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Highlights

• We propose a method to synthesise visual speech from linguistic features

• Best performance is found with dynamic visemes and an LSTM many-

to-many architecture

• Using subjective tests to compare to other techniques, the proposed

method produces more natural animations
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Synthesising visual speech using dynamic visemes and

deep learning architectures

Ausdang Thangthai, Ben Milner∗, Sarah Taylor

School of Computing Sciences, University of East Anglia, UK

Abstract

This paper proposes and compares a range of methods to improve the

naturalness of visual speech synthesis. A feedforward deep neural network

(DNN) and many-to-one and many-to-many recurrent neural networks (RNNs)

using long short-term memory (LSTM) are considered. Rather than using

acoustically derived units of speech, such as phonemes, viseme representations

are considered and we propose using dynamic visemes together with a deep

learning framework. The input feature representation to the models is also

investigated and we determine that including wide phoneme and viseme con-

texts is crucial for predicting realistic lip motions that are sufficiently smooth

but not under-articulated. A detailed objective evaluation across a range of

system configurations shows that a combined dynamic viseme-phoneme speech

unit combined with a many-to-many encoder-decoder architecture models

visual co-articulations effectively. Subjective preference tests reveal there to

be no significant difference between animations produced using this system

and using ground truth facial motion taken from the original video. Further-

∗Corresponding author
Email address: b.milner@uea.ac.uk (Ben Milner)

Preprint submitted to Computer Speech and Language November 16, 2018



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

more, the dynamic viseme system also outperforms significantly conventional

phoneme-driven speech animation systems.

Keywords: Talking head, visual speech synthesis, deep neural network,

dynamic visemes

1. INTRODUCTION

Talking heads that are animated automatically by computers are becom-

ing increasingly commonplace in a range of scenarios. Animation of characters

in films has typically been performed either by artists who produce speech

animations manually or by using motion capture with a human actor. The

quality of the animation is of primary concern which is why such methods are

employed, despite their time and expense. Being able to automate this process

and still produce suitably realistic animations would save much effort and

is therefore the focus of this work. Previously, automated systems have not

generally been considered good enough for commercial applications, although

hybrid approaches can be used where automatically generated animations are

refined by artists. Virtual characters in computer games and as intelligent

assistants are another application for talking heads and are characterised by

the animations needing to be generated automatically from speech and in

real-time. In these contexts more realistic character animation would lead to

better user experiences.

Underlying these applications is visual speech synthesis which we consider

to be the process of transforming a linguistic representation (e.g. word

sequence) or acoustic representation (e.g. audio speech signal) into a sequence

of visual speech parameters that can subsequently be used to animate a talking
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head. It is the aim of this work to improve visual speech synthesis to produce a

more accurate sequence of visual speech parameters and subsequently a more

natural animation. Specifically, this paper explores the application of deep

learning approaches, that have been successful in audio speech processing, to

now predict visual speech features from a linguistic input with the aim of

producing natural speech animations. We first propose using a joint speech

unit that now combines phonemes with visual speech units made from dynamic

visemes instead of previously used (static) visemes. Second, we explore a

range of low-level (frame-based) features that include phoneme and viseme

information and subsequently examine how these effect the resulting sequence

of visual parameters. Third, we explore and compare different deep learning

models that include feedforward neural networks and recurrent structures

using LSTMs. Specifically, we consider one-to-one, many-to-one and many-to-

many architectures to find which gives best performance when integrated with

different linguistic features and speech units. We also explore the effectiveness

of objective measures of visual feature prediction and observe that global

variance is a good predictor of the subjective naturalness of animations, when

considered alongside the more conventional measures of correlation and mean

squared error.

The paper is organised as follows. Section 2 describes related work,

while Section 3 explains the phoneme, static viseme and dynamic viseme

speech units. Section 4 introduces the hierarchical linguistic input features

that are extracted from the input text and the output AAM visual features.

The feedforward and recurrent neural network architectures are explained

in Section 5. Section 6 presents the results of optimisation and analysis on
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the effect of different speech units, linguistic features and model structures.

Finally, Section 7 presents results of practical evaluations using objective

measurements and subjective preference tests to analyse the naturalness of

the resulting animations from a range of system configurations.

2. RELATED WORK

Existing methods of automatic speech animation can be classified loosely

as key-frame interpolation (Cohen and Massaro, 1994; Ezzat et al., 2002),

concatenative (Bregler et al., 1997; Taylor et al., 2012; Mattheyses et al.,

2011) or model-based (Anderson et al., 2013; Fan et al., 2015a; Kim et al.,

2015). Key-frame interpolation involves transitioning between pre-defined lip

shapes, for example a pose placed at key phoneme onsets. Concatenative or

sample-based systems stitch together short facial video clips from a database

to create an animation and can be considered similar to the unit selection

method of audio speech synthesis (Hunt and Black, 1996). Model-based

methods use a form of generative statistical model of the face or lips with

the visual speech synthesiser generating a sequence of model parameters that

drives the animation. This is similar to audio speech synthesis methods

that generate acoustic parameters to drive models of speech production (Zen

et al., 2009). Whilst concatenative methods have the potential to produce

photo-realistic speech animation, they are limited by the size and coverage

of the database. Model-based methods are more flexible as they are able

to produce deformations that do not appear in the training data, and are

therefore able to generate richer animations. For this reason, we take the

model-based approach in this work.
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Visual speech synthesisers can be driven from a text input or from

an acoustic input. From a text input, a linguistic representation (such as

phoneme labels and context) is first created which is fed into a previously

learnt model that produces a sequence of visual speech parameters (Kim

et al., 2015). If required, the same linguistic features can be used to create an

audio speech signal (Zen et al., 2009), which can then be combined with the

visual speech parameters to give audio-visual speech synthesis. In situations

where an acoustic speech signal is already available, and an accompanying

visual synthesis is required, this can be achieved either by decoding the audio

speech into a linguistic representation using an automatic speech recogniser,

or by learning a mapping from acoustic features (e.g filterbank) to visual

features (Ding et al., 2014; Taylor et al., 2016). In this work, we take the

approach of using a linguistic representation to form the input to the visual

speech synthesiser. A key challenge with this approach is deciding upon the

basic unit of speech that is presented to the mapping model. A phonetic

representation is the logical approach taken by audio speech synthesis systems

since a phoneme describes a distinctive speech sound, but for visual synthesis

there is no equivalent unit. A large number of different viseme sets have been

proposed to define groups of distinctive lip shapes, but no definitive grouping

has yet been established (Lidestam and Beskow, 2006; Parke and Waters,

1996). Furthermore, when visemes are used as the units for visual synthesis,

the animation has often been found to lack realism (Taylor et al., 2012).

Mapping a sequence of visual speech parameters from a phoneme or

viseme sequence is a non-trivial problem that requires sophisticated models

to produce a suitably realistic output. Building on their success in modelling
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audio speech for audio speech recognition and synthesis applications, hidden

Markov models (HMMs) have been shown to be an effective way to model

visual speech and have been used for visual speech synthesis (Luo et al.,

2014; Deena, 2012; Schabus et al., 2014; Thangthai and Theobald, 2015).

However, recent studies have shown that HMMs are limited by their Gaussian

mixture model-based states (with the assumption of diagonal covariances)

and by the decision tree clustering of visual features within states (Watts

et al., 2016). Mirroring developments in audio speech processing, deep neural

network (DNN) methods for visual speech synthesis have been proposed and

overcome some of these problems. Feedforward DNNs are able to model high

dimensional and correlated feature vectors and learn the complex non-linear

mappings between input linguistic features and output visual parameters

which makes them well suited to visual speech synthesis. Input phoneme

labels have been mapped successfully to active appearance model (AAM)

visual speech parameters using DNNs to produce both neutral looking speech

(Taylor et al., 2017) and expressive speech (Filntisis et al., 2017; Parker

et al., 2017). However, these feedforward networks do not consider fully the

temporal nature of the speech signal. This temporal dependency can be

modelled by using a window of frames as input to the model, but ultimately

the DNN assumes that input features are sampled independently. Smoothing

the outputs can improve the appearance of the predicted animation, but

a better approach is to model the temporal dynamics explicitly. Instead,

recurrent neural networks (RNNs) can be more effective with the output

dependent not only on the current input vector but upon a sequence of input

vectors. Furthermore, bidirectional RNNs (BRNNs) (Schuster and Paliwal,
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1997) have been applied successfully to audio speech synthesis and model

both past and future input features. However, when attempting to model long

span relationships using RNNs, propagated gradients can become very small

and vanish. The long short-term memory (LSTM) model has been shown to

avoid this by using a series of gates to control the flow of information and

when combined with an RNN is an effective architecture (Hochreiter and

Schmidhuber, 1997).

3. SPEECH UNITS

In audio text-to-speech synthesis the underlying unit of speech is normally

derived from a phonetic unit, such as a phoneme, diphone, triphone or

quinphone (Hunt and Black, 1996; Zen et al., 2009). For visual speech

synthesis an underlying speech unit is still required although there is no

clearly defined visual equivalent to a phoneme. Previous work in visual

speech synthesis has continued to use phonemes as the speech unit while other

approaches have employed static visemes (Ezzat et al., 2002). In this work,

both approaches are evaluated and we also propose using dynamic visemes

which have been shown to generate more realistic speech animation (Taylor

et al., 2012).

3.1. Phonetic units

Using phonemes as the basic unit of speech is well established in audio

speech synthesis and has also been effective in visual speech synthesis within

both HMM and RNN architectures (Schabus et al., 2014; Thangthai and

Theobald, 2015; Fan et al., 2015b; Ding et al., 2014). From a text input, it

is straightforward to obtain a phoneme sequence using a lexicon along with

8



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

associated durational information. If the input is audio then a sub-word

speech recogniser, for example based on triphones, can provide a time-aligned

phoneme sequence (Brugnara et al., 1993). In this work the set of 39 ARPAbet

phonemes is used (Shoup, 1980).

3.2. Static viseme units

Visemes have traditionally been defined as groups of phonemes that are

expected to exhibit visually similar lip shapes. Their definition is much more

subjective than that of phonemes and a number of viseme sets have been

defined and contain from 3 (Lidestam and Beskow, 2006) to 18 (Parke and

Waters, 1996) units. Phonemes are typically mapped to visemes through

a simple many-to-one mapping which is insufficient to model the complex

relationships between visual gestures and the resulting speech sounds (Taylor

et al., 2012). A small number of studies have proposed many-to-many map-

pings by clustering phonemes in context (De Martino et al., 2006; Mattheyses

et al., 2013), yet to date there exists no definitive set of visemes or an agreed

mapping from phonemes to visemes. Thus, the definition of a viseme is

informal and as a unit of speech for computer facial animation it is poorly

defined. In this work 24 visemes are used as the static viseme speech units

and are taken from Fisher’s phoneme-to-viseme mapping (Fisher, 1968).

3.3. Dynamic viseme units

In addition to static visemes this work considers dynamic visemes (DVs)

as a speech unit (Taylor et al., 2012). Dynamic viseme units were introduced

specifically for visual speech processing and represent groupings of similar

lip motions. This is opposed to static visemes in which lip poses, that are
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associated with phonemes, are grouped on their visual similarity. Dynamic

visemes are extracted with a data-driven approach using only visual informa-

tion to determine an atomic set of distinctive and reliable lip motions that

occur during natural speech. As such, dynamic viseme boundaries are not

tied to the boundaries of the underlying phonemes, and DVs often extend

across several phonemes. Dynamic visemes better represent visual speech as

each viseme serves a particular function, and so substituting one dynamic

viseme for another changes the meaning of the utterance visually, which is an

analog to a phoneme. The dynamic nature of DVs means that coarticulation

effects are modelled explicitly.

3.3.1. Training a set of dynamic visemes

A set of dynamic visemes is learnt by clustering visual speech parameters,

which in this work are active appearance model (AAM) features (see Section

4.2). AAM sequences extracted from training data are first segmented into a

set of visual gestures by identifying points where AAM acceleration coefficients

change sign which indicates instances where visible articulators (lips, jaw,

etc) change direction. This segmentation produces a set of N variable length

and non-overlapping visual gestures, Ψ = {ψ1, . . . ,ψN}, each comprising a

sequence of AAM vectors. Clustering is then applied to produce a set of V

dynamic visemes, Φ = {v1, . . . , vV }, each representing a specific motion of

the lips (Taylor et al., 2012).

3.3.2. Generating dynamic viseme sequences

One challenge with using DV labels as input to a visual speech synthesiser

is how to derive them from the linguistic input since they have a many-to-many
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mapping to phonemes. We consider two approaches in this work. The first

approach is to use reference DVs which provide a reliable basis for evaluation

when optimising and analysing various input feature representations and

models, as reported in Section 6. The second approach is to use DV sequences

that are generated automatically from the linguistic input which is necessary

in real applications, and evaluated objectively and subjectively in Section 7.

The procedures for obtaining reference and automated DV sequences are now

discussed.

Generating reference dynamic viseme sequences - a reference dynamic viseme

sequence is obtained by first segmenting a sequence of AAM vectors that have

been extracted from validation or test sentences, with the same procedure as

used in training, described in Section 3.3.1. Each of the resulting segments is

then compared to the set of the segments, Ψ, extracted from the training data,

using a Euclidean distance. The dynamic viseme class, vi, associated with

the closest segment is then assigned as the DV label for that segment (Taylor

et al., 2012). To determine the number of dynamic viseme classes, V , a series

of animations was generated using reference dynamic visemes extracted from

the validation test set using different sizes of viseme sets. Examination of the

animations found that using V=160 was a good trade off between animation

quality and number of classes and aligns with other studies (Taylor et al.,

2012).

Automatically generated dynamic viseme sequences - in the practical scenario

of generating a dynamic viseme sequence automatically from a word or

phoneme sequence input we propose utilising a phoneme-based visual speech

synthesiser. This process is shown as the first two stages of the overall
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system architecture in Figure 6. After converting the sequence of words

to be synthesised into a phoneme representation, a phoneme-based visual

speech synthesiser is used to generate a sequence of AAM vectors. As

is shown in later chapters, we have developed a range of deep learning

architectures for phoneme-based visual speech synthesis and employ the best

performing of these (from analysis in Section 7 we use systems DNN PH

or LSTM PH) to synthesise AAM vectors from the phoneme representation.

The synthesised AAM vector sequence is then segmented and dynamic viseme

labels assigned to each segment following the procedure used for generating

reference dynamic viseme sequences. An iterative approach was also explored

whereby the resulting AAM sequence produced from visual synthesis using

a joint phoneme-dynamic viseme system was re-segmented to create a new

sequence of dynamic visemes. However, this was found to give no significant

improvement in performance.

4. INPUT AND OUTPUT FEATURES

The purpose of the input features is to represent the words to be synthe-

sised in a suitably informative and discriminative linguistic way that enables

a sequence of output visual features to be produced by the model. The input

word sequence needs to be decomposed into lower level features that can be

based on phoneme, viseme or dynamic viseme representations or a combi-

nation of these. Initial testing established that including a wide temporal

context within the features is important for synthesising realistic sequences

of output visual features. This motivated us to experiment with using a set

of hierarchical linguistic features that represent input information from the
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frame-level through to the utterance level and that consider both phoneme

and viseme speech units.

4.1. Hierarchical contextual input features

A set of hierarchical features is extracted from an input word sequence.

These hierarchical features exist at varying acoustic, visual and linguistic levels

from phoneme/viseme information, through to segment, syllable, word, phrase

and utterance levels. For HMM-based visual speech synthesis, this level of

contextual labelling is sufficient. However, for training DNN or RNN models

it is necessary to provide lower-level, frame-based features to create smooth

output feature trajectories (this is demonstrated in Section 6.1). In practice

it is likely that many contextual factors affect visual articulation, including,

for example, phonetic context and number of syllables in the current word

(Tokuda et al., 2002). This work investigates a number of such factors and

ascertains the effect of frame, segment, syllable, word, phrase and utterance

level features on the synthesised visual features. Table 1 summarises the set

of hierarchical input features for phoneme units (PH) and for viseme units (V)

(both static and dynamic visemes), which are now explained in more detail.

4.1.1. Frame level features

Frame level features represent the lowest linguistic level and contain

both instantaneous and contextual information. Several of these features have

been found to be effective in other works and we also introduce further frame

level features, in particular to represent viseme contexts. For animation, this

work requires an output visual frame rate of 29.97 frames per second and

therefore input features are produced at that same frame rate. From phoneme

13
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varying levels, showing elements for each feature.

Level Feature PH V Elements

Frame

Phoneme context × M × P binary
Position in phoneme × {s, m, e}
Number of frames in phoneme × Integer
Forward phoneme span × Integer
Acoustic class × 57-D binary
Viseme context × M × V binary
Position in viseme × {s, m, e}
Number of frames in viseme × Integer
Forward viseme span × Integer

Segment
Quinphone context × 5× P binary
Quinviseme context × 5× V binary
Number of phonemes in viseme × Integer

Syllable

Position of phoneme in syllable × {s, m, e, single}
Number of phonemes in syllable × Integer
Position of viseme in syllable × {s, m, e, single}
Number of visemes in syllable × Integer

Word
Position of syllables in word × × {s, m, e, single}
Number of syllables in word × × Integer

Phrase

Position of syllables in phrase × × {s, m, e, single}
Number of syllables in phrase × × Integer
Position of words in phrase × × {s, m, e, single}
Number of words in phrase × × Integer

Utterance

Position of syllable in utterance × × {s, m, e, single}
Position of word in utterance × × {s, m, e, single}
Position of phrase in utterance × × {s, m, e, single}
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or viseme transcriptions, at a given time frame, t, the current phoneme is

given as pt ∈ θ and the current viseme is given as vt ∈ Φ, where θ and Φ

represent the set of P phonemes and V visemes, respectively.

Contextual information is included by considering information across

a window of M frames and this captures information about the speech

content preceding and following the current frame. The width of this window

is an odd number which can be varied to consider different resolutions of

temporal information and should be large enough to capture contextual and

coarticulation factors but short enough to avoid over-smoothing of output

features. An analysis is carried out in Section 6.2 on the effect of varying M

with different models and windowing methods. In terms of the phoneme

context feature in Table 1, this comprises M×P binary features that indicate

the phonetic class of the current frame (i.e. centre of the window) and of

the M−1
2

frames preceding and following the current frame. In each of the

M rows, a single element is set to one which corresponds to the phoneme

identity while the remaining elements are all zero.

The position in phoneme feature has three binary elements that

correspond to whether the centre frame, t, is at the start, middle or end of

the current phoneme, while the number of frames in phoneme feature

is an integer that indicates how many frames are in the current phoneme

(Zen et al., 2013). The forward phoneme span indicates how many frames

remain of the current phoneme before changing to the next phoneme (Kim

et al., 2015). Acoustic class is represented by a 57-D binary feature where

each element is a response to a set of 57 questions taken from the contextual

questions in the HMM/DNN-based Speech Synthesis System (HTS), such
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as ‘Is the current phoneme voiced? ’ and ‘Is the current phoneme nasalised? ’

(Zen et al., 2007). The next four rows of frame-level features in Table 1

represent a similar set of features but now defined for viseme speech units,

both static and dynamic. There is no acoustic class feature for visemes as

the units are visually-based. To illustrate this frame-level feature extraction

the upper part of Figure 1 shows the frame-level phonetic features that are

extracted from the sentence ‘she looked ’. The example uses a context window

width of M = 5 with the centre of the window at frame t = 7.

Figure 1: Example of frame-level phonetic features and segment level features extracted
from the sentence ‘ she looked’, with a context width of M = 5 centred at frame t = 7.

4.1.2. Segment level features

We define a segment as being five phonemes or five visemes in duration

and centred about the middle unit, as preliminary tests found a context of

five units to give best performance. Phoneme segments were found to have

a mean duration of 84ms while dynamic viseme segments are longer with a
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mean duration of 183ms. The five phonemes in the segment are represented by

the 5×P quinphone context binary feature that indicates the current, the

two preceding and the two following phonemes. Similarly, the quinviseme

context feature is a 5× V binary feature that indicates the five visemes in

the segment. The number of phonemes in viseme feature is an integer

representing the number of phonemes spanned by the current viseme. For

static visemes, this is always 1, while for dynamic visemes it will typically

be larger. The lower part of Figure 1 shows extraction of the segment level

features from the sentence ‘she looked ’ using dynamic viseme units.

4.1.3. Syllable, word, phrase and utterance features

The syllable level features of position of phoneme in syllable and

position of viseme in syllable are binary features that indicate whether

the current unit (phoneme or viseme) is at the start, middle or end of the

current syllable. A fourth option, single, is used when there is only one frame

in the syllable. The number of phonemes in syllable and number of

visemes in syllable features are integers that indicate how many phonemes

or visemes are in the current syllable. At the word, phrase and utterance

levels the position and number features encode similar information as for

syllable level features, but are no longer unique to phonemes or visemes.

The final linguistic feature vector is represented as l(M)t, where M

signifies the number of frames used to represent the phoneme and viseme

contexts and t represents the frame number.
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4.2. Visual output features

The choice of output feature is governed by the requirement that it

should be suitable for visualising a facial animation. Features such as 2-D

DCT, whilst successful in several audio-visual speech processing applications

(Almajai et al., 2006), are not generative. Consequently, active appearance

model (AAM) features are used as they are well suited for visualisation and

are an effective and well studied visual feature (Cootes et al., 2001).

Our AAM features are built from a set of images that have been hand-

labelled with 34 2-D vertices delineating the contour of the lip and jaw of

the speaker. The lower facial region is isolated since broader facial features

such as the nose, eyes and eyebrows were found to introduce noise into the

model. The hand-labelled sets of vertices are then normalised for translation,

scale and rotation and are stacked to create 68-D vectors, r, that encode the

34 pairs of normalised x-y co-ordinates (Gower, 1975). Ds coefficients from

a principal components analysis (PCA) are extracted to give parameters, s,

that encode the shape of the facial pose. The appearance is modelled with

two independent linear models representing the pixel intensities of the inner

mouth area and jaw respectively. The regions are modelled separately since

the inner mouth area can change somewhat independently to the rest of the

jaw due to the presence and positions of the teeth and tongue. The images

are warped to the mean shape and the pixels from each region are extracted.

PCA is applied to the stacked pixel intensities to extract appearance vectors,

bm and bj, that model the mouth and jaw facial regions with Dm and Dj

components respectively. The shape and both appearance features are then

stacked, and a final PCA is performed to decorrelate the features. The final
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AAM vector, a, is computed as

a = R




s

bm

bj


 (1)

where matrix R is a PCA derived matrix that combines and compresses the

shape and appearance components. For the shape and appearance vectors, the

dimensionality was selected such that 98% of the total variation is captured

which resulted in 30 dimensional AAM vectors. Once constructed, the AAM

can be fitted to new images by solving for the model parameters (Cootes

et al., 2001). In this way, every video frame in the dataset can be tracked

and parameterised into a feature vector, at, that encodes the visual speech.

5. MAPPING MODELS

Given the success of deep learning techniques across a range of speech

processing applications we consider two models for mapping from input

linguistic features to output visual features, namely feedforward and recurrent

neural networks. Different structures for framing the input and output

features are examined as well as one-to-one, many-to-one and many-to-many

architectures.

5.1. Feedforward deep neural network

The task of the feedforward deep neural network (DNN) is to map from

input linguistic features to output AAM vectors through a set of Q hidden

layers (Goodfellow et al., 2016). Given input vector, xt and output vector,

yt, the mapping can be expressed as
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h1
t = g(Wxh1xt + b1) (2)

hq
t = g(Whq−1hqhq−1

t + bq) (3)

yt = WhQyh
Q
t + by (4)

where hq
t represents the qth hidden layer at time instant, t, Wxh1 the

weight matrix from the input to the first hidden layer, Whq−1hq the weight

matrix from the q − 1th hidden layer to the qth hidden layer and WhQy the

weight matrix from the last hidden layer to the output. Bias vectors in each

hidden layer are represented as bq and as by for the output layer. Outputs

from the hidden layers are passed through a non-linear activation function, g.

We consider two methods of framing the input linguistic feature vectors,

lt, from Table 1, to capture context and form the input vectors, xt, to the

DNN. In the first method, which we term wide window, the input feature

comprises a single linguistic feature vector, l(M)t, with the phoneme/viseme

context set to M according to the amount of context desired, i.e.

xt = l(M)t (5)

In the second method, which we term concatenated window, the input feature,

xt, is created by concatenating K ‘narrow’ linguistic features, as

xt = [l(1)t−K−1
2
, . . . , l(1)t, . . . , l(1)t+K−1

2
] (6)
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The term narrow is used as the context width of each linguistic feature is

set to M = 1. Context is now included in the input feature, xt, through the

concatenation of the K linguistic features, l(1)t.

The output vector, yt, from the DNN comprises L AAM vectors, yt =

[at−L−1
2
, . . . ,at, . . . ,at+L−1

2
]. In the situation where L > 1, the predicted

AAM vectors that overlap, representing the same time instant, are averaged

to form the final output sequence used for animation. All input and output

features are normalised to zero mean and unit variance.

The network is trained by minimising a mean squared error loss function

using the backpropagation of errors algorithm in conjunction with stochastic

gradient descent to learn the weight and bias values (Rojas, 1996). Various

hyperparameters were adjusted during training with best performance on a

validation test set found with a mini-batch size of 128, a momentum of 0.9, a

learning rate of 0.3, a dropout probability of 0.5 to avoid overfitting and g

as a rectified linear unit activation function (Nair and Hinton, 2010). The

maximum number of epochs was set to 150. Evaluations also investigated the

number of hidden layers and numbers of units and found a network comprising

three hidden layers each with 3,000 units gave best performance. All deep

learning was implemented using the Keras framework with the Theano back-

end (Chollet et al., 2015; Theano Development Team, 2016). Section 6.2.2

examines the effect of K and L.

5.2. Recurrent neural network

DNNs are able to model the static mapping between input and output

features, but, to account for temporal information, a recurrent neural network

(RNN) is proposed. A bi-directional RNN is able to use both past and future
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inputs to compute the mapping to output features. However, when training

an RNN, the vanishing gradient problem is known to be problematic when

modelling long-time feature dependencies, and so this work considers the long

short-term memory (LSTM) model (Hochreiter and Schmidhuber, 1997). This

uses memory cells to selectively remember previous inputs and to forget those

not relevant to the learning task. LSTMs have been effective in several areas

of speech processing where requirements to model long temporal dynamics are

necessary (Graves et al., 2013; Fan et al., 2015a). Two LSTM architectures

are considered in this work, many-to-one and many-to-many.

5.2.1. Many-to-one architecture

The many-to-one architecture takes a sequence of feature vectors, {x1, . . . ,xT},
as input and outputs a sequence of vectors, {y1, . . . ,yT}, and is illustrated in

Figure 2a. Assuming a shallow network (for ease of notation) and iterating

over time, the RNN computes predicted output features as

ht = g(Wxhxt +Whhht−1 + b) (7)

yt = Whyht + by (8)

Compared to Eq. (3) the RNN structure has weight matrix Whh which

allows activations from the previous time step, ht−1, to affect the current

time step and so propagates information across time which allows past events

to be modelled. This work uses LSTMs so the units in each layer are replaced

with LSTM cells (Hochreiter and Schmidhuber, 1997).

The input features to the many-to-one LSTM are a sequence of K
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linguistic features, xt = l(1)t, where (t − K−1
2

) ≤ t ≤ (t + K−1
2

). Each xt

contains no contextual information as this will be modelled by the internal

recurrent structure of the model. The many-to-one architecture produces a

single output vector that contains a concatenation of L AAM vectors, i.e.

yt = [at−L−1
2
, . . . ,at, . . . ,at+L−1

2
]. The LSTM makes a prediction of L frames

at each time instant so the output AAM vectors that represent the same time

instant are averaged to form the final sequence used for animation. Section

6.2.2 explores the effect of varying the number of input vectors, K, and

number of AAM vectors, L, in each output. Learning of the weights and

biases was accomplished by minimising a mean squared error loss function

using backpropagation through time (BPTT) training (Rojas, 1996). Best

performance on a validation set was found with three hidden layers each with

256 units, a mini-batch size of 128, a momentum of 0.9, a learning rate of

3e-5 and a dropout of probability of 0.5. The maximum number of epochs

was set to 150.

5.2.2. Many-to-many architecture

The many-to-many architecture is based on an encoder-decoder structure

as this allows input and output sequence lengths to be different. This is

desirable as it is likely that longer duration linguistic information will map

to a narrower sequence of visual features and this is investigated in Section

6.2.2. The many-to-many model is shown in Figure 2b and exploits the

LSTM structure used in the many-to-one system. The model first constructs

a context vector by passing input features through the encoder LSTM. The

context vector is then input into the decoder LSTM which predicts a sequence

of visual features. A sequence of K input vectors, xt = l(1)t where (t−K−1
2

) ≤
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Figure 2: LSTM architectures showing a) many-to-one and b) many-to-many encoder-
decoder, with as an example, K = 5 inputs and L=3 outputs.
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t ≤ (t + K−1
2

), is passed into the input layer of the encoder, which is a bi-

directional LSTM structure comprising forward and backward layers. The

outputs are combined in an output layer to create a context vector, γt, which

summarises the information from the input sequence in both directions. The

context vector is input to the decoder which is formed from a uni-directional

LSTM with L output nodes corresponding to L predicted AAM vectors

{at−L−1
2
, . . . ,at+L−1

2
}. A window of K input features is advanced by one

frame at each time instant and predicted AAM vectors representing the

same time instant are averaged to form the final output sequence used for

animation.

Model parameters are learnt by minimising a mean squared error loss

function using backpropagation through time (BPTT) training and in a series

of tests using validation data, best performance was found with three forward

and three backward layers, each comprising 256 units, in the encoder and

three forward layers, each comprising 256 units in the decoder. For the context

vector, sizes from 256 to 2024 units were tested and best performance found

with 768 units. As with the many-to-one LSTM, a mini-batch size of 128, a

momentum of 0.9, a learning rate of 3e-5 and a dropout probability of 0.5

were used, and the maximum number of epochs was set to 150.

6. OPTIMISATION AND ANALYSIS TESTS

Objective testing is performed to both optimise and analyse the per-

formance of the various system configurations proposed. The tests examine

the effect of different frame-level features, input and output vector sequence

lengths, types of speech unit and model architectures. Where dynamic viseme
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speech units are employed, these use the reference sequences (as outlined in

Section 3.3.2) to avoid errors in DV sequences that could affect the analysis.

Our experiments use the KB-2k audio-visual speech dataset which con-

tains 2,543 phonetically balanced sentences taken from the TIMIT corpus

which total around 8 hours of speech (Taylor et al., 2012). The recordings

contain the frontal view of a single professional male speaker talking in a

reading style with no emotion. The video was captured at 29.97fps and the

audio at a sampling rate of 48kHz. Each of our linguistic feature vectors are

therefore extracted every 1/29.97 = 33ms. Of the 2,543 sentences, 2,035 are

used for training, 254 for evaluation and 254 for testing to give an 80:10:10

split.

To evaluate the effectiveness of predicting AAM features we use correla-

tion, normalised root mean square error (NRMSE) and global variance (GV)

as metrics (Wang et al., 2011), which are defined as

Corr =
1

N ×D
N∑

t=1

D∑

j=1

(a(j)t − µa(j))(â(j)t − µâ(j))

σa(j)σâ(j)
(9)

NRMSE =
1

D

D∑

j=1

√√√√ 1

N

N∑

t=1

[
(a(j)t − â(j)t)

amax(j)− amin(j)

]2
(10)

GV =
1

N ×D
N∑

t=1

D∑

j=1

[â(j)t − µâ(j))]
2 (11)

where a(j)t and â(j)t represent the jth element of the tth reference and

predicted AAM vectors, µa(j), µâ(j), σa(j) and σâ(j) represent their respective

means and standard deviations, and amax(j) and amin(j) represent their
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maximum and minimum values. N is the number of vectors under test

and D is the number of coefficients in the AAM vectors that are measured.

Correlation and NRMSE are commonly used metrics but we also include GV

as we find this to correlate better with the subjective test results in Section

7. We chose to base the objective measures on the first five coefficients (i.e.

D = 5) of the predicted and reference AAM sequences as their effect on

the resulting facial animation was clearly perceptible. We found that higher

order coefficients had much less effect on the animations and as we wished for

the objective performance to, ideally, correlate with subjective performance

we limited to measure the first five coefficients, which represent 80% of the

variance.

6.1. Analysis of frame-level features

In this experiment we investigate the importance of the various frame-

level features defined in Table 1. As a baseline, we focus on the effect of

phoneme-based frame-level features using the feedforward DNN described in

Section 5.1 with the wide window framing method and the phoneme context

set to either M=1 or M=11 (tests in Section 6.2.2 show this to be a suitable

value). Seven combinations of features are considered and these are defined in

Table 2. All of these frame-level combinations are augmented with segment,

syllable, word, phrase and utterance features. The correlation, NRMSE and

GV for each combination is shown in Table 3. Note that better performance

is indicated by high correlation and GV values and low NRMSE.

The features in System A encode just the current phoneme identity,

with no wider phoneme context (i.e. M=1), along with the position and

number of frames in the current phoneme. As this contains no contextual
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System Phoneme
context
(M)

Position
in
phoneme

No.
frames in
phoneme

Acoustic
class

Forward
phoneme
span

A 1 × ×
B 11
C 1 ×
D 11 × ×
E 11 × × ×
F 11 × × ×
G 11 × × × ×

Table 3: Correlation, NRMSE and global variance of seven frame-level feature combinations
using a phoneme-based feedforward DNN model (brackets show ±1 standard deviation).

Correlation NRMSE GV

System A 0.73(0.07) 10.54(2.14) 802.89(162.42)
System B 0.80(0.07) 9.53(2.19) 920.22(174.20)
System C 0.73(0.08) 10.61(2.16) 840.36(174.40)
System D 0.81(0.07) 9.45(2.12) 922.10(189.92)
System E 0.79(0.07) 9.65(2.24) 955.86(190.35)
System F 0.81(0.07) 9.31(2.22) 952.40(183.90)
System G 0.81(0.07) 9.26(2.22) 964.55(200.50)
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information, this is one of the worst performing feature combinations with

the predicted AAM sequences being step-like with discontinuous trajectories.

This is illustrated as the blue dotted line in Figure 3 which shows the first

AAM coefficient from the utterance ‘If dark came they would lose her ’. The

features in System B encode the phoneme identities of the neighbouring 5

frames in both directions from the current phoneme (M=11). With this

additional phonetic context the model is able to predict AAM sequences that

more closely match the reference features as seen in the improved objective

scores. This is illustrated as the red line in Figure 3 which shows the predicted

trajectory to be much closer to the original trajectory than the output from

System A. System C supplements the current phoneme identity with the

acoustic class feature, but again this performs poorly due to the lack of

contextual information (i.e. M=1) and leads to a discontinuous output.

Given the effectiveness of the phoneme context feature, Systems D-G all

include this with various combinations of the other frame-level features. The

results show that using all frame-level features gives best performance, but

indicate that phoneme context together with acoustic class play a crucial role.

6.2. Windowing and speech unit selection

In Section 5.1 we introduced both wide windowing of linguistic features

(each input feature vector encodes a context of M frames) and concatenated

windowing (each input feature vector is a concatenation of K narrow-context

feature vectors). In this section we examine which windowing method is

better for the different model architectures. Additionally, we measure the

effect of varying the size of the input and output context windows and the

type of speech unit.
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Figure 3: The first dimension of the reference and predicted AAM features for the sentence
‘If dark came they would lose her’, both with phonetic context (System B) and without
(System A). Vertical lines show the phoneme boundaries.

6.2.1. Analysis of windowing method

We now compare the wide and concatenated window methods of creating

input features using the feedforward DNN proposed in Section 5.1, and the

many-to-one and many-to-many (encoder-decoder) LSTM architectures as

introduced in Section 5.2. These tests use the combined phoneme and dynamic

viseme frame-level feature set. For the wide window features the context width

is set to M=11 and for the concatenated window and LSTM experiments the

value K=11 is used, thereby giving equivalent context widths for all systems.

In all cases we train the model to predict an output of L=3 concatenated

AAM feature vectors which represents approximately 100ms of facial motion.

These values are shown in Section 6.2.2 to give good performance.

Table 4 shows the performance of the four configurations in terms

of correlation, NRMSE and GV. Our results indicate that, for the DNN,

features extracted using the wide windowing method clearly outperform those

extracted using the concatenated windowing approach. One explanation for
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this is that although the same phoneme and DV context is provided in both

sets of input features, the concatenated window feature vector is larger and

introduces redundancy by the concatenation of consecutive single-context

vectors that partially encode the same information. For the LSTM, the

many-to-many architecture outputs a more accurate AAM sequence than the

many-to-one architecture. This can be attributed to the output layer of the

many-to-many model explicitly modelling the visual co-articulation of the

output sequence. The correlation and NRMSE of the wide window DNN

and the many-to-many LSTM are very similar, but the GV of the LSTM

is substantially higher. Observing animations from the two models reveals

those from the LSTM to be more realistic.

Model Correlation NRMSE GV

DNN: wide window 0.88(0.04) 6.02(1.17) 1282(225)
DNN: concatenated
window

0.85(0.05) 6.78(1.42) 1033(183)

LSTM: many-to-one 0.86(0.05) 6.43(1.20) 1290(267)
LSTM: many-to-many 0.88(0.05) 6.07(1.27) 1478(268)

Table 4: Performance of a DNN trained using wide and concatenated windowed input
features, and an LSTM using many-to-one and many-to-many architectures. All models
use an input context of 11 vectors and an output context of 3 vectors.

6.2.2. Analysis of input and output window widths

The effect of varying the amount of context encoded in the input linguistic

features and the output visual features is now investigated by computing

the correlation, NRMSE and GV for contexts of increasing duration. We

consider the best performing models from the previous experiment, namely

the DNN and the many-to-many LSTM trained using the combined phoneme
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and dynamic viseme speech features. Figure 4 shows the NRMSE and GV as

the input context width, K, is varied between 1 (33ms) and 23 (759ms) with a

fixed output context of 3 for the two systems. For compactness, correlation is

not shown as this exhibited less variation, although a similar trend. NRMSE

reduces as the sequence length is increased and more temporal information is

included in the input. GV also improves with increasing sequence length for

the LSTM, while for the DNN a peak between K=9 and K=11 is observed.

We visualised the resulting animations and established that a value of K=11

for the DNN and K=17 for LSTM gave best performance.

We consider next the effect of varying the size of the output layer of the

DNN and many-to-many LSTM, which corresponds to how many AAM feature

vectors are output at each time instant. Figure 5 shows NRMSE and GV as

the number of time steps, L, in the output layer is varied between 1 (33ms)

and 9 (300ms). These do not show such a clear trend as for varying, K, as now

NRMSE reduces as L is increased to 5 and then fluctuates. Conversely, GV

reduces up to L=5 and then increases for the LSTM and decrease from L=3

for the DNN. Examining the AAM trajectories and observing the resulting

animations for different values of L confirm that the realism of the predicted

animation is less sensitive to varying L but does suggest that a value of L=3

vectors gives best performance for both systems.

6.3. Analysis of speech units

A comparison is now made between using phonemes, static visemes and

dynamic visemes, or a combination, as the speech unit. For phoneme units all

the PH features shown in Table 1 are included, while for both (static) viseme

and dynamic viseme units all the V features are included. Tests are conducted
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Figure 4: NRMSE and GV as input sequence length, K, is varied within the DNN and
many-to-many encoder-decoder LSTM architectures.
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Figure 5: NRMSE and GV as output sequence length, L, is varied within the DNN and
many-to-many encoder-decoder LSTM architectures.
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using the DNN with wide windowing and the many-to-many LSTM, using

the input and output contexts determined in Section 6.2.2.

The correlation, NRMSE and GV are shown in Table 5. For both models

we determine that using phonemes as the speech unit is better than using

static visemes. However, dynamic visemes outperform both static visemes

and phonemes as the speech unit for both models. Analysis of sequences of

estimated AAM features shows a primary benefit of dynamic viseme units is

improved synchrony in relation to the reference AAM features compared to

phoneme units and static viseme units (which themselves are derived directly

from phoneme units). We expect that this is because DVs describe the facial

movements in a sequence rather than the sounds and so they provide the model

with more discriminant information regarding the expected facial position.

These results suggests that using a well defined visual speech unit is beneficial

over an acoustically motivated speech unit. Although dynamic viseme units

improve synchrony they were found to sometimes produce an over-smoothed

output which gives an under articulated animation. Combining dynamic

visemes with phoneme units alleviated this problem as having complementary

information relating to acoustic and visual information was beneficial and

this gave best performance for both the DNN and LSTM models.

7. PRACTICAL TESTING AND COMPARISON

We present now a formal comparison of a representative set of system

configurations on a set of held out test sentences using both objective measures

and subjective preference tests. Furthermore, we also consider the practical

situation when no reference dynamic viseme sequence is available. In this
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Table 5: Effect of using phoneme, static viseme, dynamic viseme or combined
phoneme/dynamic viseme speech units for DNN and LSTM systems.

Model Speech unit Correlation NRMSE GV

DNN Phoneme 0.83(0.06) 7.43(1.84) 992(196)
DNN Static viseme 0.81(0.06) 7.77(1.82) 903(177)
DNN Dynamic viseme 0.82(0.05) 7.01(1.21) 1072(231)
DNN PH + DV 0.88(0.04) 6.02(1.17) 1282(225)

LSTM Phoneme 0.82(0.07) 7.53(1.90) 1240(246)
LSTM Static viseme 0.81(0.07) 7.73(1.89) 1197(245)
LSTM Dynamic viseme 0.83(0.05) 6.82(1.20) 1362(286)
LSTM PH + DV 0.88(0.05) 6.07(1.27) 1478(268)

situation the dynamic viseme sequence is generated automatically using the

procedure described in Section 3.3.2, with the full system architecture shown

in Figure 6. A phoneme-based visual synthesiser first generates an AAM

sequence from the input phonetic representation. A sequence of dynamic

visemes is then obtained from this sequence and these, combined with the

phoneme sequence, are input into the joint phoneme/DV visual synthesiser.

Figure 6: Full architecture for automated animation from input phoneme sequence.

The tests compare two model architectures, namely the DNN using

a wide window of features with M=11 and L=3, and the many-to-many

LSTM with K=17 and L=3. For each model, four variants of speech

unit are tested: phoneme-only (PH), dynamic viseme-only (DV), combined
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phoneme/dynamic viseme (PH DV) and combined phoneme/dynamic viseme

but using the predicted dynamic viseme sequence rather than the reference

sequence (PH DV PRED). These tests allow us to determine which system

is best if the reference dynamic viseme sequence is not available - i.e. is it

better to use phoneme-only speech units or the predicted dynamic viseme

units. As a further comparison, a baseline HMM system is included which

is similar to that proposed in (Schabus et al., 2014). This uses five state

hidden semi-Markov models with each state modelled by a single Gaussian

with diagonal covariance. Quinphone HMMs were created using decision tree

clustering that considered phoneme, syllable, word, phrase and utterance level

questions and resulted in 11,893 models (Schabus et al., 2014). The systems

evaluated in the comparative tests are specified in Table 6 which shows the

model, speech unit and how, if included, the dynamic viseme sequence is

obtained.

Table 6: System configurations used in comparative tests showing model, speech unit and
the source of the dynamic viseme sequence.

System Model Speech unit DV labels

HMM PH HMM Phoneme -
HMM DV HMM DV Reference
DNN PH DNN Phoneme -
DNN DV DNN DV Reference
DNN PH DV DNN Phoneme + DV Reference
DNN PH DV PRED DNN Phoneme + DV Predicted
LSTM PH LSTM Phoneme -
LSTM DV LSTM DV Reference
LSTM PH DV LSTM Phoneme + DV Reference
LSTM PH DV PRED DNN Phoneme + DV Predicted
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7.1. Objective comparison

Table 7 shows the correlation, NRMSE and GV for the ten systems

shown in Table 6. In terms of correlation and NRMSE, the DNN and LSTM

systems have similar performance across the respective speech units. However,

the global variance of vectors produced by the LSTM systems is higher

than that for DNN systems, for the same respective speech units. A higher

global variance could be the result of more noisy vectors being predicted,

but examining the trajectories and looking at the resulting animations has

shown this not to be the case. Instead, the higher global variance of visual

vectors produced by the LSTM systems give a more articulated and natural

appearance compared to those from the DNN with lower global variance.

Considering now the HMM systems, these perform substantially worse than

the DNN and LSTM systems across all measures.

Comparing systems using dynamic viseme speech units (HMM DV,

DNN DV and LSTM DV) to those using phoneme speech units (HMM PH,

DNN PH and LSTM PH) shows that across all models, as a single speech

unit, DVs are more effective than phonemes. Both the DNN and LSTM

systems perform substantially better with a combined phoneme/dynamic

viseme speech unit when the dynamic viseme sequences are derived from

reference video. When using the dynamic viseme sequences that are generated

automatically, correlation and NRMSE both worsen although global variance

is effected less, and actually increases for the DNN system. In the absence of

reference dynamic viseme sequences, the phoneme-based systems (* PH) out-

perform the phoneme+predicted dynamic viseme systems (* PH DV PRED)

in terms of both correlation and NRMSE, while inversely, global variance is

37



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

substantially better for the latter. This is a rather mixed result, and one that

is resolved in the subsequent subjective testing.

Table 7: Objective comparisons showing correlation, NRMSE and global variance.

System Correlation RMSE GV

HMM PH 0.78(0.08) 8.17(1.88) 849.22(165.91)
HMM DV 0.81(0.06) 7.37(1.48) 971.26(197.44)
DNN PH 0.83(0.06) 7.43(1.84) 992.09(196.22)
DNN DV 0.82(0.05) 7.01(1.21) 1072.79(212.62)
DNN PH DV 0.88(0.04) 6.02(1.17) 1282.10(225.14)
DNN PH DV PRED 0.81(0.07) 7.91(1.90) 1397.48(250.35)
LSTM PH 0.82(0.07) 7.53(1.90) 1240.97(245.56)
LSTM DV 0.83(0.05) 6.82(1.20) 1362.38(285.76)
LSTM PH DV 0.88(0.05) 6.07(1.27) 1478.21(268.81)
LSTM PH DV PRED 0.80(0.07) 7.98(1.94) 1425.82(255.84)

7.2. Subjective comparison

We use subjective preference tests to compare the naturalness of pairs

of animations that have been obtained from different combinations of four

systems defined in Table 6. We also include ground truth facial animations

that were reconstructed from AAM features extracted from the original video

(ORIG). In total eight different system pairs are compared as shown in the

first two columns of Table 8. In the first three system pairs the ground

truth is compared against the baseline HMM and the best performing DNN

and LSTM systems. A further three tests then compare the HMM PH,

DNN PH DV and LSTM PH DV systems with one another. The final two

tests consider the situation where reference dynamic viseme sequences are

not available. In particular, the LSTM based on phoneme and reference

DVs (LTSM PH DV) is first compared to a phoneme-only LSTM (LTSM PH)
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and then to an LSTM that uses phonemes and automatically generated DVs

(LTSM PH DV PRED).

Evaluation is carried out by playing animations from two systems simul-

taneously and side-by-side to subjects using a web-based interface. For each

pair of videos, subjects are presented with the question “Which one looks more

natural?”, and they then make their choice by selecting the appropriate video.

In preliminary tests we found playing the two animations simultaneously to

be more effective than playing the two animations one after the other, as

seeing the two animations together made it easier for subjects to identify

differences and consequently the effect on naturalness. Furthermore, subjects

were allowed to play the animations as many times as they wished before

scoring. We decided upon this comparative scoring of naturalness as the

differences in animations from the various systems was often quite subtle and

an absolute score was found to be less effective at highlighting differences in

naturalness.

A total of thirty participants took part in the tests and each was played

four examples from each pair of eight system comparisons, with sentences

chosen randomly and played in a random order. Table 8 shows the preference

results for the systems compared and also reports on whether the result

is statistically significant at the 99% confidence level using a binomial test

with Holm-Bonferroni correction (Gravetter and Wallnau, 2012; Holm, 1979).

We used the Holm-Bonferroni method to control the family-wise error rate

(FWER) for the eight statistical significance tests at the 99% confidence level

in Table 8.

Compared to animations using the ground truth AAM sequences, both
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the HMM and DNN systems are significantly less natural. However, the

naturalness of animations produced using the LSTM are much closer to those

using the original AAM sequences and found not to be statistically different.

Comparing the naturalness of the HMM, DNN and LSTM systems, those

from the DNN are significantly better than from the HMM, while those from

the LSTM are significantly better than those from both the HMM and DNN.

These reflect the results found in the objective tests.

Considering now the situation where reference dynamic viseme sequences

are not available, the AAM sequences produced from the system using just

phoneme-based speech units (LTSM PH) leads to animations that are sig-

nificantly less natural than when including the reference dynamic visemes

(LTSM PH DV). The final test shows that using automatically predicted dy-

namic viseme sequences (LTSM PH DV PRED) instead of using the reference

dynamic viseme sequences (LTSM PH DV) gives slightly lower naturalness

although the difference is not statistically significant. This suggests that

the predicted dynamic viseme sequences are suitable for producing natural

animations and that this is better than using just phoneme-based speech units

when no reference dynamic viseme sequences are available. This observation

aligns with the global variance scores in the objective tests in Table 7, which

were somewhat contrary to the correlation and NRMSE results. This suggests

that, providing correlation and NRMSE are sufficiently good (i.e. that the

predicted vectors are not simply noisy), then global variance is an effective

predictor of the naturalness of the animations and can reflect the amount of

articulation present.

To demonstrate further the effect of using the predicted dynamic viseme
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Table 8: Subjective preference test results for eight different combinations of systems
showing also whether the result is statistically significant.

System A System B Percentage Significant

ORIG HMM PH 83.47/16.53 X
ORIG DNN PH DV 75.63/24.37 X
ORIG LSTM PH DV 52.99/47.01 ×
HMM PH DNN PH DV 34.71/65.29 X
HMM PH LSTM PH DV 20.49/79.51 X
DNN PH DV LSTM PH DV 29.75/70.25 X
LSTM PH DV LSTM PH 68.33/31.67 X
LSTM PH DV LSTM PH DV PRED 56.30/43.70 ×

sequences, Figure 7 shows the first AAM feature generated using the reference

(LSTM PH DV) and predicted (LSTM PH DV PRED) dynamic viseme se-

quences, along with the corresponding ground truth trajectory for the phrase

‘steve collects rare and novel coins ’. The features generated from the reference

dynamic viseme sequence follow more closely the ground truth trajectory

than those generated using the predicted sequence, although the underlying

structure is clearly captured in both cases. In addition, Figure 8 shows facial

animations that are reconstructed from the ground truth and predicted visual

features for the shortened phrase ‘collects rare and novel ’. The resulting

animations using the reference and predicted dynamic visemes look more

similar than the AAM sequences would suggest, although it is interesting to

observe the slight over-articulation of the word ‘rare’.

8. CONCLUSION

This work has proposed a many-to-many encoder-decoder LSTM ar-

chitecture using dynamic viseme speech units for predicting AAM vector
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Figure 7: AAM trajectories generated using reference and predicted dynamic viseme
sequences, and for comparison the reference AAM track, for the phrase ‘ steve collects rare
and novel coins’.

a) LSTM_PH_DV_PRED

c) LSTM_PH_DV

b) ORIG

“col lects rare and no vel”

Figure 8: Sequence of faces taken from animations produced using predicted (a) and
reference (c) dynamic viseme sequences, and for comparison using the reference AAM
features (b), for the phrase ‘collects rare and novel’.
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sequences from a linguistic input. Objective and subjective tests have shown

this to outperform a number of other approaches including a many-to-one

LSTM, feedforward DNN and an HMM. Dynamic viseme speech units were

also found to be superior over phoneme or static viseme units as they are

better able to represent visual speech. When combined with phoneme units

even better performance was obtained due to the complimentary information

they represent. Moving to a more practical scenario, where reference dynamic

viseme sequences are unavailable and instead have to be predicted, subjective

preference tests found no significant difference between animations when the

DV sequences were generated automatically as opposed to using reference

sequences. Interestingly, this result was reflected in the global variance objec-

tive measure but not in the correlation or NRMSE. This suggests that GV is a

useful predictor of the naturalness of animations from AAM vectors, provided

that correlation and NRMSE are sufficiently good to indicate that the high

global variance is not the result of a more noisy sequence of visual vectors.

In terms of the linguistic context in the input to the models, all features

were found to make a contribution to performance but in particular a wide

phonetic context was important for creating smooth outputs and improving

co-articulation.

In terms of further work, the evaluations in Section 7 have shown that

performance reduces when moving from reference to automatically generated

dynamic viseme sequences. It would therefore be beneficial to explore im-

proved ways to generate automatically the dynamic viseme sequence from

the linguistic input. Furthermore, it would also be useful to combine the

proposed joint phoneme/dynamic viseme speech unit with more advanced
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deep learning architectures, such as have found recent success in acoustic

speech synthesis (for example (Wang et al., 2017)), with the aim of further

improving the naturalness of animation. The work presented has concentrated

on synthesising neutral speech and it would also be interesting to extend the

proposed systems to produce more expressive speech.
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