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Abstract

This paper explores two techniques to improve the performance of text-dependent speaker verification systems based
on deep neural networks. Firstly, we propose a general alignment mechanism to keep the temporal structure of each
phrase and obtain a supervector with the speaker and phrase information, since both are relevant for a text-dependent
verification. As we show, it is possible to use different alignment techniques to replace the global average pooling
providing significant gains in performance. Moreover, we also present a novel back-end approach to train a neural
network for detection tasks by optimizing the Area Under the Curve (AUC) as an alternative to the usual triplet loss
function, so the system is end-to-end, with a cost function close to our desired measure of performance. As we can see
in the experimental section, this approach improves the system performance, since our triplet neural network based on
an approximation of the AUC (aAUC) learns how to discriminate between pairs of examples from the same identity
and pairs of different identities. The different alignment techniques to produce supervectors in addition to the new
back-end approach were tested on the RSR2015-Part I database for text-dependent speaker verification, providing
competitive results compared to similar size networks using the global average pooling to extract supervectors and
using a simple back-end or triplet loss training.
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1. Introduction

The performance in many speaker verification tasks has improved thanks to deep learning advances in signal
representations [1, 2] or optimization metrics [3, 4, 5] that have been adapted from the state-of-the-art deep learning
face verification systems. In this paper, we propose alternatives to the two following aspects. First, the generation
of signal representations or embeddings which preserve the subject identity and uttered phrase. Second, a metric for
training the system which, as we will show, is more appropriate for a detection task.

In many recent verification systems, deep neural networks (DNNs) are trained for multi-class classification. A
common approach is to apply a global average reduction mechanism [1, 2, 6], which produces a vector representing
the whole utterance which is called embedding. A simple back-end as a similarity metric can be applied directly for
the verification process [7] or more sophisticated methods like the one presented in [8]. However, this approach does
not work efficiently in text-dependent tasks since the uttered phrase is a relevant piece of information to correctly
determine the identities and the system has to detect a match in the speaker and the phrase to be correct [6, 9]. In
our previous work [10], we have noted that part of the imprecisions may be derived from the use of the average as a
representation of the utterance, and how this problem can be solved by adding a new internal layer into the deep neural
network architecture which uses an alignment method to encode the temporal structure of the phrase in a supervector.
In this paper, we propose a generalization for the use of different alignment mechanisms that can be employed in
combination with the deep neural network to generate a differentiable supervector with good performances as will be
shown in the experiments.

The second proposal of the paper is an alternative to the triplet loss optimization, initially proposed in face recog-
nition [3, 4]. The goal of the learning process using triplet loss is to maximize the similarity metric or minimize the
distance between two examples that belong to the same identity while minimizing the similarity or maximizing the
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separation margin with the third example from a different identity. We propose the use of a novel method to combine
the triplet philosophy with a loss function which approximates the Area Under the Receiver Operating Characteristic
(ROC) Curve [11, 12, 13, 14] in a differentiable way. The Area Under the Curve (AUC) measures the area between
the ROC and the axes, and the AUC is also a performance measure independent of the operating point. Therefore, by
maximizing its value we can improve the overall performance, as we will show in the paper.

In the context of text-independent speaker verification tasks, the combination of i-vector extraction and Proba-
bilistic Linear Discriminant Analysis (PLDA) [15, 16] is still dominant. Nonetheless, recently, several components
have progressively been replaced by DNNs. Examples of this are the use of DNN bottleneck features instead of
spectral parametrization or combined with it [17], the use of phonetic posteriors obtained by DNN acoustic models
for alignment instead of Gaussian Mixture Model (GMM) in i-vector extractors [18], or replacing PLDA by a DNN
[19]. More ambitious proposals have been proposed to train DNNs for speaker classification with a large number of
speakers as classes, and then extract embeddings of an intermediate layer by reduction mechanisms which are also
called x-vectors [2, 20, 21].

The application of the previous text-independent techniques for text-dependent speaker verification tasks has pro-
duced mixed results. Traditional techniques with specific modifications have achieved good performance for these
tasks such as i-vector+PLDA [22], DNN bottleneck as features for i-vector extractors [23], posterior probabilities for
i-vector extractors [23, 24] or using the speaker and channel latent factor mechanism [25] with autoencoder DNNs
[26]. On the other hand, when the task involves a large amount of data and only one phrase, good results have been
provided by speaker embeddings obtained directly from a DNN [27]. While, in tasks with more than one phrase and
smaller databases, the lack of data may lead to problems with the use of deep architectures due to overfitting. For this
reason, these techniques have been shown ineffective [6, 9].

In our previous work [10], we explored another reason for the lack of effectiveness in these tasks. The order of the
phonetic information of the uttered phrase is relevant for the identification. Most of the approaches to obtain speaker
embeddings from an utterance reduce temporal information, so this kind of systems only maintain the information
of who is speaking and they may not capture the phonetic information for the final identification process. For that
reason, we integrated a new layer in the DNN architecture as an alignment mechanism based on Hidden Markov
Model (HMM) [28]. However, this alignment technique has some limitations, so in this work, we explore other
alternative technique to make the alignment process.

In summary, in this paper, we propose a new optimization procedure that combines the triplet loss with an ap-
proximation of the AUC (aAUC) as metric to maximize the inter-speaker similarity and minimize the intra-speaker
similarity simultaneously. Furthermore, we remark the relevance of keeping speaker and phrase information to achieve
a correct verification process, and propose a generalization of the differentiable alignment mechanism using a new
alignment technique based on GMM posteriors that creates the supervector, providing better performance on the
RSR2015 dataset compared to previous similar approaches [6, 9].

This paper is organized as follows. In Section 2 we describe our system and the different alignment strategies
developed. Section 3 presents the triplet network method based on a novel triplet loss function. Section 4 presents the
experimental setup. In Section 5 we explain the results achieved. Conclusions are presented in Section 6.

2. Deep Neural Network based on Alignment

To encode the phrase and speaker information from the audio file into a representation vector, we have developed
a differentiable alignment mechanism for neural networks. This representation has a common mechanism with the
supervector in speaker verification. It has the advantage of being discriminative against differences in the phonetic
information, which is needed in our task, and, at the same time, it is robust to other sources of variability like the
speed or the way the utterance is pronounced, even by the same person.

2.1. Architecture

Deep speaker verification systems are usually composed by three main parts: Front-End (FE), Pooling (Pool), and
Back-End (BE). We refer as Front-end to the first part of the systems that obtain the acoustic features from the input
signal, and usually apply a Convolutional Neural Network (CNN) [6] or a Time Delay Neural Network (TDNN) [29]
to the acoustic features to increase the temporal context of the representation. The variable time length signals that
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are processed by the Front End are converted into fixed length vectors in a Pooling part of the system. This process
usually consists of an average reduction of the temporal dimension of the input signal, but we have recently proposed
a mapping between the input signal and the state components of an alignment [10]. The output of the Pooling part
of the system will be an embedding or supervector. These embeddings with fixed dimension are processed by the
Back-end to train a classification of identities, therefore, enforcing speaker separability in the embedding space or to
provide directly the verification scores as we propose later in the paper.

In Fig. 1, we show the architectures employed to develop this work. These architectures are designed as follow:

• Architecture A. The architecture depicted in Fig.1(a) is the approach used in many recent verification systems,
where a DNN is trained for multi-class classification, and a global average pooling is applied to extract the
embedding representation. Once the system is trained, one embedding is extracted for each enroll and test file,
and then a cosine similarity metric is applied over them to obtain the verification scores.

• Architecture B. As we showed [10], the previous architecture with this kind of pooling is not the most suitable
approach for text-dependent speaker verification tasks. For this reason, we substitute the global average pooling
by the differentiable alignment mechanism which allows us to keep the temporal structure of the utterance.
In this work, the alignment techniques used are an HMM as well as a GMM combined with a Maximum a
Posteriori (MAP) adaptation. As the phrase transcription is known in text-dependent tasks, we could construct
a specific left-to-right HMM model or a different GMM for each phrase of the data. Thus, we use the system in
Fig.1(b) to check that these alignment mechanisms work better than the global average polling. This architecture
consists of applying the alignment mechanism as a layer directly on the acoustic features, so we obtain the
traditional supervector.

• Architecture C. In view of the good behaviour of the alignment layer and the possibility to propagate gradients,
we can use this layer as a link between front-end and back-end parts which allows us to train the whole system
to optimize any cost function we decide. Thus, we create the architecture depicted in Fig.1(c) adding to the
architecture type B a front-end network, and we train the architecture with a Cross-Entropy loss function.

• Architecture D. In our previous work [10], we employed only the architectures with a classification cross-
entropy as cost function, but in this paper, as we describe in next section, we propose another architecture with
a novel cost function in this context. This function is better integrated with the back-end and, therefore, close
to the objective of the task. In the architecture type D which we show in Fig.1(d), one embedding is obtained
for each utterance, and then the back-end is applied to provide the verification scores directly with the metric
which allows us to have an end-to-end system.

(a) Architecture type A (b) Architecture type B (c) Architecture type C (d) Architecture type D

Figure 1: The architectures used to develop this work, 1(a) the architecture type A is trained for multiclass classification using a traditional global
average pooling mechanism. In 1(b) the architecture type B, the acoustic features are aligned directly to obtain the supervector. 1(c) the architecture
type C is trained for multiclass classification and used as pre-train for the other architecture. 1(d) the architecture type D is trained to optimize the
back-end net.
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2.2. CNN

As front-end network, we have used a straightforward CNN architecture with only a few 1-dimension convolution
(1D convolution) layers. These layers allow us to operate in the temporal dimension to add context information to the
process, and at the same time, all the channels are combined at each layer.

To train efficiently this kind of layer, all the files should have the same length, and it possible to obtain this fixed
length by applying an interpolation transformation or padding with zeros the input signals. We have used an interpo-
lation to have all of them with the same dimensions (D0 × T ) where D0 is the acoustic feature dimension, and T is the
temporal dimension. Then, the input signal and its context, the previous and the subsequent frames indicated by the
kernel size, are processed by the 1D convolution layer, where they are multiplied frame by frame with the correspond-
ing weight matrix to produce a new vector sequence. The result of this operation is that each frame and its context
is linearly combined to create the output signal. During the training process with these convolution layers, the value
for the temporal dimension (T ) is kept until the pooling block, while the acoustic feature dimension changes when
it passes through the network layers in function of the channel combination of each layer, D = (D(0),D(1), ...,D(L))
where L is the total number of front-end layers.

2.3. HMM Alignment Mechanism

Firstly, in our previous work [10], we developed our experiments only with a phrase HMM-based alignment
mechanism. Using this approach, the knowledge of the phonetic information is not needed in the training process,
so we can train easily an independent HMM model for each different phrase. Furthermore, this kind of alignment
mechanism has a left-to-right architecture which employs the Viterbi algorithm to provide a decoded sequence in
which all the HMM states have correspondence to at least one frame of the utterance, so no state is empty.

The process followed to add this frame-to-state alignment to our system is detailed below. We obtained a sequence
of decoded states q=(q1, ..., qt, ..., qT ) where qt indicates the decoded state at time t with qt ∈ {1, ...,Q} from the HMM
models and Q is the number of states. After that, these decoded sequence vectors are converted into a matrix with ones
at each state according to the frames that belong to this state and zeros in the rest of states, so we have the alignment
matrix A ∈ RT×Q with its components atqt=1 and

∑
q atq=1 which means that only one state is active at the same time.

Once this process is over, the alignment matrix is provided externally to the network for each utterance providing
the supervector as output of a matrix product. This makes easier to differentiate and enables to backpropagate gradients
to train neural network as usual. The matrix multiplication assigns the sum of the corresponding frames to each state
vector, resulting in a supervector if we consider them concatenated. This process can be expressed as a function of
the input, xL

dt, to this layer L with dimensions (D(L) × T ) and matrix of alignment of each utterance A with dimensions
(T × Q):

x(L+1)
dq =

∑
t x(L)

dt · atq∑
t atq

, (1)

where x(L+1)
dq is the supervector of the layer (L + 1) with dimensions (D(L) × Q), where there are Q state vectors of

dimension D(L) and we normalize with the number of times state q is active.

2.4. GMM with MAP Alignment Mechanism

Now, we propose the use of a GMM to generalize the previous method. This method provides more flexibility
since a single frame might not correspond to only one component in the mixture, they can be distributed, and there
might be empty components for the whole sequence.

The philosophy of this frame-to-components alignment process is similar to the one described in the previous
section, but in this case, we obtain the GMM alignment from the posterior probability of the hidden variables. Matrix
A with dimensions (T × C) where C are the components of the GMM is built by assigning the posterior probabilities
of Gaussian component c at time t to the elements of the matrix atc = γt(c) = P(Z = c|x(L)

dt ). Often times most of
the posteriors are close to zero. To prevent the loss of performance due to the sparness of matrix A we add a MAP
adaptation [30, 31]. To define how this layer operates, we employ the following expression:

x(L+1)
dc =

∑
t x(L)

dt · γt(c) + τ · µ(b)
dc∑

t γt(c) + τ
, (2)
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where x(L+1)
dc is the supervector of the layer (L + 1), τ > 0 is the relevance factor, γt(c) is the posterior probability of

Gaussian component c, x(L)
dt is the input to this layer L, and µ(b)

dc is the running mean per component of the mixture
which will be updated each batch b in a similar manner to a Batch Normalization layer [32]:

µ(b)
dc = (1 − β) · µ(b−1)

dc + β · f , (3)

where β is the adaptation coefficient and f is the mean estimation using the batch data samples.
The MAP adaptation ensures that the components with a low count of activations in a sequence will be assigned

the mean value of the corresponding supervector section, µ(b)
dc , making the system more robust.

3. Triplet Neural Network

The triplet neural network, referred in Fig.1 as back-end, defines a cost function to evaluate the embeddings
provided by three instances of the same neural network with shared parameters. As input of this network three
examples are used, an example from a specific identity e (an anchor), another example from the same identity e+ (a
positive example), and an example from another identity e− (a negative example). In most of the existing systems
using this approach [5, 33, 34, 35], the network architecture has been trained with the triplet loss function [5] which
maximizes the distance between the anchor and the negative example at the same time that the distance between the
anchor and the positive example is minimized if it is greater than a margin. Unlike the previous systems, we decided
to use a loss function which is more intuitive for the detection task, since this function allows us to optimize directly
the AUC metric that measures the performance of our whole system.

Furthermore, another important point to train correctly this kind of systems is the triplet data selection applied
to choose which are the examples that compose the triplets. We decided to use a similar approach to the triplet
sampling strategy proposed in [4] which is usually called Hard Negative Mining instead of a random selection. This
technique consists in selecting the anchor-negative pairs with the maximum similarity value (hard negative) for which
the system triggers a false alarm, and the anchor-positive pairs with the minimum similarity value (hard positive)
which the system can not detect and produces a miss.

The pipeline of the proposed scheme for training our triplet neural network back-end is depicted in Fig.2.

Figure 2: Triplet neural network, the embeddings are grouped in triplets by the triplet selection to train the network and evaluated the two pairs of
embeddings to optimize the objective function.

3.1. Optimization of the Area Under the ROC Curve

Verification systems are generally trained with discriminative paradigms to optimize the classification perfor-
mance. However, in that way their training process does not consider the trade-off between false alarms and misses.
For that reason, we propose to optimize directly the AUC which is an operating point independent metric and mea-
sures the probability that pairs of examples are ranked correctly. Since this metric is not differentiable, we propose an
effective approximation as we show in the experiments.

For m training examples, the AUC is defined as the function that maximizes the average number of times the
score for the anchor-positive pairs is greater than the score of the anchor-negative pairs. The anchor-positive score
is given by the cosine similarity value sΘ(p+

i ) where p+
i = (e, e+) indicates each pair of anchor-positive embeddings

with i ∈ {1, ...,m+} and m+ is the total number of positive examples, and the anchor-negative score is provided by the
cosine similarity value sΘ(p−j ) where p−j = (e, e−) represents the anchor-negative pairs with j ∈ {1, ...,m−} and m− is
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the total number of negative examples. Both values are also expressed as a function of the net learning parameters Θ.
Therefore, given a set of network parameters Θ, the AUC function can be written as

AUC(Θ) =
1

m+m−

m+∑
i

m−∑
j

1(sΘ(p+
i ) > sΘ(p−j )), (4)

where 1() has a value equal to ’1’ whenever sΘ(p+
i ) > sΘ(p−j ), and ’0’ otherwise. This function can be rewritten using

the unit step function as,

AUC(Θ) =
1

m+m−

m+∑
i

m−∑
j

u(sΘ(p+
i ) − sΘ(p−j )). (5)

To enable the backpropagation of the gradients, this expression must be approximated in order to be differentiable.
For that reason, we substitute the step function by a sigmoid function, so our approximation of the AUC (aAUC) loss
function can be formulated as,

aAUC(Θ) =
1

m+m−

m+∑
i

m−∑
j

σ(α(̇sΘ(p+
i ) − sΘ(p−j ))), (6)

where σ() is the sigmoid function, and α is an adjustable parameter which modifies the slope of the sigmoid to make
it more similar to the unit step [14]. Thus, we seek the network parameters Θ∗ which maximize this expression:

Θ∗ = argmax
Θ

1
m+m−

m+∑
i

m−∑
j

σ(α(̇sΘ(p+
i ) − sΘ(p−j ))). (7)

4. Experimental Setup

4.1. Data

The experiments have been reported on the RSR2015 text-dependent speaker verification dataset [36]. This dataset
comprises recordings from 157 male and 143 female. For each speaker, there are 9 sessions with 30 different phrases.
This data is divided into three speaker subsets: background (bkg), development (dev) and evaluation (eval). We
develop our experiments with Part I and we employ the bkg and dev data (194 speakers, 94 female/100 male) for
training. The evaluation part is used for enrollment and trial evaluation.

In this work, we have used this dataset for the experiments development since it is the only one composed by
several phrases, and with train and test sets publicly available for text-dependent phrase based speaker verification.
Moreover, this dataset has three evaluation conditions, but in this work, we have only evaluated the most challenging
condition which is the Impostor-Correct case where the non-target speakers pronounces the same phrase as the target
speakers.

4.2. System Configuration

To develop our experiments, a set of features composed of 20 Mel-Frequency Cepstral Coefficients (MFCC)
[37, 38] with their first and second derivates are employed as input to train the alignment mechanisms and also as
input to the DNN. The bkg partition has been employed to train two different alignment mechanisms, both were
trained to obtain one model per phrase without the needed of knowing the phrase transcription. On the one hand,
HMM models have been trained using a left-to-right model of 40 states for each phrase. On the other hand, a 64
componenent GMM has been trained per phrase. With these models, we can extract the alignment information to use
inside our DNN architecture. The lack of data may lead to DNN training problems, so we try to avoid a possible
overfitting in our models with a data augmentation method called Random Erasing [39] which is applied on the input
features. Furthermore, in this work, we train the neural networks using an Adam optimizer [40]. In all the experiments
with the aAUC function, the α parameter in the sigmoid function has a fixed value of 10 to have a shape close to the
unit step.
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5. Results and Discussion

In this work, two sets of experiments have been developed. First, we focus the experiments on the different
approaches for the front-end and the alignment mechanisms. The best front-end neural network for each alignment
mechanism is used as the reference in the second experiment set. This second part of experiments compares the
diverse back-end loss functions.

5.1. Results of the Front-end Approaches

As the first set of experiments, we compare architecture A which makes use of a global average pooling (avg) [6, 9],
architecture B which applies the alignment to the feature input directly, and the proposed alignments combined with
the front-end network using architecture C. We employed two different neural network alternatives for the front-end
network of architecture C, both alternatives and the global average pooling approach are trained with a Cross-Entropy
(CE) loss function and tested with a cosine similarity on the embeddings. The first one is a convolutional network
with three layers (CNN) and a kernel of dimension 3 which gave us the best performance in [10]. The second one
replicates this basic network using a teacher and student version, following the Bayesian Dark Knowledge approach
(bdk) [41]. With this philosophy, a teacher network produces soft speaker identity labels which are used to train a
student network. In our case, Random Erasing data augmentation is applied to the input of the teacher network which
adds variability to the labels prediction. The student network is trained using these labels, and we are able to better
capture the data variability introduced. Thus, this architecture is used to provide robustness to the training of the
neural network front-end.

In Table 1, we can see the Equal Error Rate (EER), the NIST 2010 minimum detection costs (DCF10 1), and the
AUC results for these experiments. As we showed, the embeddings from the global average reduction mechanism do
not represent correctly the relevant information of the speaker and the phrase due to the importance of keeping the
temporal structure of the phrases in the supervectors with the alignment layer within the DNN architecture. Besides,
applying the CNN using the bdk approach for the front-end network in architecture A, the results are still worse. We
can also observe that architecture C which combines a front-end network with the alignment mechanisms improves
the performance achieved applying only the alignment mechanism as in architecture B. Furthermore, architecture
C using the CNN(bdk) approach combined with the proposed frame-to-components alignment mechanism based on
GMM with MAP provides an additional performance improvement.

Table 1: Experimental results on RSR2015 part I [36] eval set, showing AUC%, EER% and NIST 2010 min cost (DCF10). These results were
obtained to compare the global average pooling networks and the different neural networks with both alignment techniques.

Architecture Results (EER%/DCF10/AUC%)
Type FE Pool. BE Fem Male Fem+Male

A CNN avg CE 9.11/0.96/97.04 8.66/0.96/97.21 8.88/0.96/97.13
CNN(bdk) 30.48/1.0/76.81 31.48/1.0/75.45 31.02/1.0/76.12

B − HMM − 1.34/0.21/99.80 1.57/0.16/99.77 2.03/0.29/99.71
− GMM − 1.44/0.24/99.79 1.55/0.24/99.77 1.74/0.28/99.77

C CNN HMM CE 0.59/0.10/99.95 0.71/0.16/99.96 0.73/0.14/99.95
CNN(bdk) 0.73/0.12/99.95 0.79/0.14/99.94 0.80/0.15/99.95

CNN GMM CE 0.79/0.17/99.95 0.99/0.23/99.94 0.92/0.20/99.94
CNN(bdk) 0.51/0.12/99.98 0.78/0.15/99.96 0.66/0.13/99.97

In addition to the previous table, we depict the Detection Error Trade-off (DET) curves in Fig.3. These curves
show the results for female+male experiments. The global average pooling experiments are not represented since
they do not provide relevant information. These representations demonstrate that the approach with the best system
performance is architecture C with the front-end based on bdk and GMM with MAP as alignment mechanism.

1https://www.nist.gov/sites/default/files/documents/itl/iad/mig/NIST SRE10 evalplan-r6.pdf.
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Figure 3: DET curves for female+male results of the different approaches employed for the front-end and alignment mechanism.

5.2. Results of the Back-end Approaches

In the second experiment set, we contrast the best architecture C for each alignment mechanism with architecture
D which is composed of two dense layers as back-end network and cosine similarity as metric, and we also compare
the proposed aAUC optimization to the triplet loss (TrLoss). To initialize the second architecture, we employ a pre-
trained model with architecture C.

Table 2 shows that if we apply the network back-end to the supervectors instead of using only the cosine similarity,
we improve the ability to discriminate between different identities and phrases. This is due to the joint estimation of the
front-end and back-end network parameters to optimize the aAUC objective. Therefore, this is an end-to-end system
since all the parameters are learned to jointly optimize the detection task. The best system performance is obtained
when we use the end-to-end aAUC optimization strategy to combine the front-end and back-end networks with the
alignment mechanism, which plays the important role of encoding the features into the supervector communicating
both networks. However, we achieve 11% and 15% relative improvement of EER% using HMM and GMM with
MAP respectively, and the minDCF is also improved in both cases.

Table 2: Experimental results on RSR2015 part I [36] eval set, showing AUC%, EER% and NIST 2010 min cost (DCF10). These results were
obtained to compare the best neural network front-end with both alignment techniques using the different back-ends.

Architecture Results (EER%/DCF10/AUC%)
Type FE Pool. BE Fem Male Fem+Male

C CNN HMM CE 0.59/0.10/99.95 0.71/0.16/99.96 0.73/0.14/99.95
D TrLoss 0.89/0.23/99.94 1.09/0.24/99.93 1.07/0.26/99.93

aAUC 0.52/0.10/99.96 0.67/0.14/99.97 0.65/0.13/99.96
C CNN(bdk) GMM CE 0.51/0.12/99.98 0.78/0.15/99.96 0.66/0.13/99.97
D TrLoss 0.63/0.14/99.96 0.70/0.16/99.97 0.72/0.17/99.96

aAUC 0.40/0.09/99.98 0.69/0.14/99.97 0.56/0.12/99.98

In Fig.4, we represent the DET curves for these experiments. These representations clearly demonstrate that the
systems with GMM with MAP as alignment mechanism have a great system performance with all the approaches, and
especially when we apply the proposed aAUC function for the back-end, the best system performance is achieved.
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Figure 4: DET curves for female+male results of the best front-end networks combined with the different back-ends.

For illustrative purposes, Fig.5 represents the evolution of the real AUC function (5) against the aAUC proposed
(6) during the training process. In this representation, we can see that the proposed differentiable estimation of the
AUC function is getting close to the real function as the training progresses, which supports the assertion that the
aAUC is an effective approximation of the real AUC function.

Figure 5: Training evolution of real AUC vs aAUC.

6. Conclusion

In this paper, we propose new alignment methods that incorporate the concept of supervector in text-dependent
speaker verification to systems based on neural networks. The proposed alignment methods successfully encode
the phrase and the identity in a supervector and are differentiable. Furthermore, we present a novel optimization
procedure to optimize the aAUC as an alternative to the triplet loss cost. Both proposals have been evaluated in the
text-dependent speaker verification database RSR2015 part I. As we show, training the system end-to-end to maximize
the AUC performance measure provides a better performance in the detection task.
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