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Highlights

• The effect of data augmentation technique has improved the performance

of all applied classifiers.

• The results for the stuttering detection task on human transcripts (F

1 scores) show that, without feature engineering, the BLSTM classifiers

outperform the CRF classifiers by 33.6%.

• The results after added auxiliary features to support the CRFaux clas-

sifier allows performance improvements by 45% and 18% relative to the

CRF baseline (CRFngram) and BLSTM results, respectively on human

transcripts.

• The results of CRFngram, CRFaux and BLSTM classifiers on ASR tran-

scripts, scored against human transcription degrade in these three classi-

fiers by 7%, 12% and 11% respectively.

1

฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀



Sequence Labeling to Detect Stuttering Events in Read

Speech

Sadeen Alharbi1, Madina Hasan1, Anthony J H Simons1, Shelagh Brumfitt2,
Phil Green1

1Computer Science Department, The University of Sheffield,
2Human Communication Sciences Department, The University of Sheffield,

Sheffield, United Kingdom.

Abstract

Stuttering is a speech disorder that, if treated during childhood, may be pre-

vented from persisting into adolescence. A clinician must first determine the

severity of stuttering, assessing a child during a conversational or reading task,

recording each instance of disfluency, either in real time, or after transcribing

the recorded session and analysing the transcript. The current study evaluates

the ability of two machine learning approaches, namely conditional random

fields (CRF) and bi-directional long-short-term memory (BLSTM), to detect

stuttering events in transcriptions of stuttering speech. The two approaches

are compared for their performance both on ideal hand-transcribed data and

also on the output of automatic speech recognition (ASR). We also study the

effect of data augmentation to improve performance. A corpus of 35 speakers’

read speech (13K words) was supplemented with a corpus of 63 speakers’ spon-

taneous speech (11K words) and an artificially-generated corpus (50K words).

Experimental results show that, without feature engineering, BLSTM classifiers

outperform CRF classifiers by 33.6%. However, adding features to support the

CRF classifier yields performance improvements of 45% and 18% over the CRF

baseline and BLSTM results, respectively. Moreover, adding more data to train

the CRF and BLSTM classifiers consistently improves the results.

Keywords: Stuttering event detection, Speech disorder, CRF, BLSTM
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1. Introduction

Stuttering, also known as stammering, is a speech communication disorder

that can have severe social, educational and emotional maladjustment conse-

quences, not only for the people who stutter but also for their families [1, 2].

It is presumed that early intervention is best to offset potential later impacts

of having a stutter on one’s psycho-social and communication developments [3].

During the assessment phase, clinicians carefully measure the stuttering events

to determine if the stuttering is normal disfluency, borderline stuttering or be-

ginning stuttering [4]. There are several approaches to determine stuttering

severity. The fluency of very young children is commonly assessed through a

conversational task, whereas for children older than seven years, a reading task

may be used [5, 6]. The clinician asks the child to read from a passage, and

then records each instance of disfluency while the child is reading. Clearly, this

process is extremely dependent on the clinician’s experience [7, 8, 9, 10].

In another approach, which constitutes a more accurate diagnostic method

[11], the clinician transcribes a recorded session and classifies each spoken word

according to several stuttering categories (including different kinds of repetition,

prolongation, blocks and interjections) [5]. Having a literal transcription of

a patient’s speech can facilitate the detection of different types of stuttering

event. In addition, archived transcriptions are useful for further investigative

research into the condition. However, recording and then manually transcribing

the stuttering speech is expensive, tedious and requires time and effort due

to the need to chronicle each spoken word. Automating the transcription of

the recorded speech using automatic speech recognition (ASR) could expedite

the assessment of children’s speech and make it easier to archive the data for

further evaluation. This motivates the need for an ASR system that produces

word level transcriptions, and a classifier that detects stuttering events in the

acquired transcriptions. In our current study, we focus on a reading task because

it is easier for the ASR system to recognise read speech, since the ASR has a

prior knowledge of what the child intends to say, which limits the search space
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for predicting the next word.

Automatically recognising children’s speech is a well-known challenge, due

to several factors, such as speech spontaneity, slow rates of speech, variability in

vocal effort and the fact that children have smaller vocal tracts than adults [12,

13]. Attempting to distinguish and detect stuttering events in children’s speech

adds to the complexity of this task. In our proposed work, we are attempting

to help therapists by providing them with an indication of the severity level

of stuttering from an audio speech recording. The starting point for this is to

adapt an ASR system to recognise stuttering events and provide a full-verbatim

transcription. Then, the ASR output can automatically be processed to analyse

the detected stuttering events. The novel contribution in this research has

been to compare the performance of conditional random field (CRF) and bi-

directional long-short term memory (BLSTM) classifiers in detecting stuttering

events in both human and ASR transcripts of children’s read speech. This

comparison is conducted using lexical and contextual features.

Furthermore, this study investigates the effect of augmenting the available

training data with artificially-generated training data to improve the perfor-

mance of the classifiers. Finally, this work describes a method for studying the

effect of ASR errors on the performance of the classifiers. The rest of this paper

is organised as follows. Section 2 presents a review of the related literature. Sec-

tion 3 describes the guidelines and methodology used to produce the stuttering

data transcriptions and annotations. Section 4 describes the CRF and BLSTM

classification approaches. Section 5 presents the feature engineering and extrac-

tion processes. Section 6 provides a description of the ASR system used in the

study. Section 7 presents the experimental setup and results. Section 8 presents

the conclusion and recommendations for future research.

2. Previous Work

Several disfluency correction systems have been introduced in the past [14,

15, 16, 17, 18]. These systems focus on the elimination of disfluent events in
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order to generate more fluent outputs from speech recognition, with a view to

providing better quality input to modules that perform downstream language

processing. In contrast, our aim is to detect and classify stuttering events ex-

plicitly to facilitate the counting of each event.

As mentioned above, in one of the manual stuttering assessment approaches,

the clinician transcribes a recorded session and classifies each spoken term into

one of several normal, disfluent or stuttering categories [4, 5, 11]. If we start

from the premise that the speech has already been transcribed by the therapist

or the proposed ASR, the task is then to detect and classify stuttering events

within the transcriptions. Mahesha and Vinod [19] used a lexical rule-based

(RB) algorithm to detect stuttering events in orthographic transcripts from the

University College London Archive of Stuttered Speech (UCLASS) [20]. In par-

ticular, they used prior domain knowledge to construct expert-based sets of rules

to count the number of occurrences of each stuttering event. For event detection

tasks, the traditional RB algorithm is a powerful tool for transferring the experi-

ences of domain experts enabling them to make automated decisions. However,

this approach depends on the expert’s knowledge being complete, the rules fully

covering every possible stuttering event, and articulation of the rules supporting

diagnosis without rule-conflicts [21]. Previously [22], we proposed using a prob-

abilistic approach that applies the machine learning classifiers HELM (Hidden

Event Language Model) and CRF (Conditional Random Field) to the task of

detecting stuttering in transcriptions of continuous children’s speech. HELM

and CRF are sequence labelling classifiers, since the probabilistic rules learned

by these classifiers are entirely data-driven. Experimental results show that

the CRF classifier outperforms the HELM classifier by 2.2% [22]. Our present

study demonstrates an evaluation of two machine-learning approaches, CRF and

BLSTM for detecting stuttering events both in human and ASR transcripts of

children’s read speech.

While detecting stuttering in human transcripts is useful, in many cases

such transcripts may not exist. Our eventual goal is to detect stuttering in ASR

transcripts. Some studies have investigated how ASR errors affect classification
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results [16]. It is well known in the literature that, for different classification

tasks, the performance of classifiers decreases in the presence of ASR errors. For

example, errors in the ASR output caused a degradation in the performance of

the Hidden Markov Model (HMM) and the Maximum Entropy Model (Max-

Ent) by 50.6% and 52%, respectively in a disfluency detection task, using the

broadcast news (BN) speech corpus [16].

3. Data Transcription and Annotation

Figure 1: Histogram of different reading passages included in the UCLASS, Release Two

dataset. See main text for an explanation of the passages.

The present study is based around a standard reading task that is used by

therapists to diagnose stuttering in children. UCLASS, Release Two provides 42

texts read by children from the stuttering severity instrument (SSI-3) text read-

ings, which are suitable for the age of the participants [6]. Another 25 recordings

feature the reading of a passage from ‘Arthur the Rat’ [23], 14 recordings in-

clude a passage from ‘One more week to Easter’, a text developed by UCL,
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and 27 come from other sources. Figure 1 illustrates the relative frequency of

recordings of each passage in the corpus.

Table 1: Overview of datasets taken from each release of the UCLASS corpus. Age range,

mean and standard deviation (sd) of the age for applied recordings in each category are given

in NNyNNm format where y is year and m is the month.

Dataset Age Gender

Range Mean sd Male Female

Release 1 (monologue) 7y7m-17y9m 12y5m 2y0m 45 18

Release 2 (read speech) 8y4m-18y1m 12y6m 1y9m 48 0

For training purposes, we supplemented the read speech dataset from UCLASS,

Release Two with a spontaneous stuttering speech dataset from UCLASS, Re-

lease One [20]. Table 1 provides a detailed breakdown of these subsets. We

used 48 recordings of children’s read speech (Read), taken from 48 males aged

between 8 and 18 years, and 63 recordings of spontaneous speech (Spon) taken

from 45 males and 18 females aged between 7 and 17 years, giving a total of

111 files from the UCLASS corpus.

Whereas 31/63 recordings from Release One already had orthographic tran-

scriptions, there were no transcriptions for Release Two. We transcribed the

rest of the Release One data following the same conventions and applied the

same approach to the Release Two dataset. Transcriptions were orthographic,

and included conventional forms to represent stuttering dysfluencies, for exam-

ple: This is a a a amazing. Transcriptions were checked by a UK registered

speech-language pathologist to ensure inter-annotator agreement.

The manual transcriptions of this data were later used to build a language

model. Since this combined dataset was still relatively small, we also examined

the effect of data augmentation, adding artificially generated transcription data

(Art) designed to increase the likelihood of stuttering events in the language

model.

The present study used the SRILM toolkit [24] to generate additional stut-
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tering sentences from two inputs: a language model, trained on the UCLASS

Release One training set, and a large word list. This word list was created

by merging the UCLASS Release One word list with another publicly available

word list lm-csr-64k-vb-3gram [25] which we augmented by rule with stutter-

ing events, using a script that systematically generated stuttering events from

existing words, adding all unique sound repetition, part-word repetition, pro-

longation and interjection forms to the word list.

The original transcription files for the recordings obtained from UCLASS

(111 files from read and spontaneous tasks) and the artificial sentences generated

by SRILM from the augmented data were then annotated with a label indicating

the stuttering type for each word, using the labelling approach proposed by Yairi

and Ambrose [4]. This constituted the training data for the different machine

learning algorithms.

The stuttering events were identified and words annotated with special sym-

bols, corresponding to the eight types of stuttering deemed significant by Yairi

and Ambrose [4]:

1. sound repetitions, which include phone repetitions of less than one syllable

(e.g. ‘fa face’);

2. part-word repetitions, which refer to a repetition of less than one word

and one or more complete syllables (e.g. ‘any anymore’);

3. word repetitions in which an entire word is repeated (e.g. ‘mommy mommy ’);

4. prolongations, which involve an inappropriate duration of a phoneme

sound (e.g. ‘mmmay ’);

5. phrase repetitions that repeat at least two complete words (e.g. ‘it is it

is’);

6. interjections (this term is used in the stuttering literature; in ASR these

are often known as ‘fillers’), which involve the inclusion of meaningless

words (e.g. ‘ah,um’);

7. revisions that attempt to fix grammar or pronunciation mistakes (e.g. ‘I

ate; I prepared dinner ’); and
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8. blocking, which involves a stoppage of sound (any halting of speech, not

just glottal stops) that can be momentary or longer and which occurs

at an inappropriate place in an utterance, often including localised vocal

tension.

Table 2: Types of Stuttering

Label Stuttering Type

I Interjection

S Sound repetitions

PW Part-word repetitions

W Word repetitions

PH Phrase repetitions

P Prolongation

NS Non-stutter

Six of the types of stuttering examined in this study (excluding blocking and

revision, for reasons of tractability) are listed along with their corresponding ab-

breviations in Table 2. The stuttering annotation methodology was reviewed by

a UK registered speech-language pathologist to ensure that correct judgments

had been made about stuttering events. The transcribed text was also nor-

malised, to ensure that special text entities such as dates, numbers, times and

currency amounts were converted into words, as a prerequisite to downstream

processing tasks.

In order to evaluate the ability of machine learning approaches to detect

stuttering events from transcriptions obtained from a read task, we partitioned

the transcribed 48 recordings of read data into training (80%) and evaluation

(20%) sets, and we deliberately ensured that the training and evaluation sets

had relatively equal distributions of stuttering events (Table 3). We trained

initially only using the read data (Read), then on the read and spontaneous

data (Read+Spon), then on the artificial data (Read+Spon+Art). Statistics for

the training sets that included read/spontaneous tasks and a third training set
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with artificial stuttering events are also shown in Table 3. Table 4 presents the

distribution of each type of stuttering event in the evaluation set.

Table 3: Statistical Data for the Training Sets

Task Training Data Words %I %W %PW %S %PH %P %NS

Task1 Read 13134 0.22 1.9 0.33 1.9 1.5 1.3 93.6

Task2 Read + Spon 24137 1.8 1.9 1.0 5.3 1.2 1.4 87.4

Task3 Read + Spon + Art 74198 1.8 1.8 1.4 4.0 1.0 1.0 89

Avg 37156.3 1.3 1.9 1.00 3.7 1.2 1.2 90

Table 4: Statistical data for the test set from the human transcripts

Set Words %I %W %PW %S %PH %P %NS

Test 3189 0.3 1.2 0.7 1.00 1.6 0.44 94.8

4. Detecting Stuttering Events

4.1. Task Definition

Given a sentence (sequence of proper/stuttered word entities), the task is

to assign a stuttering label (I, W , PW , S, PH, P or NS) to each entity in

the sentence. Some entities have a unique label, such as the interjection words.

Others could have different labels that vary with the location in the sentence.

Figure 2: An example of the annotation process. Above is an example of an input sentence,

indicating regions of stuttering for illustrative purposes only. Below is an example of how each

word of the sentence was actually annotated by the described approach.
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Figure 2 illustrates some examples of these situations. In this way, determin-

ing the correct stuttering label for each entity depends on the entity’s context

within the sentence, including the labels of the neighbouring entities. Therefore,

the task of detecting stuttering events in a transcription can be defined as a se-

quence labelling task and approaches such as Conditional Random Field (CRF)

and Bi-directional Long-Short Term Memory (BLSTM), can be used. The task

can be formulated as follows: given a sequence of observations/feature vectors,

find an appropriate label sequence for the observations. The following section

describes the CRF and BLSTM approaches used in the present study.

4.2. Conditional Random Fields

Conditional Random Fields (CRFs) are a class of linear statistical mod-

els which are known to exhibit high performance in sequence labelling tasks

[26, 27, 28, 29]. This is because a CRF classifier takes into account the proba-

bility of co-occurrence between neighboring labels and simultaneously estimates

the best sequence of predicted labels for a given input sentence. Following an

approach similar to that taken for the named entity recognition (NER) task

[30], we created a CRF model for the stuttering event detection task by design-

ing different features to detect and classify sound, word, and phrase repetition

(explained in Section 5) which observes the entire represented region.

This model also aims to estimate and directly optimise the posterior proba-

bility of the label sequence, given a sequence of features (hence the frequently

used term direct model). In particular, given a set of observations (a sequence

of words that may include some stuttered words), a CRF model predicts a se-

quence of labels y for these observations. Let X,Y be the observation and label

sequences, respectively, and f(x, y) be the set of feature functions. The CRF

model can be represented by the following equations:

p(y|x, λ) =
exp(λT f(x, y))

Z(λ, x)
,

where λ is the model’s parameters and Z is the normalisation term. One weight

(w) is determined for each feature. These weights are learned during training
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such that:

λ = arg maxλp(Y |X,λ),

and the label sequence can then be predicted from the following equation:

y∗ = arg maxyp(y|x, λ)argmaxyp(y|x,w).

4.3. Bidirectional Long Short-Term Memory

Recently, a class of neural networks trained on word representations with a

distributed input (known as word embeddings) have been widely used in prob-

lems related to natural language processing (NLP) with great success [31, 32, 33].

Long Short-Term Memory (LSTM) units were proposed by [34]. These are

a variation of the Recurrent Neural Networks (RNNs) that are able to cap-

ture long-term dependencies with the guidance of the particular structure [35].

The input for the LSTM is a sequence of word embeddings w1, . . . , wM , where

wi ∈ V , the vocabulary list, and the output is a sequence of events T . Where

ŷi denotes the predicated event (e.g I, S, PW, W, PH, P or NS) for word wi, ŷi

can be predicted using the softmax activation function.

In the stuttering labelling task, it is important to capture the dependency

both on past features, and also on future features, which together characterise

different kinds of stuttering event, such as sound, word, part-word, and phrase

repetition. We therefore employ the bidirectional LSTM structure (BLSTM)

used by [36], which allow us to apply the forward and backward steps, so making

best use of both past and future features.

LSTM units are a variation of the RNN that overcome the problem of van-

ishing gradient [35]. This property allows LSTMs to capture long-term depen-

dencies without arithmetic problems. In particular, LSTM incorporates gated

memory cells by which signals can be read, written, deleted or stored. These

operations are controlled using a sigmoid function that performs element-wise

operations. The decisions in this process are based on weights that are learned

during the recurrent network training. Figure 3 illustrates the data flows in a
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Figure 3: Long short-term memory cell. This figure presents the data flows in a memory cell

where ft, ct, it, ot, ht are the forget, cell, input, output gates and hidden state, respectively.

Xt is the input vector at the time t [36].

memory cell. The different LSTM gates can be modelled using the following

formulae to update an LSTM unit at time t [37]:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi),

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf ),

ct = (ftct − 1)⊙ ct−1 + it ⊙ tanh(Wxcxt +Whcht−1 + bc),

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo),

ht = ot ⊙ tanh(ct),

where ft, ct, it, ot, ht are the forget, cell, input, output gates and hidden

state, respectively. Xt is the input vector at the time t. W and b are the

weights and the biases vectors of the network, respectively. σ is the element-wise

sigmoid function and
⊙

is the element-wise product. To form the final BLSTM

representation, the left-to-right
−→
ht and the right-to-left

←−
ht input representations

are concatenated ht = [
−→
ht ;
←−
ht ].

5. Features of the Classifiers used to Detect Stuttering Events

Assigning a label to a word entity is based on a set of observations, associated

with this label. These observations are introduced to a classifier as a set of
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feature vectors. The role of the classifier is to map the set of feature vectors to

a specific label, and this is done by implementing a set of steps that varies with

different classifiers.

This section describes the features used by the proposed classifiers to detect

the stuttering events in transcriptions. This includes uni-gram, bi-gram, tri-

gram and 2-post-words for each word, as well as character- and utterance-based

features for the CRF classifier and pre-trained word embeddings for the BLSTM

classifier.

5.1. Word/Utterance-Based Features

This work introduces long-range statistics by measuring the backward dis-

tance at two levels. The first level uses a backward distance metric to count

how far the current (pseudo-) word is from the first of a sequence of identical

(pseudo-) words repeated in the word sequence. For example,

sequence sa sa sa sound

distance 0 1 2 0

This feature aids the classifier to observe the repeated patterns in the text.

At the second level, we also measure and compare the backward distance of

each neighbouring bigram and trigram word group. For the example: (it is it

is) the assigned counter for the second it and is will be 1, which is an indication

of phrase repetition of a bigram phrase.

5.2. Character-Based Features

This kind of feature was also extracted at two levels. The first level uses a

backward distance to measure how far the current character is from the first of

a sequence of identical characters repeated within the same word. For example,

(mmmay) assigns counters 1 and 2 to the repeated occurrences of the prolonged

m. This feature helps the classifier to observe the kind of character repetition

which indicates a prolongation event. At the second level, we measure and

compare the backward distance between identical groups of two and three char-

acters, over successive words or part-words. For example, in (par particular),
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the assigned counter for the characters of the second pseudo word par within

word particular will be 1,1,1.

5.3. Word Embedding

A meaningful word representation can be learned using neural networks from

random word embedding. Word embedding is employed by converting each word

into a numerical vector in a vector space by assigning all semantically-similar

words to similar vectors. A well-known algorithm, GloVe [38], was used to

perform the word embedding technique. This algorithm builds word embeddings

by searching through the training data to find co-occurrences of words with the

assumption that the meaning of a word usually depends upon its context. In the

present study, we used a pre-trained GloVe model to generate word embeddings

for each utterance. This model was trained on the Common Crawl (CC) corpus

(1.9 M vocab) [38].

6. Automatic Speech Recognition System

Applications of ASR in the domain of speech pathology, as a form of assistive

technology for therapsists, have appeared in recent years. Adapting an ASR

system for developing clinical technologies to provide an automatic assessment

could assist speech-language pathologists (SLPs) in providing a better service

[39, 40]. This could be in the form of an initial triage, or as part of a fully

automated diagnosis.

In the current work, We used the Kaldi ASR toolkit [41] to build and train

an ASR system. To increase the likelihood that the ASR would detect stutter-

ing events, we augmented the ASR’s language model with artificially generated

stuttering data. The ASR was then able to recognise different stuttering events

in the continuous speech of children and also produced a useful word-level tran-

scription of what was said (henceforth ASR transcripts, to distinguish these

from clinician’s transcripts).

The ASR had one limitation. Its Hidden Markov Model (HMM) yielded a

time-based segmentation as a consequence of matching MFCC features in the
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frequency domain; time was a derived property. We did not expect the HMM to

detect time-sensitive stuttering events, such as prolongation, with any accuracy.

We investigated using an HMM with explicit duration models, but there was

insufficient training data (a common problem in speech pathology domains). In

later work, we developed a separate autocorrelation method for time-sensitive

events, that was trained in parallel to make best use of the data.

6.1. Speech Corpus and Transcription

The ASR system had to be capable of identifying stuttering in the speech of

children. The chief challenge was the small amount of children’s stuttering data

available for training. We used data sets from the University College London

Archive of Stuttered Speech (UCLASS) [20]. Data from UCLASS Release 2

(read speech) was added to a much larger corpus of children’s read speech, the

PF-STAR Children’s Speech Corpus [42], to satisfy training requirements. This

data contained mostly fluent speech and non-stuttering kinds of disfluency found

in children’s speech.

The PF-STAR sentences were already transcribed; and we undertook the

transcription of the UCLASS data as described in Section 3. Where we di-

verged slightly from the orthographic style used in UCLASS, Release One, was

in the notation devised for sound repetition. The original convention had used

consonant-repetition, such as w w what ; but experimentally we found that this

could not be interpreted consistently by the pronunciation dictionary used by

the ASR. Instead, we adopted a CV convention, such as wa wa what, where the

orthographic vowel was mapped to the phonetic vowel schwa in the pronuncia-

tion dictionary. Empirically this enabled good recall of sound repetition.

Only 48 speech samples of readings (of approximately two hours) were used

in the current research. A cross-validation technique was employed to partition

the available data, such that a different subset was used as the test set and the

rest for training on each rotation, as is usual with a small dataset.
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6.2. Language Model Augmentation

The performance of an ASR system is highly dependent on the amount of

text included in the training corpora. In general, richer text results in a better

trained model. However, the style of text used for training the model also needs

to match closely the language style expected in the ASR application. In our

case, we had considerably fewer examples of stuttering in our training data

compared to fluent speech. An approach called language model augmentation

may be used to address this, which generates additional artificial data for the

kinds of events not commonly reflected in the available training data. The

artificial data have to be generated from another source of knowledge that is

capable of providing relative frequencies of the artificial events that more closely

match their probabilities in the target language we wish to recognise.

The augmentation approach was based around the existing segmentation of

the UCLASS transcriptions into short utterances, each typically a few words in

length (used in alignment). We augmented each utterance multiple times, by

inserting an artificial sound repetition at the start of each word in turn, adding

this set of utterances to the language model. For example, where the original

data has ’come down’, we added ’ca come down’ and ’come da down’ (using

the orthographic conventions described above). We speculated that this would

not only increase the frequency of sound repetitions (the least well represented

category), but also the frequency of other stuttering events already present in

the same utterances, by virtue of data duplication.

The augmentation rule mimicked repeating the syllable-onset of the following

word. Orthographically, we used the initial consonant of the following word,

followed by a schwa, based on Howell and Vause’s observation [43] that schwa is

the most commonly inserted vowel. They give an articulatory explanation for

this [44]. We also found empirically that using schwa everywhere (even when

the onset-vowel was sometimes coloured) gave better recall performance than

using different weak vowels. Adding the extra augmented utterances as above

also tended to increase the frequency of different repetition and interjection

events, for which there were already sufficient incidences in the training data.
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The results show that the performance of the ASR in discriminating stuttering

from non-stuttering events improved in recall from 38% to 73%, improved in

precision from 57% to 84% and reduced the average WER from 19.8% to 15.9%.

We previously described this ASR system in [45]; but the focus of the current

work is on processing the transcriptions generated by it.

7. Experiments

The first experimental sets were designed to compare the performance of the

CRF and BLSTM classifiers in relation to human transcripts. We selected vary-

ing amounts of training data from the different speaking tasks and studied how

using increasing amounts of data affected the performance of the classifiers.

These investigations were conducted with and without the proposed charac-

ters/word and utterance features for the CRF classifier, presented in Section

5. In addition, we studied how the classifiers are affected by speech recognition

errors, such as deletions, substitutions and insertions.

For the evaluation, we use orthographic transcriptions of the test sets as

references. These references were labeled manually by clinicians, following Yairi

and Ambrose’s annotation approach [4].

7.1. CRF classifier: Effect of Adding More Data

The baseline CRF classifier was trained using word n−grams, where n =

1, 2, 3, and two post-word features were extracted from the read speech data.

There were three sets of experiments. In Task1, only the read speech data was

used. In Task 2, this was supplemented by the spontaneous speech data; and in

Task 3, was further supplemented by artificial data. The details of the artificial

data are given in Section 3 and the distribution of stuttering events in all used

data are presented in Table 3.
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7.1.1. CRF using only ngram features

Table 5: CRFngram results, when trained on different tasks, using ngram features only.

Task1 used only the (Read) data. Task2 used the (Read+Spon) data. Task3 used the

(Read+Spon+Art) data. The column ”St” describes the stuttering type.

St Task1 Task2 Task3

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

I 1.00 0.44 0.62 1.00 0.56 0.71 1.00 0.67 0.80

W 1.00 0.50 0.62 1.00 0.50 0.62 1.00 0.50 0.62

P 1.00 0.14 0.25 1.00 0.14 0.25 1.00 0.14 0.25

PH 0.52 0.27 0.36 0.65 0.25 0.37 0.56 0.23 0.33

PW 1.00 0.10 0.17 1.00 0.05 0.09 1.00 0.00 0.00

S 1.00 0.59 0.74 1.00 0.83 0.91 1.00 0.93 0.96

Average 0.92 0.34 0.49 0.94 0.39 0.55 0.93 0.41 0.57

Table 5 shows the results of three CRF classifiers on the detection of each

type of stuttering event. These classifiers differ in the type/task and amount of

data used for training, as shown in Table 3. One can clearly observe that, with

the addition of stuttered spontaneous data, the precision results have either

improved (PH by 20%, relatively) or not changed for all stuttering types. The

recall results have either improved (I by 21.4%; S by 28.9%) or deteriorated

(PH by 7.4%; PW by 50%), resulting in the average F1 measure for those

labels. These results can easily be interpreted when linked to the change in

the distribution of each class, after adding the spontaneous speech data. In

particular, improvement in the detection of I and S is linked to the increase

in their distribution (I by 87.8%; S by 64.2%), as shown in Table 3. However,

the deterioration in detecting PH is due to this being a lower proportion of the

larger training set in which its distribution was reduced by 20%.

Similarly, the PW detection was not improved. This is mainly due to the

fact that words in this category have a wide range of variation because they are

literally sub-units of the words. For instance, in cases, such as ’pla [PW], play
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[PW]’, which only occurs in the evaluation set, the CRF will not be able to detect

it because it was not seen in the training set (viz. out of the domain vocabulary,

OOV). The results in Table 5 also suggest that adding more data, without

additional features, will not improve the detection of PW events unless the

additional data contains the PW words that are in the evaluation set. Moreover,

adding more data that affect the distribution of other classes may negatively

affect the detection of these types of word-dependent classes. On average, adding

spontaneous data increased the overall averages of all the measures (recall by

12.8%, precision by 2%, F1 by 10.9%).

The last set of results shows the outcome of adding artificial data (Table

5). The only class that benefits from this addition is the sound repetition class.

This result is expected from the distribution reported in Table 3, which shows

improvement only in the S and PW classes. The PW deterioration is due to the

same reason discussed earlier, and the only solution for this type of dependency

is to use additional features to help the classifier detect unseen part-words.

These results motivated the introduction of context-based features to reduce

the dependency on the word fragments represented in n-grams and post-word

features. This is addressed in the next section.
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7.1.2. CRF using extra character- and utterance-based features

Table 6: CRFaux results, when trained on different tasks, using auxiliary features. Task1 used

only the (Read) data. Task2 used the (Read+Spon) data. Task3 used the (Read+Spon+Art)

data. The column ”St” describes the stuttering type.

St Task1 Task2 Task3

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

I 1.00 0.78 0.88 1.00 0.78 0.88 1.00 0.78 0.88

W 0.95 1.00 0.97 0.95 0.97 0.96 1.00 0.97 0.99

P 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

PH 0.72 0.72 0.72 0.72 0.72 0.72 0.88 0.70 0.77

PW 0.63 0.57 0.60 0.53 0.71 0.63 0.82 0.94 0.87

S 0.96 0.79 0.87 1.00 0.93 0.96 1.00 1.00 1.00

Average 0.88 0.81 0.84 0.86 0.85 0.85 0.95 0.88 0.92

As shown in Table 6, the performance of the proposed CRF classifier with

the word feature and the character/utterance-based features (described in Sec-

tion 5) has improved over all previous stuttering types, leading to better results

in the classification task. For critical classes that mainly depend on word rep-

resentations, such as PW and P , adding character-based features helped detect

all words with repeated characters P , such as ’mmmay ’. Moreover, this fea-

ture enhanced the PW classification so that it achieved a 60% F1 score on the

read task, a 63% F1 score on the mixed read/spontaneous task and an 87% F1

score after adding more artificial stuttering data. Adding an utterance-based

feature improved the ability of the CRF classifier to detect phrase repetitions by

36% in comparison to the baseline experiment. Adding a word-distance feature

enhanced word repetition W detection by 37% in comparison to the baseline.
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7.2. Bidirectional Long Short-Term Memory

Table 7: BLSTM results, when trained on different tasks, using embedded features. Task1 used

only the (Read) data. Task2 used the (Read+Spon) data. Task3 used the (Read+Spon+Art)

data. The column ”St” describes the stuttering type.

St Task1 Task2 Task3

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

I 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

W 1.00 0.05 0.10 0.75 0.08 0.14 0.77 0.29 0.43

P 0.89 0.57 0.70 1.00 0.71 0.83 1.00 0.71 0.83

PH 0.88 0.57 0.69 0.73 0.71 0.72 0.74 0.67 0.70

PW 0.00 0.00 0.00 0.71 0.24 0.36 0.50 0.50 0.50

S 1.00 0.79 0.88 0.93 0.86 0.89 1.00 1.00 1.00

Average 0.80 0.50 0.61 0.85 0.60 0.70 0.84 0.70 0.76

We trained the BLSTM classifier with word embeddings extracted from a

pre-trained GloVe model (Common Crawl, 1.9 M vocab) [38]. This experiment

examined how adding data would affect the performance of the BLSTM clas-

sifier. The hyperparameters of the BLSTM were tuned on a development set;

the number of hidden nodes was 50, with a word embedding dimension of 300,

a learning rate of 0.001 and a drop-out rate of 0.5. All weights in the network

were initialized randomly from the uniform distribution within range [-1, 1].

The number of training ”epochs” (i.e. iterations) was set to 30. The Tensorflow

neural network toolkit [46] was used for BLSTM implementation. The results

presented in Table 7 show how adding spontaneous and artificial data to the

read data improves the results. When only using a reading task to train the

BLSTM, its performance in detecting stuttering events was very low, especially

for W and PW . This is expected, due to the small training data set that was

used. After adding the spontaneous and artificial data, this significantly im-

proved the performance of the BLSTM classifier. It outperformed the CRF

baseline classifier, benefiting from its embedded word representation to group
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multiple occurrences of similar tokens (whereas CRF used word n-grams).

In terms of computation-time taken to train BLSTM networks for the three

tasks, the largest training set applied was in Task3 (a training set of 74,198

words). For this, the average time taken to train each epoch was 39.6 seconds.

On the other hand, the time needed to train the CRF model was approximately

4 seconds. Adding auxiliary features to train the CRF model increased the

computation-time to 11 seconds.

Table 8: Summary table of the best results for classifying human transcriptions, using classi-

fiers trained on Task3. The column ”St” describes the stuttering type.

St CRFngram CRFaux BLSTM

F1 F1 F1

I 0.80 0.88 1.00

W 0.62 0.99 0.43

P 0.25 1.00 0.83

PH 0.33 0.77 0.70

PW 0.00 0.87 0.50

S 0.96 1.00 1.00

In general, with the increase of training data in the three applied tasks, the

average computation-time increased, but the F-score for stuttering classification

was improved. The best results are presented in Table 8 and this was obtained

on Task3. The results obtained from CRFaux were higher than those obtained

from BLSTM. However, BLSTM results without using feature engineering were

still considered high and comparable with CRFaux.

7.3. Evaluation on ASR transcripts

The set of experiments presented in the previous sections evaluated the per-

formance of the classifiers in relation to an ideal labelling of a clinician’s ortho-

graphic transcriptions with stuttering events. However, as mentioned above, our

goal is to detect stuttering in audio recordings directly, bypassing the need for
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expert transcription altogether. Consequently, the performance of the classifiers

was also evaluated on ASR transcriptions.

The output from the ASR was error-prone, introducing insertions, deletions

and substitutions with respect to the reference transcriptions. Moreover, ASR

systems tend to delete non-word entities, such as ’um’ or ’ah’ fillers (interjec-

tion), which we would prefer to preserve as stuttering events. Similarly, an

artifact of having trained the ASR with an augmented language model meant

that the ASR was more likely to insert false positives for some stuttering events,

which could confuse the classifiers.

7.3.1. Error propagation

These errors propagate to the stuttering detection stage and affect the per-

formance of the classifiers in two ways. Firstly, there is a mismatch between

the data used to train the classifiers (clinician’s transcripts) and the evaluation

set (ASR transcripts). Secondly, the ASR creates different types of error (i.e.

deletion, insertion and substitution errors). The classifiers will nonetheless label

these errors as stuttering events and, even if these labels are correct with respect

to the ASR transcript, they might be incorrect with respect to the clinician’s

reference transcript. For example, the classifier will label any repeated word

that is inserted by ASR as W because it is a word repetition. However, such

words were inserted by the ASR and do not exist in the reference, which leads

to the generation of an incorrect stuttering event label in comparison with the

clinician’s reference text.

In our experiments, the ASR transcripts of the evaluation set have a WER of

12.4% with 1.6% insertion, 3.4% deletion and 7.3% substitution errors. These

types of error affect the stuttering pattern or word fragments learned by the

classifiers. The following two examples are taken from the evaluation set and

illustrate this argument (Figure 4):

24

฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀



Figure 4: (a) illustrates the effects of insertion errors on the classifier performance using the

NIST scoring tool. In this case, due to the inserted word the followed by a correct word the,

any perfect classifier would label both the actual and the repeated the words with the label W ,

which is incorrect with respect to the reference transcript, which has one the. (b) illustrates

the effects of deletion errors on the classifier performance using the NIST scoring tool. In

this case, due to deleting the sound repetition ha, the classifiers never saw the deleted sound,

and mislabelled the following word as NS, which is incorrect with respect to the reference

transcript.

These observations agree with the conclusions reported in the literature that

a classifier’s performance degrades when applied to error-prone transcripts for

different ASR post-processing tasks, such as the deterioration reported in a

disfluency detection task [16].

7.3.2. Evaluation

The previous experimental results show that the best models were those

trained on Task3 with additional features on top of the n-gram features. Hence,

only those models were applied to detect the stuttering events in the ASR tran-

scripts. The performance of the classifiers is evaluated against the actual labelled

human transcript reference. Moreover, our ASR engine failed to recognize all

interjection and prolongation words in the test set (all the 9 interjection and

14 prolongation words were deleted by the ASR), hence I and P were excluded

from the evaluation.

To study how classifiers are affected by speech recognition errors and how

these errors propagate into the classifiers decisions, the results of the classifiers

on ASR transcripts needs to be compared against the human reference. This
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comparison is made slightly harder, as a result of misalignment of the two

transcripts, resulting from the ASR’s insertion and deletion errors. To address

this, we follow the alignment procedure described in [16], in which hypothesized

labels are mapped to reference labels using timing information provided by the

NIST scoring tool [47].

Table 9: Results of classifiers trained on Task3, evaluated on ASR transcripts.

St-type CRFngram CRFaux BLSTM

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

W 0.79 0.47 0.59 0.94 0.91 0.91 0.88 0.44 0.58

PH 0.35 0.23 0.28 0.65 0.73 0.69 0.68 0.57 0.62

PW 1.00 0.12 0.21 1.00 0.55 0.71 0.89 0.40 0.55

S 0.92 0.80 0.86 0.92 0.80 0.86 0.92 0.80 0.86

Average 0.77 0.41 0.53 0.88 0.75 0.81 0.84 0.55 0.66

Table 9 presents the results of CRFngram, CRFaux and BLSTM classifiers on

ASR transcripts, scored against human reference. The relative F1 degradation

in the three classifiers (trained on Task3) in comparison with the performance

on true human transcripts, are 7%, 11% and 6% respectively. Despite the in-

sertion, deletion and substitution ASR errors, this degradation in the classifiers

performance is considered acceptable, compared to the degradation reported in

the literature for a similar task [16].

8. Conclusion

In the current study, the CRF and BLSTM sequence-labelling approaches

were used to detect and label stuttering events, both within a clinician’s manual

transcripts and within transcripts generated by automatic speech recognition.

Variations in the performances of the CRF and BLSTM classifiers were studied

by varying the task and the amount of training data.

When evaluated on the clinician’s transcripts, the experimental F1 results
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show that, without feature engineering, the BLSTM classifiers outperform the

CRF classifiers by 33.6%. However, adding auxiliary features to support the

CRFaux classifier allows performance improvements of 45% relative to the CRF

baseline (CRFngram) and of 18% relative to the BLSTM results.

When evaluated on the ASR transcripts, the performance of all classifiers

degrades after propagating ASR errors. The interjection has been excluded

from this set of experiments due to its limited occurrences in the training data.

These findings agree with other findings reported in the literature for a similar

task [16]. Furthermore, we ascribe this degradation in performance firstly to

the ASR errors and secondly to the mismatch between the data used to train

the classifiers and the test data.

However, the downstream consequences of this degradation may be less sig-

nificant, where the eventual goal is to classify stuttering severity. ASR insertions

and deletions lead both to the over- and under-estimation of stuttering events

compared to the ideal labelling of the clinician’s transcription. In some cases,

one stuttering event is substituted for another. Even if ASR errors lead to

detecting fewer stuttering events than the clinician’s reference, it should be pos-

sible to tune the thresholds used by a diagnosis tool, so long as the behaviour

of the ASR is consistent.

The ultimate goal of this work is to investigate how speech technology and

machine learning approaches could assist in the diagnosis of stuttering severity.

Where no transcription exists of the recorded audio of a stuttering child, our

approach may be used with ASR to transcribe, detect and classify stuttering

events. Where an existing therapist’s transcription exists, our approach may still

be used to detect stuttering events automatically. Both kinds of support may be

found helpful and convenient in providing an initial triage of stuttering severity.

Eventually, the purpose of providing automated detection of stuttering severity

is to offer remote diagnosis where the relevant clinical expertise is absent.

Our future work will focus on the final diagnosis stage, in which tallies of

stuttering events are used to determine the severity of stuttering. We will ex-

plore the effect of classifier and ASR errors on the tuning of thresholds used
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to classify patients as non-stuttering, borderline stuttering, or beginning stut-

tering. Other avenues to explore will include improvements to the ASR stage

needed to reduce the WER; and the investigation of an alternative method to

detect prolongation events, which were not tractable using the current approach.
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enberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,

J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke,

V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,

Y. Yu, X. Zheng, TensorFlow: Large-scale machine learning on heteroge-

neous systems, software available from tensorflow.org (2015).

URL https://www.tensorflow.org/

33

฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀



[47] A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team,

NIST Atomic Spectra Database (ver. 1.5), [Online]. Available:

http://www1.icsi.berkeley.edu/Speech/docs/sctk-1.2/sclite.htm

[2018, Jan 18]. National Institute of Standards and Technology, Gaithers-

burg, MD. (2018).

34

฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀



Conflict of Interest 
● There is no conflict of interest between the reviewers and the submitted paper. 
● We are submitting this empty file as a requirement for completing the upload of              

the corrections requested by the second reviewer. 
 
 
 
Best Regards 

 
 

฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀฀


