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Politècnica de València, Valencia, 46022, Spain

bSciling, Carrer del Riu 321, Pinedo, Valencia, 46012, Spain

Abstract

One of the most popular approaches to machine translation consists in formu-

lating the problem as a pattern recognition approach. Under this perspective,

bilingual corpora are precious resources, as they allow for a proper estimation

of the underlying models. In this framework, selecting the best possible corpus

is critical, and data selection aims to find the best subset of the bilingual sen-

tences from an available pool of sentences such that the final translation quality

is improved. In this paper, we present a new data selection technique that

leverages a continuous vector-space representation of sentences. Experimental

results report improvements compared not only with a system trained only with

in-domain data, but also compared with a system trained on all the available

data. Finally, we compared our proposal with other state-of-the-art data se-

lection techniques (Cross-entropy selection and Infrequent ngrams recovery) in

two different scenarios, obtaining very promising results with our proposal: our

data selection strategy is able to yield results that are at least as good as the

best-performing strategy for each scenario. The empirical results reported are

coherent across different language pairs.
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1. Introduction

Machine Translation (MT) is a specific sub-field of Natural Language Pro-

cessing (NLP). MT studies the way in which automatic systems should be de-

veloped so that they are able to translate a certain sentence in a source language

into a sentence in a given target language, such that source and target sentences5

preserve the exact same meaning, while ensuring that the target sentence is well-

formed in the corresponding target language.

Bilingual corpora are precious resources in computational linguistics and

they constitute the possibility of performing another kind of machine transla-

tion: this is the case of Statistical Machine Translation (SMT), which advanced10

the state of the art in MT radically. The goal is to create mathematical models

that can describe the translation process accurately, by estimating mathematical

models that leverage bilingual training data.

The performance of an SMT system is dependent on the quantity and quality

of the available training data. Typically, SMT systems are trained with all15

the available data, assuming that the more data used to train the system, the

better. This assumption is backed by evidence that scaling to ever larger data

shows continued improvements in quality, even when one trains models over

billions of [1]. In the SMT context, n-grams refers to sequences of n consecutive

words. However, growing the amount of data available is only feasible to a20

certain extent. In fact, translation quality is negatively affected when there is

not enough training data for the specific domain to be tackled in production

conditions [2, 3]. Hence, it is necessary to adapt the underlying models so

that they are able work with the data to be dealt with. This problem, known

as domain adaptation, is a very common problem in SMT, and the aim is to25

improve the performance of an SMT system trained on out-of-domain data by

using limited amounts of in-domain data.

Domain adaptation methods can be split into two broad categories: 1) do-

main adaptation methods that tackle the problem at the corpus level, for ex-

ample, by weighting, selecting or joining the training corpora, and 2) domain30
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adaptation methods that have an influence at the model level, by adapting

directly the translation or language models.

Data selection (DS) is a domain adaptation method that fits under the first

category. The underlying intuition implies selecting for training the best subset

of sentence pairs from an available pool, so that the translation quality achieved35

in the target domain is improved. The current paper tackles DS by taking

advantage of vector space representations of sentences, feeding on the most

recent work on distributed representations of sentences [4, 5], with the ultimate

goal of obtaining corpus subsets that minimize the bilingual training corpus

size, while improving translation quality. In this work, we propose a new DS40

technique called Continuous Vector-Space Representation of Sentences for Data

Selection (CRSDS), with the aim of selecting the best subset of sentences from

an available pool, using a vector space representation of sentences.

The main contributions of this paper involve the necessary steps required to

assess the novel CRSDS strategy, i.e.:45

• We describe the algorithmic foundation of our CRSDS technique, which

leverages a continuous space representation of sentences and words (Sec-

tion 4).

• We evaluate the CRSDS technique, obtaining translation results that im-

prove baseline translation quality (Section 6.2).50

• We compare the CRSDS technique with some DS methods, considering

different practical application scenarios (Sections 5, 6.3 and 6.4).

This paper is structured as follows. Section 2 describes the SMT framework.

Section 3 summarises the related work. Section 4 presents our DS method using

continuous vector-space representations. Section 5 describes the DS methods55

with which we compare our method. In Section 6, the experimental design and

results are detailed. Finally, the main results of the work and future work are

discussed in Section 7.
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2. Statistical Machine Translation

One important breakthrough in SMT was provided by the use of log-linear

models for modelling the translation process, proposed in [6] and reviewed in

[3]. In SMT, log-linear models are defined as follows: given an input sentence

x from a certain source language, the purpose is to find an output sentence y

in a certain target language such that:

ŷ = argmax
y

p(y | x) = argmax
y

M∑
m=1

λmhm(x,y) (1)

where λm is the weight assigned to hm(x,y) and hm(x,y) is a score function60

representing an important feature for the translation of x into y, as for exam-

ple the language model of the target language, a reordering model, or several

translation models. M is the number of models (or features).

One of the most widely-used instances of log-linear models in SMT are

phrase-based (PB) models [7, 3]. The basic idea of PB models is to segment x65

into phrases, and then translate each source phrase into a target phrase. For

this purpose, phrase-tables are produced, in which a source phrase is listed to-

gether with several target phrases and the probability of translating the former

into the latter.

Once the bilingual phrases have been extracted from a bilingual corpus, the70

features hm can already be computed. At this point it is necessary to obtain

appropriate values for the weight-vectors λm, this process is called tuning. The

weights λm are normally optimised with the use of a development set. The

most popular approach for adjusting λm is the one proposed in [8], commonly

referred to as minimum error rate training (MERT).75

Both feature values hm and weight vectors λm are then leveraged in the

decoding process, which typically implements a beam-search algorithm [3] to

perform the actual translation of input sentence. The problem here is to find the

best candidate hypothesis y∗ according to the equation 1. The decoding problem

is NP-complete [9], given that examining the complete search space (all possible80

translations of a given input sentence) is computationally very costly. Hence, the
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decoding process often implements heuristic pruning strategies [10, 11], which

however do not guarantee that optimal translation will be found.

Evaluation in SMT is a very controversial problem [3], [12]. An obvious

method for evaluating SMT output is to manually evaluate whether a given85

translation is correct. However, human evaluation is way too costly for experi-

mentation purposes, which entails the need of resorting to automatic evaluation

metrics. Even though automatic metrics in SMT are under constant debate

in the community, BLEU (Bilingual Evaluation Understudy) [12] is the most

popular evaluation metric. BLEU measures the precision of unigrams, bigrams,90

trigrams, and four-grams with respect to a set of reference translations, with a

penalty for too short sentences. Since BLEU measures precision, the higher the

BLEU score, the better. In this paper, we will be evaluating translation output

with BLEU, even though other metrics also exist, such as TER (Translation

Edit Rate) [13] and METEOR [14]).95

As it can be understood from the above discussion, phrases lie within the

core of modern PB SMT systems. Given that phrases are extracted from parallel

data, improving the quality of such training data is crucial towards improving

translation quality. Hence, the purpose of this work is to devise an algorithm

with the final objective of improving the quality of the bilingual data fed as100

training set to the PB model, by means of an appropriate DS strategy.

3. Related work

As anticipated during the introduction, data selection aims to obtain the best

subset of a generic pool of data. Then, this set of data is concatenated with the

in-domain training data, and such concatenation is then used for training the105

SMT system.

In this work, we will refer to the available pool of generic-domain sentences

as out-of-domain corpus because we assume that it belongs to a different domain

than the one to be translated. Similarly, we refer to the corpus belonging to the

specific domain of the text to translated as in-domain corpus.110
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State-of-the-art DS approaches rely on the idea of choosing those sentence

pairs in the out-of-domain training corpus that are in some way similar to an

in-domain training corpus in terms of some different metrics.

Different works use perplexity-related DS strategies [15, 16, 17, 18]. In NLP,

perplexity is a measurement of how well a model predicts a sample. A low per-115

plexity indicates the models is good at predicting the sample. In this research

direction, sentences in a out-of-domain corpus are ranked by their perplexity

score according to an in-domain language model, and only the top percentage

with lowest perplexity scores are retained as training data. This method, pro-

posed by [15], is extremely easy to apply: first train an in-domain LM, then120

score each sentence in the out-of-domain, and select the highest ranked. In [16],

the authors re-implemented the perplexity-based method, with the modifica-

tion of using the cross-entropy of a given sentence instead of its perplexity. All

these paper [19, 20, 21, 22] used this method and the good result has become a

de-facto standard in the SMT research community. We apply this criterion as125

comparison with our DS technique.

Two different approaches are presented in [23]: one based on approximating

the probability of an in-domain corpus and another one based on infrequent

n-gram recovery. On the one hand, the technique based on approximating the

probability relies on preserving the probability distribution of the task domain130

by wisely selecting the bilingual pairs to be used, excluding sentences that distort

the actual probability. On the other hand, the second technique presented (the

best-performing one) is based on the notion of infrequent n-gram, and will be

explained in detail in section 5.

Other works have applied information retrieval methods for DS [24], in order135

to produce different sub-models which are then weighted. The baseline was

defined as the result obtained by training only with the corpus that shares

the same domain with the test. They claim that they are able to improve

the baseline translation quality by adding new sentences retrieved with their

method. However, they do not provide a comparison with a model trained on140

all the corpora available.
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More recently, in [25] leveraged neural language models to perform DS, re-

porting substantial gains over conventional n-gram language model-based DS.

4. Continuous vector-space representation of sentence for DS

Here we describe our CRSDS method for SMT. For defining our strategy,145

the following steps are required:

1. A CVR of words (Section 4.2)

2. A CVR of sentences (using step 1) (Section 4.3)

3. A selection algorithm as such (using step 2) (Section 4.4)

With the purpose of simplifying notation, we start by defining the notion of150

similarity corpus in the next section.

4.1. Similarity corpus

The core idea of every DS method is to select a subset of the out-of-domain

data that is considered to be the most relevant for translating a given set of

data, which we will name in this work similarity corpus S. Ideally, S will be155

the text to be translated (T ), and the DS method will ensure that the resulting

subset of the training data is the best possible subset for translating T [23].

Nevertheless, in scenarios where a system is set for on-the-fly translation, such

data T is not available in advance. For this reason, it is often the case that an

in-domain set I (considered to be very similar, or at least belonging to the same160

domain as T ) is used instead [24, 19]. Since in this paper we will define our

approach independently of whether I or T is used, our data selection method

will be defined in terms of S, and the experimental results will instantiate S to

either I or T . Note that there is an important piece of information in I which

is lacking in T : the target side of the bilingual data. In contrast, T contains the165

true data to be translated, albeit obviously without the sentence to be produced.

Hence, DS approaches that intend to use I or T independently will need to be

designed to use only source language data, i.e., not require the target sentence

data.
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4.2. Continuous vector-space representation of words170

CVR of words have been widely used in a variety of NLP applications. These

representations have recently demonstrated promising results across a variety

of tasks [26, 27, 28, 29, 30], such as speech recognition, part-of-speech tagging,

sentiment classification and identification and machine translation.

The idea of representing words in vector space was originally proposed by175

[31, 32]. The limitation of these proposals were that computational require-

ments quickly became unpractical for growing vocabulary sizes |V |. However,

work performed recently in [33, 34, 4, 35] made it possible to overcome such

drawback, while still relying on neural network language models, in which words

are represented as high dimensional real valued vectors. These model have the180

purpose that words with similar meanings will map to similar vectors. The

basic idea is to represent each word wi in the vocabulary V , wi ∈ V , with a

real-valued vector of some fixed dimension D, i.e., f(wi) ∈ RD ∀i = 1, . . . , |V |,

capturing the similarity (lexical, semantic and syntactic) between the words.

Two approaches are proposed in [4], namely, the Continuous Bag of Words185

Model (CBOW) and the Continuous Skip-Gram Model. CBOW forces the neural

net to predict the current word by means of the surrounding words, and Skip-

Gram forces the neural net to predict surrounding words using the current

word. These two approaches were compared to previously existing approaches,

such as the ones proposed in [33], and [34], obtaining a considerably better190

performance in terms of training time. In addition, experimental results also

demonstrated that the Skip-Gram model offers better performance on average,

excelling especially at the semantic level [4]. These results were confirmed in our

own preliminary work, and hence we used the Skip-Gram approach to generate

our distributed representations of word.195

We used the word2vec1 toolkit to obtain the representations of words. The

toolkit takes a text corpus as input and produces the word vectors as output.

It first constructs a vocabulary V from the training corpus and then learns the

1https://code.google.com/archive/p/word2vec/
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CVR of the words.

However, a problem that arises when using CVR of words is how to repre-200

sent a whole sentence (or document) with a continuous vector. Following the

idiosyncrasy described in the previous paragraph (i.e., semantically close words

are also close in their CVR), we present in the next section the different sentence

representations employed in the present work.

4.3. Continuous vector-space representation of sentences205

Numerous works have attempted to extend the CVR of words to the sentence

or phrase level (just to name a few, [36, 37, 29, 38, 39, 5]). In the present work,

we used two different CVRs of sentences, which we will denote as F (x) (or, in

some cases and to simplify notation, Fx):

1. The first one is the most intuitive approach, which relies on using a

weighted arithmetic mean of all the words in the document or sentence

(as proposed by [37, 40] :

Fx = F (x) =

∑
w∈xNx(w)f(w)∑

w∈xNx(w)
(2)

where w is a word that appears in sentence x, f(w) is the CVR of w,210

obtained as described above, and Nx is the count of w in sentence x. We

will refer to this representation by Mean-vec.

2. A more sophisticated approach is presented by [5]. The authors adapted

the continuous Skip-Gram model [4] to generate representative vectors of

sentences or documents. Document vectors follow the Skip-Gram archi-215

tecture to train a special vector Fx representing the sentence or document.

The formalization of this technique goes beyond the scope of the current

paper, but the reader is referred to the original paper in [5] for further

information. We will refer to this representation by Document-vec2.

2http://radimrehurek.com/gensim/models/doc2vec
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4.4. CRSDS technique220

In this section, we will describe principal contribution of this paper, namely,

the CRSDS method which leverages the vector-space representation of sen-

tences, detailed above. Since the objective of DS is to increase the informa-

tiveness of the in-domain training corpus, it seems important to choose out-of-

domain sentences that provide information considered relevant with respect to225

the similarity corpus S.

Algorithm 1 shows the procedure. Here, G is the out-domain-corpus, x is

an out-of-domain sentence (x ∈ G), Fx is the CVR of x, and |G| is the number

of sentences in G. Then, our objective is to select data from G such that it is

the most suitable for translating data belonging to the similarity corpus S. For230

this purpose, we define Fs as the CVR of a sentence s ∈ S.

Data: Fx, x ∈ G; and Fs, s ∈ S; threshold τ

Result: Selected-corpus

1 forall sentences s in S do

2 forall sentences x in G do

3 score(Fs,Fx) = simi(Fs,Fx, τ)

4 if score(Fs,Fx) ≥ τ then

5 add x to Selected-corpus

6 end

7 end

8 end

Algorithm 1: Pseudo-code for our DS technique (Section 4.4)

Algorithm 1 introduces simi(·, ·), which will be defined in Section 4.4.1.

4.4.1. Similarity functions

The most simple approach would be to implement a mechanism by which a

sentence x would only be selected if its similarity score cos(Fs,Fx) ≥ τ , with τ
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a certain threshold to be established empirically, i.e:

sim0(Fs,Fx, τ) =

cos(Fs,Fx) if cos(Fs,Fx) ≥ τ

0 if cos(Fs,Fx) < τ

(3)

As a function over cos(·, ·), the cosine similarity between two different sentence

vectors:

cos(Fs,Fx) =
Fs · Fx

‖Fs‖ · ‖Fx‖
(4)

Note that it would have been possible to use any other similarity metric. Here,
the purpose of similarity function simi(·, ·) is to allow a projection from the235

original similarity metric, so as to allow higher flexibility. Note that the best

value for cos(·, ·) is 1, and the worst value for cos(·, ·) is 0.

Nevertheless, this approach proved empirically to not be very useful: certain,

very specific, sentences in S yield much higher similarity scores, dominating the

ranking when establishing τ and leading to other sentences in S not getting the240

chance to promote any sentences in G at all, i.e., a small number of sentences

in S account for the wide majority of sentences selected. This is problematic,

since the final set selected in such case is only suitable for translating a very

small subset of S.

Hence, we developed three different similarity functions simi(·), i ∈ {1, 2, 3},245

for the metric cos(Fs,Fx) with the purpose of solving this issue. Let us first

define Gs,τ = {x | ∀x ∈ G : sim0(Fs,Fx) > τ}. Then, the similarity functions

used are defined as follows:

sim1 The purpose of this first approach is to limit the amount of sentences x ∈ G

that can be promoted by a certain sentence s ∈ S. Let µ be the empirical250

average of |Gs,τ |, i.e., µ =
∑

s∈S |Gs,τ |/|S|, and σ the corresponding stan-

dard deviation of |Gs,τ |. Since cos(Fs,Fx) establishes a natural ordering

in G for each s ∈ S, let us define G′s,τ as the set of sentences with highest

cos(Fs,Fx) value, restricted to |G′s,τ | ≤ µ + 2σ. Then, we define sim1 as

11



follows:255

sim1(Fs,Fx, τ) =

cos(Fs,Fx) if x ∈ G′s,τ

0 if x /∈ G′s,τ
(5)

sim2 In this case, the purpose is to promote those sentences in G that are

the most similar to the whole similarity corpus S. We implemented this

intuitive concept as the arithmetic mean of cos(·, ·) for all sentences s ∈ S,

i.e.:

sim2(Fs,Fx, τ) =

∑
s∈S cos(Fs,Fx)

|Gs,τ |
(6)

sim3 This proposal is dramatically different from the previous ones, in that

cos(Fs,Fx) is not employed as such. Instead, we computed a CVR of the

whole corpus S, FS , assuming S as the concatenation of all its sentences,

and applied the threshold selection in line 4 of Algorithm 1 on such score:

sim3(Fs,Fx,τ) = cos(FS ,Fx) (7)

Notation has been slightly abused since S is not in the parameter list of260

sim3, but has been omitted for clarity.

5. Comparision of data selection methods

In this section we present two standard DS methods. The first one, proposed

by [16], is based in cross-entropy. Having been used in many different works

[19, 20, 21], it has become a de-facto standard in the SMT research community.265

The second strategy we used is infrequent n-grams recovery. Presented in [23],

it was the one to obtain the best results in their work, achieving significant

improvements. Both strategies depend on the n-grams (i.e., sequences of n

contiguous words) that compose the corpus considered, be it for building a

language model (cross-entropy) or for determining which n-grams are infrequent270

(infrequent n-grams). Previous work [41] analysed the effect of varying the order

of the n-grams, considering 2-grams (cross-entropy) and 5-grams (infrequent n-

grams).

12



5.1. Cross-entropy method

As mentioned in Section 3, one established DS method consists in scoring275

the sentences in the out-of-domain corpus by their perplexity [15]. [16] use

cross-entropy rather than perplexity, even though they are both monotonically

related. The cross-entropy HC(x) of a given sentence x = {x1, . . . ,x|x|}, accord-

ing to a given language model p estimated on corpus C, is typically estimated

as [20]:280

HC(x) = −
|x|∑
i=1

1

|x|
log p(xi | x1, . . . ,xi−1) (8)

Then, let I be an in-domain corpus, and G be an out-of-domain corpus from

which we draw sentence x. The cross-entropy score of x is defined as:

c(x) = HI(x)−HG(x) (9)

Note that this method is defined in terms of I, as defined by the original

authors. Even though it would also be feasible to define this method in terms

of S, such re-definition lies beyond the scope of this paper, since our purpose is

only to use this method only for comparison purposes.

5.2. Infrequent ngrams recovery285

The main idea underlying the infrequent n-grams recovery strategy [23] con-

sists in increasing the information of the in-domain corpus by adding evidence

for those n-grams (i.e., sequences of n consecutive words) that have been seldom

observed in the in-domain corpus. This evidence is obtained by selecting sen-

tences from the out-of-domain corpus. The n-grams that have never been seen290

or have been seen just a few times are called infrequent n-grams. An n-gram

is considered infrequent when it appears less times than a given infrequency

threshold t. Therefore, the idea is to select from the out-of-domain corpus the

sentences which contain the most infrequent n-grams in the source sentences to

be translated.295

Let X be the set of n-grams that appear in the sentences to be translated

and m one of them; let be R(m) the counts of m in a given source sentence x
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of the out-of-domain corpus, and C(m) the counts of m in the source language

in-domain corpus. Then, the infrequency score i(x) is defined as:

i(x) =
∑
m∈X

min(1,R(m)) max(0, t− C(m)) (10)

Then, the sentences in the out-of-domain corpus are scored using Equation

10 and given infrequency threshold t. This being done, the sentence x∗ with the

highest score i(x∗) is selected in each iteration. x∗ is added to the in-domain

corpus and is removed from the out-of-domain sentences. The counts of the

n-grams C(m) are updated with the counts R(m) within x∗ and therefore the300

scores of the out-of-domain corpus are updated. Note that t will determine the

maximum amount of sentences that can be selected, since when all the n-grams

within X reach the t frequency no more sentences will be extracted from the

out-of-domain corpus.

6. Experiments305

In this section, we describe the experimental framework employed to assess

the performance of the data selection method described in Section 4. Then, we

show the results for CRSDS strategy, followed by a comparative with two data

selection methods (cross-entropy method and infrequent ngrams recovery).

For comparing the different DS methods, we explored the effect of varying310

empirically the selection constraint (e.g., the maximum number of selected sen-

tences in Section 5.1 or infrequency threshold t in Section5.2, or τ in Section

4.4). These preliminary experiments were conducted on different corpora, not

related to the task at hand in this paper. By doing so, we obtained different

subsets of the selected out-of-domain corpus. Then, an SMT system is trained315

on each selected subset and tested on the test corpus. This provides several

comparison points between the DS methods. In this setting, the different selec-

tion methods are compared based on how many sentences are required in order

to reach the best BLEU score.
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6.1. Experimental setup320

We evaluated empirically the DS methods described in Section 4 and Sec-

tion 5. As explained above, SMT systems need large corpora for training the

underlying statistical models. Two corpora are dealt with in the DS task: an

out-of-domain corpus G and an in-domain corpus (I in Section 4). DS selects

only a portion of the out-of-domain corpus, and leverages that subset together325

with the in-domain data to train a hopefully improved SMT system.

For the out-of-domain corpus, we used the Europarl3 corpus [42]. The Eu-

roparl corpus is composed of translations of the proceedings of the European

parliament. As in-domain data, we used the EMEA corpus4 corpus [43], which is

available in 22 languages and contains documents from the European Medicines330

Agency. In order to make the results reported in this paper comparable with

other works, standard partitions of the corpus will be used. The Medical-Test

and Medical-Mert corpora are partitions established in the 2014 Workshop on

Statistical Machine Translation (WMT) 5 [44] of the Association for Computa-

tional Linguistic. We focused on the English-French (En-Fr), German-English335

(De-En) and English-German (En-De) language pairs. We conducted experi-

ments with different language pairs with the purpose of evaluating whether the

conclusions drawn from one single language pair hold in further scenarios. The

main figures of the corpora used are shown in Tables 1 and 2.

All experiments were carried out using the open-source phrase-based SMT340

toolkit Moses [45]. The language model used was a 5-gram, standard in SMT re-

search, with modified Kneser-Ney smoothing [46], built with the SRILM toolkit

[47]. The phrase table was generated by means of symmetrised word align-

ments obtained with GIZA++ [48]. The decoder features a statistical log-linear

model including a phrase-based translation model, a language model, a distor-345

tion model and word and phrase penalties. The log-lineal combination weights

3www.statmt.org/europarl/
4www.statmt.org/wmt14/medical-task/
5www.statmt.org/wmt14/
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Table 1: In-domain corpora main figures. (EMEA-Domain) is the in-domain corpus, (Medical-

Test) is the evaluation data and (Medical-Mert) is development set used for adjusting λ in

Equation 1. In this table, M denotes millions of elements and k thousands of elements, |S|

stands for number of sentences, |W | for number of words (tokens) and |V | for vocabulary size

(types).

Corpus |S| |W | |V |

EMEA-Domain
EN

1.0M
12.1M 98.1k

FR 14.1M 112k

Medical-Test
EN

1000
21.4k 1.8k

FR 26.9k 1.9k

Medical-Mert
EN

501
9.9k 979

FR 11.6k 1.0k

Medical-Domain
DE

1.1M
10.9M 141k

EN 12.9M 98.8k

Medical-Test
DE

1000
18.2k 1.7k

EN 19.2k 1.9k

Medical-Mert
DE

500
8.6k 874

EN 9.2k 979

Table 2: Out-of-domain corpus main figures (same abbreviations as in Table 1).

Corpus |S| |W | |V |

Europarl
EN

2.0M
50.2M 157k

FR 52.5M 215k

Europarl
DE

1.9M
44.6M 290k

EN 47.8M 153k

λ (Equation 1) were optimized using MERT (minimum error rate training) [8].

Since MERT requires a random initialisation of λ that often leads to different
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Table 3: Translation results using our DS method, in different configurations. Mean and Doc

are the two different CVR methods, sim(·) denotes the three different similarity functions,

#Sent for number of sentences, which are given in terms of the in-domain corpus size, and

(+) the number of sentences selected.

EN-FR FR-EN DE-EN

Strategy BLEU # Sent BLEU # Sent BLEU # Sent

bsln-emea 28.6±0.2 1.0M 23.7±0.2 1.0M 15.6±0.1 1.0M

bsln-all 29.4±0.1 1.0M+1.5M 26.2±0.2 1.0M+1.5M 16.6±0.2 1.0M+1.5M

Mean-sim0 29.4±0.2 1.0M+500k 25.6±0.3 1.0M+600k 16.6±0.2 1.0M+600k

Mean-sim1 29.4±0.2 1.0M+347k 25.6±0.2 1.0M+439k 16.9±0.2 1.0M+357k

Mean-sim2 29.6±0.3 1.0M+472k 25.7±0.2 1.0M+328k 16.7±0.2 1.0M+347k

Mean-sim3 29.6±0.3 1.0M+137k 25.8±0.2 1.0M+394k 16.8±0.2 1.0M+496k

Doc-sim0 29.6±0.3 1.0M+560k 25.8±0.1 1.0M+500k 16.8±0.2 1.0M+593k

Doc-sim1 29.6±0.2 1.0M+284k 25.9±0.1 1.0M+365k 16.9±0.3 1.0M+440k

Doc-sim2 29.7±0.2 1.0M+380k 26.1±0.2 1.0M+403k 16.9±0.3 1.0M+410k

Doc-sim3 29.8±0.2 1.0M+41k 25.9±0.4 1.0M+406k 16.9±0.1 1.0M+440k

local optima being reached, every point in each plot of this paper constitutes

the average of 10 repetitions with the purpose of providing robustness to the350

results. In the tables reporting translation quality, 95% confidence intervals

of these repetitions are shown, but are omitted from the plots for purpose of

clarity.

We compared the selection methods with two baseline systems. The first

one was obtained by training the SMT system with in-domain training data355

(EMEA-Domain data). We will refer to this setup with the name of bsln-emea.

A second baseline experiment has been carried out with the concatenation of

the Europarl corpus and EMEA training data (i.e., all the data available). We

will refer to this setup as bsln-all. In addition, we also included results for a

purely random sentence selection without replacement. In the plots, each point360

corresponding to random selection represents the average of 5 repetitions.

In this work, SMT output will be evaluated by means of BLEU (BiLingual
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Evaluation Understudy) [12]. BLEU is not an error rate, i.e. the higher the

BLEU score, the better.

The word2vec toolkit (Section 4.2) has different parameters that need to be365

adjusted in during the training process. We adjusted two parameters: vector

dimension v size and nc is the minimum number of times a given word needs to

appear in the training data for its corresponding vector to be built. The values

for v size = 200 and nc = 1 were fixed for all the experiments reported in this

paper.370

6.2. Experimental results

As a first step to empirical evaluation for CRSDS technique, we analysed the

performance of the two different vector representations of sentences (Section 4.3;

Mean-vec and Document-vec), since these two methods have a great impact on

the vectors obtained, and are bound to have an important impact on the data375

selection technique, and finally in the translation quality. In addition, we also

studied the performance of the three similarity functions proposed in Section

4.4.1.

Table 3 shows the best results obtained with the different CVR methods,

using the four different functions simi (see Section 4.4.1) and for each language380

pair. The values shows the best result for each strategy in terms of BLEU, and

comparing the size of selected corpora. Note that translation quality remains

very much similar, since the purpose of the extent to which the different DS

strategies are able to reduce the amount of training data required, without

any significant loss in translation quality. In this case, the similarity corpus S385

considered was the source test data T .

Several conclusions can be drawn:

• Translation quality using DS significantly improves over baseline (bsln-emea)

translation quality.

• In EN-FR and EN-DE, translation quality using DS improves over bsln-all,390

but using a significantly less data (3% and 23%, respectively). In the case
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of DE-EN, translation quality results are similar, but using only 27% of

the data. Hence, we can safely state that our DS strategy is always able

to deliver similar quality than using all the data, but only with a rough

quarter of the data.395

• Document-vec yields slightly better translation quality than Mean-vec.

Although differences are not statistically significant, this might mean that

Document-vec entails a better estimation of the sentence CVR.

• Lastly, sim1, sim2 or sim3 seem to perform similarly. However, sim0 does

require significantly more sentences to reach comparable translation qual-400

ity. Hence, sim3 should be preferred: it is the cheapest in computational

terms because it only requires one comparison with each s ∈ S.

6.3. Comparative with cross-entropy selection

Once the effect of the different parameters in CRSDS method was anal-

ysed, we now pursue to compare our DS method with the cross-entropy method405

(Section 6.1). Results in Figure 1 show the effect of adding sentences to the

in-domain corpus. Here, the similarity corpus is the in-domain set (i.e., S = I).

We only show cross-entropy results using 2-grams, which was the best result

according to previous work [41]. N-gram selection is not considered here be-

cause in this scenario the test data is not available. For CRSDS method, we410

tested both CVR methods (Document-vec and Mean-vec, combined with sim3).

Several conclusions can be drawn:

• All DS methods are mostly able to improve over random selection, spe-

cially when low amounts of data are added; in those cases where random

yields better results, differences are not significant. This is reasonable,415

since all DS methods including random will eventually converge to the

same point: adding all the data available. Even though these results

should be expected, previous works (reported in Section 3) revealed that

beating random was very hard.
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Figure 1: Effect on BLEU of adding sentences by means of CRSDS, cross-entropy, and random

DS. Horizontal lines represent bsln-emea and bsln-all. The similarity corpus is the in-domain

set (S=I)

• Results obtained with CRSDS method are slightly better (or similar) than420

the ones obtained with cross-entropy.

6.4. Comparative with infrequent ngrams recovery

We now pursue to compare CRSDS method with the infrequent ngrams

method in Section 5.2. As exposed in section 5.2, this method requires the

source Test corpus to be available for computing the infrequent n-grams list.425

For this reason, in this comparative the similarity corpus used was the source

Test corpus (i.e., S = T ). The results in Figure Fig. 2 show the effect of adding

sentences to the in-domain corpus. In the case of CRSDS method, the same
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Figure 2: Effect on BLEU of adding sentences using CRSDS, infrequent n-grams recovery, and

random DS. Horizontal lines represent the score the bsln-emea and bsln-all system. The

similarity corpus is, in this case, the source test data (S=T).

approach as in previous section was used. Several conclusions can be drawn:

• Results show that, also in the case of S = T , DS yields better results than430

bsln-emea.

• The results achieved by CRSDS method are similar (i.e., not statistically

different) from the results achieved by infrequent n-gram recovery, in all

the languages studied, albeit requiring more sentences.

• The results achieved by CRSDS strategy leveraging the Document-vec435

representation are consistently better than those achieved by the cross-

entropy method.
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• Note that, for equal amount of sentences added, translation quality with

CRSDS method is significantly better when S = T as compared to S = I

(Figure 1). We understand that this happens because we use the Test440

corpus entails a better selection out-of-domain sentence.

6.4.1. Combination with infrequent ngrams recovery

Table 4: Summary of the best combination results obtained for each language. #Sent stands

for number of sentences, wich is given in terms of the in-domain corpus size, and (+) for the

number of sentences selected.

EN-FR FR-EN DE-EN

Strategy BLEU # Sent BLEU # Sent BLEU # Sent

bsln-emea 28.6±0.2 1.0M 23.7±0.2 1.0M 15.6±0.1 1.0M

bsln-all 29.4±0.1 1.0M+1.5M 26.2±0.2 1.0M+1.5M 16.6±0.2 1.0M+1.5M

Random 29.4±0.4 1.0M+500k 25.5±0.1 1.0M+600k 16.7±0.3 1.0M+600k

Infr 30.2±0.2 1.0M+44k 26.0±0.2 1.0M+57k 16.8±0.2 1.0M+71k

CRSDS 29.8±0.2 1.0M+41k 25.9±0.3 1.0M+400k 16.9±0.1 1.0M+440k

CRSDS+Infr 30.0±0.1 1.0M+14k 25.9±0.2 1.0M+37k 16.7±0.2 1.0M+27k

In this section, we present the experimental results obtained through a re-

selection process, in which we use CRSDS method to obtain a first selected

corpus, which is then fed as out-of-domain corpus G to the infrequent n-grams445

method. The ultimate purpose is to combine the advantages of both meth-

ods, i.e., reducing as much as possible the number of sentences added, while

improving translation quality at the same time.

Table 4 shows the results obtained. Interestingly, the combined DS method

is able to yield very similar translation quality than each of the DS methods450

individually, but with a much lower amount of sentences. Specifically, the com-

bination is able to reach the same translation quality by adding as few as 1%

of the out of domain corpus for EN-FR, 2.5% for DE-EN and 1.6% for EN-DE.

We consider this specially relevant, since it proves that DS has a very important
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potential for reducing the computational resources required for training SMT455

systems.

6.5. Summary of the results

Table 5: Summary of the best results obtained with each setup. #Sent for number of sentences

wich are given in terms of the in-domain corpus size, and (+) the number of sentences selected.

EN-FR FR-EN DE-EN

Strategy BLEU # Sent BLEU # Sent BLEU # Sent

bsln-emea 28.6±0.2 1.0M 23.7±0.2 1.0M 15.6±0.1 1.0M

bsln-all 29.4±0.1 1.0M+1.5M 26.2±0.2 1.0M+1.5M 16.6±0.2 1.0M+1.5M

Random 29.4±0.4 1.0M+500k 25.5±0.1 1.0M+600k 16.7±0.3 1.0M+600k

CE 29.8±0.1 1.0M+450k 25.5±0.3 1.0M+600k 16.8±0.2 1.0M+500k

CRSDS 29.7±0.2 1.0M+485k 25.8±0.2 1.0M+470k 16.7±0.2 1.0M+350k

Infr 30.2±0.2 1.0M+44k 26.0±0.2 1.0M+57k 16.8±0.2 1.0M+71k

Cvr 29.8±0.2 1.0M+41k 25.9±0.3 1.0M+400k 16.9±0.1 1.0M+440k

CRSDS+Infr 30.0±0.1 1.0M+14k 25.9±0.2 1.0M+37k 16.7±0.2 1.0M+27k

Table 5 shows the best results obtained with our strategy and the other

two techniques for each language pair (EN-FR, DE-EN, EN-DE), with the cor-

responding similarity corpus instantiations. As shown, our CRSDS method is460

able to yield competitive results in both scenarios considered. We understand

that is important, since it proves the usefulness of our proposal, with respect

to the other techniques: it provides a single state-of-the-art approach to DS

selection, regardless of the scenario.

6.6. Example translations465

Translation examples are shown in Table 6. In the first example, our method

is not able to obtain the % symbol, as provided in the reference. This is not only

casual, since our method increases the coverage of percent with translations with

pour cent, hence leading the system to avoid the use of the % symbol, present
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in the in-domain corpus (as evidenced by the Bsl system). Nevertheless, note470

that this is not an actual mistake in translation terms, but will be penalised by

BLEU (which measures n-gram precision). In addition, all the systems present

the same lexical choice error with word (développer). However, this is so because

this is the most likely translation in our data, both in-domain and out-of-domain.

In the second example, our CRSDS method its the only one system able to475

obtain the reference translation. This happens because we are able to add the

appropriate information for translating aortic stenosis (aortic sténosis) and as

a (comme une), and do not introduce incorrect information, as is the case with

infrequent n-grams (définie is replaced by défini).

Table 6: Translation examples with the SMT systems built: Src (source sentence), Bsl (base-

line), All (all the data available), Infr (Infrequent n-grams), Entr (Cross-entropy), CRSDS

(Continuouns vector-space representation of sentence for data selection) and Ref (reference).

Src 5 percent of people with ulcerative colitis develop cancer .

Bsl 5 % des personnes avec colite ulcreuse de développer un cancer .

All 5 pour cent des personnes avec colite ulcéreuse développer un cancer .

Infr 5 % des personnes avec colite ulcéreuse de développer un cancer .

CE 5 pour cent des personnes avec colite ulcéreuse de développer un cancer .

CRSDS 5 pour cent des personnes avec colite ulcéreuse développer un cancer .

Ref 5 % des personnes souffrant de colite ulcéreuse sont atteintes de cancer .

Src an aortic stenosis is defined as a reduction of the surface .

Bsl une aortic sténosis est définie par une réduction de la surface .

All une sténose aortique est définie par une réduction de la surface .

Infr un aortic sténosis est défini comme une réduction de la surface .

CE une sténose aortique est définie par une réduction de la surface .

CRSDS une sténose aortique est définie comme une réduction de la surface .

Ref une sténose aortique est définie comme une réduction de la surface .
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7. Conclusion and future work480

Data selection has been receiving an increasing amount of attention within

the SMT research community. There are a lot of data selection methods based

in different ideas. In this work, we presented a novel data selection method

based on CVR of sentences or documents, which yield similar representations

for semantically close sentences, called Continuous Vector-Space Representation485

of Sentence for Data Selection (CRSDS). In addition, we perform a comparison

of our technique with two different state-of-the-art techniques, which are very

common in the literature and follow two different scenarios: the cross-entropy

method selects a subset given in-domain data, and in contrast the infrequent

n-grams recovery selects a subset of the out-of-domain data that is considered to490

be most relevant for the data to be translated. When comparing our method, an

important conclusion stands out: our method is able to yield similar or better

quality than the state-of-the-art methods for each scenario. Combining the two

techniques (our method and infrequent n-grams) in the second scenario yields

again similar quality, but with much less data.495

We understand that the results obtained indicate that our data selection

technique is able to take advantage of the benefits claimed by CVR methods:

being able to represent the semantic and syntactic relationship between words or

sentences, it goes beyond their string-based representation and is able to tackle

better data sparsity problems (e.g., where a given word or sentence is only seen500

once in the test data).

In future work, we will carry out new experiments with bigger and more

diverse data sets. In addition, we will modify the original cross-entropy defini-

tion to set similarity corpus S = T . We also intend to combine the strategies

proposed in more sophisticated ways.505
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