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Abstract

Bounded Component Analysis (BCA) solves the Blind Source Separation
(BSS) problem based on geometric assumptions. This paper introduces a
new proof of a BCA contrast function, derived from elementary matrices,
Gauss-Jordan elimination and convex geometry. The new proof and further
analysis provide additional insight into a key assumption of BCA. In addi-
tion, an interpretation is presented to clarify one of the limitations of the
instantaneous BCA algorithm. FExperiments on audio sources support our
analysis.
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1. Introduction

As the name “blind” suggests, Blind source separation (BSS) aims to
recover the sources from mixtures of the sources only, without prior infor-
mation of the sources and the way the sources were mixed [1]. The “blind”
feature not only leads to a broad variety of applications in practice, such as
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speech processing, digital communications, image processing and chemomet-
rics, etc., but also makes BSS an exciting challenge as an ill-posed problem
[2]. Prior information is generally replaced by some assumptions. The more
stringent the assumptions, the narrower the applicability [3], but the easier
the BSS problem. There is no BSS algorithm that can be universally used
to solve all problems.

A wide variety of assumptions and corresponding algorithms have been
developed in different application fields. Independent Component Analysis
(ICA) algorithms can be considered as the representation of BSS solutions
in the 1990’s, proposed in the field of neural networks [4] [5]. Rooted in sta-
tistically independent or uncorrelated assumptions of the sources, numerous
ICA algorithms of higher order statistics (HOS) and second order statistics
(SOS) were developed [6]. For example, SOBI [7], STOTD [8] and JADE
[9][10] combine Jacobi rotation with second-order, third-order and fourth-
order cumulants, respectively. For computational and conceptual simplicity,
BSS solutions were obtained by optimizing a contrast function, for example
FastICA [11], a classical and implementable ICA algorithm.

ICA algorithms were further developed by incorporating geometric tech-
niques into the implementation of the BSS algorithm. For nonstatioanary
sources, a new joint diagonalization procedure was established based on the
principles of maximum likelihood and minimum mutual information [12].
To deal with data contamination, the gamma-ICA method with better ro-
bustness was proposed, and implemented by a geometrical framework based
on gradient flows on a special orthogonal matrix [13]. The minimum-range
approach investigates bounded sources, and geometric interpretation is ex-
ploited for contrast maximization over the group of special orthogonal ma-
trices [14]. Similarly, under a certain boundedness assumption of sources,
minimization of the infinity norm approach is centered around the basic
geometric fact of independent vectors [15]. The restrictions of statistical in-
dependence of the sources can be relaxed to partial correlation, a constrast
function was proposed by combining geometric techuniques [16].

However, some realistic sources are dependent or correlated. To replace
the restrictions of statistical independence, various assumptions and algo-
rithms were proposed, such as Non-negative Matrix Factorization (NMF)
and Sparse Component Analysis (SCA) [2].

Compared with NMF and SCA, Bounded Component Analysis (BCA) is
a relatively new avenue for BSS [2] without the assumption of independence
of the sources. The BCA proposed by Cruces [17], relies on the assump-
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tions of compactness and Cartesian decomposition of the convex support of
the vector of the sources. Still based on the convex hull of the sources, [18]
developed BCA algorithms by considering the underdetermined mixtures.
An alternative framework proposed by Erdogan utilises the principal hyper-
ellipsoid and the bounding hyper-rectangle of the sources [19], which sup-
ports Cruces’s idea that BCA can be considered as a more general approach,
covering ICA as a special case for bounded sources [17]. Then, Erdogan’s
BCA algorithms were further developed for separating convolutive mixtures
[20][21]. Furthermore, sparse BCA algorithm was proposed to consider the
sparsity of the sources [22]. Recently, a stationary point for instantaneous
BCA algorithms was analysed [23]. Although BCA algorithms have attracted
much attention and developed quickly, there is still a question whether BCA
should be considered as a more general approach than ICA. In this paper,
we will show that BCA should be considered as a complementary approach
to ICA, rather than a more general approach covering ICA.

Cruces [17] assumed the following three properties to ensure the separa-
bility:

P1) Compactness and nondegeneracy of the sources: all the sources are
nondegenerate? random variables of compact support.

P2) Cartesian decomposition of the convex support of the sources: Sg =
Sg,, ® -+ ®Sg, , where @ denotes Cartesian product, Sg denote the
convex hull of the support of the sources, and Sg, denote the convex
hull of the support of the 7th source. 7

P3) Lossless mizing: the mixing matrix is full-column rank.

On the basis of P1)-P3), in [19] one more assumption A1) was introduced:
S contains the vertices of its bounding hyper-rectangle.

Although [19] have provided a proof of the contrast function (4), it lends
little insight into the condition when assumption A1) is not satisfied. This
paper not only presents a new proof of the contrast function (4) in Section
2, but also in Section 3 provides a more in-depth analysis and insight into
the following five aspects regarding BCA:

(i) Theoretical discussion on the link between A1) and P2);

2A random variable can be considered degenerate if the support of its p.d.f consist in
a single point.



(ii) Although BCA is named by the boundedness of the sources P1), the
key and stringent assumption of BCA is Cartesian decomposition of the
sources, i.e. P2);

(iii) A1) is likely to be stringent in some practical applications;

(iv) Interpretation on why the BCA algorithm suffers when A1) is not sat-
isfied;

(v) Experiments show how the instantaneous BCA algorithm suffers when
applied to blind audio source separation.

The analysis and experiments provide a comprehensive recognition of BCA,
not only advantages but also limitations. Equipped with the comprehensive
recognition of BCA, readers have more opportunities to select a suitable BSS
algorithm.

The remainder of this paper is organised as follows: Section 2 presents
the BCA models and notation, as well as some preliminaries; Section 3 pro-
vides our proof of Erdogan’s BCA contrast function; the BCA assumptions
are further analysed in Section 4, and supported by numerical experiments;
finally, our conclusion is presented in Section 5.

2. Background
2.1. Models and Notation

Consider an instantaneous real-valued BSS model without noise. Ob-
served signals Y € R?! are linear instantaneous mixtures of the sources
S € RP*E guch that Y = HS, where H € R?*? denotes the mixing matrix.
Here L, ¢ and p indicate the number of samples, mixtures and sources, re-
spectively. Note that from the theoretical point of view L can be assumed
to be infinite, but in practical applications L is a finite integer. BSS is con-
cerned with finding a separating matrix W &€ RP*? to obtain the recovered
sources Z = WY = GS, where G = W H represents the overall mapping.
The L samples of the ith source are expressed as .; ., that is the ¢th row of
S. Similarly, Z;. and (-);. denote the ith row of Z and the enclosed matrix,
respectively. Each sample of the sources are expressed as S. ;, that is the jth
column of S. Similarly, (-).; denote the jth column of the enclosed matrix.

Let

minke{l,... ,L}Sl,k

I(s) = : (1)
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mane{l,---,L}Sl,k
a(s) = : (2)
maxk€{17.,.7L}Sp7k

denote the vectors containing minimum and maximum values for the rows of
S, respectively. The bounding hyper-rectangle of S can be defined as

B(S) = {a:1(s) <a<a(s) (3)

Thus, B (S) is defined as the minimum volume box covering all samples of S
and aligning with the coordinate axes. Vertices of B (S) are determined by
the minimum and maximum of each row of S. Similarly, B (Z) denotes the
bounding hyper-rectangle of Z.

Additionally, cov(-), abs(-) and det(-) express the covariance matrix, the
absolute value and the determinant, respectively. The center of the principal
hyper-ellipsoid of S is given by the sample mean of S, which is defined as

1 L
=38,

The principal semiaxes directions are determined by the eigenvectors of the
sample covariance matrix of S as

L
cov(S Z (S.p — fu(S))(S.p — ()T
k:
Then, principal hyper-ellipsoid of S can be defined as

e(S) ={a: (a— ()" cov(8) " (a — i(S)) < 1}

Under the above four assumptions, Erdogan [19] proposed a family of
contrast functions based on:

vol[e(2)] _ vol[E(GS)] } @

B {Vol[é(Z)] ~ Vol[B(GS)]

where vol[-] denotes the volume. The volume of the principal hyper-ellipsoid
of Z is:

vol[e(Z)] = Cpy/det(cov(Z)) = vol[e(GS)] = abs(det(G))vol[e(S)],  (5)
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where C, = 7% /T (2), and I'(-) denotes the Gamma function. The volume
of the bounding hyper-rectangle of Z can be expressed compactly as:

~

vol[B(Z)] = H {max [Z;.] — min [Z;.]} = vol[B(GS)]. (6)

2.2. Preliminaries

In linear algebra, there are three types of elementary matrices 7, Fy and
Ej3, which are defined from the identity matrix I as follows:

1
El(Iu = Iv) = ’ (7)

1

where I,, (the uth row of I) is switched with I, (the vth row of I);

E2(hIU) = h (8>

where [, is multiplied by a non-zero scalar h # 0;

where k # 0 and I, multiplied by k is added to I,. For brevity of nota-
tion, hereinafter elementary matrices are of appropriate dimension for matrix
multiplications, and the parameters for the elementary matrices are omitted.
Left multiplication by E;, E5 and E3 correspond to reflection mapping, scale
mapping and shear mapping, respectively.



A convex hull of a set X = {X.1,---,X. 1}, where X.; € RY denotes a
point, can be defined as

L L
i=1 i=1

Roughly speaking, Conv(X) is the smallest convex set that contains X. For
a compact finite set X, if A is a linear mapping (equivalent to a linear matrix
in linear algebra), then Conv(A(X)) = A(Conv(X)) and vol[Conv(A(X))] =
abs(det(A))vol[Conv(X)] [24][25].

3. New Proof of Erdogan’s BCA

The new proof presented here assumes real-valued signals. The extension
to complex-valued signals is relatively straightforward, albeit cumbersome,
requiring the max|-] and min[-] operations to be carried out on the real-part
and imaginary-part of signals separately. This essentially treats complex-
valued signals as paired real-valued signals. In this section, we first analyse
the mixing matrix and the overall mapping. Then our proof is presented in
three steps. Finally, our remarks following our proof are presented.

3.1. Analysis of the Overall Mapping

Note that the geometric concepts B(S) and Conuv(S) are formulated by
viewing the matrix S as a set composed of the columns of S, ie. § =
{S.1,---,8S.4,--,5. 1}, where S. ; represents a column of the matrix S. This
view has been the basis of a scatter plot in the BSS problem [2]. We exploit
this view and geometric concepts to analyse the BCA contrast function.

Under P1), “compactness” implies that each source S;. attains a fi-
nite maximum and minimum; “nondegeneracy” implies that for each source
Si., its maximum is greater than its minimum. It follows that max[S;.| —
min[S;.] > 0,4 € {1,---,p}. Hence, substituting E; in (7) into (6),i.e.,
G = E;, we get for any F

vol [E(EIS)] = [ {max((£18):.] - min[(5:5);.]}

=1
= H{max[SLt} —min[S; |}, i=1,--- 0, ,u,---,p
= H{maX[S@;} —min[S;.]},i=1,-- ,u,- - v, ,p

~

— vol[B(S)).



Given abs(det(F;)) = 1, we can state more generally that
vol {E(Els)] — abs(det(Ey)) vol[B(S)], VE,. (10)

In the same way, substituting Es in (8) into (6), and noting abs(det(F»)) =
abs(h), we get

vol [E(EQS)] — abs(h) vol[B(S)] = abs(det(Es)) vol[B(S)], YEs.  (11)

Note that the elementary matrix has the property of full rank. Thus, if
we consider an elementary matrix as the simplest mixing matrix H or the
simplest overall mapping G, the equalities of (10) and (11) rely on P1) and
P3).

Under A1) and P1), the bounding hyper-rectangle B (S) is a nondegener-
ate p-dimensional hyper-rectangle with edges aligning with coordinate axes in
geometry. Under P3), G is a full-rank square matrix, and it follows that G is
invertible. Therefore, under G the bounding hyper-rectangle B (S) is mapped
to a nondegenerate p-dimensional hyper-parallelogram GB (S), whose edges
may not align with coordinate axes. We consider the constraints on G that
make “align with coordinate axes” preserved, in the following Lemma.

Lemma 1. Under an invertible linear G, if GE(S) 15 also a bounding hyper-
rectangle with edges aligning with coordinate axes, then there exist D and P
such that G = DP, where D is an invertible square diagonal matriz, and P
1s an invertible square permutation matrizx.

Proof. The p column vectors e; = [1,0,---,0]%,--- e, = [0,--+,0,1]7 de-
note p unit-coordinate vectors of RP, such that ej is the kth column of an
identity matrix I € RP*P. Since the edges of the bounding hyper-rectangle
are aligned with the coordinate axes, for any vertex V; of B(S), there exists
an edge m starting from V[ to another vertex V) that is parallel to ey,
k=1,---,p. Let a; denote the length of m, and we then have

‘/O[jk:akekv k=1,---,p, (12)

where a;, # 0 by P1).
Denote the images of Vy, Vi, -+, V, under G as Vol, Vll, e ,Vp/, which are
still the vertices of GE(S), given G is an invertible linear mapping by P3).

Then, the mapped edge
VoVie =GV Vi, E=1,--- ,p. (13)
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If GB (S) is also a p-dimensional bounding hyper-rectangle, which means
each edge of GB(S) is aligned with a coordinate axis, there exists e;, parallel

to V,V,, where i, € {1,---,p} is the index of the unit-coordinate vector,
i.e., the linear mapping G maps ej, to e;,. Denote b;, the length of the edge

’ !’
VE)VIm S0

—

V()Vk:bikeik, /{Z:]_, ,D. (14)
Since G is an invertible matrix, b;, # 0,Vk € {1,--- ,p}, and 41,43+ --i, is a
permutation of 1,2,--- | p.

Combining (12),(13) and (14) together, we have GVoV; = aiGe, =
b€, k =1,---,p, and hence we get Ge,, = %eik. Given ey is the kth
column of I, that is [e, e, -+ ,€,] = I, we have

biy 0 ]
al
b;
G:G[elae%'“ 7ep]: a;: [eip”' aeip]7
0 by
L ap 4

Let D denote the square diagonal matrix

o 0
b,
ag )
b;
L 0 a
and P denote the square permutation matrix [e;,---,e;]. Since G is an
invertible matrix, b;, # 0,Vk € {1,---,p}, and iy,is-- -4, is a permutation
of 1,2,---,p. Thus, G = DP where D is an invertible square diagonal
matrix, and P is an invertible square permutation matrix. O

3.2. New Proof of the BCA Contrast Function

Our proof of Erdogan’s contrast function (4) can be divided into three
steps: Stepl proves that if G is a perfect solution, then VOI[E(GS)] =
abs(det(G))vol[B(S)]; Step2 proves that if the condition in Stepl holds, then
G is a perfect solution; Step3 combines Stepl and Step2 together as proof of

the contrast function (4).



Proof. Stepl

Under P3), the overall mapping G is a full-rank square matrix, which
can be classified into two classes: the perfect solution denoted by G, and the
imperfect solution denoted by G. Due to unavoidable ambiguities of BSS,
if G is up to row permutation and scaling from an identity matrix, G is
classified as a perfect solution. It follows that any perfect solution G = DP
2], where D is an invertible square diagonal matrix, and P is an invertible
square permutation matrix.

According to Gauss-Jordan elimination, D can be simply factorized as a

Py
product of finite F, factors, D £ ] Ef, where the superscript fo denotes
fo=1
the foth factor, and F5 is a non-negative integer denoting the total number of

E, factors. Note that £ denotes simply factorized, which requires that every
elementary matrix factor impacts different entries of I. In other words, any
identity matrix and any elementary matrix should not be further factorized
to two or more elementary matrices.

Similarly, P can be simply factorized as a product of finite E; factors,

"y

P= ] E{l, where the superscript f; denotes the fith factor, and Fj is a
fi=1

non-negative integer denoting the number of F; factors. We can state more

generally that, if and only if Gis a perfect solution,
F
Ga[E i (15)
f=0

where the superscript f denotes the fth elementary matrix factor, and F' =
F) + F, denotes the total number of elementary matrix factors. If £} = 0
and F, =0, G =1.

By Gauss-Jordan elimination, the total number of simply factorized fac-
tors of G is finite. After finite transformations, the equality of (10) and (11)
will still hold, under P1) and P3). For the perfect solution G, substituting
(15) into (6), and simplifying sequentially by (10) and (11) together, we get

vol [E(GS)] = [T abs(det(E£)) T abs(det(E]))vol[B(S)]
fa=1 fi=1

— abs(det(D)) abs(det(P)) vol[B(S)] = abs(det(G))vol[B(S)].  (16)
Step2



Under P1), by the definition in (1) (2) and (3), E(S) is an intersection
of a lower half-space {q < u(S)} and an upper half-space {1(S) < q}. Thus,
B(S) is a compact convex set that contains S. Since the convex hull Conv(S)
is the intersection of all convex sets containing S, Conv(S) € B(S). With
the addition of A1): S contains the vertices of its bounding hyper-rectangle,
and these vertices are the maximum and minimum values of each row of S.
It follows that the vertices of B(S) are also the vertices of Conv(S). Hence,
the compact convex set B (S) is the smallest convex set that contains S, and
B(S) is also the convex hull of S. This means that under P1) and A1),

B(S) = Conv(S). (17)
By definition, B (GS) is a compact convex set that contains G.S, so

Conv(GS) C B(GS). (18)

Since G is a linear transformation, we have

GConv(S) = Conv(GS). (19)

Combining (17) (18) and (19) together, we get
GB(S) = GConv(S) = Conv(GS) C B(GS). (20)
Then, vol[GB(S)] < vol[B(GS)], where the ” = 7 is of interest. We use

contradiction to prove that if vol[GB(S)] = vol[B(GS)], then GB(S) =
B(GS).

Assume to the contrary that when vol[GB(S)] = vol[B(GS)], GB(S) #
B(GS). By (20), the contrary assumption follows that when vol[GB(S)] =
vol[B(GS)], GB(S) ¢ B(GS). Given GB(S) C B(GS), there must exist
a vertex V of B(GS) such that V ¢ GB(S). On one hand, there exists a
closed hyperball B(V,r) of radius r > 0 centred at V such that B(V,r) N
GE(S) = (), which follows that vol[B(V,r) N GEA?(S)} = 0. On the other
hand, V' is a vertex of the hyper-rectangle E(GS), so vol[B(V,r) ﬂ@(GS’)] >
0. This leads to vol[GB(S)] < vol[B(GS)], which is a contradiction of the
above assumption that vol[GB(S)] = vol[B(GS)]. Thus, we can prove if
vol[GB(S)] = vol[B(GS)], then GB(S) = B(GS).

Furthermore, if GB(S) = B(GS), then vol[GB(S)] = vol[B(GS)]. Hence,
we can conclude VOI[GB(S)] = VOl[é(GS)], if and only if GE(S) = E(GS).
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In addition, since G is an invertible linear mapping and B (S) is a convex set,
we have vol[GB(S)] = abs(det(G))vol[B(S)]. Hence, we have

abs(det(G))vol[B(S)] = vol[GB(S)] < vol[B(GS))], (21)

where the second ” = 7 holds if and only if GB(S) = B(GS). It follows
that abs(det(G))vol[B(S)] = vol[B(GS)], if and only if G(B(S)) = B(GS).
Moreover, GB(S) = B(GS) means GB(S) is a bounding hyper-rectangle.
By Lemma 1, for G such that abs(det(G))vol[B(S)] = vol[B(GS)], there
exists G = DP, which is a perfect solution. Therefore, we can conclude that
G such that vol[B(GS)| = abs(det(G))vol[B(S)] is a perfect solution.

Step3

In Stepl, (16) indicates a perfect solution G is such that vol[B B(GS)] =
abs(det(G ))VOI[E( S$)]. Conversely, Step2 proves that when vol[B(GS)] =
abs(det(G))vol[B(S)], G is a perfect solution. Thus, we can conclude that if
and only if G is a perfect solution that the second ” =7 of (21) will hold.
Combining (21) and (5) into (4), we have for any G

vol[g (GS)] o abs(det(G))vol[e(S)]  vol[(S)]

< = = ~, (22)
vol[B(GS)] ~ abs(det(G))vol[B(S)]  vol[B(S)]

where if and only if GG is a perfect solution that the first 7 = ” will hold. The
right side of (22) is independent of G, and only dependent on the sources.
In BSS, the sources have already existed and fixed when they are observed,
so (22) is a constant for any perfect solution G. Finally, one can conclude
that the contrast function (4) is maximized if and only if G is a perfect
solution. O]

3.3. Remarks for the New Proof

The above subsection presents an alternative proof of the contrast func-
tion (4) under P1), P3) and A1). Assumption P2) is not directly required
although it was stated by Erdogan [19]. We further analyse A1) and P2).
Let Vi), Vs and Vg, denote the set of vertices of E(S), Conv(S) and
Conv(S;,), respectively. For any real-valued vector S;., Vg, = [min[S; |, max[S;.]]",
where i € {1,---,p}. By definition, the set of vertices of B(S) is the
Cartesian product of the set of vertices of each source S;., i.e., VE(S) =
Vs, ® --- ® Vg, . Additionally, A1) means that Vi = Vs, s0o Vg =
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Vs, ®---®Vg, .. On the other hand, it has been shown that P2) is equiva-
lent to ext Sg = ext Sy, ®---®eat Sg , where ext S, denotes the extreme
points of the ith source support set, and ext Sg comprises all vertices of the
convex hull [17]. The support set is the set of points, for which the probabil-
ity density function is non-zero. For real-valued signals, the extreme point is
equivalent to the vertex. Therefore, A1) assumes that in the sample space,
the vertices of the bounding hyper-rectangle of S should be observed. In
contrast, P2) is a theoretical probabilistic assumption, and assumes that the
vertices have positive probability. Thus, A1) is actually only possible if P2)
is satisfied. Hence, the three assumptions P1), P3) and A1) imply the four
assumptions P1)-P3) and A1l).

Our proof has shown that elementary matrices and simple factorization
of G contribute to prove the contrast function (4). In this subsection, we
analyse the imperfect solution by these techniques. In contrast to (15), for
any imperfect solution G, the simply factorized product must contain at least
one Fj5 factor. Let F3 denote the number of E5 factors, and then we have

F
QéHEz’faie{17273}7F3>1u (23>
=1

where F = F, 4+ Fy+ F;. It should be remembered that “£” requires that an
identity matrix and an elementary matrix should not be further factorized
to two or more elementary matrices. The simply factorized product of G is
not unique, and a typical way to simply factorize is factorizing as the steps
of Gauss-Jordan elimination.

Remark 1. Under assumptions P1), P3) and A1), we can state that

~ ~

vol[B(E3S)| > abs(det(E3))vol[B(S)], VEs.

Proof. Recalling the definition of E3 in (9), we get

Su,: + kSv,:

S,
From the above equation, F3 only affects the uth row of S, so we pay attention
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to the uth row in the following. Substituting (9) into (6), we get
VOI[B\(E;),S)] = H {max[(E3S);.| — min[(E3S);.|} (24)
= {max[(E39)y, — min [(E535),.]} H {max[S;.] — min[S;.]}.
i#u

Under A1) that S contains the vertices of its bounding hyper-rectangle,
and as shown in Fig.1, we can be assured the following samples of S (columns
of S) exist:

me = [ e 7maX[Su,:]7 e 7maX[S'U,:]7 T ]T € S7
an = [ U 7maX[Su,:]7 U amin[Sv,:]a e ]T € S,
Vnn - [ te 7min[Su,:]7 e 7min[Sv,:]7 T ]T S Su
Vim =1[ --- ,min[S,.], --- ,max[S,.], --- ]* €8S.
max [(E39),,:] — min [(E5S),,] (25)

4

max|[S,.] + k& min[S, .| — min[S, .| — k max[S,.],k <0
= max[S,,] — min[S, ] + abs(k){max[S, ] — min[S,.]}.

B {maX[Su ] + k max[S,.] — min[S,.] — k min[S, .|,k >0

Under P1), max[S;.] — min[S;.] > 0, ¢« € {1,---,p}. Additionally, the
definition of E3 implies k£ # 0. Hence, (25) leads to

max [(E39),,:| — min [(E5S),,.] > max[S,.] — min[S,.]. (26)

5

Substituting (26) into (24), and given abs(det(FE3)) = 1, we can state more

~

generally that vol[B(E3S)] > abs(det(Es))vol[B(S)]. O

Fig.1 illustrates Remark 1 as p = 2, for visibility and without loss of
generality. As shown on the left side of Fig.1, the region contoured by the
bounding hyper-rectangle (the black rectangle) is the same as the convex
hull (the green rectangle), which shows that under A1) B(S) = Conv(S)
and vol[B(S)] = vol[Conv(S)]. A shear mapping Ej reshapes the convex
hull (the green rectangle) on the left side to another convex hull (the green

parallelogram) on the right side, and the volume of the two convex hulls are
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o :“
Sl
Ay
Voo g EsVon (5, EaVinn

Figure 1: Illustration of Remark 1. The blue dots represent the samples, the regions
enclosed by the black rectangles represent the bounding hyper-rectangles, and the green
regions represent the convex hulls. On the left side, S contains four vertices expressed by
black circles. On the right side, the green parallelogram represents the reshaped bounding
hyper-rectangle by E3, and also is the convex hull of the mapped samples.

the same, i.e., vol[Conv(S)] = vol[Conv(Es3S)]. Note that on the right side,
corresponding edges are tilted with a shear angle ¢ by Ej3, so these orthogonal
edges become oblique edges. The shear factor k is the cotangent of ¢. Due to
the shear angle ¢, the maximum and minimum operations of the bounding
hyper-rectangle (the black rectangle) expand the parallelogram Conv(E3S)
(the green parallelogram) to a new bounding hyper-rectangle B (E3S) (the
black rectangle). Then, vol[B(E3S)] > vol[Conv(E3S)] = vol[B(S)], as
shown that the bounding hyper-rectangle (the black rectangle) on the right
side is larger than that on the left side.

From a geometric point of view, since the edges of the bounding hyper-
rectangle are parallel to the coordinate axes, any edge of the bounding hyper-
rectangle is orthogonal to other edges that are connected at the same ver-
tex. The shear mapping FEj3 tilts the corresponding edges from orthogonal to
oblique, while the reflection mapping F; and the scale mapping FE, preserve
the orthogonality of each pair of edges. These geometric features lead to the
inequality of Remark 1 and the equalities of (10) and (11). Combining with
the simple factorization of G in (15) and (23), the inequality of (21) can be
interpreted by the geometric features of elementary matrices.

4. Further Analysis

4.1. Analysis of Assumptions

In this subsection, we discuss the constraints in practical applications re-
quired by the four assumptions. P1) requires the amplitude of each source
varying over a bounded and closed range. Realistic sources randomly vary in
time or space over certain ranges, for example audio signals. Therefore, as-
sumption P1) can be regarded as weak. In fact, many other BSS algorithms
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also require P1) implicitly. For instance, ICA algorithms use the higher or-
der statistics (HOS)? of the sources, which implies the HOS of the sources is
bounded. It follows that the sources are bounded, so ICA algorithms also as-
sume P1) implicitly. Assumption P3) is a standard BSS assumption. Thus,
we turn our attention to the assumptions A1) and P2).

In [19], the BCA algorithm was shown to have the potential advantage
of performance improvement for short data records, and this advantage was
supported by numerical experiments of artificial sources with Copula-t dis-
tributions of 10 sources and 5000 samples. The sources with Copula-t distri-
butions are continuous variables, and this is a good example to evaluate the
BCA algorithm.

However, we consider the other aspect of the BCA algorithm from the
constraint of A1). For short records of continuous variables, A1) is a strin-
gent assumption, in particular for tailed distributions?. Firstly, the vertex
number of the bounding hyper-rectangle grows exponentially with the num-
ber of the sources p, that is 2P. Secondly, A1) implies that each edge of the
convex hull is orthogonal to other edges connected with the same vertex, as
the name “rectangle” suggests. For tailed distributions, the probability of
each source attaining the extreme points is low, so the probability of more
sources attaining their extreme points at the same sample are much lower.

Let us take audio signals as an example to analyse A1l). As shown in
Fig.2, for two pairs of audio signals (p = 2), the black rectangles represent
the bounding hyper-rectangles which are external to the respective convex
hulls, and neither the pair of speech signals® nor the pair of music solos®
contains any vertex of their bounding hyper-rectangles. Even if the length
of audio sources are increased, A1) is still stringent. To demonstrate this,
we take one pair of 20-minute Obama talks” which are shown on the left side
of Fig.3, and one pair of 9-minute music solos® which are illustrated on the
right side. Similar to Fig.2, neither the pair of speech signals nor the pair

3HOS refers to functions which use the higher power of a sample. The third and higher
moments, as used in the skewness and kurtosis, are examples of HOS.

4Roughly speaking, a tailed distribution is a probability distribution with large skew-
ness or kurtosis, compared to the normal distribution or the exponential distribution.

STIMIT database

Shttps://archive.org/details/solo-piano-7

Thttp:/ /www.obamadownloads.com /obama-mp3s.html

S8http://www.mfiles.co.uk/classical-mp3.htm
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5-Second Speech 5-Second Music Solo

Speech 2
MusicSolo 2

Speech 1 MusicSolo 1

Figure 2: Scatter plot of two pairs of realistic audio signals. Two speech signals sampled
at 16 KHz for 5 s are on the left side, while two music solos sampled at 44.1 KHz for 5 s
are on the right side. The blue dots represent samples, the black rectangles represent the

corresponding bounding hyper-rectangles, and the green lines with green circles represent
the corresponding convex hulls.

of music solos contains any vertex of their bounding hyper-rectangles. Since
A1) requires the sources to contain all of vertices, and the vertex number
grows exponentially with the number of the sources, A1) can be considered
stringent even for long duration of audio sources.

20-Minute Speech 9-Minute Music Solo
Sy [

ObamaTalk 2
MusicSolo 2

ObamaTalk 1 ' MusicSolo 1

Figure 3: Scatter plot of long audio signals. Two speech signals sampled at 24 KHz
for 20 m are on the left side, while two music solos sampled at 44.1 KHz for 9 m are
on the right side. The blue dots represent samples, the black rectangles represent the

corresponding bounding hyper-rectangles, and the green lines with green circles represent
the corresponding convex hulls.

Although the pairs of audio signals are simplistic, these represent the
fundamental signals which posed the BSS problem as the so-called ”cocktail
party problem” and audio signals have been one of the main applications of
BSS over the past three decades.
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Vmﬂ E 3 Vmﬂ

Figure 4: A simple example that E3 (shear mapping) makes the bounding hyper-rectangle
of tailed distributions shrink, given A1) is unsatisfied. The blue dots and the black rect-
angles represent the samples of the corresponding bounding hyper-rectangles, respectively.
On the left side, S only contains two vertices Vi, and V., expressed by black circles.
On the right side, F3V,,,, and FE5V,,, are the respective vertices mapped by Fs5 left mul-
tiplication, and the green parallelogram is the bounding hyper-rectangle reshaped by FEj.

On the basis of the above discussion, it is reasonable to assume that for
BSS problems on tailed distributions, P1) and P3) are satisfied, but A1)
is unsatisfied. In such conditions, (10) and (11) still hold, and it follows
that (16) still holds. Therefore, even though A1) is unsatisfied, under P1)
and P3) the contrast function (4) is preserved for the perfect solution G.
Comparing (15) and (23), we can conclude that the key difference between
the perfect solution and the imperfect solution is the Ej3 factor.

For Fs5 given A1) is unsatisfied, Remz/x\rk 1 does not hgld. It follows that

there likely exists an Fj3 such that vol[B(E3S)] < vol[B(S)]. For such a
condition, since abs(det(Es3)) = 1, we get

vol[é(EgS)] _ abs(det(tjg))vol[g(S)] - vol[{(S)] (27)
vol[B(E3S)] vol[B(E3S)] vol[B(.S)]

By comparing (27) and (22), the G that is obtained by maximizing (4) will
contain at least one Ej3 factor, and thus that G is an imperfect solution. As
a result, the BCA algorithm based on (4) will fail, given such Ej exists.

Given A1) is unsatisfied, from a geometric point of view, if there exists
an Fj3 such that it makes the bounding hyper-rectangle of S shrink, the
G obtained by maximizing (4) will be an imperfect solution. For visibility
and without loss of generality, we provide a simple two dimensional (p = 2)
example to demonstrate that for tailed distributions there likely exists an Ej
that makes vol[B(S)] shrink. Consider two outliers V,,,, = [~2¢, 2¢|T, Vin =
[2¢, —2¢|T, ¢ > 0, representing the tails of an otherwise uniform distribution
in the range [—c, ¢]. It follows that S only contains two out of the four vertices
of its bounding hyper-rectangle. As Fig. 4 shows, the E3 with k£ = 0.3 makes
the bounding hyper-rectangle shrink from 16¢* to 11.2¢2.
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The existence of such an Fj3 is determined by the distribution of sources.
For tailed distributions, e.g., audio signals, the performance of BCA contrast
function (4) is likely to suffer, since A1) is likely to be unsatisfied.

Based on our new proof, we further analyse that the instantaneous BCA
algorithm is likely to suffer for tailed distributions, for instance audio sig-
nals, because A1) is a stringent assumption for continuous sources of tailed
distributions. It was briefly stated by Erdogan in conclusion [21] that the
performances of the convolutive BCA algorithm is likely to suffer for tailed
distributions. Our analysis indicates this limitation is also for the originally
instantaneous BCA and is likely to extend to other cases which rely on A1).
Although the BCA algorithm is termed as “bounded”, the key assumption
of BCA in practical applications is A1) (or associated P2)), rather than the
bounded assumption P1).

H BCA assumptions ‘ ICA assumptions H
Bounded P1)(explicitly) Bounded P1)(implicitly)
Determined P3) Determined P3)
Geometric A1) Stochastic (Statistical Independence)

Table 1: Assumptions of BCA and ICA

Although ICA algorithms do not explicitly require that the sources are
bounded, ICA algorithms use HOS and calculate HOS based on samples.
Hence, ICA algorithms require that HOS of the sources are bounded. It fol-
lows that ICA algorithms implicitly assume the sources are bounded. In [19],
BCA was considered as a more general approach, covering ICA as a special
case for bounded sources. However, we consider that BCA is established
based on the geometric assumption A1), while ICA is established based on
the stochastic assumption (Statistical Independence), in addition to the
bounded assumption P1) and the determined assumption P3).

Fundamentally, BCA and ICA are different from the geometric assump-
tion A1) and the stochastic assumption Statistical Independence, as
shown in Table 1. As Fig.5 illustrates, there is an intersection where A1)
is unsatisfied and independent. Some audio sources can be considered inde-
pendent but not satisfying A1), which will be shown in the next subsection.
Therefore for bounded sources, BCA can be considered as a complementary
approach of ICA, rather than a more general approach than ICA.
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Dependent sources

Independent sources

Sources satisfy A1)

Sources do not satisfy Al)

Figure 5: Illustration of the sources divided by the geometric assumption A1) and the
stochastic assumption Statistical Independence. The sources within the green oval
satisfy A1), while the sources within the red oval satisfy Statistical Independence.

4.2. Numerical Experiments

In order to investigate our theoretical analysis, we performed simulations
on audio sources. We evaluated the BCA algorithm [19] using the MATLAB
code® provided by Erdogan [19]. Benchmarks were ICA algorithms: FastICA
[11], JADE [9] and SOBI [7]. One evaluation criterion is a classical BSS
performance index (PI) for the overall mapping G = W H [26] as

1 ~ (N~ GG )P
PIG) = m{z (; maxy G0, b _1>

=1

~ |G, )]
+Z<Zmaxk|G( )|2_1)}'

7

The other criterion is the sum square error (SSE) for the separated sources

27] as

2

(WY)s,

K3

(WY )z |

SSE(S,WY) =

where 7 = (my,...,7m,)", and [[, = {7 € R”" |m # 7;,Vi # j} is the
set of all permutations of {1,2,...,p}. The permutation ambiguity is re-
solved by the Hungarian algorithm [28] and the authors offer MATLAB

9http://aspc.ku.edu.tr/beasoftware. html
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source code '* online. The scaling ambiguity is normalized by Euclidean
norm like S;./||S;.||. Directly, for the PI and SSE indices the smaller they
are, the better the separation quality.

Four experiments were conducted on realistic speech sources and mu-
sic sources separately. In each experiment, 500 independent runs were per-
formed and averaged. For each independent run, the observed signals Y are
artificially generated by randomly selected sources and the mixing matrix
H, which was generated randomly from a zero-mean unit-variance normal
distribution.

5-Second Speech

0
-10 - - B -
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Z .20

o
a0l T
Ty ) S——— it —— min—

2 3 4 5 6
The number of the sources p
0 - . - .
- BCA

_.-10 FastiCA

g ol -

L
-30 [ ———— T o
40 B

2 3 4 5 6

The number of the sources p

Figure 6: Mean SSE and PI for 5-second speech sources by the number of sources p

The first experiment was conducted on 50 speech segments from the
TIMIT dataset, which were sampled at 16 KHz and truncated for 5 seconds.
Fig.6 compares, the performance of the three ICA algorithms and BCA al-
gorithm, by the PI and SSE for different number of sources p = 2,...,6.
Although the performance of FastICA was worse than the other two ICA
algorithms, the three ICA algorithms all achieved satisfactory separation
performance. In fact, the determined instantaneous BSS problems on speech
sources have been well-developed [2]. However, the separation performance
of the BCA algorithm suffered. This result supports our theoretical analysis
in the Section 3.1.

Ohttp://itakura.ite.tul.cz/zbynek /tddeconv.htm
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Figure 7: Mean SSE and PI for 10-second music solos by the number of sources p

The second experiment evaluated the PI and SSE on 50 piano'! and
violin'? segments, which were sampled at 44.1 KHz and truncated for 10
seconds. Fig.7 illustrates the PI and SSE of 10-second music solos separated
by the BCA algorithm against the ICA benchmarks for different number of
the sources p = 2,...,6. We can also see that the three ICA algorithms
outperformed the BCA algorithm on the two criteria, although there were
performance gaps between the ICA algorithms. The performance gaps be-
tween the BCA algorithm and the worst benchmark are all approximate 10
dB. This result also underpins our theoretical analysis in the above subsec-
tion.

Furthermore, to study the separation performance for longer music sources,
we conducted the third experiment on the 50 piano and violin segments trun-
cated for 100 seconds. Fig.8 depicts the PI and SSE of 100-second music solos
separated by the BCA algorithm against benchmarks for different number
of sources p = 2,...,6. We can also see that the three ICA algorithms also
outperformed the BCA algorithm on the two criteria. Compared with the
separation performance of BCA for 10-second music solos as shown in Fig.7,
there was not any substantial improvement for the separation performance

Uhttps://archive.org/details/solo-piano-7
2http:/ /www.tasminlittle.org.uk
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Figure 8: Mean SSE and PI for 100-second music solos by the number of sources p

on tenfold length music solos.
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Figure 9: Mean SSE and PI for 100-second speech sources by the number of sources p
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Similarly, we conducted the fourth experiment on longer speech sources.
65 speech segments'® which were sampled at 24 KHz and truncated for 100
seconds. Fig.9 depicts the PI and SSE of 100-second speech sources separated
by the BCA algorithm against benchmarks for different number of sources
p = 2,...,6. The performance gaps between the BCA algorithm and the
worst benchmark are also significant. Compared with the separation perfor-
mance of BCA for 5-second speech sources as shown in Fig.6, there was not
any substantial improvement for the separation performance on twenty-fold
length speech sources.

To conclude, the four numerical experiments show that the ICA algo-
rithms outperformed the BCA algorithm. These results support our view
that the BCA algorithms based on A1) will suffer for continuous tailed-
distributed sources, and there are some bounded sources that can be consid-
ered independent but not satisfying A1), e.g. audio sources. We have taken
audio signals as examples, but the BCA algorithms are also likely to suffer
on other tailed distribution signals, such as electroencephalography (EEG)
signals, and magnetoencephalography (MEG) signals.

5. Conclusion

This paper presents a new proof of Erdogan’s BCA contrast function
(4), based on the basic principles of linear algebra and convex geometry.
The analysis framework derived from elementary matrices and Gauss-Jordan
elimination can be potentially useful in other settings of BSS. Moreover,
the link between the key assumptions A1) and P2) is provided. This paper
analyses that A1) can be considered as a stringent assumption for continuous
sources with tailed distributions, and that A1) is stringent in some practical
applications, where the performances of the BCA contrast function are likely
to suffer. For example, audio sources can be considered are bounded and
independent but not satisfying A1). Numerical experiments on audio sources
support our analysis. Hence for bounded sources, BCA can be considered as
a complementary approach to ICA, not a more general approach than ICA.

Lhttp://www.obamadownloads.com/obama-mp3s.html
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