matrix which defines the duration subspace.304

hi, wk, and yp are assumed to be independent in their prior. Fig. 3 shows305

the graphical model of SDI-PLDA.306

The proposed SNR- and duration-invariant PLDA is different from the307

conventional PLDA in that the former makes use of multiple labels (speaker308

IDs, SNR levels, and duration ranges) for training the loading matrices,309

whereas the latter only uses the speaker IDs. To exploit the duration in-310

formation in the training utterances, the proposed model has an additional311

subspace called duration subspace, which results in an extra latent factor312

called duration factor. Unlike the term Grij in Eq. 1, which is speaker- and313

session-dependent, the SNR component Uwk and the duration component314

Ryp in Eq. 29 depend on the SNR groups and duration groups, respectively.315
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Figure 3: Probabilistic graphical model of SDI-PLDA.

4.2. Variational Bayes EM algorithm316

Denote θ = {m,V,U,R,Σ} as the parameters of the SNR- and duration-317

invariant PLDA model. These parameters can be learned from a training318

set using maximum likelihood estimation. Given an old estimate of θ, we319

aim to find a new estimate θ′ that maximizes the auxiliary function:320

Q(θ′|θ) = Eq(h,w,y)

[
ln p(X ,h,w,y|θ′)

∣∣∣X ,θ]
= Eq(h,w,y)

[∑
ikpj

ln
(
p(x̂kp

ij |hi,wk,yp,θ
′)p(hi,wk,yp)

)∣∣∣X ,θ].
(30)

To maximize Eq.30, we need to estimate the posterior distributions of321

the latent variables given the model parameters θ. Denote Ni =
∑

kpHik(p)322

as the number of training i-vectors from the i -th speaker, Mk =
∑

ipHik(p)323

as the number of training i-vectors falling in the k -th SNR group, and Bp =324 ∑
ik Hik(p) as the number of training i-vectors in the p-th duration group.325

Similar to the derivation of duration-invariant PLDA, the variational E-step326

of the proposed model in Eq. 29 can be derived by the variational Bayes327

method as follows :328

L
(1)
i = I + NiV

>Σ−1V i = 1, . . . , S (31)

329

L
(2)
k = I + MkU

>Σ−1U k = 1, . . . ,K (32)
330

L(3)
p = I + BpR

>Σ−1R p = 1, . . . , P (33)
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331

〈hi|X 〉 = (L
(1)
i )−1V>Σ−1

∑
kpj

(x̂kp
ij −m−Uw∗k −Ry∗p) (34)

332

〈wk|X 〉 = (L
(2)
k )−1U>Σ−1

∑
ipj

(x̂kp
ij −m−Vh∗i −Ry∗p) (35)

333

〈yp|X 〉 = (L(3)
p )−1R>Σ−1

∑
ikj

(x̂kp
ij −m−Vh∗i −Uw∗k) (36)

334

〈hih
T
i |X 〉 = (L

(1)
i )−1 + 〈hi|X 〉〈hi|X 〉T (37)

335

〈wkw
T
k |X 〉 = (L

(2)
k )−1 + 〈wk|X 〉〈wk|X 〉T (38)

336

〈ypy
T
p |X 〉 = (L(3)

p )−1 + 〈yp|X 〉〈yp|X 〉T (39)
337

〈wkh
T
i |X 〉 ≈ 〈wk|X 〉〈hi|X 〉T (40)

338

〈hiw
T
k |X 〉 ≈ 〈hi|X 〉〈wk|X 〉T (41)

339

〈wky
T
p |X 〉 ≈ 〈wk|X 〉〈yp|X 〉T (42)

340

〈ypw
T
k |X 〉 ≈ 〈yp|X 〉〈wk|X 〉T (43)

341

〈hiy
T
p |X 〉 ≈ 〈hi|X 〉〈yp|X 〉T (44)

342

〈yph
T
i |X 〉 ≈ 〈yp|X 〉〈hi|X 〉T (45)

where w∗k, y∗p, and h∗i denote the posterior mean of wk, yp, and hi in the343

previous iteration, respectively.344

Given Eq. 31–Eq. 45, the model parameters θ′ can be estimated via the345

M-step is as follows:346

m =
1

N

∑
ikpj

x̂kp
ij (46)

347

V′ =
{∑

ikpj

[
(x̂kp

ij −m)〈hi|X 〉> −U〈wkh
T
i |X 〉 −R〈yph

T
i |X 〉

]}
[∑

ikpj
〈hih

T
i |X 〉

]−1 (47)

348

U′ =
{∑

ikpj

[
(x̂kp

ij −m)〈wk|X 〉> −V〈hiw
T
k |X 〉 −R〈ypw

T
k |X 〉

]}
[∑

ikpj
〈wkw

T
k |X 〉

]−1 (48)

349

R′ =
{∑

ikpj

[
(x̂kp

ij −m)〈yp|X 〉> −V〈hiy
T
p |X 〉 −U〈wky

T
p |X 〉

]}
[∑

ikpj
〈ypy

T
p |X 〉

]−1 (49)
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350

Σ′ =
1

N

∑
ikpj

[
(x̂kp

ij −m)(x̂kp
ij −m)> −V〈hi|X 〉(x̂kp

ij −m)>

−U〈wk|X 〉(x̂kp
ij −m)> −R〈yp|X 〉(x̂kp

ij −m)>
] (50)

where N =
∑S

i=1Ni =
∑K

k=1Mk. Algorithm 2 shows the procedure of351

applying the variational EM algorithm.352

Algorithm 2 Variational Bayes EM Algorithm for SNR- and Duration-Invariant
PLDA
Input:

Development data set comprising NFA-projected i-vectors X = {x̂kp
ij |i = 1, . . . , S; k =

1, . . . ,K; p = 1, . . . , P ; j = 1, . . . , Hik(p)}, with speaker labels, SNR group labels, and
duration labels.

Initialization:

y∗
p ← 0, w∗

k ← 0;

Σ← 0.01I;

V,U,R← eigenvectors obtained from the PCA of X ;

Parameter Estimation:

1) Compute m via Eq. 46;

2) Compute L
(1)
i , L

(2)
k , and L

(3)
p according to Eq. 31 to Eq. 33, respectively;

3) Compute the posterior mean of hi using Eq. 34;

4) Use the posterior mean of hi computed in Step 3 to update the posterior means of wk

and yp using Eq. 35–Eq. 36;

5) Compute the other terms in the E-step (Eq. 37–Eq. 45);

6) Update the model parameters using Eq. 47 to Eq. 50;

7) Set y∗
p = 〈yp|X 〉, w∗

k = 〈wk|X 〉, and h∗
i = 〈hi|X 〉;

8) Go to step 2 until convergence;

Return: the parameters of the SNR- and duration-invariant PLDA model θ =
{m,V,U,R,Σ}.

4.3. Likelihood Ratio Scores353

Assume that both the duration and SNR of target-speaker’s utterance354

and test utterance are not known. Denote xs and xt as the NFA-project i-355

vectors of the target-speaker and test utterance, respectively, the likelihood356
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Figure 4: Distribution of utterance duration in NIST 2012 SRE. (a) 2-D histogram
showing the length distribution of all possible target-test pairs. (b) Length distri-
butions of enrollment utterances and test utterances (after VAD).

ratio score is357

SLR(xs,xt) = ln
P (xs,xt|same-speaker)

P (xs,xt|different-speakers)

= const +
1

2
x̄>s Qx̄s +

1

2
x̄>t Qx̄t + x̄>s Px̄t

(51)

where358

x̄s = xs −m, x̄t = xt −m,

P = Σ−1totΣac(Σtot −ΣacΣ
−1
totΣac)

−1,

Q = Σ−1tot − (Σtot −ΣacΣ
−1
totΣac)

−1,

Σac = VV>, and Σtot = VV> + UU> + RR> + Σ.

See Appendix A for the derivation of Eq. 51. When the utterance duration359

and SNR are known, the scoring function can be derived using the principles360

in Section 3.2.361

Because P and Q can be computed in advance, the computational com-362

plexity of SDI-PLDA is the same as that of Gaussian PLDA [7].363

5. Experimental Setup364

5.1. Evaluation Protocol and Speech Data365

Experiments were performed on common conditions (CC) 1 and 4 of the366

core set of NIST 2012 Speaker Recognition Evaluation (SRE) [27]. We used367
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Table 1: Abbreviations of various PLDA models.

Abbreviation Model Name Formula

PLDA Probabilistic LDA xij = m + Vhi + εij (Eq. 2)

UP-PLDA Uncertainty propagation PLDA xij = m + Vhi + Rijyij + εij (Eq. 2 in [19])

SI-PLDA SNR-invariant PLDA xk
ij = m + Vhi + Uwk + εkij (Eq. 3)

DI-PLDA Duration-invariant PLDA xp
ij = m + Vhi + Ryp + εpij (Eq. 4)

SDI-PLDA SNR- and duration-invariant PLDA xkp
ij = m + Vhi + Uwk + Ryp + εkpij (Eq. 29)

data from NIST 2005–2010 for system development. The speech data were368

divided into the following parts:369

• Test Data: Test utterances involved in CC1 comprise clean interview370

conversations. Test data in CC4 comprise noise contaminated tele-371

phone conversations with SNR ranging from 0dB to 50dB. Readers372

may refer to [21] for the SNR distributions of test utterances in these373

common conditions and the procedure for measuring SNRs.374

• Enrollment Data: Enrollment data for CC1 comprise target-speakers’375

conversations recorded by using different types of microphones. For376

CC4, enrollment data comprises the telephone conversations of target377

speakers. Each target speaker has one or more conversations recorded378

over different telephone channels and with different durations longer379

than 10 seconds.380

• Development Data: Development data were used for estimating the381

subspace projection matrices (WCCN and NFA) for i-vector prepro-382

cessing. They were also used for estimating the parameters of PLDA,383

uncertainty propagation PLDA in [19], SNR-invariant PLDA and SNR-384

and duration-invariant PLDA models (see Table 1 for the abbrevia-385

tions of these models). For experiments on CC1, the development386

data consist of microphone segments in 2005–2010 SREs. For CC4,387

the development data comprise two parts. The first part was extracted388

from the telephone and microphone segments in 2005–2010 SREs and389

the second part was obtained by adding babble noise to the telephone390

segments of 2005–2010 SREs at different SNRs. The procedure of pro-391

ducing these noisy speech files is described in Section IV-B of [21]. For392

each gender, 14,000 noise corrupted files with SNR ranging from 2dB393
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Figure 5: Duration distributions of test utterances (after VAD) from female speakers in
CC1 and CC4 of NIST 2012 SRE.

to 15dB were randomly selected from all of the noise corrupted files.394

Speakers with less than 10 conversations were excluded. Both the395

microphone and telephone conversations from NIST 2005–2008 SREs396

were used as development data to train the gender-dependent UBMs397

and total variability matrices.398

Fig. 4 shows the duration distribution of the enrollment and test utter-399

ances (after VAD) in NIST 2012 SRE. Evidently, there are many trials that400

involve short test utterances tested against long enrollment utterances or401

long test utterances tested against short enrollment utterances. The dura-402

tion distributions of test utterances (after VAD) in CC1 and CC4 are shown403

in Fig. 5. It is obvious that the test utterances in CC1 and CC4 covers a404

wide range of durations.405

5.2. Acoustic Feature Extraction406

For each conversation, a two-channel voice activity detector (VAD) [25,407

37] was applied to prune out silence regions. The VAD is specifically de-408

signed for NIST SREs. Special attention has been paid to address utterances409

with low SNR, impulsive noise, and cross talks in the interview speech files.410

The main idea is to apply speech enhancement as a pre-processing step to411
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boost energy contrast between speech and non-speech regions, which facil-412

itates the subsequence speech/non-speech decisions either by log-likelihood413

ratio tests or by comparing with energy-based thresholds.414

The speech regions of each utterance were segmented into 25-ms Ham-415

ming windowed frames with 10-ms frame shift. For each frame, the first 19416

Mel frequency cepstral coefficients (MFCC) and log energy together with417

their first and second derivatives were packed to form a 60-dimensional418

acoustic vector. Cepstral mean normalization and feature warping [29] with419

a window size of 3 seconds were then applied to the acoustic vectors.420

5.3. I-vector Extraction and PLDA Modeling421

I-vectors were extracted based on gender-dependent UBMs with 1024422

mixtures and total variability matrices with 500 total factors. Similar to [26],423

we applied within-class covariance normalization (WCCN) [12] to whiten424

the i-vectors, followed by length normalization (LN) to reduce the non-425

Gaussian behavior of the 500-dimensional i-vectors. Then, nonparametric426

feature analysis (NFA) [21, 22] was applied to reduce intra-speaker vari-427

ability and emphasize discriminative information. This procedure projects428

the i-vectors onto a 400-dimensional subspace. The NFA-projected i-vectors429

were then used to train PLDA models with 300 speaker factors (Q1 = 300).430

In our experiments, we make sure that the number of speaker factors plus431

SNR and duration factors is no more than 400.432

5.4. SNR and Duration Groups433

To determine the SNR and duration subspaces in the SI-PLDA, DI-434

PLDA and SDI-PLDA models, the development data described in Sec-435

tion 5.1 were divided into K groups according to the measured SNRs and436

duration of the utterances, where K varied from 3 to 8.4 Because SNR437

and duration are continuous variables, there will be infinite possible ways of438

dividing them into intervals. Therefore, we evenly divided the training utter-439

ances into K groups such that each group contains almost the same number440

of training i-vectors. Although this partitioning method leads to unequal441

SNR and duration intervals, it ensures that each group has sufficient train-442

ing i-vectors for estimating the SNR and duration loading matrices reliably.443

Table 2 lists the SNR range and duration range when K = 8 and P = 8 in444

Eq. 29.445

4To be precise, the first K−1 groups have
⌊
N
K

⌋
i-vectors, whereas the last one contains

N − (K − 1)
⌊
N
K

⌋
, where bxc is the floor of x.
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Table 2: Division of SNR and duration groups for the training data of female speakers in
CC4, when K = 8 and P = 8 in Eq. 29.

Group SNR Range (dB) Duration Range (s)
1 2.0–5.5 3–70
2 5.5–7.4 70–88
3 7.4–10.5 88–103
4 10.5–14.6 103–117
5 14.6–19.8 117–133
6 19.8–34.4 133–152
7 34.4–39.1 152–184
8 39.1–55.0 184–1215

6. Results and Analysis446

We used equal error rate (EER) and minCprimary, which is the same as447

minimum normalized decision cost function (minDCF) defined in NIST 2012448

SRE [27], to evaluate the performance of different PLDA models. Table 1449

summarizes their abbreviations and formulations.450

6.1. Effectiveness of SNR and Duration Factors451

The first experiment aims to compare the effectiveness of SI-PLDA and452

DI-PLDA in compensating SNR variability and duration variability, respec-453

tively. Table 3 shows the results of SI-PLDA and DI-PLDA on CC1 and454

CC4 for different numbers of SNR groups and duration groups. The results455

show that both SI-PLDA and DI-PLDA outperform PLDA. This suggests456

that including the duration subspace in DI-PLDA and the SNR subspace in457

SI-PLDA enables these models to address mismatch caused by duration and458

SNR, respectively. Moreover, SI-PLDA not only outperforms DI-PLDA (in459

EER) in most cases, but also performs stably with respect to the number460

of groups K. On the other hand, the performance of DI-PLDA on CC1461

(female) drops when the number of groups increases to 8.462

The second experiment compares the proposed SDI-PLDA model with463

other PLDA models and PLDA with uncertainty propagation. Results in464

Table 3 show that SDI-PLDA achieves the best performance in terms of EER465

and minDCF on CC4. This result suggests that SDI-PLDA can compensate466

for SNR and duration variabilities in the i-vector space. While UP-PLDA467

achieves the best performance in CC1, it performs badly under CC4. The468

reason is that CC4 involves more test trials with long duration than CC1469

(as shown in Fig. 5). As the i-vectors corresponding to utterances of long470
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Table 3: Performance of PLDA, UP-PLDA, SI-PLDA, DI-PLDA and SDI-PLDA in CC1
and CC4 of NIST 2012 SRE core set. K and P denote the number of SNR and duration
groups, respectively. The best results are highlighted in boldface.

Model K P

Male Female

CC1 CC4 CC1 CC4

EER(%) minDCF EER(%) minDCF EER(%) minDCF EER(%) minDCF

PLDA – – 5.28 0.374 2.69 0.317 7.39 0.514 2.35 0.332

UP-PLDA – – 3.89 0.346 3.55 0.493 5.47 0.408 3.36 0.483

SI-PLDA

3 – 5.28 0.369 2.56 0.292 7.06 0.504 2.18 0.299

4 – 5.28 0.368 2.56 0.287 7.12 0.499 2.18 0.287

5 – 5.15 0.395 2.50 0.288 7.07 0.498 2.12 0.291

6 – 5.22 0.370 2.51 0.281 7.14 0.508 2.16 0.292

7 – 5.36 0.381 2.48 0.284 7.13 0.505 2.16 0.287

8 – 5.23 0.369 2.48 0.288 7.03 0.506 2.13 0.287

DI-PLDA

– 3 5.42 0.368 2.60 0.287 6.98 0.512 2.25 0.287

– 4 5.57 0.369 2.55 0.291 6.98 0.499 2.23 0.299

– 5 5.42 0.369 2.56 0.287 7.02 0.503 2.25 0.289

– 6 5.21 0.369 2.52 0.289 7.30 0.526 2.16 0.293

– 7 5.36 0.381 2.55 0.287 7.38 0.534 2.18 0.302

– 8 5.23 0.369 2.56 0.289 8.95 0.563 2.20 0.288

SDI-PLDA

3 3 5.42 0.375 2.52 0.287 6.93 0.496 2.15 0.284

4 4 5.41 0.368 2.54 0.289 6.97 0.491 2.13 0.288

5 5 5.13 0.367 2.55 0.288 6.96 0.491 2.15 0.289

6 6 5.14 0.367 2.49 0.283 7.05 0.508 2.14 0.289

7 7 5.42 0.373 2.34 0.280 7.13 0.505 2.13 0.289

8 8 5.54 0.373 2.49 0.286 8.08 0.556 2.11 0.284

duration are reliable, UP-PLDA loses its advantage in handling reliable i-471

vectors compared to PLDA.472

To confirm that SDI-PLDA really outperforms SI-PLDA and DI-PLDA,473

we performed McNemar’s tests [9] on the differences between the EERs. For474

each model, the best performing configuration (by varying K and P ) was475

used in the tests. The p-values of these tests are shown in Table 4. As the476

p-values between SDI-PLDA and the other two models are less than 0.05,477

we conclude that SDI-PLDA outperforms SI-PLDA and DI-PLDA.478

We have also linearly fused the scores of the best performing DI-PLDA479

and SI-PLDA in CC4, with fusion weights for DI-PLDA and SI-PLDA set480

to 0.65 and 0.35, respectively. For male speakers, the EER after fusion is481

2.41% and the minDCF is 0.282. For female speakers, the EER after fusion482

is 2.13% and the minDCF is 0.283. This fusion performance is comparable483
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Table 4: P-values of McNemar’s tests [9] on the differences in EERs based on CC4 of NIST
2012 SRE core set, male speakers. For each entry, p < 0.05 means that the difference
between the EERs is statistically significant at a confidence level of 95%.

Method DI-PLDA SDI-PLDA

SI-PLDA 0.002 0.013

DI-PLDA – 0.022

Table 5: Performance of DI-PLDA on CC1 and CC4 of NIST 2012 SRE (male, core set)
using different approaches to deriving the EM training algorithm and the scoring func-
tion. EM : EM is derived by assuming that the latent factors are posteriorly independent
(Eqs. 14–24 of [21]). VB-EM : EM is derived by using variational Bayes and the latent
factors are assumed posteriorly dependent (Eq. 6–Eq. 23). Scoring1 : The duration is un-
known during scoring (Eq. 26 in [21]). Scoring2 : The duration is known during scoring,
and the duration factor has sharp posterior (Eq. 26). Scoring3 : The duration is known
during scoring, and the duration factor has blunt posterior (Eq. 28). P in Eq. 4 was set
to 6.

Method
CC1 CC4

EER(%) minDCF EER(%) minDCF
EM + Scoring1 5.21 0.369 2.52 0.289
VB-EM + Scoring1 5.42 0.366 2.56 0.285
EM + Scoring2 5.42 0.371 2.58 0.290
EM + Scoring3 5.28 0.366 2.57 0.290

with that of SDI-PLDA, suggesting that SNR and duration variabilities can484

be handled either in the model domain (Eq. 29) or in the score domain. But485

the later requires a set of optimal fusion weights to achieve a performance486

comparable to that of the former.487

6.2. Numbers of SNR and Duration Groups488

Another observation from Table 3 is that the performance of DI-PLDA489

and SDI-PLDA on CC1 becomes worse when the numbers of SNR and du-490

ration groups, K and P , increase. This suggests that appropriate values of491

K and P are important for DI-PLDA and SDI-PLDA. Since the amount492

of training data for CC1 is much less than that for CC4, when K and493

P increase, the number of training samples in each group becomes limited,494

causing unreliable estimation of SNR and duration loading matrices. Hence,495

the values of K and P should be determined based on the amount of train-496
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Table 6: Performance of SDI-PLDA in CC4 of NIST 2012 SRE core set for male speakers
with varying numbers of SNR and duration factors. The numbers of SNR and duration
groups were fixed to 7.

Q2 & Q3 EER(%) minDCF
10 2.34 0.280
20 2.33 0.281
30 2.35 0.283
40 2.37 0.286

ing data. In particular, if K and P are very large, there will be so many497

SNR factors and duration factors that each i-vector is considered to be ob-498

tained from a unique SNR or duration. This means that the SNR- and499

duration-invariant PLDA models reduce to the traditional Gaussian PLDA,500

which only considers the session variability instead of the variability caused501

by different SNRs and durations.502

6.3. Combinations of Training and Scoring Methods503

Table 5 shows the performance of DI-PLDA under different combinations504

of training methods and scoring methods. The results suggest that using505

the original training method (EM) and scoring method (Scoring1) in [21]506

achieves the best results, which assumes that the latent factors are posteri-507

orly independent and that the SNR and duration of utterance are unknown.508

Although the EM algorithm derived from variational Bayes (VB) is more509

theoretically justifiable, VB-EM + Scoring1 in Table 5 does not outperform510

EM + Scoring1. This is a rather unexpected result. One possible reason is511

that because the number of training i-vectors in each duration group is large512

enough to make the posterior density of duration factors (yp in Eq. 4) very513

sharp, causing the joint posterior density p(hi,yp|x) to spread mainly along514

hi instead of spreading over both hi and yp. As a result, the assumption515

that the latent factors hi and yp are posteriorly independent becomes valid.516

Comparing Rows 1, 3, and 4 in Table 5 suggests that scoring with du-517

ration information does not achieve any advantage. This may be because518

the EM and VB-EM have already taken duration variability into account519

through the duration loading matrix.520

6.4. Numbers of SNR and Duration Factors521

To investigate the effect of varying the number of SNR and duration522

factors, we set Q2 and Q3 to different values but keeping K and P fixed.523

26



Table 7: Performance (EER(%)/minDCF) of (a) PLDA and (b) SDI-PLDA on CC4 of
NIST 2012 SRE (male core set) under different combinations of SNR (dB) and utterance
durations. The last row shows the relative increases in EER/minDCF when SNR decreases
from 15dB to 6dB. The last column shows the relative increases in EER/minDCF when
number of frames reduces from 2500 to 1000. For each SNR and duration combination,
the one with a smaller increase in EER or minDCF is highlighted in boldface.

SNR
Number of frames

Relative Inc.
1000 1334 1667 2000 2500

6 6.02/0.517 5.40/0.483 4.78/0.454 4.35/0.431 3.86/0.409 0.560/0.264

8 5.47/0.499 4.79/0.454 4.25/0.427 3.88/0.405 3.71/0.393 0.474/0.270

10 4.68/0.460 4.32/0.431 4.00/0.405 3.72/0.388 3.41/0.367 0.372/0.253

12 4.58/0.462 4.07/0.416 3.53/0.399 3.49/0.374 3.23/0.362 0.418/0.276

15 4.57/0.441 3.87/0.412 3.71/0.389 3.48/0.363 3.15/0.351 0.451/0.256

Relative Inc. 0.317/0.172 0.395/0.172 0.288/0.167 0.250/0.187 0.225/0.165 –

(a) PLDA

SNR
Number of frames

Relative Inc.
1000 1334 1667 2000 2500

6 5.53/0.473 5.03/0.437 4.39/0.410 4.03/0.398 3.66/0.360 0.512/0.314

8 5.13/0.453 4.54/0.414 3.85/0.385 3.56/0.368 3.42/0.354 0.500/0.280

10 4.43/0.423 4.07/0.393 3.75/0.370 3.53/0.353 3.27/0.330 0.355/0.282

12 4.29/0.421 3.77/0.379 3.39/0.358 3.28/0.330 3.17/0.314 0.353/0.341

15 4.42/0.401 3.78/0.367 3.44/0.347 3.31/0.322 3.01/0.314 0.468/0.277

Relative Inc. 0.251/0.179 0.331/0.191 0.276/0.182 0.218/0.236 0.216/0.146 –

(b) SDI-PLDA

The effect is shown in Table 6. Although there is no obvious relation between524

the number of speaker factors and the number of SNR factors and duration525

factors, this table suggests that it is fine to set Q2 and Q3 to 10.526

6.5. Robustness Against Mismatch Types527

The results in Table 3 do not show which type of mismatches (SNR or528

duration) is more harmful to performance. To this end, we fixed one type of529

variability and vary the other type. The test utterances from male speakers530

in CC4, excluding utterances with less than 2500 frames, were used as the531

evaluation data. We added babble noise to the test utterances at SNR532

of 6dB, 8dB, 10dB, 12dB, and 15dB. Then, 2500 frames were randomly533

selected from each test utterance at each SNR. Finally, test utterances with534
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different durations were created by successively discarding some frames from535

the 2500-frame test utterances. The SNRs and durations were set such that536

the percentage decrease in successive SNR is equal to the percentage decrease537

in successive utterance length. For example, when SNR reduces from 15dB538

to 12dB, the number of frames decreases from 2500 to 2000, which amount539

to 20% relative reduction.540

Table 7 shows the results of PLDA and SDI-PLDA under different com-541

binations of SNRs and utterance durations. The results show that system542

performance degrades with decreasing SNR (from 15dB to 6dB) or utterance543

duration (from 2500 frames to 1000 frames). Both tables show that there544

is almost no change in performance once the SNR is larger than or equal to545

12dB, which suggests that the effect of SNR variability is small when the546

test utterances are not noisy.547

Comparing the performance and the relative increases in EER and minDCF548

between PLDA and SDI-PLDA in Table 7, we can draw the following conclu-549

sions: (1) the SDI-PLDA performs better than PLDA for all combinations550

of utterance length and SNR; and (2) when either one the two variabil-551

ity types is fixed but the other is varied, the EER of SDI-PLDA is more552

stable (smaller relative increase) but its minDCF is less stable (larger rela-553

tive increase). Despite its larger relative increases in minDCF, SDI-PLDA554

achieves a lower minDCF under all conditions, which provides strong evi-555

dence supporting its superiority over PLDA in tackling SNR and duration556

variabilities.557

7. Conclusions558

A new SNR- and duration-invariant PLDA model is presented. It is de-559

signed to improve the robustness of speaker verification systems under both560

noise-level and duration mismatches. By introducing a duration subspace to561

SNR-invariant PLDA, duration information can be captured and the effect562

of noise-level variability and duration variability can be simultaneously sup-563

pressed. Experiments on the NIST 2012 SRE demonstrate the effectiveness564

of the proposed method.565
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Appendix A.570

To simplify notations, we use xs and xt instead of x̂s and x̂t in Eq. 51571

to represent the NFA-projected i-vectors. If xs and xt are from the same572

speaker, then we have573

[
xs

xt

]
=

[
m
m

]
+

[
V U 0 R 0
V 0 U 0 R

]
h
ws

wt

ys

yt

+

[
εs
εt

]
, (A.1)

where h represents the speaker factor shared by both i-vectors, ws and wt574

represent the SNR factors of the two utterances, and ys and yt represent the575

duration factors of the two utterances, respectively. Eq. A.1 can be written576

in a compact form:577

x̃st = m̃ + Ãz̃st + ε̃st

where the tilde denotes the stacking of vectors and578

Ã =

[
V U 0 R 0
V 0 U 0 R

]
.

Assuming that the NFA-projected i-vectors follow a Gaussian distribution,
the distribution of x̃st can be obtained by marginalizing over all possible
latent factors as follows:

p(x̃st|same-speaker) =

∫
p(x̃st|z̃st)p(z̃st)dz̃st

=

∫
N (x̃st|m̃ + Ãz̃st, Σ̃)N (z̃st|0, I)dz̃st

= N (x̃st|m̃, ÃÃT + Σ̃)

= N
([

xs

xt

] ∣∣∣∣ [mm
]
,

[
Σtot Σac

Σac Σtot

])
(A.2)
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where Σ̃ = diag{Σ,Σ}, Σtot = VVT + UUT + RRT + Σ and Σac = VVT.579

If xs and xt are from the utterances of two different speakers, we have580

[
xs

xt

]
=

[
m
m

]
+

[
V 0 U 0 R 0
0 V 0 U 0 R

]


hs

ht

ws

wt

ys

yt

+

[
εs
εt

]
(A.3)

which can be compactly written as581

x̃st = m̃ + Āz̄st + ε̃st.

The distribution of x̃st is obtained by marginalizing over z̄st:

p(x̃st|diff-speaker) =

∫
p(x̃st|z̄st)p(z̄st)dz̄st

=

∫
N (x̃st|m̃ + Āz̄st, Σ̃)N (z̄st|0, I)dz̄st

= N (x̃st|m̃, ĀĀT + Σ̃)

= N
([

xs

xt

] ∣∣∣∣ [mm
]
,

[
Σtot 0
0 Σtot

])
. (A.4)

Combining Eq. A.2 and Eq. A.4, we have the log-likelihood ratio score:

SLR(xs,xt) = ln

N
([

xs

xt

] ∣∣∣∣ [mm
]
,

[
Σtot Σac

Σac Σtot

])
N
([

xs

xt

] ∣∣∣∣ [mm
]
,

[
Σtot 0
0 Σtot

])
=

1

2

[
x̄T
s x̄T

t

] [Q P
P Q

] [
x̄s

x̄t

]
+ const

=
1

2
[x̄T

s Qx̄s + 2x̄T
s Px̄t + x̄T

t Qx̄t] + const, (A.5)

where582

x̄s = xs −m, x̄t = xt −m,

P = Σ−1totΣac(Σtot −ΣacΣ
−1
totΣac)

−1,

Q = Σ−1tot − (Σtot −ΣacΣ
−1
totΣac)

−1.
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