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Abstract

Sentence representation at the semantic level is a challenging task for Natural
Language Processing and Artificial Intelligence. Despite the advances in word
embeddings (i.e. word vector representations), capturing sentence meaning is
an open question due to complexities of semantic interactions among words.
In this paper, we present an embedding method, which is aimed at learning
unsupervised sentence representations from unlabeled text. We propose an un-
supervised method that models a sentence as a weighted series of word em-
beddings. The weights of the word embeddings are fitted by using Shannon’s
word entropies provided by the Term Frequency–Inverse Document Frequency
(TF–IDF) transform. The hyperparameters of the model can be selected ac-
cording to the properties of data (e.g. sentence length and textual gender).
Hyperparameter selection involves word embedding methods and dimensionali-
ties, as well as weighting schemata. Our method offers advantages over existing
methods: identifiable modules, short-term training, online inference of (unseen)
sentence representations, as well as independence from domain, external knowl-
edge and language resources. Results showed that our model outperformed the
state of the art in well-known Semantic Textual Similarity (STS) benchmarks.
Moreover, our model reached state-of-the-art performance when compared to
supervised and knowledge-based STS systems.
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1. Introduction

Nowadays, the growth of information in digital media encourages the analysis
of large amounts of text data. This is attracting attention from Data Science
and Artificial Intelligence researchers, as well as from the Internet industry.
Internet users are responsible for a meaningful part of this growth. They enter
information into the network which is also leveraged for sharing knowledge. An
important part of this knowledge is found at repositories such as question &
answer forums, digital newspapers and digital encyclopedias.

Due to the innumerable duplication of the information at these repositories,
several concerns arise as to the way users feed and consume knowledge. Some of
these concerns include removing redundancies in question-answering forums or
exploiting redundancies to assess the confidence of news in media or simply to
compress text size. The accomplishment of this massive information processing
is clearly infeasible for human reviewers. In this scenario, Statistical Natural
Language Processing (NLP) methods are a substantial aid.

An approach to address these issues is to perform massive comparisons by
considering the content of sentences or short snippets of text. These com-
parisons can be done by means of Semantic Textual Similarity (STS) systems
(Hatzivassiloglou et al., 1999; Agirre et al., 2012). An STS system computes
a similarity score (a real value) between a pair of sentences. This score indi-
cates how similar the sentences of the pair are. Most STS systems incorporate
a number of supervisory signals such as Knowledge Bases, encyclopedias, lan-
guage resources (e.g. thesaurus and linguistic taggers built on the basis of a
Part-of-Speech [PoS] tagger) and even similarity labels (Mihalcea et al., 2006).
Nevertheless, for specialized texts (or for low-resourced languages) those re-
sources are not available or are scarce. Furthermore, the scope of such systems
is limited exclusively to the task of measuring textual similarity. Such a limi-
tation generally obviates the step of vector representation of sentences. This is
not desirable when we want to study statistical behavior of sentence meaning.

Another approach is the one followed in this work. It consists of embed-
ding sentences (or short text snippets) onto vector spaces such that approxi-
mations to their meanings can be represented geometrically, i.e. sentence em-
beddings or sentence representations (Hinton et al., 1986; Elman, 1991). The
main advantage of such an approach is that there exists the possibility of study-
ing the statistical behavior of sentence meaning. As an additional and im-
portant benefit, sentence embeddings make it possible to leverage a number
of NLP tasks, such as sentence clustering, text summarization (Zhang et al.,
2012; Arroyo-Fernández, 2015; Arroyo-Fernández et al., 2016; Yu et al., 2017),
sentence classification (Kalchbrenner et al., 2014; Chen et al., 2017; Er et al.,
2016), paraphrase identification (Yin and Schütze, 2015), semantic similarity/
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relatedness and sentiment classification (Arroyo-Fernández and Meza Ruiz, 2017;
Chen et al., 2017; De Boom et al., 2016; Kalchbrenner et al., 2014; Onan et al.,
2017; Yazdani and Popescu-Belis, 2013).

The usefulness of vector representation methods mainly depends on the char-
acteristics of the text to be embedded into vector spaces (Salton and Buckley,
1988). On the one hand, most embedding methods provide well-suited repre-
sentations of the content of texts for which individual size is on a relatively
large scale (Salton et al., 1983; Martin and Berry, 2007; Le and Mikolov, 2014).
For instance, book-sized texts (e.g. documents with hundreds of thousands of
words or larger) are well represented by the importance of the words they contain
(Spärk Jones, 1972). Accordingly, the size of these text objects (as a Bag-of-
Words, BoW) suggests that by representing them we can satisfy shallow infor-
mation necessities limited to the gist (topics) of the documents (Manning et al.,
2009; Kintsch and Mangalath, 2011), e.g. Information Retrieval and document
classification.

On the other hand, words are at the bottom end of the text size scale. At
the word level, information necessities can be very general. That is, word repre-
sentation methods could be components of practically any NLP system. These
methods are mainly based on a general principle called distributional hypothe-
sis, which states that similar words are used in similar contexts (Firth, 1957;
Harris, 1968). In the NLP area, this linguistic principle is usually implemented
as statistical estimates of word co-occurrence, i.e. word embedding methods.
These statistical estimates provide word embeddings performing well enough
in general purpose NLP applications (Baroni and Lenci, 2010; Mikolov et al.,
2013a; Pennington et al., 2014; Baroni et al., 2014; Bojanowski et al., 2016).

The problem of modeling sentences is still open. For the cases of documents
or words, most applications expect representations encoding text content or
word use. Nonetheless, in the case of sentences, application users can expect
composite representations providing much more specific information, e.g. what
is declared or denied about something (Pereira, 2000; Meza-Ruiz and Riedel,
2009; Collobert et al., 2011; Kintsch and Mangalath, 2011). Thus, state-of-the-
art sentence representation methods can be highly dependent on the application
and on its specificity. So it is difficult to keep their performance and behavior
uniform/stable in several scenarios (Pham et al., 2015; Pagliardini et al., 2017).
Advancing the state of the art on sentence representation can be specially useful
when only unlabelled text is available for learning sentence representations or
even for applications to low-resourced languages.

In this work we address the problem of sentence representation by means of
the following hypothesis. It is possible to represent sentences well by exploiting
the link between the contexts learned by word embeddings and the entropy of
such embedded words. In order to confirm our hypothesis, we present a modu-
lar model that consists of a weighted series of pretrained word embeddings. In
this framework, the weights of the word embeddings are fitted by using unsu-
pervised learning based on Shannon’s entropy (Shannon, 1949), i.e. TF–IDF
(Term Frequency–Inverse Document Frequency). Thus, we take into account
word importance, both at corpus level and at sentence level.
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We evaluated our model, called Word Information Series for Sentence Em-
bedding (WISSE ), by using well-known STS benchmarks provided by the Se-
mEval competition (i.e. SICK [Sentences Involving Compositional Knowledge,
2014] and SemEval [2016]). Our results showed that WISSE outperformed (or
was comparable to) strong state-of-the-art methods in such benchmarks. Addi-
tional advantages were observed, which were mainly due to the modularity and
low computational cost of our model: short-term training, independence from
domain, external knowledge and language resources, as well as online inference
of (unseen) sentence representations.

The rest of this paper is organized as follows: Section 2 presents the related
work. Section 3 presents the main differences between STS systems and sentence
representation methods. Section 4 exposes the motivations for our method.
Section 5 presents the modules composing our model. In Section 6 we explain
the constitution of our model and how the modules composing it interact. In
Section 7 we explain the design of our experiments and their objectives. Section
8 presents the obtained results and Section 9 addresses the discussion about
such results. Section 10 provides insights on possible improvements, including
advantages and disadvantages. Finally, in Section 11 the conclusions derived
from this work are presented.

2. Related work

The method proposed in this paper simultaneously falls into two categories of
sentence representation methods, whose related work is reported in this section.
The first category deals with models and methods that unsupervisedly embed
short text snippets or sentences. Such an embedding is performed directly from
unlabeled (plain) text data into vector spaces. The main methods are based on
statistics and neural networks. The second category deals with models that use
any form of weighted sum of word embeddings. This mechanism embeds text
snippets or sentences into vector spaces by using pretrained word embeddings.
In this framework the weights of the word embeddings can be fitted with both
supervised and unsupervised learning.

2.1. Unsupervised methods for sentence representation

In this subsection we briefly describe a number of unsupervised methods
whose aim is to build sentence representations for general purposes. These
methods do not use external resources or supervisory signals, some of the main
traits of the model presented in this paper.

2.1.1. Statistical methods

A popular statistical representation method was originally used in Informa-
tion Retrieval applications, by which documents were represented. The rep-
resentation consists of the TF–IDF transform of document vectors such that
their components are, mainly, word frequencies. Currently there are multiple
heuristics for computing the components, e.g. word presence/absence (binary),
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smoothed logarithm, etc. (Salton et al., 1983; Salton and Buckley, 1988). The
transform gives a term-document matrix as a result. Due to its monotonic na-
ture, this model assigns relatively high weights to rare (infrequent) words and
relatively low weights to very frequent words (Spärk Jones, 1972). According to
information theory, this schema weighs the information conveyed by each word
of the vocabulary (Aizawa, 2003; Robertson, 2004). The weighting method
consists of a logarithmic rescaling of the frequency of each word within a docu-
ment. At the end, this logarithm linearizes the exponential distribution of word
types through the corpus. In our experiments, we included BoW for sentence
representation as a baseline method.

Latent Semantic Analysis (LSA) takes as its input a term-document matrix
created by means of the BoW method (Landauer et al., 1998). The sparse
vectors of this matrix are transformed into document vectors, the of which are
the projection weights to a user-defined number of eigenvectors of the term-
document matrix. The transformation is computed by means of the Singular
Value Decomposition (SVD) method. The number of eigenvectors is associated
with the number of topics supposed to be present in the collection of documents
(Martin and Berry, 2007).

2.1.2. Neural sentence representations

The method calledDoc2Vec uses a neural network to build sentence/paragraph
vectors that can be used for general purposes (Le and Mikolov, 2014). This
method uses word embeddings previously learned from fixed-length segments
of text (sliding word windows). The words of a sentence are associated with
the corresponding word embeddings (Mikolov et al., 2013b). These embeddings
then are used as evidence to predict a virtual word embedding which does not
represent a word, but a sentence instead.

As an extension of Doc2Vec, the neural model proposed by Kiros et al.
(2015) produces sentence embeddings from the hidden states of a Recurrent
Neural Network (RNN). In this framework (the Skip-thought vectors), the two
sentences surrounding a center sentence are a context window. The RNN maps
these sentence contexts to its last hidden state, which is taken as a sentence
embedding.

The architecture called FastSent, proposed by Hill et al. (2016), is based on
the Glove model (Pennington et al., 2014) (see Section 5.1). Furthermore, the
authors instantiate the architecture of Skip-Thought vectors (Kiros et al., 2015).
This combined network uses a precomputed matrix that merges co-occurrence
information from both words and sentences. Additionally, Hill et al. (2016) ad-
dresses the STS problem as one of machine translation. This helps to learn
sentence representations by simulating negative examples to a Sequential (De-
noising) Auto Encoder, S(D)AE, which uses such examples to learn a negative
model. Thus, unseen sentences can be built in opposition to the jointly learned
negative (adversarial) model.

The work of Wieting et al. (2016) proposes a meaningful difference with re-
spect to most word embedding methods. This model, called CHARAGRAM
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learns embeddings of character n-grams (Bojanowski et al., 2016). Charac-
ter embeddings are simply averaged in order to compose words. Actually the
same operation is performed when sentence embeddings are needed, i.e. the
obtained word embeddings are averaged to obtain sentence representations in
the CHARAGRAM-PHRASE model.

The neural sentence representation model called C-PHRASE relies on depen-
dency/constituency parsing (Bentivogli et al., 2016). The idea is very similar to
the one proposed by Levy and Goldberg (2014) for word embeddings (Section
5.1.2). That is, the word co-occurrence is constrained by structure dependencies
rather than by word-context windows scanning the input corpus.

The model called Sent2Vec is similar to that proposed by Le and Mikolov
(2014). The authors extended Doc2Vec for considering sentences, instead of
fixed-length context windows. Additionally, this model can consider word n-
grams or even the dynamic length of the context window as a modification of the
subsampling approach proposed by Mikolov et al. (2013a). This model is also
very similar to that proposed by Bojanowski et al. (2016) for word embeddings
(Section 5.1.3). That is, the architecture can learn a distribution of labels for a
given training example.

Although sentence representation methods based purely on deep learning
have shown competitive performance based on a number of benchmarks, their
computational cost can be a significant bottleneck. Some of these methods
need large amounts of data and even weeks of training on GPUs to perform
reasonably well (Kiros et al., 2015).

Most state-of-the-art methods are purely neural network based. Unlike such
an approach, our method uses neural models only for training word embeddings
(our word embedding module).

2.2. Weighted sum of word embedding methods

The notion of weighting word embeddings composing sentences was intro-
duced by Ji and Eisenstein (2013). A recent extension of such work is pre-
sented in (Yin and Schütze, 2015). The authors appeal to supervised learn-
ing of weights for each word within a sentence. Their approach focuses on
improving precision in paraphrase identification. This method rescales (en-
forced/penalized) the IDF of shared words of a pair of sentences. Herein, two
complementary distributions of events are considered. First, the probability
distribution that a given word taking place in sentences that are paraphrases.
Second, the probability distribution that a given word taking place in sentences
that are not paraphrases. The Kullback–Leibler divergence of both distribu-
tions is computed to enforce IDF weights of shared word embeddings between
paraphrases. The authors use negative factorization of the rescaled sentence
matrices in order to build vector features for paraphrase classification.

In (Zheng and Callan, 2015; Brokos et al., 2016), the authors improve Infor-
mation Retrieval applications by using word embedding weighting. The embed-
dings of documents and queries are weighted via IDF. The goal is to compute
the average similarity between query term embeddings and word embeddings of
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documents for retrieval. In (Kenter and de Rijke, 2015) a similar approach is
proposed. From partial measurements, a regression function is estimated from
a training dataset in order to predict the rescaling of the word embeddings of a
test set.

In (De Boom et al., 2016), the authors propose a supervised approach for
learning the word embedding weights for text snippets (short texts). Their
method represents snippets of paragraph-like lengths. A binary classification
problem (relatedness/unrelatedness) is posed to learn the required weights. In
this method, the IDF weights are used to rank the order of the weighted em-
bedding summation. The authors show that unimportant words induce too
much bias to semantic similarity measurement5. Therefore their model drops
unimportant words from the sentence representation. Thus their model learns
uniquely the weights of surviving word embeddings. Next, the weighted word
embeddings are averaged in order to obtain the final snippet representation.
The authors pointed out that such an average works well for texts of about 30
words in length. Nonetheless, they also propose additional modifications to their
model for variable text length. Unlike this approach, our study is for sentence
representation.

Another related method is the one recently proposed by Ferrero et al. (2017).
Their model uses PoS tag weights. These weights are merged to the associated
IDF weights from the analyzed dataset of the STS sentence pairs. Both the PoS
weights βPOS and the IDF weights βidf of each word w are combined using a
product of powers. By means of such a combination, a unique word weight φw

is obtained, i.e. φw = βα
POSβ

1−α
idf . As both βPOS and α are free parameters, the

model learns them in a supervised fashion by using manually annotated semantic
similarity scores. Thus, both word importance and word PoS tags contribute to
weight word embeddings in order to build a sentence representation.

In (Arora et al., 2017) the authors use word embedding weighting in both
supervised and unsupervised approaches. The weights were learned as part of
a multinomial distribution. This multinomial is parameterized according to the
probability of a word appearing along with other words (i.e. the words of a
sentence). This idea is actually an extrapolation of the principles behind dis-
tributed representations for word embeddings (Mikolov et al., 2013b). However,
this model additionally considers a balance (a linear convex compensation) be-
tween the probability of a word to occur within a discourse and its probability
to occur within a sentence.

Most methods we presented in this subsection are supervised. An exception
is the unsupervised method proposed by Arora et al. (2017), which is the most
similar to ours. This method performs unsupervised learning of co-occurrence
weights. Unlike to such an approach, ours performs unsupervised learning
of weights based on information amount (which constitutes our information-

5We think that this noisy behavior is not necessarily due to the property of a word of
being noisy, but more probably due to the over/underrepresentation issues in word embedding
methods.
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theoretic module).

3. STS and the distinction between STS systems and sentence rep-

resentation methods

Since we evaluated our sentence representation method by means of STS
tasks, we briefly explore such tasks’ context in this section. Furthermore, we
show a comparison between sentence representation methods (like the proposed
one in this paper) and STS systems.

There are a number of proposed methods to assess semantic similarity be-
tween pairs of sentences. Most of these proposals emerge from benchmarks like
the one used in the SemEval STS competition (Agirre et al., 2012). Given a
pair of sentences, the aim of the STS task is to determine a similarity score (a
real value). This score indicates just how similar the sentences of the pair are.
The higher the score is, the higher the measured semantic similarity.

STS benchmarks evaluate the correlation coefficient between the similarity
assessed by some algorithm and the similarity assessed manually by humans.
This coefficient (the Pearson’s coefficient) is a real number ρ(·, ·) ∈ [−1, 1]. For

instance, let d = {d(S
(1)
a , S

(1)
b ), . . . , d(S

(ℓ)
a , S

(ℓ)
b )} be the similarities of a set of ℓ

pairs of sentences. Also let y = {y1, . . . , yℓ} be the gold standard of similarities
manually annotated. In this example as ρ(d, y) approaches 1.0, it means that
the STS algorithm producing d performs well on the benchmark.

STS systems attaining relatively high performances have recently been de-
veloped. These systems correlate about 80% with similarity scores annotated
by humans (Cer et al., 2017). Most systems integrate combinations of multi-
ple algorithms providing partial scores from a number of aspects of the sen-
tences (Sultan et al., 2014). For instance, a typical similarity score between
sentences of a pair can be obtained as follows (Pilehvar and Navigli, 2015;
Brychcın and Svoboda, 2016):

d(Sa, Sb) = α1d1 + · · ·+ αndn.

In the d(·, ·) score, the αis are weights controlling the influence of each aspect
or attribute shared between sentences Sa, Sb. Such weights may be either user-
defined or learned in a supervised fashion. Each di is the overlapping score
of the ith attribute (or category of attributes) aligned between sentences (e.g.
words aligned by syntactic category, words aligned by their vicinity within a
semantic graph, etc.). Notice that each αidi is actually a partial similarity
score contributing independently to d(·, ·).

There are also semisupervised systems whose main feature is the use of exter-
nal resources such as knowledge bases, thesauruses and dictionaries (Pilehvar and Navigli,
2015; Kenter and de Rijke, 2015; Brychcın and Svoboda, 2016). Other methods
also incorporate supervisory signals provided by PoS taggers, dependency/semantic
parsers and Neural Networks (Rychalska et al., 2016).

In our case, we evaluate the performance of our sentence representation
method by using popular STS benchmarks, i.e. SemEval (Agirre et al., 2016)
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and SICK (Bentivogli et al., 2016). In this context, the evaluation of any sen-
tence representation method like the ones shown in Section 2 is very similar
with respect to the evaluation of STS systems. Nonetheless, the interpretation
of the results is quite different.

When evaluating sentence representations, we only define a similarity func-
tion as an algorithm for comparing vector representations. For instance, the
cosine similarity: cos(θ) = ŷ(sa, sb) = (sa · sb)/(‖sa‖ · ‖sb‖). In this scenario, we
should be focused on details involved in the construction of the representations.

Thus, a set of similarities ŷ = {ŷ(s
(1)
a , s

(1)
b ), . . . , ŷ(s

(ℓ)
a , s

(ℓ)
b )} is obtained from

comparing a set of ℓ pairs of sentence representations.
Let the gold standard of similarities manually annotated be y = {y1, . . . , yℓ}.

As a good result on the STS benchmark we expect that the correlation coefficient
to approach one, i.e. ρ(ŷ, y) → 1.0. It means that our sentence representation
method generating the embeddings s(·) ∈ R

d performs well on the benchmark
and with respect to the cosine similarity algorithm. Therefore, such represen-
tations encode a good approximation of the human sentence-meaning criterion
given by y.

In general, STS systems do not needed to represent sentences at all. In fact,
there is a remarkable distinction between the aim of an STS system and the aim
of a sentence representation method evaluated in STS tasks. That is, most STS
systems are designed to beat the STS ranking, while sentence embedding meth-
ods are designed to provide distributional semantic representations of sentences.
See Table 1.

Table 1: Comparison of characteristics between STS systems (sts) and sentence representation
methods (repr). Column names: Access to sentence representations (Access={Yes/No}), Par-
tial similarity scores (Partial={Yes/No}), use of external (knowledge) resources (Resources).

System/method sts/
repr.

Parsing Resources Partial Access

Rychalska et al. (2016) sts Dependency WordNet Supervised No
Han et al. (2013) sts Chunking WordNet Yes No
Sultan et al. (2014) sts Chunking,

named
entities,
dependency

WordNet Yes No

UWBunsup
(Brychcın and Svoboda,
2016)

sts Chunking No No No

LSA repr. No No No Yes

BoW repr. No No No Yes

Sent2Vec repr. No no No Yes

Doc2Vec repr. No No No Yes

FastSent repr. No No No Yes

Skip-Thoughts repr. No No No Yes

Glove-WR repr. No No No Yes

C-PHRASE repr. Constituent
structure

No No Yes

WISSE repr. No No No Yes

WISSE + dependency
based word embeddings

repr. Dependency No No Yes

In this paper, we focused our comparisons on unsupervised learning methods
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which require neither labeled data nor external resources. Moreover, notice that
we focused on sentence representation methods rather than on STS systems.

4. Motivation for weighted series of word embeddings

Currently there are multiple approaches for building sentence representations
in vector spaces. Nonetheless, the complexity of the problem of keeping stable
sentence representations through multiple scenarios remains a bottleneck in the
NLP area. This is mainly because there exist linguistic and knowledge resources
unique for a limited subset of information necessities and languages. So research
on efficient unsupervised sentence representation methods can offer a promising
approach to such a limitation. In this section we present the intuitions that
motivated our contribution. These intuitions are given mainly in the sense of
orthogonality of word embeddings as a desired trait of weighted series.

4.1. Composition in distributional semantics

Mitchell and Lapata (2010) propose a number of candidate models for se-
mantic composition that are empirically tested as heuristics yielding promising
results. Among the candidate models, the asymmetric composition is particu-
larly interesting for us. This model is a weighted sum of word embeddings. Its
purpose is to approximate the meaning compositionality of short phrases (e.g.
“random variable”, “meaning composition”). In this framework, the asymmetry
is posed as the linguistic feature such that the head [h] of a phrase must be more
important than the dependent modifier [md]. See examples (1) and (2):

(1) random[dm] variable[h]

(2) meaning[dm] composition[h].

The asymmetric composition model is given by:

p = αx[dm] + βx[h], (1)

where it must be verified that α < β. This inequality reflects the differ-
ence between the importance of the constituents (i.e. the word embeddings
x[dm], x[h] ∈ R

n) of the resulting phrase p ∈ R
n. According to Tian et al. (2017),

coefficients α, β are scalars drawn from a monotonic function. In this work, we
consider that a reasonable choice for such a monotonic function is the Shan-
non’s entropy (Shannon, 1949; Charniak, 1996; Aizawa, 2003). The asymmetric
model takes into account both word order and linguistic features determining
the syntactic category of the resulting phrase embedding p.

Since the composition approach (1) is plain and natural, it has encouraged
recent work. For instance, Tian et al. (2017) described theoretical conditions
for the vector averaging operation as a model of composition in distributional
semantics. Given word embeddings x[dm] and x[h] that are geometrically uncor-

related, then making α = β = 1
2 actually causes p to approach zero. In other

words, the average operation causes embeddings of words co-occurring with low
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or moderated frequencies to cancel each other, so p → 0. This effect suggests
a linguistic intuition: uncorrelatedness (including orthogonality) between the
meanings of words of a phrase occurs when the speaker constructs composite
meanings. In contrast, as word meanings are correlated in context (e.g. words
co-occurring frequently, like ”cell phone”). Frequent co-occurrences lead to sim-
ple meanings that can easily be represented by means of the average between
word embeddings. In this case, p is actually encoded as an implicit embedding
shared by x[dm] and x[h]. From our experiments, we interpret that the aforemen-
tioned observations explain the low performance of the simple average of word
embeddings for representing whole sentences (Section 8).

4.2. The sparseness in neural language models

Word embedding models have one characteristic in common: the sparseness
of word co-occurrence statistics induces orthogonality (Elman, 1991). Now,
we present the main cases during the training of word embeddings where or-
thogonality is relaxed and where it approximately holds. For instance in recent
work on neural models (Bengio et al., 2003; Mikolov et al., 2013a), binary sparse
vectors are used for representing input words as categorical variables (one-hot
encoded vectors). These vectors build a canonical basis for R

|V |. This basis
encodes the vocabulary as an orthonormal set

e = {e1, . . . , e|V |} =







1 0 · · · 0
...

. . . · · ·
...

0 · · · 0 1







before training (Elman, 1991). After training, the projection layer of the neural
model has learned a transformation relaxing the initial orthogonality of words
co-occurring frequently. Conversely, for words that do not co-occur frequently,
orthogonality is impregnated or imposed onto their associated embeddings.

4.3. The extreme values of training on co-occurrences

Let us consider the case of Golve (Pennington et al., 2014). Suppose that
the word wi does not (or almost does not) co-occur along with the context
cj = {w1, ..., wi+r}. Also, let xi and ϕj be the corresponding embeddings. Such
embeddings are learned by the Glove’s loss:

J (xi, ϕj) =

V
∑

i,j

f(cij)(〈xi, ϕj〉 − log cij)
2. (2)

If the word wi does not co-occur within the context cj , then cij → 1 and
therefore log cij ≈ 0. As the objective (2) requires that (〈xi, ϕj〉−0)2 → 0, then
the dot product 〈xi, ϕj〉 ≈ 0. This implies that the word embeddings tend to
be orthogonal.

A different tendency can be observed when wi co-occurs frequently along
with the context cj . The training leads to log cij > b, so that 〈xi, ϕj〉 ≈ b for a
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sufficiently large b > 0. Therefore the word embeddings are linearly dependent
proportionally to b.

Notice that this analysis considers the extreme values of co-occurrence. De-
pending on the stability of the embedding algorithms, orthogonality is uniquely
a tendency that approximates an ideal distribution.

4.4. Merging

As an extension of the geometrical observations on compositionality and
orthogonality, we propose weighted series of word embeddings for sentence rep-
resentation. Weighted series can be seen as the decomposition of a sentence into
basis vectors. Mathematically, a basis is an orthogonal set spanning a seman-
tic space of sentences (Fourier, 1822). As being convenient for our proposed
model, we decided to relax this concept. In our weighted series we include word
embeddings just as produced by their algorithms (e.g. Word2Vec and Glove).

Pennington et al. (2014) offers a proof that the distribution of co-occurrences
is bounded by a generalized harmonic number (i.e. a set of logarithmic dis-
tributions). Such a proof and the analysis presented in sections 4.1, 4.2 and
4.3 suggest that the angles between word embeddings are also logarithmically
distributed as they are combined to transmit information. Thus, such a dis-
tribution relates Shannon’s entropy, co-occurrence statistics and orthogonality.
This reasoning in turn suggests that a weighted series model admits, on the one
hand, the weighted contribution of word embeddings encoding composite mean-
ings. On the other hand, this model also admits the weighted contribution of
lexicalized phrases whose constituent words share implicit embeddings. Thus,
theoretically a weighted series of word embeddings is built by two main subsets
of word embeddings. The former subset contains a few uncorrelated (probably
orthogonal) word embeddings carrying specific information. Also, the second
(disjoint) subset contains correlated word embeddings carrying almost no infor-
mation. Notice how this idea resembles the idea put forward in (1).

5. The modules of our sentence representation method

5.1. The word embeddings module

In this section we will describe the word embedding methods that WISSE
employs as one of its modules. One of the most popular methods is termed
Word2Vec (W2V) (Mikolov et al., 2013a), which is a neural language model in-
spired by ideas proposed previously (Hinton et al., 1986; Bengio et al., 2003).
Recently other methods have been proposed and they are still growing in pop-
ularity, e.g. Glove (Pennington et al., 2014) and FastText (Bojanowski et al.,
2016). These methods share similar elements in general. Their aim is to train a
learning model whose hidden parameters are random vectors. The model learns
from multinomial distributions modeling the co-occurrence of each word type
along with other words. These other words are encapsulated within sliding win-
dows (i.e. target contexts for each word type (Rong, 2014)). Once the model is
trained, its hidden parameters are used as word embeddings.
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5.1.1. Word2Vec

There are two possible neural architectures producing word embeddings with
W2V: the Skip-gram and the CBoW. In this work, we used the Skip-gram neural
architecture for training word embeddings.

Let V = {w1, . . . , wt, . . . , w|V |} be the vocabulary of a context corpus D.
The main idea behind Skip-gram is to (supervisedly) classify all word types wt as
they are instantiated (wi = wt) though such a corpusD = {w1, . . . , wi, . . . , w|D|}.
Multiple target labels are simultaneously associated with each wt. Each target
set is the vocabulary of a sliding window having r labels being the words around
wi. Thus, the target associated with wi takes the form ci = {wi−r, . . . , wi+r} \
wi. The parameters of the distribution modeling the set {c1, . . . , ci, . . . , c|D|}
must be learned by the Skip-gram classifier.

Before training of the classifier, a preprocessing step transforms the input
unlabeled text into a labeled one. This amounts to obtain a training set of the
form (w1, c1), . . . , (wi, ci), . . . , (w|D|, c|D|). As Skip-gram is actually a Neural
Network, its output layer can be written in terms of its hidden layers as follows:

P (ci|wi = wt) = P (wi−r, ...wi+r |wt) =
exp(xt, ϕci)

∑

w∈V exp(xt, ϕw)
. (3)

The vectors xt ∈ R
d are word embeddings of the word types wt and they are

actually the columns of the first hidden layer of the Skip-gram. The dimension
of the word embeddings is d, which equals the number of hyperplanes described
by the first hidden layer. Entries of matrix ϕci are the weights of the output
layer, corresponding to the word types wi−r, ..., wi+r ∈ ci. Entries of matrix
ϕw|w∈V are all weights of the output layer.

5.1.2. Dependency-based word embeddings (Dep2Vec)

One of the embedding methods we used as part of our experiments is an
extension of W2V. The extension consists of a substantial modification of the
notion of context window that uses dependency parsing as a surrogate for the
standard co-occurrence window ci in (3). Given a word wi, dependency parsing
is used for establishing context restrictions. The pair (wi±r, wi) is considered
to co-occur within the same context whenever its words are related by a gram-
matical dependency. For example, according to the mentioned restrictions, the
co-occurrence of the words John and sneezes has much higher probability than
the co-occurrence of the words house and sneezes. House and sneezes can co-
occur within a vicinity of words, but they do not hold a grammatical dependency.
Therefore this pair is not considered as a co-occurring one. This is because of
the object-subject distributional dependency restricting the actions that people
and houses can do, i.e. a people sneeze, but a houses do not (Baroni and Lenci,
2010; Levy and Goldberg, 2014; Pagliardini et al., 2017).

5.1.3. FastText

The FastText model is another extension of W2V (Bojanowski et al., 2016).
This model is a combination of the CBoW and Skip-gram architectures. Fast-
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Text is designed to segment the input text into contiguous n-grams of charac-
ters gi. These contiguous n-grams are then grouped into context windows ci.
As in the case of W2V, ci is associated with wi and wi /∈ ci. Thus, given a
context window ci = {g1, ..., g|ci|} the model should predict a target window
c′i = {g1, ..., g|ci|, wi}, i.e. P (c′i|ci) = P (g1, ..., g|ci|, wi|g1, ..., g|ci|). Notice that
both ci and c′i are a bit different than ci built in (3). Furthermore, the target
window contains the word wi which is composed by the n-grams gi. This allows
the model for different word embeddings for the word as and for the bigram
as composing the word whereas. The same mechanism allows FastText to infer
out-of-vocabulary word embeddings.

5.1.4. Global vectors for word representation (Glove)

Global vectors for word representation (Glove) is a bit different from most
of its counterparts. By bringing back pioneer methods like LSA, this model
transforms a sparse matrix of word co-occurrences into co-occurrence probabil-
ities (Pennington et al., 2014). The matrix of co-occurrences C has entries cij
and each of them is the probability that the word wi co-occurs along with other
words wj within a context window. The model estimates a regression function
on the non-zero log probabilities. This considers as independent variables the
set of word embeddings xi ∈ R

d.

J (xi, ϕj) =

V
∑

i,j

f(cij)(〈xi, ϕj〉 − log cij)
2, (4)

where xi corresponds to the word wi and ϕj ∈ R
d is the embedding of the

context window spanning over other words wj . The weighting function f(cij) =
(

cij
max{cij}

)α

allows J to be adapted to the importance of co-occurrence proba-

bilities cij .
6 Overall, the convex objective (4) is conceived to optimize the cor-

respondence between the inner product 〈xi, ϕj〉 and the log difference log cij =

log
P (wj |wi)
P (wi)

.

5.2. The information-theoretic module

TF–IDF is a normalized log transformation providing three sources of infor-
mation about the importance of words (Spärk Jones, 1972; Salton et al., 1983;
Aizawa, 2003). In our proposed model, these sources of information are merged
so as to build a contribution function based on Shannon’s entropy.

Given a vocabulary V , the first source of information is the entropy of a
sentence sj ∈ S due to the set of sentences S (the corpus). The second source
is the entropy of each word wi ∈ V due to the subset of sentences sharing it.
The third source is the decrease of entropy of S as wi is observed in a particular
sentence sj ∈ S.

6Similar considerations are also referred to as “sub-sampling” in Mikolov et al. (2013a) and
Bojanowski et al. (2016).
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Formally, according to Aizawa (2003), a sentence sj has probability P (sj) =
1/NS and all sj ∈ S are equally probable, so they are uniformly distributed.
Now, it is defined the first information source as the entropy of each sentence
sj due to S:

H(sj) = −
∑

sj∈S

P (sj) logP (sj) ≈ − log
1

NS

, (5)

where NS is the total number of sentences, i.e. j = 1, 2, ..., NS.
In a similar way, we can define our second source of information. It is the

entropy of a word wi due to the subset ςi ⊂ S of sentences sharing such a word:

H(S|wi) = −
∑

sj∈S

P (sj |wi) logP (sj |wi) ≈ − log
1

Nwi

, (6)

where Nwi
is the cardinality of ςi. One interpretation of the right side of (6)

is that all elements of ς = {ςi ⊂ S : i = 1, 2, . . . , |V |} are equally likely and
uniformly distributed.

Prior to computing our third information source we need to compute a con-
ditional information source provided the first (5) and the second (6) information
sources. It is the decrease in the entropy of S and ςi given that wi is observed
(Osteyee and Good, 1974). Such a decrease is also interpreted as the expected
mutual information gained by ςi and S as each wi is observed:

I(V, S) =
∑

wi∈V

P (wi) [H(S)−H(S|wi)]

≈
∑

wi∈V

fwi

F

(

log
1

Nwi

− log
1

NS

)

.
(7)

The probability of any wi is computed as P (wi) = fwi
/F . fwi

is the fre-
quency of wi in S and F is the sum of frequencies of all words in S. The
conditional information described by (7) is a computation on the whole corpus.
The marginal information amount associated with each word given a particular
sentence can be obtained from each term of the summation (7). Such a marginal
quantity is our third information source and it is defined explicitly in Section 6.

6. The proposed sentence representation model

In this paper, we propose to use the information provided by the entropies
of words in a corpus (TF–IDF) as a weighting approach for series of word em-
beddings of the form

s(x, ϕ) =
∑

wi∈s

ϕixwi
. (8)

In the general model (8), the unknown coefficients ϕi weigh the contribution
from each word embedding xwi

to the sentence representation s(x, ϕ). A natu-
ral instinct is to optimize ϕ1, . . . , ϕ|s| without (or with few) assumptions about
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them. However, in this work we propose taking into account information fea-
tures of each word obtained from a corpus as prior knowledge (Schölkopf et al.,
1997). This prior knowledge relies on the fact that topical meaningful words
(e.g., noun phrases and named entities) have relatively low probability of being
used (Robertson, 2004), therefore they are informative. Conversely, non-topical
words (e.g., prepositions and determinants) have a high probability of being
used. Therefore, they are much less informative. Note that there is a corre-
lation between syntactic features and how informative a word is (Mitra et al.,
1997; Pereira, 2000; Mitchell and Lapata, 2010; Badarinza et al., 2017).

Let us instantiate our information-theoretic module (Section 5.2):

I(V, S) ≈
∑

wi∈V

fwi

F

(

log
1

Nwi

− log
1

NS

)

. (9)

Now we use the prior knowledge it acquired once it has been trained on the
corpus S. This means that, given the decomposition form of such a model, we
can take the TF and the IDF vectors from it separately. Therefore the IDF
vector ϕS ∈ R

|V | is given by:

ϕS =

(

log
1

Nw1

, . . . , log
1

Nw|V |

)

− log
1

NS

, (10)

where Nwi
is the number of sentences sharing each wi in (9) and NS is the total

number of sentences in S. Note that each component of ϕS gives marginally
the first and the second information sources given in Section 5.2.

Now, from each term P (wi) =
∑

sj∈S P (wi|sj) ≈
∑

sj∈S fij/F in (9), we
define fij as the frequency of wi occurring within some sentence sj . Therefore
the probability of wi to occur in sj is given by P (wi|sj) ≈ fij/F . Thus, we define
our third information source. As a particular wi is observed in a particular sj , it
constitutes a conditional event decreasing the entropy of S (which also increases
its informativeness). Each term of (9) therefore provides the informativeness of
each particular event (wi, sj), with which we define the TF vector:

ϕ(sj)
wi

=

(

0, . . . ,
fij
F

, . . . , 0

)

(11)

For consistency with ϕS , the TF vector ϕ
(sj)
wi ∈ R

|V | has a unique nonzero
component i in (11). Now we merge our three information sources into the

scalar weights ϕi = 〈ϕ
(sj)
wi , ϕS〉 for each word embedding xwi

of the series (8),
i.e. the associated TF–IDF weights.

Suppose that any of the models described in Section 5.1 is already trained,
e.g. via Glove (4), so we can now instantiate our word embedding module. Let
us pick up any word embedding xwi

from it.
Let a sentence representation s(·, ·) be a vector derived from a textual con-

struction whose elements (word embeddings) “live” in a semantic spaceX ⊂ R
d.
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〈ϕ
(sj)
wi , ϕS〉

I(V, S)

ς

V

S

word embeddings

b b b

I(V, S)

Pre-trained

Sentence

representation

xw1 xwi
xw|s|

sj(x, ϕ)

“This is a parsimonious sentence.”

Word embeddings
module

Information-theoretic module

Figure 1: Given a sentence (e.g. “This is a parsimonious sentence.”), our model (12) asks to
the word embedding module the word embeddings {xw1 , . . . , xw|s|

} associated with the words
constituting such a sentence. In turn, the model asks to the information-theoretic module for

the IDF vectors ϕS and for the TF vectors ϕ
(sj)
wi

associated with each of these words. These

vectors are multiplied, which gives us the TF–IDF weights 〈ϕ
(sj )
wi

, ϕS〉 for each word in the
sentence. Once the needed TF–IDF values are obtained, the model assigns them as weights
to their associated word embeddings. According to our model, the sentence representations
sj(ϕ, x) are obtained simply by summing the weighted word embeddings.
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0.075xThe

0.53xdog
0.37xbarks

s(The_dog_barks)

Figure 2: A hypothetical sketch of the sentence vectors for the sentence “The dog barks”
and the actual weights computed from the corpus. The vector projected by the dotted lines
(left side) is the hypothetical summation of constituents: the sentence representation.

Now let ϕ = (ϕ1, . . . , ϕ|s|) = (〈ϕ
(sj )
w1 , ϕS〉, . . . , 〈ϕ

(sj)
w|s|

, ϕS〉) ∈ R
|sj | be the coeffi-

cients of the weighted series (8), which have been learned by (9) in an unsuper-
vised fashion. Hence, we rewrite (8) as follows:

sj(x, ϕ) =
∑

wi∈sj

〈ϕ(sj)
wi

, ϕS〉xwi
. (12)

As a sentence representation sj(x, ϕ) is built, the learned vector ϕ regulates
the amount of information provided by each constituent word embedded in x =
{xw1 , . . . , xw|sj |

}. See Figure 1. We defined this regulatory process such that

it is derived from three information sources. We have the constant vector ϕS

derived from the whole corpus S and from a subset of sentences in it sharing each

word wi. Also we have the vector ϕ
(sj)
wi which is derived from the subset of words

wi ∈ V such that they take place in sj(·, ·). This formulation proposes that word
embeddings xwi

composing a sentence representation have different importances
or contributions drawn by some abstract random process of communication, the
language.

As an example, we show a sketch of the sentence ”The dog barks”. Our model
(12) allows to see how some s(·, ·) would look like geometrically (Figure 2). The
sentence sketch could have weights like ϕThe = 0.075, ϕdog = 0.53, ϕbarks = 0.37.
Thus, the example s[(xThe, xdog, xbarks), ϕ] can be represented as

s(x, ϕ) = s[(xThe, xdog, xbarks), ϕ] =
∑

wi∈s

〈ϕ(s)
wi

, ϕS〉xwi

= 0.075xThe + 0.53xdog + 0.37xbarks

The modularity of our model allows for incorporating other information
sources through its weights as required, e.g. syntax and structure (Těšitělová,
1992; De Marcken, 1999; Ferrero et al., 2017).

Time and memory cost. Suppose we have an NLP system that relies on sen-
tence representations. Once we have pretrained word embeddings and entropy
weights (e.g. TF–IDF), the sentence representations do not need to be explicitly
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inferred before they are needed. The representations can be computed online
as the application requires them. this is possible due to i) the modularity of our
model and ii) the low-cost operations needed to embed a sentence representa-
tion. Given a sentence of n words required by an NLP system, WISSE needs d
scalar multiplications to weight each word embedding. WISSE also needs the
summation of the n weighted word embeddings. Therefore the time needed for
each sentence representation is Tmul(dn)+Tsum(nd) = Ts(2n+2d). Given that
the average sentence length is very short (n ∈ {8, 12} words), we see that n ≪ d,
so Ts(2n+ 2d) → O(kd), which is a linear bound to the dimension of the word
embeddings. Regarding the memory requirements, the elements of the model
can be indexed (e.g. by a database). In this case, for each sentence we only
need to load n embeddings of d dimensions and the corresponding n weights,
i.e. n+ nd = n(1 + d).

7. Design of experiments

In this section we present the multiple aspects considered in designing our
experiments. The datasets we used are described, followed by a description of
the set of hyperparameters that we used for model selection.

7.1. Datasets

We accomplished comparisons between our method and state-of-the-art meth-
ods on the basis of the SICK and the SemEval (2016) datasets (Bentivogli et al.,
2016; Agirre et al., 2016). Evaluations of some of these methods have been per-
formed recently on the SemEval (2016) STS competitions (King et al., 2016;
Cer et al., 2017).

The SICK and the SemEval (2016) datasets collect sentence pairs from mul-
tiple sources. These datasets contain texts written by Internet users, so they
are linguistically varied and raise a number of interesting challenges for research
in unsupervised sentence representation methods. An important part of the
datasets comes from repositories like forums and news appearing daily. The
datasets also consider digital dictionaries and knowledge bases (e.g. Wikipedia,
WordNet, FrameNet, OntoNet and others). In fact, the SICK dataset is a com-
bination of carefully selected sentences from past years’ SemEval STS datasets
(2012-2014).

In all cases, the pairs of sentences are associated with an averaged similarity
gold standard score manually annotated. The score ranges from 0.0, for unre-
lated pairs, to 5.0, for equivalent or literally equal pairs. The details about the
collection protocol of the dataset are described elsewhere (Agirre et al., 2016;
Bentivogli et al., 2016). We evaluated WISSE by taking advantage of this gold
standard. A general summary of the datasets is shown below.

The Answer-Answer dataset (SemEval-2016). This dataset contains 1572 pairs
of answers which were extracted from the Stack Exchange Data Dump. The
pairs of answers correspond to technical Stack Exchange forums, such as academia,
cooking, coffee, DIY, and so on.
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The Headlines dataset (SemEval-2016). This dataset contains 1498 pair of news
headlines collected from the Europe Media Monitor (EMM).

The Postediting dataset (SemEval-2016). This dataset contains 3287 sentences
from manually corrected machine translations of English-Spanish-French news.
The translations were made using the Moses machine translation system. After
that, the translations were manually post-edited so as to be corrected.

The Plagiarism dataset (SemEval-2016). This dataset contains 1271 short an-
swers to computer science questions that exhibit varying degrees of plagiarism
with respect to Wikipedia articles.

The Question-Question dataset (SemEval-2016). This dataset contains 1555
pairs of questions from the Stack Exchange Data Dump. The questions were ex-
tracted from technical Stack Exchange sites, such as academia, cooking, coffee,
DIY, and so on.

The OnWN dataset (SemEval-2013). This dataset contains 561 pairs of sense
definitions of terms from WordNet and OntoNotes.

The FNWN dataset (SemEval-2013). This dataset contains 189 pairs of sense
definitions of terms from WordNet and FrameNet.

The SICK dataset (SemEval-2014). This dataset contains 4906 pairs of sen-
tences selected from the STS Benchmark. This is a selection of the English
datasets used in previous STS tasks (2012-2014). The selection is centered at
the difficulty level in STS prediction.

The Wikipedia dataset (general-purpose and unlabeled data). This dataset con-
tains 5.11 million word types and it was downloaded from the Wikipedia dump
(2012).

7.2. Experimental Setup

The initial preparation for our experiments was to train the word embed-
ding algorithms. For both W2V7 and FastText8 word embedding models we
used dimensions specified in Table 2, as well as their usual training hyperpa-
rameters. The most important of them are the context window length (equal
to 10) and the minimum word frequency (equal to 2). These word embedding
models were trained on the Wikipedia dataset. For Glove we used 100, 200 and
300 dimensions pretrained embeddings available at the authors’ website9. For
Dep2Vec we used the 300−dimensional pretrained embeddings available at the
authors’ website10.

7https://code.google.com/archive/p/word2vec
8https://github.com/facebookresearch/fastText
9https://nlp.stanford.edu/projects/glove

10http://u.cs.biu.ac.il/~yogo/data/syntemb/deps.words.bz2
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With respect to information weights, we trained a TF–IDF model11 on the
Wikipedia for global training and on each STS dataset for local training. We
used default settings, except that we explicitly specified in Table 2.

So as to obtain a reliable idea of the possibilities of WISSE, we performed
a number of experiments using datasets listed in Section 7.1. To this end, we
selected the hyperparameters of our model (WISSE). Their effects on the model
are summarized in Table 2. Combinations of such hyperparameters result in
different versions of our model. Thus the idea is to select the best versions.

Overall, both for SICK and SemEval (2016) datasets we first tuned the hy-
perparameters of our model (e.g. embedding dimension, TF–IDF weighting,
and so on). State-of-the-art sentence representation methods have already been
evaluated in previous work over these datasets (Section 7.1). For each particular
dataset we compared the Pearson coefficient obtained by state-of-the-art meth-
ods with that obtained by best versions of WISSE. This allowed us to compare
the behavior of these methods, through varied scenarios.

Table 2: Hyperparameters tuned to study WISSE’s performance.

Name Description Values
Dataset The dataset for evaluation Plagiarism, Answer-Answer, Headlines,

Postediting, Question-Question, FNWN,
OnWN and SICK (see Section 7.1)

Embedding Word embedding method W2V, Glove, FastText and Dep2Vec

Size The embedding dimensions 100d,200d, 300d, 400d, 500d, 700d, 1000d.
Comb Combination method to obtain each sen-

tence representation
Summation (sum), average (avg).

Weights Weighting method giving word embed-
ding coefficients. All weighting schemes
were optionally computed with stop
words removal. To denote it, the suffix
-st was added. In the same way, the suf-
fixes -bin and -log were added to denote
whether the TF vector was computed ei-
ther as binary or as the logarithm of word
frequency.

• TF–IDF global –with Wikipedia
(glob-tfidf),

• IDF global (glob-idf),

• TF–IDF local –with STS dataset
(loc-tfidf),

• IDF local (loc-idf),

• All weights equal to 1.0 (unweighted).

Distance The distance to measure similarity be-
tween sentence vectors

Cosine, Euclidean, Manhattan.

In addition to the hyperparameters tuned for our model, we decided to test
three different similarity functions for computing semantic similarity scores from
WISSE sentence representations: the cosine similarity, the Euclidean distance
and the Manhattan distance. For these three functions, the result is directly
used as a predicted similarity score12 (Section 3).

11http://scikit-learn.org/stable/modules/feature_extraction.html
12As the Pearson’s coefficient is scale-invariant it is not needed to transform the cosine

similarities (which are [−1.0, 1.0]) or Euclidean and Manhattan distances (which are [0.0,∞))
into the range of similarities of the gold standard (which are [0.0, 5.0]).
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8. Experimental Results

Our results are divided mainly into two parts. We presented first the results
of the experiments for the SICK dataset. At this stage, we tuned hyperparame-
ters of the WISSE model. After that, we presented the comparison between our
best result and the best results obtained by the state-of-the-art unsupervised
sentence representation models.

As in the case of SICK, we also tuned WISSE hyperparameters for the
SemEval (2016) dataset. Accordingly, the best results obtained with WISSE
were compared with the results obtained with state-of-the-art methods. Since
the SemEval dataset comprises other datasets (Section 7.1), we presented our
best results obtained for each of the SemEval STS datasets (2016).

Finally, we present a statistical comparison between our best result and
the best results obtained by the state-of-the-art methods on the SemEval STS
datasets. This last comparison includes not only unsupervised sentence repre-
sentation models, but also supervised representation models as well as super-
vised and unsupervised STS systems.

8.1. Hyperparameter tuning on the SICK dataset

The combination of all parameters of the model gave us a ranking of up to 200
experiments for the SICK dataset. The best 10 hyperparameter combinations
for the three similarity functions (cosine, Euclidean and Manhattan) are shown
in Table 3.

Table 3: WISSE hyperparameter combination results on the SICK dataset (train+test)

Weights Comb. Size Embedding Cosine ρ Euclid. ρ Manhatt. ρ

glob-tfidf-bin-st sum 300d FastText 0.72405 0.64465 0.64387
glob-tfidf sum 200d FastText 0.72023 0.64657 0.6469
glob-tfidf-bin sum 300d W2V 0.71995 0.66747 0.66751
loc-tfidf-log sum 350d FastText 0.71905 0.65583 0.65615
loc-tfidf-bin sum 400d FastText 0.71852 0.65236 0.65209
loc-tfidf-st avg 300d Glove 0.70397 0.61817 0.61885
glob-tfidf-st sum 300d Dep2Vec 0.67925 0.60972 0.61018
loc-tfidf-log avg 300d W2V 0.67428 0.6199 0.62075
loc-tfidf-bin-st avg 300d W2V 0.66410 0.58308 0.58289
loc-tfidf-log avg 300d Dep2Vec 0.64762 0.55620 0.55585

Bold value indicates the best result.

Our model reached its maximum correlation of ρ = 0.72405 for the cosine

similarity function. The IDF vector was globally learned (glob) from the
Wikipedia corpus, which was also used for training the word embeddings. The
TF vector was derived binary (bin) from the words in each sentence pair, i.e.
ϕ
sj
wi = {fij > 0 ? 1.0/F : 0.0}. Moreover, in this particular experiment, we

stripped out stop words (-st) and, therefore, they were omitted from the ob-
tained sentence representations. FastText embeddings of 300 dimensions (300d
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size) resulted in the best ones over W2V, Glove and Dep2Vec. The weighted word
embeddings were combined by adding them (sum). We also performed experi-
ments using a simple word embedding average (avg). It did not give us higher
results than the state-of-the-art mean. Notice that for this dataset, no other
similarity function was better than the cosine. Therefore, this dataset seems
to be best characterized by the angles between word embeddings in sentence
representations.

8.2. Results for the SICK dataset

The main result presented in this paper is the performance of our model with
respect to the state of the art on unsupervised sentence representation methods.

Table 4: Performance of sentence representation models on the SICK dataset

Sentence representation method (reference) Pearson

Glove+WR (Arora et al., 2017) 0.722
Sent2vec (Pagliardini et al., 2017) 0.720
FastSent (Hill et al., 2016) 0.720
C-PHRASE (Pham et al., 2015) 0.720
CHARAGRAM-PHRASE (Wieting et al., 2016) 0.700
Skip-thoughts (Kiros et al., 2015) 0.600
BoW TF–IDF (Salton et al., 1983) 0.580
SDAE (Hill et al., 2016) 0.460
Doc2Vec (Le and Mikolov, 2014) 0.460
SAE Hill et al. (2016) 0.310
WISSE (glob-tfidf-bin-st,sum,300d,FastText) 0.724

Bold value indicates the best result.

One of the most popular tasks for evaluating unsupervised sentence rep-
resentations is using them to predict similarity scores of the SICK dataset
(Bentivogli et al., 2016). Therefore, we compared the correlation given by our
best model and the correlation given by state-of-the-art models (Table 4).

To our knowledge, both Arora et al. (2017) and Pagliardini et al. (2017)
are the best unsupervised sentence representation methods at this moment.
Additionally we collected results obtained by other unsupervised methods and
the Bag-of-Words baseline (which uses binary TF). Based on the Pearson’s
correlation coefficient, WISSE performed better than all them (ρ = 0.724).

It is important to notice that the difference is not large between WISSE and
the following two methods in the ranking (Table 4). There are now 5 sentence
embedding methods within such a barrier (Glove+WR, Sent2vec, FastSent, C-
PHRASE and WISSE).

8.3. Hyperparameter tuning on the SemEval STS datasets

We obtained correlation coefficients for WISSE on the SemEval STS datasets
(2016) (see Table 5). These datasets together present much more variety with
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respect to the SICK dataset. Therefore, the results also varied independently
of the evaluated model.

Our best result was obtained for the Postediting dataset (ρ = 0.82161). The
tfidf weights were computed locally from the Postediting dataset by using
word frequencies as TFs. Stop words were included in the model. The best
embeddings for this dataset were Dep2Vec of 300 dimensions. The Euclidean
distance better captures the similarity between sentence representations. Notice
that there is a relatively large difference between the metrics (Euclidean and
Manhattan) and the cosine similarity. Postediting was the unique dataset for
which Dep2Vec embeddings led to the best result.

Our second best result was obtained for the Plagiarism dataset (ρ = 0.80607).
For this dataset the best hyperparameters varied considerably with respect to
the best for Postediting. The main differences were observed in word embedding
weighting and word embeddings. The tfidf weights were computed globally
from Wikipedia and by using binary TFs. The best word embeddings were
W2V of 300 dimensions.

Our lowest result in SemEval (2016) was for the Answer-Answer dataset
(ρ = 0.6556). This dataset has been reported to be challenging for most STS
competitors (Agirre et al., 2016). Our model needed W2V embeddings of 1000
dimensions. The weights of the model were computed locally and by using the

logarithm of the word frequencies in the sentences, i.e. ϕ
(sj)
wi = log(fij + 1)/F .

Table 5: WISSE hyperparameter combination results on the SemEval STS dataset (2016)

Dataset Embedding Size Weights Cosine Euclidean Manhatt.

Postediting Dep2Vec 300d loc-tfidf 0.652880 0.821610 0.819890
Plagiarism W2V 300d glob-tfidf-bin 0.775750 0.806070 0.805280
Ques.-Ques. FastText 300d glob-tfidf 0.704010 0.683410 0.681400
Headlines FastText 200d glob-tfidf 0.676300 0.701020 0.700720
Ans.-Ans. W2V 1000d loc-tfidf-log 0.507660 0.655600 0.652110

OnWN W2V 1000d loc-tfidf-log-st 0.833070 0.739430 0.738610
FNWN FastText 200d glob-tfidf 0.458560 0.350300 0.363520

For all cases the best combination operation was the summation (sum).

Bold value indicates the best result.

In most cases, the two metrics (Euclidean and Manhattan) outperformed
the cosine similarity and the difference is relatively large. We observed this for
the majority of the datasets (Table 5): Postediting, Plagiarism, Headlines and
Answer-Answer. For all datasets, the weighted word embeddings were summed
in order to obtain the corresponding sentence representation. In fact, all our
best results were obtained by summing the weighted embeddings (there were no
cases where the word embedding average (avg) performed better).

The dimension of the embeddings did not show specific patterns, except
for the OnWN and Answer-Answer datasets. Both of them needed logarith-
mic TF vectors as well as 1000 dimensional word embeddings. In contrast to
the other datasets, these datasets allowed incremental dimensionality augmen-
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tation (200 − 1000). Nonetheless, once such an augmentation surpassed 500
dimensions the performance almost did not improve. For all other datasets,
augmenting dimensions degraded the performance. WISSE performed better
for all the datasets when the weights were the TF–IDF vector products (us-
ing either binaries, frequencies or their logarithm) instead of only IDF vector
components. This observation could be considered independent of the word
embedding method and dimension.

As an additional test we evaluated our model on the OnWN, FNWN (Se-
mEval 2013) datasets. These datasets have been reported to be challenging
(Agirre et al., 2013).

On the one hand the OnWN dataset was shown to be well represented by the
BoW baseline, ρ = 0.8431; however for SemEval competing systems it is hard
to surpass such a performance. Our best result was comparable (ρ = 0.82161)
by using W2V embeddings of 1000 dimensions. The IDF vectors were locally
learned and the TF vectors were computed from the logarithm of the word
frequency in sentences. The stop words were stripped out.

On the other hand, for the FNWN dataset the competing systems were
struggling to reach the maximum ρ = 0.5818. Our system reached ρ = 0.45856
by using FastText word embeddings of 200 dimensions. The embeddings were
weighted via globally learned IDFs and frequency TFs. For both datasets, the
cosine similarity worked considerably better than the metrics.

8.4. Results for the SemEval STS task

We compared WISSE with the sentence embedding methods from the state
of the art on the SemEval STS dataset (2016). For WISSE, we have used the
best hyperparameters fitted for each dataset (Section 8.3).

Table 6: WISSE and state-of-the-art sentence embedding models on SemEval STS datasets

Model Ans.-Ans. HDL Plagiarism Postediting Ques.-Ques.

Sent2Vec13 0.57739 0.75061 0.80068 0.82857 0.73035

WISSE 0.65560 0.70102 0.80607 0.82161 0.70410
D2V (400d) 0.41123 0.69169 0.60488 0.75547 -0.02245
Skip-toughs 0.23199 0.49643 0.48636 0.17749 0.33446
W2V (300d-average) 0.50311 0.66362 0.72347 0.73935 0.16586
Binary TF–IDF (BoW) 0.41133 0.54073 0.69601 0.82615 0.03844
Bold values indicates the best result for WISSE.
Values in bold italics indicate best state-of-the-art results.

We observed that for two datasets (Answer-Answer and Plagiarism) WISSE
performed better than the state of the art methods (Table 6). For the other three
datasets (Headlines (HDL), Postediting and Question-Question) the Sent2vec
method was better. We observed that, in general, it is difficult to beat the BoW
baseline in the Postediting dataset. Sent2Vec surpassed it by a small difference.
WISSE was lower, also, by a small difference.

13This method was tested by the MayoNLP team (Afzal et al., 2016) .
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Although currently D2V (Paragraph vector) and Skip-Thoughts are very
popular methods, their performances in STS were even lower than that of the
BoW baseline (excepting the Postediting dataset). The performances of such
methods were also considerably lower than those of Sent2Vec and WISSE. For
instance, while Sent2vec and WISSE reached roughly ρ > 0.70 on the Question-
Question dataset, D2V fell to ρ = 0.02245. A similar situation occurred for the
Skip-Thoughts method, which reached ρ = 0.17749 on the Postediting dataset
while the best methods were ρ > 0.82. Finally, the simple average of W2V word
embeddings in building sentence representations showed to be a method with
very similar performance with respect to results obtained with D2V.

8.5. The SemEval STS task

We performed a comparison between WISSE and the top 10 STS systems in
the SemEval STS (2016) competition (Table 7). Although we did not partici-
pate in such a competition, it is relevant to observe how WISSE performed with
respect to state-of-the-art STS systems. Notice that these systems can be de-
signed in varied forms and for different purposes than WISSE (Section 3). That
is, while WISSE aims to unsupervisedly represent sentences in vector spaces,
STS systems aim to measure semantic textual similarity (un/supervisedly and
by using varied external resources).

Table 7: Ranking for the SemEval STS 2016 task (this is a modified version derived from
Agirre et al. (2016))

R System ALL Ans.-Ans. HDL Plagiarism Postediting Ques.-Ques.

1 Samsung Pol. 0.77807 0.69235 0.82749 0.84138 0.83516 0.68705
2 UWB 0.75731 0.62148 0.81886 0.82355 0.82085 0.70199
3 MayoNLPTeam 0.75607 0.61426 0.77263 0.805 0.8484 0.74705
4 Samsung Pol. 0.75468 0.69235 0.82749 0.81288 0.83516 0.58567
5 NaCTeM 0.74865 0.60237 0.8046 0.81478 0.82858 0.69367
6 ECNU 0.75079 0.56979 0.81214 0.82503 0.82342 0.73116
7 UMD-TTIC-UW 0.74201 0.66074 0.79457 0.81541 0.80939 0.61872
9 SimiHawk 0.73774 0.59237 0.81419 0.80566 0.82179 0.65048

8 Sent2Vec 0.73836 0.57739 0.75061 0.80068 0.82857 0.73035
10 WISSE 0.73768 0.655600 0.70102 0.80607 0.82065 0.70410
23 UWB 0.72622 0.64442 0.79352 0.82742 0.81209 0.53383
– D2V (400d) 0.50206 0.41123 0.69169 0.60488 0.75547 -0.02245
– Skip-toughs 0.27148 0.23199 0.49643 0.48636 0.17749 0.33446

– W2V (300d-avg) 0.56007 0.50311 0.66362 0.72347 0.73935 0.16586
110 STS (BoW) 0.51334 0.41133 0.54073 0.69601 0.82615 0.03844

We used our best hyperparameters for each dataset (Section 8.3). The gen-
eral score for the competition is a weighted average of the correlations from all
datasets (column ALL). It is encouraging that WISSE is ranked at 10th place
among 113 systems. This comparison was performed putting the character-
istics of all those systems aside. This is an important consideration because
most of them are supervised and include several lexical resources like WordNet,
FrameNet and dictionaries. Thus, the unsupervised sentence representation
models are separated at the middle of Table 7 in order to keep such a distinc-
tion.

To know whether our model is actually competitive, we analyzed the corre-
lation coefficients given by participant systems (Figure 3) for the overall per-
formances (ALL) and the performance for each dataset (Table 7). The first
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observation is that the WISSE model (green diamond) outperformed the mean
for almost all datasets. For the Headlines dataset, WISSE did not surpass the
mean, but it stayed within the inter quartile range (IQR). Neither the Pla-
giarism nor the Postediting datasets, do not present high difficulties for the
state-of-the-art systems. This can be a result of the low variability and the
high overall mean correlation reached by most systems for this dataset. In the
same vein, the BoW baseline (red circle) overpasses the mean correlation for the
Postediting dataset. For these datasets, our system remains within the IQR,
but not too far away from the maximum correlation.
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Figure 3: Box plot of the statistical position of the WISSE model within the SemEval STS 2016
state of the art. The vertical axis is the correlation coefficient given by participant systems
for each dataset of the STS competition. The horizontal axis shows the overall performances
(ALL) and the performance for each dataset. (WISSE = green diamonds; BoW baseline = red
circles).

Statistically, our best results were reached on both the Answer-Answer and
the Question-Question datasets. Our model was allocated beyond the first quar-
tile, near to the maximum overall performances. That is, WISSE succeed in
dealing with the uncertainty of the mean correlations reached by the 95% of the
systems (IQR) on such difficult datasets. For the Question-Question dataset the
baseline is at the lower outlier zone. The Answer-Answer dataset is one of the
most difficult datasets to predict for the state of the art methods. Nonetheless,
even the BoW baseline reaches the IQR for this dataset. In the general state-
of-the-art correlation (ALL), WISSE is located barely beyond the first quartile;
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in fact within the upper whisker of the box plot.

9. Discussion

The differences in the behavior of our sentence representation method with
respect to the textual properties of each dataset are meaningful. As confirmed
by our results, different genres of text give different results.

The fact that WISSE outperformed the state of the art on the SICK dataset
is interesting. This is because such a dataset constitutes a careful selection of
sentence pairs coming from varied STS datasets (2012-2014). This selection in-
cluded cross-level tasks (Jurgens et al., 2016), which are the most difficult tasks
in existent STS benchmarks. In fact, we observed that it is very difficult to
surpass the 0.7200 barrier and we think that it is mainly due to cross-level sam-
ples. These kind of samples are mostly used for textual entailment tasks, rather
than for learning sentence representations. Nonetheless, supervised methods
have been successful in learning generalization of both kind of tasks simultane-
ously (Yin et al., 2016). There are now 5 sentence embedding methods within
such a barrier (Glove+WR, Sent2vec, FastSent, C-PHRASE and WISSE). All
these methods are completely based on neural networks. Our method (WISSE)
integrates neural networks and Shannon’s entropy, the former for learning word
embeddings, and the second for weighting word embeddings.

In addition, the experiments on diverse text properties presented by the
SemEval (2016) dataset showed that WISSE offers the possibility to be prepared
for varied scenarios. Such preparation consists of using proper hyperparameters
for text properties, which is possible due to the modularity of our model.

Shannon’s entropy of words in the corpus can be used for weighting the
contribution of each word embedding. Therefore, these two elements (words
and their information contributions) are identifiable at the time that our method
builds sentence representations. This is a partial14 identifiability allowing for
future studies on statistical properties of sentence meaning.

A surprising aspect of our approach is that the entropy is indeed a real num-
ber (a scalar). This fact differs considerably from purely neural network-based
approaches: a whole matrix should be learned in order to capture interactions
between word embeddings comprising a sentence representation. Thus our ex-
periments were performed at relatively low computational cost.

For each dataset we wanted to know whether our model is actually compet-
itive with respect to the overall STS state of the art. We observed in Section
3 that there is a wide variety of STS systems. Several of them are based on
knowledge and language resources as well as on manually annotated similarity
gold standards for supervised learning. As we reported in Section 8.5, these
advantages do not always represent for a significant advantage over unsuper-
vised sentence representation methods. In this sense, in most cases presented

14Partial identifiability is referred to as the fact that we are using word embeddings that do
not come necessarily from an identifiable model.
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in this paper, WISSE succeed in dealing with the uncertainty of the mean cor-
relations reached by 95% of all state-of-the-art systems. This holds even when
the variability of the overall performances is high.

We think that the aforementioned facts indicate that WISSE is a competitive
method for representing meaning in sentences.

There are datasets where most methods in the state of the art (including
WISSE) reached low performances, i.e. FNWN and Answer-Answer. For the
case of WISSE, we think this was because of the magnitude that the sentence
representations attained due to the contributions of weighted word embeddings.
It subsumes the word embeddings associated with the words composing a text
snippet. The larger the number of words contained within, the larger the magni-
tude reached by the resulting representation15. The FNWN and Answer-Answer
datasets constitute cross-level STS tasks (Jurgens et al., 2016), e.g. the compar-
ison between a phrase and a paragraph. The length imbalance makes WISSE
producing significantly different vectors to be compared. For instance, even
when the meanings represented are very similar, length imbalance can cause
meaningful geometric differences. This fact was confirmed as the cosine simi-
larity was the best similarity function for the datasets in question (Section 8.3).
In these cases we think that there were more useful similarity cues encoded in
the angles of vectors than into their lengths (which are actually omitted by the
cosine similarity). Conversely, for balanced length between compared snippets
the metrics led to better results because such metrics exploited the fact that sen-
tence meaning was encoded into the sentence representation magnitudes (and
implicitly into the angles).

10. Possible improvements

Blinded information sources. Our current experiments only considered a basic
version of our model using three sources of information provided by Shannon’s
entropy (TF–IDF). Nonetheless, as we can see in eqs. (5) and (6), the usual
IDF weights make näıve assumptions in terms of the probability measures of
words and sentences. We think these assumptions might circumvent important
things. The most important is the actual probability measures of the stochastic
processes underlying the different levels and hierarchies of contexts. Clearly,
uniform distributions are not the way sentences are drawn from the communi-
cation process. In this sense, we think that more accurate empirical estimations
should be performed in order to uncover more accurate models of stochastic
processes underlying language (Vapnik, 1998). These estimations will provide
us more granular information sources, better weighting estimates and probably
better sentence representations (of course, it will depend on the requirements
of the addressed NLP task).

15This affirmation is relative. In ℓp spaces, with 1 < p < ∞, it holds that ‖x‖p =
(
∑

∞

i=1 |xi|
p
) 1

p < ∞.
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Consider the case of word order universals (Derbyshire, 1977), which is an
information source we have left blinded for the current version of our model.
A speaker emitting a sentence like (3) generally emphasizes the agent (Paula)
performing the action (to strike). Conversely, in sentences like (4), the speaker
emphasizes the experiencer (Nacho). This is not a general rule, but it surely
provides an information spectrum related to informativeness of noun order.

(3) Paula struck Nacho.

(4) Nacho was beaten by Paula.

Notice that self similarity and hierarchy of these patterns can be found also in
more complex constructions, e.g., Paula struck Nacho because his offense was
inadmissible. In this example, the noun phrase his offense in the subordinate
clause is also emphasized by the speaker (with respect to the adjective inadmis-
sible). Nonetheless, for the whole sentence this emphasis is hierarchically less
important than that put onto the agent in the main clause (Paula).

Advantages and disadvantages. At the moment, WISSE does not capture prop-
erly specific information patterns, like negation adverbs. For instance, similar
representations of the sentences (1) and (2) are built:

(1) Computers will not condemn humanity.

(2) Computers will condemn humanity.

This holds because the same adverb form (not) is used many times when the
speaker needs to negate any given fact. Thus, from the point of view of the
information embedding that WISSE uses at this moment, this word is almost
not informative. We show in Table 8 different weights for the word not within
two randomly picked sentences from our corpus:

Table 8: TF–IDF weights for the adverb form not within two sentences

Sentence TF–IDF weights
The man jumping is not
wearing a shirt.

“jumping” (0.6537), “wearing” (0.4753),
“shirt” (0.5679), “not” (0.1894)

A girl is close to a boy
whose face is not shown.

“girl” (0.4258), “close” (0.3415), “boy”
(0.4339), “face” (0.3833), “not” (0.1959)

In fact, negation is an open issue in STS research. Depending on the way
we consider the TF (either binary or logarithmic or frequency), the weights will
change. Nonetheless their entropy keeps relatively constant.

Notice that we are clearly identifying specific linguistic items participating
in our model. This is an advantage of WISSE over most sentence representation
methods. It is possible to manipulate the contribution of specific linguistic items
within sentences. For instance, we could be interested in detecting similarity of
sentences with respect to a specific entity (a noun phrase). In this case, it is
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sufficient to reinforce the weights associated with the word embeddings repre-
senting such an entity (Badarinza et al., 2017). This identifiability is not easy
to attain by other state-of-the-art purely neural sentence embedding methods.

11. Conclusions

We evaluated our approach on well-known STS benchmarks. Our method
outperformed the usual baselines of sentence representation (BoW and word
embedding average). Furthermore, the evaluation on the SICK dataset showed
that our method outperformed the state of the art methods by reaching a cor-
relation of ρ = 0.724. This is encouraging because this dataset is overall a bit
difficult for unsupervised sentence representation methods. In fact, the barrier
of 0.72 is difficult to overcome.

WISSE also outperformed state-of-the-art methods in a couple of datasets
(Answer-Answer and Plagiarism) of the well-known SemEval (2016) STS bench-
mark. Particularly for the Answer-Answer dataset our method surpassed the
state of the art methods by about 10%, although this is one of the most chal-
lenging datasets. For the remaining datasets, our method’s performance was
close to the state of the art methods (within 2.7%).

We also compared WISSE against a wide variety of methods that partici-
pated in the SemEval STS competition (2016). Although such methods were
not restricted to unsupervised or external knowledge-free methods, our model
surpassed the mean performance. Furthermore, in most cases WISSE surpassed
95% of the competitors and it was close (within 4%) to the best STS system
(which uses supervised learning, i.e. support vector regression and deep learn-
ing, as well as a variety of external resources such as WordNet, Wikipedia and
named entity recognizers).

Our experiments confirmed our hypothesis that it is possible to well represent
sentences by using the link between the contexts learned by word embeddings
and the entropy of embedded words. We exploited the mentioned link to learn
without supervision the weights of a series of word embeddings representing a
sentence. Interestingly, such weights are simple scalars that allowed our model
to reach state-of-the-art performance in difficult STS tasks at low computational
cost.

The modularity of our model gives the possibility of configuring our model
according to the properties of text, which allowed us to obtain the best perfor-
mance in important STS tasks. It is also interesting that such performances were
obtained by using simple similarity functions (cosine, Euclidean, Manhattan).

Finally, the low computational cost of our method makes it especially useful
when only unlabeled text is available for learning sentence representations. Fur-
thermore, our model is suitable for low-resource applications and for leveraging
real-time and online analysis and applications of sentence representations.
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