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Abstract

Existing methods for question answering over knowledge bases (KBQA) ignore

the consideration of the model prediction uncertainties. We argue that

estimating such uncertainties is crucial for the reliability and interpretability

of KBQA systems. Therefore, we propose a novel end-to-end KBQA model

based on Bayesian Neural Network (BNN) to estimate uncertainties arose from

both model and data. To our best knowledge, we are the first to consider the

uncertainty estimation problem for the KBQA task using BNN. The proposed

end-to-end model integrates entity detection and relation prediction into a

unified framework, and employs BNN to model entity and relation under

the given question semantics, transforming network weights into distributions.

Therefore, predictive distributions can be estimated by sampling weights and

forward inputs through the network multiple times. Uncertainties can be

further quantified by calculating the variances of predictive distributions. The

experimental results demonstrate the effectiveness of uncertainties in both the

misclassification detection task and cause of error detection task. Furthermore,

the proposed model also achieves comparable performance compared to the

existing state-of-the-art approaches on SimpleQuestions dataset.
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1. Introduction

With the ever-growing amount of data, knowledge bases (KB) such as

Freebase [1] and WikiData1 become larger and larger. The facts in the real

world are often represented as triplets (subject entity, predicate, object entity)

in knowledge bases, where the subject entity and the object entity refer to two5

real-world entities and predicate refers to the relation between subject entity

and object entity. Such a large volume of data and complex structures make it

extremely hard for users to access the information efficiently. To address this

issue, Question Answering over Knowledge Bases (KBQA) [2, 3, 4, 5, 6, 7, 8, 9]

was proposed. KBQA systems aim to automatically translate natural language10

questions posed by users into structured queries, e.g. SPARQL, and return

the entities in KB as the answers which attract massive attention [6, 10].

However, the KBQA problem is far from solved as it involves multiple subtasks

such as entity linking [11, 12] and predicate detection [5, 13]. In this paper,

we focus on the simple question answering problem, which consists of the15

majority of KBQA questions. The simple question can be answered with a

single fact (subject, predicate, object) in the knowledge base, which constitutes

the majority of questions asked on the web. The task can be formulated as

finding the best matches of subject and predicate for the given question. For

example, for the question “what is a compatible ingredient with a gluten-free20

diet?”, the task aims to find the subject-predicate pair (m.034n2g [Gluten-free

Diet], food/dietary restriction/compatible ingredients) in KBs. Based on the

found pair, final answer (m.057xpf [Breckland Thyme]) can be easily retrieved

in a single fact using SPARQL queries.

There are two mainstream research directions for the KBQA task. One25

1https://www.wikidata.org/wiki/Wikidata:Main_Page
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Predicted Relations Probability

food/dietary_restriction/incompatible_ingredients 0.41

food/dietary_restriction/compatible_ingredients 0.39

� �

What is a compatible ingredient with a gluten-free diet ?

Barley

Figure 1: Example of uncertainties in KBQA model.

category is multi-staged methods that tend to break down the KBQA task into

subtasks [7, 14, 15]. For example, in AskHow [16], a natural language question

was passed through five modules including Part-of-Speech (POS) tagging,

template-fitting, relation extraction, token merging, and entity mapping before

translated into SPARQL query. However, such approaches suffer from error30

and uncertainty propagation problems. To deal with these problems, end-to-

end based approaches have been developed, leaving all the decisions to the model

itself [3, 6]

Despite the promising results, current approaches are unable to estimate

uncertainties of their predictions, which is crucial for the model’s reliability and35

interpretability. As shown in Figure 1, for the question “What is a compatible

ingredient with a gluten-free diet?”, the model may be uncertain about two

conflicting predicates, incompatible ingredients and compatible ingredients and

output a wrong answer. Such wrong prediction may be fatal for gluten-sensitive

users. More importantly, as black-box models, neural network-based KBQA40

systems can provide nothing but the answers, which are not interpretable.

This uninterpretability makes even high-performance KBQA systems unreliable.

Because people cannot judge when the system makes an error while the cause

of such error, as illustrated in the example, may be unacceptable. On the

other hand, if we could measure how uncertain the model is in its prediction,45

more reliable decisions could be made with such information. Take Figure

1 as an example, the model is quite uncertain about the answer Barley,
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so people could refer to another information source and take the decision.

Therefore, instead of solely predicting the answer, it is important to measure

the uncertainty in model predictions. Recent developments on Bayesian Neural50

Network (BNN) [17, 18, 19] make it feasible to quantify such uncertainties.

BNNs estimate distributions over the prediction space by placing distributions

over network weights. Therefore, uncertainties of the model predictions could

be estimated with predictive distributions by calculating their spread.

Moreover, current end-to-end KBQA methods often rely on semantic55

matching in the embedding space based on the semantic similarity between

a given question and the candidate resources including entities and predicates

in KBs and return the nearest neighbors as the correct resources for the given

question [3, 6]. In such frameworks, (question-subject) and (question-predicate)

are often matched separately, ignoring the interaction between each other. For60

example, for the question “what is the subject of writing home”, two candidate

entities corresponding to Freebase IDs: “m.02hvp4r” and “m.04v0 pk” will

be extracted. they have the same entity name “writing home” which output

the same score in the matching procedure of (question-subject). However,

they are attached with different predicates book.written.subjects and book.book65

edition.binding. These predicates can help to distinguish the entities with the

same scores.

In this paper, we propose a novel Bayesian end-to-end KBQA model to

estimate two types of uncertainties, model uncertainty and data uncertainty,

of the predictions, the former one measures the how well the model fits70

the data and the latter one measure the inherent noise in the data. The

model is proposed to select entity and predicate simultaneously considering the

relevance between entities and predicates existed in KBs. In specific, both

the entity with its context and the candidate predicates are encoded by a

Bayesian BiLSTM. The relevance of the entity and predicate pair is calculated75

based on their representation similarity. Experimental results show that the

proposed model outperforms existing state-of-the-art end-to-end approaches.

The effectiveness of the proposed uncertainty measures is further confirmed on
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the misclassification detection and the cause of error analysis.

The contributions of our work in this paper are listed, more succinctly, as80

follows:

• From a practical perspective, estimating uncertainties of model prediction

is crucial for the QA system, especially in safety-related areas. Traditional

KBQA methods ignore the uncertainty existed in data and models which

lacks reliability and interpretability. We are interested in exploring a85

neural network-based model to obtain the answer and its confidence

simultaneously. To this end, a novel Bayesian-based KBQA model with

uncertainty estimated is proposed. To our best knowledge, we are the first

one to incorporate BNN in KBQA. Experimental results on several tasks

indicate the efficiency of the proposed uncertainty measures.90

• Multi-staged approaches for simple question answering often contain sev-

eral separate components which cause error and uncertainty propagation

problem. Thus we develop a novel end-to-end framework to jointly select

entity and predicate, considering their interaction existed in KB in one

single training procedure. Furthermore, it can be easily retrained or reused95

for a different domain. Experimental results on SimpleQuestions dataset

show that the proposed model achieves comparable performance compared

to the existing state-of-the-art approaches.

The practical significance of this work is that the proposed approach

estimates the uncertainties of predictive results for the KBQA system, which100

is crucial for safety-related areas. Moreover, the proposed approach achieves

comparable performance compared with some state-of-the-art approaches and

can be easily adapted to other domain because of the end-to-end framework.

The rest of the paper is organized as follows. Section 2 reviews the related

literature on deep learning for KBQA and uncertainties quantification in deep105

learning. In Section 3, a detailed description of the proposed approach is

presented. Section 4 introduces the experiment details. Finally, the paper is

concluded in Section 5.
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2. Related Work

Our work is related to two lines of research, described as follows.110

2.1. Deep learning for KBQA

With the development of deep learning, most recent approaches to KBQA

are based on neural networks. A majority of literature focuses on the ways of

measuring the semantic similarity between question and candidate triples in KB

as we assume that correct resources in KB should be close to questions in the115

semantic vector space.

Li and Wei [20] exploited three Convolutional Neural Networks (CNNs)

to represent questions differently when facing different aspects. Golub and

He [8] developed an attention-enhanced encoder-decoder architecture where

the attention was introduced to handle long sequences. Lukovnikov et al. [6]120

trained an end-to-end model, which employed a word/character-level encoder to

alleviate the problem of Out-of-Vocabulary. Yin and Chang [14] split a question

into entity mentions and question patterns, and used CNNs to model the

textual information of the question and KB resources by incorporating attentive

pooling. Dai and Li [7] presented a word-level Recurrent Neural Network125

(RNN) based approach and used the representations learned specifically for

Freebase resources. Yu and Yin [21] focused on predicting predicates and

proposed a hierarchical Residual BiLSTM model to compare questions and

candidate predicates names via different levels of abstraction. Das et al. [22] used

matrix factorization to incorporate corpus into KBs, and LSTM to model the130

question. Hao et al. [9] learned the distributional representations of questions

and candidate answers in a unified deep-learning framework. Hao and Liu [15]

used a BiLSTM with CRF-tagging-based model to conduct entity extraction

and introduced a pattern-revising procedure to improve the performance.

Mohammed et al. [10] viewed each predicate as a label category, and exploited135

the deep classification model to perform predicate prediction. It should be

pointed out that [7, 14, 15] exploited extra information sources including
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Freebase entity linking results and learned segmentation models to improve

model performances. Huang et al. [23] utilized knowledge graph embedding

to enhance the quality of entity representation and predicate representation in140

the matching model. However, all the aforementioned approaches ignore model

uncertainties in model predictions.

2.2. Quantifying Uncertainties in Deep Learning

In general, the ways of estimating uncertainties in deep learning models can

be categorized into two classes: non-Bayesian approaches and Bayesian-based145

approaches. For non-Bayesain approaches, Lakshminarayanan et al. [24] directly

trained an ensemble of deep neural networks to obtain a set of predictions

and estimate uncertainties. Some researchers focused on explicitly training the

model to produce the prediction distribution by minimizing the Kullback-Leibler

(KL) divergence between the model output and synthetic data distribution and150

estimating uncertainties based on the distribution [25, 26].

The other class is based on BNNs [27, 17]. In BNNs, weights in networks

are considered as random variables. A prior distribution is placed over the

weights in BNNs and posterior distribution is inferred with the Bayes’ rule.

With the posterior distribution, the prediction distribution can be calculated155

by integration and the uncertainties can be calculated based on the prediction

distribution. Traditional BNN optimization mostly relied on variational

inference [28, 29, 18, 30] or stochastic gradient MCMC methods [31, 32] to

approximate the intractable posterior distribution. Recently, a new approach

called Monte Carlo Dropout (MC dropout) was proposed [19], which proves160

a neural network with dropout can be regarded as an approximation to a

BNN. It keeps the dropout unit activated to get an ensemble of predictions

by multiple stochastic forward passes, which has been successfully applied in

computer vision [33, 34].

There has been some research trying to model uncertainties in natural165

language processing tasks. Zhang et al [35] tried to measure uncertainty in

document classification with MC dropout. Xiao and Wang [36] quantified model
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uncertainty and data uncertainty in a series of NLP tasks including sentiment

analysis, named entity recognition and language modeling with BNNs. To our

best knowledge, there are no other works on quantifying uncertainties in KBQA170

models.

3. Methodologies

3.1. Problem Statement

The task of simple KBQA can be defined as follows. Let G = (S, P,O) be the

knowledge bases, where S represents the set of subject entities, O represents the175

set of object entities and P represents the set of predicates between the subject

entities and the object entities. Let Q be the set of simple questions, for each

question q ∈ Q, the goal is to automatically return the right object as the answer

from a single fact in knowledge bases [2]. That is, in simple question answering

setting, a question can be answered with a single <subject, relation/predicate,180

object> KB tuple. It can also be formulated as finding the correct match of the

subject ŝ ∈ S and predicate p̂ ∈ P , given the question q.

ŝ, p̂ = arg max
s∈S, p∈P

Prob(s, p | q) (1)

3.2. The Proposed Model

We propose a KBQA model based on BNN. The overall architecture of the

proposed KBQA model is shown in Figure 2. To predict the subject entity ŝ185

and predicate p̂ for a given question q, it

(A) generates the set of candidate entities Cs = {s1, s2, . . . , sn}, the set of

candidate predicates Cp = {p1, p2, . . . , pm} and the set of context of

entities in question Cs̃ = {s̃1, s̃2, . . . , s̃n} based on the question q and

the knowledge base G;190

(B) represents each candidate entity’s context s̃i ∈ Cs̃ as a vector hsi and

each candidate predicate pj ∈ Cp as a vector representation hpj by the

Bayesian BiLSTM encoders which is illustrated in Figure 3.
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Figure 2: Architecture of the proposed model

(C) calculates a similarity score matrix Tmn by dot product between the

representation of each entity hsi and predicate hpj to jointly select best-195

matched entity-predicate pair 〈ŝ, p̂〉.

With the jointly selected entity-predicate pair, an entropy-based loss function

is applied to optimize the model parameters. Details of each step in the model

are elaborated in the following.

3.2.1. Candidate Sets Generation200

Since the knowledge base contains tens of thousands of facts, it is extremely

time-consuming to perform matching process. As such, it is necessary to

generate the candidate sets for entities and predicates based on the question

in order to shrink the learning space.

• Set of Candidate Entities: Each question is first converted into lower205

case, from which n-grams (n from 1 to L) are extracted. Candidate entity

set Cs for question q is generated by matching n-grams with entity names

stored in the knowledge base G.

• Set of Candidate Predicates: For each candidate entity si in set Cs,

we construct its corresponding predicate set Cp by collecting all predicates210
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Figure 3: An illustration of Bayesian BiLSTM, where white circles represent masked units.

Two dropout layers are introduced between the input and BiLSTM as well as BiLSTM and

output. The dropout units are activated during both training and testing processes.

occurred in the knowledge base which have the entity in the candidate

entity set as the subject.

• Set of Entities with Question Context: In this work, each entity

is represented by its context in the question. We construct the entity

context set Cs̃ according to question q and Candidate entity set Cs. For215

each entity si in Cs, its context in question q is obtained by replacing it

with a special token 〈flag〉 in the question. For example, for the question,

“what film was shawn holly cookson the costume designer of ”, the context

for the entity ‘shawn holly cookson’ is “what film was 〈flag〉 the costume

designer of ”.220

3.2.2. Entity and Predicate Representation

We first give a brief introduction of BNN, its optimization procedure and the

inference of prediction distribution, before presenting the details of representing

entities and predicates.

Given a set of N training instances X = {x1,x2, ...,xN}, each of which

is associated with a class label Y = {y1,y2, ...,yN}, in BNN, the network is

converted into probabilistic form by placing a prior p(W) over network weights

W. Given the dataset X,Y, the posterior distribution is inferred by Bayes’

rule:

p(W|X,Y) =
p(Y|X,W)p(W)

p(Y|X)
(2)

10



With the posterior p(W|X,Y) and new input data x∗, we do prediction by

marginalizing over the posterior:

p(y∗|x∗,X,Y) =

∫
p(y∗|x∗,W)p(W|X,Y)dW (3)

E(y∗) =

∫
y∗p(y∗|x∗,X,Y)dy∗ (4)

As stated in related work, there are mainly two lines of research on

estimating uncertainties in deep learning, BNN-based approaches and non-

BNN approaches. For non-BNN methods, they mainly depend on learning an

ensemble of neural network or learning a distribution over label space [24, 26].

The former one is timing-consuming to while the latter one replies on the

ground-truth distribution over the label space. Therefore in this paper, the

BNN-based methods is employed. Within BNN-based methods, there are

two paradigms, the Variational Inference-based and the MC dropout-based.

The variational-inference based methods require to modify the architecture of

neural network and are hard to extend while MC dropout based approaches

only requires dropout units in the network [18]. In this work, we use MC

dropout [19] to implement a Bayesian BiLSTM. It has been proved that one

stochastic forward propagation with dropout units activated in the test time

is equivalent to predict with network weights sampled from approximation

distribution qθ(W) [19]. So the predictive distribution can be approximated

by performing M times multiple stochastic forward propagations.

{y∗i = BiLSTM(x∗|Ŵi)}Mi=1,Ŵi ∼ qθ(W) (5)

In our cases, sampling from qθ(W) is equivalent to stochastic forward propaga-

tion with dropout units activated. The final prediction of the Bayesian BiLSTM

can be computed by performing Monte Carlo integration:

E(y∗) ≈ 1

M

M∑
i=1

BiLSTM(x∗|Ŵi) (6)

The Bayesian BiLSTM network used for the encoding of entities and225

predicates is shown in Figure 3. Dropout layers are introduced between the
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input and BiLSTM as well as BiLSTM and output. These two layers work

independently and their masks are the same across time steps. The dropout

units are activated both during training and testing.

Entity Representation: Previous works often represent entities by their

names as well as the labels in the knowledge base. In this work, entities are

represented by their contexts in the questions. Suppose question q is expressed

as (w1, w2, . . . , wn), where wi denotes the ith word in q. For each entity si in

the candidate set Cs, we extract its context in question q by replacing it with

a special token 〈flag〉 in the question. Here those continues tokens (n-grams)

in question which have the shortest Levenshtein distance with an entity are

selected to mask. The special token 〈flag〉 essentially captures the position of the

candidate entity in the question. Then, the word embeddings of each constituent

word in the context of entities are fed into a Bayesian BiLSTM network. Two

hidden state sequences are obtained, one from the forward direction and the

other from the backward direction. The final hidden states of the networks in

both directions are concatenated which are used as the final representation of

entity hs, with the question context information captured. The distribution on

hs is obtained by multiple stochastic forward propagations.

{hsi = BiLSTM((w1, < flag >, . . . , wn)|Ŵi)}Mi=1 (7)

Predicate Representation: The predicate is represented in two different

granularity levels including the word-level and the phrase-level. Let pi ={pword1 ,

. . . , pwordN1
, pphrase1 , . . . , pphraseN2

}, where the first N1 tokens are words

(e.g., executive, produced, by), and the second N2 tokens are phrases (e.g.,

film, executive produced by). The aggregated predicate sequence is randomly

initialized and then fed to a Bayesian BiLSTM to derive the representation of

predicate p, denoted as hp. The distribution on hp is obtained in a similar way

with entity in the previous subsection.

{hpi = BiLSTM(pwordi , pphrasei )|Ŵi)}Mi=1 (8)
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3.2.3. Score Matrix Calculation230

Instead of computing question similarity scores with candidate entities and

predicates respectively, we directly match candidate entities with its linked

predicates in KB under the context of a given question. Particularly, we generate

the score matrix Tmn (m,n represents the number of candidate predicates and

entities respectively) with each of its entry taking the value as the dot product

between the representations of entity hs and predicate hp.

{Ti
mn = hpi hsi |i = 1, 2 . . . ,M} (9)

During training, we perform max-pooling on the score matrix from the row

and the column directions respectively and get the score vectors of entity and

predicate, vs and vp.

vip =softmax(Max-Poolingrow-wise(T
i
mn)) (10)

vp =
1

M

M∑
i=1

vip (11)

The calculation of vs is identical to vp except column-wise max-pooling is

performed instead. Here, vp stores the scores of entity context with different

predicates and vs stores the scores of different entities which measures the

probability of each candidate entity linked as the entity mention in a question.

On one hand, we expect the correct entity has the highest score in vs that235

implies it appeared in more question-like context (thus allowing the exclusion of

wrong candidate entities). On the other hand, the correct predicate is expected

to get the highest score in vp which can help exclude wrong entities with the

same lexical form and wrong predicates. Jointly modelling entity linking and

predicate prediction can bring mutual benefit to each other. During the testing,240

entity and predicate 〈ŝ, p̂〉 with the highest value in the score vectors vs and vp

will be returned. With the entity and predicate jointly selected, the uncertainties

of them become comparable because they are calculated simultaneously. If the

entity and predicate are predicted separately, their uncertainty values become

13



incomparable since they are not aligned, which makes it difficult to calculate245

the overall uncertainty of predictions.

3.2.4. Loss Function and Training Process

The training objective is to maximize the associated score of both the true

subject and the true predicate in the entity score vector vs, and the predicate

score vector vp, respectively. We choose the log-softmax loss function which is

formulated as follows:

Loss = −(
∑

log
exp v+s∑

exp vs
+
∑

log
exp v+p∑

exp vp
) (12)

where v+s and v+p are the ground-truth scores in score vectors vs and vp

respectively. The whole training process of proposed model is shown in

Algorithm 1.

Algorithm 1 Training process of proposed model

Require: question set Q, set of candidate entities with question context Cs,

set of candidate predicates Cp, number of epochs T .

1: for t in 1 : T do

2: for q in Q do

3: Generate contextual representation hsi for ∀Si ∈ Cs;

4: Generate representation hpj for ∀pj ∈ Cp;

5: Calculate score matrix Tmn by hsi · h
p
j ;

6: Generate entity prediction ŝ and predicate prediction p̂;

7: Update network parameters W with loss function (12).

8: end for

9: end for

250

3.3. Measuring Uncertainties

In this section, we study how to quantify uncertainties in a KBQA model

with predictive distributions. There are mainly two types of uncertainties,

model uncertainty and data uncertainty [33]. In particular, model uncertainty
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arises from the randomness of BNN model parameters and measures how well255

the model describes the training data. Model uncertainty is reducible, which

can be explained away by supplying more training data. Data uncertainty

arises from the inherent data noise, such as measuring error, ambiguity

expression or class overlap. For example, the following two predicates,

“location/location/containedby” and “location/location/primarily containedby”,260

are semantically equal in some situations. It is hard for not only machines but

also humen to distinguish between them. Data uncertainty will make the data

hard to understand and analyze both for humans and models. Usually, data

uncertainty is irreducible unless the noise is removed. Next, we introduce how

to quantify these two types of uncertainties in the KBQA models.265

3.3.1. Model Uncertainty

In the KBQA data generation process, model uncertainty comes from the

randomness of posterior distribution p(W|X,Y). Recall that in the KBQA

problem, the model must correctly predict both the entity and the predicate to

obtain the final right answer. So uncertainty in the prediction of either entity

or predicate may cause the model to return wrong answers. We obtain the

score vectors of entity and predicate by doing max-pooling on Tmn from two

dimensions respectively. For example, to measure the model uncertainty on the

prediction of predicates, we can use the average Euclidean distance, where vp is

the center of the predictive ensemble:

UP
m =

1

M

M∑
i=1

Euc dist(vip, vp) (13)

The estimation of model uncertainty on the prediction of entity can be done in

a similar way.

US
m =

1

M

M∑
i=1

Euc dist(vis, vs) (14)

where vs is the center of the predictive ensemble.

The overall model uncertainty is then defined as the maximum among these
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two values:

Um = max(UP
m, US

m) (15)

3.3.2. Data Uncertainty

Data uncertainty measures the noises inherent in the data. In the previous

study [33], data uncertainty is also called aleatoric uncertainty, which is usually

measured by the average variance or average entropy of the predictive score

vector ensembles. However, we argue that such a measurement method may

fail in some cases for the KBQA system. For example, suppose there are

two predictive score vectors for a question involving the classification on four

categories, u1 = (0.49, 0.49, 0.01, 0.01) and u2 = (0.4, 0.3, 0.2, 0.1). The entropy

values of u1 and u2 are 0.791 and 1.280 respectively. So according to the previous

measurement method, u2 has a larger data uncertainty. However, the KBQA

system would make a rather confident prediction based on u2, but would be

confused by u1 and could do no better than random guess between the first two

categories. To overcome this drawback, we define the data uncertainty of entity

and predicate Ud to be the entropy of the top two prediction categories. For

the data uncertainty on predicate, we use:

UP
d =

1

M

M∑
i=1

Entropy(
c1p

c1p + c2p
,

c2p
c1p + c2p

) (16)

where c1p and c2p are the scores of the top two classes respectively in up.

Meanwhile, the data uncertainty for entity can be calculated in a similar way

as follows,

US
d =

1

M

M∑
i=1

Entropy(
c1s

c1s + c2s
,

c2s
c1s + c2s

) (17)

where c1s and c2s are the scores of the top two classes respectively in us.

The total data uncertainty is calculated by taking the maximum of these

two values:

Ud = max(UP
d , US

d ) (18)

4. Experiments270

In this section, we first evaluate the performance of the proposed model on

the SimpleQuestions dataset compared with several state-of-the-art methods.
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Then we investigate the effectiveness of the estimated uncertainties in the

KBQA systems. In particular, we evaluate the performance of these uncertainty

measures on tasks of misclassification detection and the detection of causes of275

errors.

4.1. Performance Comparison

4.1.1. Datasets and Evaluation Metrics

We conduct experiments on the SimpleQuestions dataset [2] in which the

question can be solved by a single fact in the knowledge base. The knowledge280

base we used is the subset of FreeBase2 with 2M entities (FB2M). All datasets

are available online. The detailed statistics are given in Table 1.

SimpleQuestions FB2M

# of Training 75,910 -

# of Validation 10,845 -

# of Test 21,687 -

Total Entities 131,681 1,963,130

Total Predicates 1,837 6,701

Table 1: Statistics of SimpleQuestions dataset and FB2M.

SimpleQuestions: The dataset contains over 100,000 questions written in

natural language by human English-speaking annotators. Each question has

a corresponding fact from FB2M to answer and explain it. The dataset is285

randomly divided into three parts, with 70% as the training set, 10% as the

validation set and the remaining 20% as the test set.

FB2M: Freebase is often used as a reliable knowledge base because its data

is collected and filtered mainly by its community members. In this paper, we

use a large subset of Freebase, FB2M, as the backend knowledge base. As290

2https://developers.google.com/freebase/
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the Freebase API was no longer available since 2016, we use an entity name

collection [7] to map the entity IDs to their names.

In this work, We use accuracy as the evaluation metric. Specifically, the

prediction is regarded as correct only when the model successfully predicts the

subject entity and predicate at the same time, which can be formulated as

follows:

Accuracy =

∑N
i=1 1[(ŝi,p̂i)=(si,pi)]

N
(19)

where ŝi and p̂i are predicted subject entity and predicted predicate respectively,

si and pi are ground-truth subject entity and predicate. 1[.] is the indicator

function.295

4.1.2. Experimental Settings

To compare the proposed model with other methods, we use the same

training, validation and test split that was offered in the SimpleQuestions

dataset. The dimension of word embeddings is set to 128. The word embeddings

are pre-trained on the training data set using GloVe [37]. The number of hidden300

units in Bayesian BiLSTM is set to 128. The network weights are initialized with

Xavier initialization [38]. For training, mini-batch stochastic gradient descent

optimizer is used to minimize the loss function. A learning rate of 0.1 is used

during training. The dropout rate is set to 0.8, and dropout units are activated

both during training and testing to implement the MC dropout.305

4.1.3. Baselines

To demonstrate the effectiveness of the proposed model, we include the

following state-of-the-art KBQA methods as the baselines:

• Bordes et al.[2]: Questions, entities and predicates are embedded into

the same space with a memory network, and new questions and facts are310

matched with their embeddings.

• Yin et al.[14]: A character-level convolutional neural network (CNN) is

trained to match the entity and a word-level CNN with attentive max-

pooling is trained to match the predicate.
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Approaches Test Accuracy%

Bordes et al. [2] 62.7

Yin et al. [14] 68.3

Golub and He [8] 70.9

Lukovnikov et al. [6] 71.2

Mohammed et al. [10] 73.1

The proposed approach (without BNN) 74.9

The proposed approach 75.1

Table 2: Comparison with state-of-the-art methods on SimpleQuestions dataset in end-to-

end settings.

• Golub and He[8]: A character-level, attention-based encoder-decoder315

model is developed where embeddings of questions, entities, and predicates

are all jointly learned to directly optimize the likelihood of generating the

correct KB query.

• Lukovnikov et al.[6]: Questions and predicates/entities are embedded into

the same space to match their similarities with a character-level gated320

recurrent units neural network.

• Mohammed et al.[10]: Entity and predicate predictions are treated as

classification problems and different combinations of neural networks are

built as classifiers.

4.1.4. Results325

As shown in Table 2, the proposed model achieves comparable results

compared to other state-of-the-art methods. Compared to the full model, the

proposed model without BNN (dropout units closed during inference) achieve

a little bit lower score, demonstrating that the ensemble nature of BNN-

based method could make the result robuster .As mentioned in [6, 10], some330

methods [14, 7] claim better performance, but they used extra information

sources based on the Freebase API, which is no longer available. As such,
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we report their results in Table 2 without using extra training data. A few

multi-staged methods reported better results. However, either a separate

segmentation model is employed to split the question into patterns and mentions335

using extra data [15, 23] or their performance are hard to replicate [39] which

has also been pointed out in [10, 23]. Moreover, multi-staged approaches

such as [40] consist of multiple related components such as entity detection,

entity linking, relation prediction and evidence integration. It is difficult to

estimate the uncertainties of such multi-staged approaches for KBQA since (1)340

uncertainties estimated in each component are hard to aligned and combined;

(2) the uncertainties propagation problem between different components make

it hard to estimate the uncertainties of the whole framework.

On the contrast, instead of adopting multi-staged methods to improve per-

formance, the proposed approach focuses more on incorporating uncertainties345

estimation mechanism into KBQA which requires an end-to-end setting to avoid

uncertainties flowing.

4.2. Uncertainties in KBQA systems

Task 1: Misclassification Detection

Intuitively, when the model is uncertain about its prediction, it should be350

more likely to make mistakes. As such, well-estimated uncertainties should

be able to distinguish between the correct predictions and wrong ones of the

model. In this task, we use several uncertainty measures and their combinations

to detect whether a prediction is correct or not.

Concretely, we train a logistic regression model using two types of un-355

certainty measures (Um, Ud) and their combination as features respectively

(corresponding to each row of Table 3 and 4). The labels are automatically

generated by comparing the prediction with ground-truth. The model is trained

in the development set and tested on 21,687 instances in the test set. The

performance is measured by Area Under the Receiver Operating Characteristic360

curve (AUC) and Area Under Precision-Recall curve (AUPR).

To show the efficiency of the defined two uncertainty measures Ud and Um,
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we construct three baselines. The baselines are constructed by training the

logistic regression models using the following measures as features individually.

We compare the results with the following three baselines:

Max Probability (MaxP): the maximum value in the softmax vector is

employed as feature.

MaxP = maxcP (Sc|x∗,X,Y) (20)

Model uncertainty (MU): the mutual information (MI) [26] between the

class label y and the parameters of model, W is used as feature.

MU = MI(y,W|x∗,X,Y) (21)

Data uncertainty (DU): the expectation of entropy in the prediction scores

[26] is employed as the feature. In practice, we use the average to approximate

the expectation.

DU = E(P (W|X,Y))Entropy(y|x∗,X,Y) (22)

Feature AUC AUPR

MaxP 0.867 0.922

MU [26] 0.749 0.886

DU [26] 0.859 0.922

[MU,DU ] 0.892 0.953

Um(Our Proposed) 0.783 0.897

Ud(Our Proposed) 0.904 0.960

[Um, Ud] 0.900 0.959

Table 3: Evaluation results for misclassification detection with various uncertainty measures.

The results are shown in Table 3. It can be observed that using the

proposed data uncertainty measure Ud achieves the best results both in AUC

and AUPR compared with all the baselines and also using the proposed

model uncertainty measure Um. Combining the proposed model uncertainty365
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Um and data uncertainty measure Ud does not bring any benefit. It shows

that data uncertainty plays a more important role than model uncertainty for

misclassification detection on this particular dataset.

Task 2: Cause of Error Detection370

Sometimes the model makes mistakes because the question itself is am-

biguous, corresponding to a high data uncertainty. In other situations, the

model makes mistakes because the model has not encountered such a type of

questions or predicates during the training process, corresponding to a high

model uncertainty. The ability to distinguish between these two types of375

uncertainties is important since different actions could be taken depending on

the source of uncertainty.

We assume that the common errors in this task can be divide into three

categories as follows:

Missing Candidate: The correct resource is missing in the candidate set.380

Indistinguishability: The predicted predicate is indistinguishable from the

correct predicate. For example, the predicates music/release/track and mu-

sic/release/track list are indistinguishable and both of them have been the

ground-truth for the same type of questions in the training and test sets.

Unseen predicate: The correct predicate has never occurred in the training385

set. Moreover, most words in it rarely appeared in the training process. As the

predicates are not learned well, high uncertainties might be caused.

We manually label some wrong predictions with these three types of errors

and randomly draw 60, 70, 70 examples from each category. All types of errors

in the dataset are mutually exclusive. In this experiment, we assume that the390

first two types of errors will cause high data uncertainty and the third type

of errors will cause high model uncertainty. Therefore, there are two types of

labels, “data” and “model”. The logistic classifier with the same features in

the previous task is employed to classify whether the error is caused by model

uncertainty or data uncertainty. We also use AUC and AUPR as the evaluation395

metrics.
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Feature AUC AUPR

MaxP 0.731 0.762

MU [26] 0.490 0.595

DU [26] 0.795 0.641

[MU,DU ] 0.828 0.868

Um(Our Proposed) 0.580 0.670

Ud(Our Proposed) 0.771 0.817

[Um, Ud] 0.842 0.881

Table 4: Evaluation results for cause of error detection using different uncertainty measures.

The results are shown in Table 4. It can be observed that using the proposed

data uncertainty Ud consistently achieves better performance compared to using

the model uncertainty Um. The classifier using the combination of the proposed

model and data uncertainty measures achieves the best results on AUC and400

AUPR compared to all the other methods.

4.3. Result Analysis

In the previous section, the quantitative experimental results show that the

estimated uncertainties could be employed to measure model confidence and

detect the causes of errors. In this section, some examples are presented to405

further explain what model uncertainty and data uncertainty capture.

Four types of prediction results with examples are shown in Table 5. The first

example is the prediction with low model uncertainty and low data uncertainty,

indicating that the model is familiar with the question and the question itself

is expressed clearly. The predicted predicate is very likely to be correct. The410

second example is the prediction with high model uncertainty since the predicate

does not exist in the training set. The third example is the prediction with high

data uncertainty since both of the top two predicted predicates have been the

ground truth of the same type of questions in the training set and they are

equivalent in semantics given the question. So it is difficult for both the model415
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Low Ud
Low Um

q: what country is lake ka-ho in?

pred: location/location/containedby

gold: location/location/containedby

Low Ud
High Um

q: who wrote soviet union?

pred: book/written work/author

gold: olympics/olympic event competition/medalists

High Ud
Low Um

q: who was the publisher of metal marines?

pred: cvg/game version/publisher

gold: cvg/computer videogame/publisher

High Ud
High Um

q: What US state is glendale found in?

pred: location/location/containedby

gold: location/location/primarily containedby

Table 5: Examples of questions and predicated predicates with top 1% highest/lowest model

uncertainty/data uncertainty, where q represents questions, pred represents predicated relation

for q and gold represents ground-truth relation for q.

and human to distinguish between these two predicates. The last example has

high value both in model and data uncertainty because the predicted predicate

is hard to distinguish and this type of questions is rare in the training set.

5. Conclusion

We have proposed a novel Bayesian simple KBQA model in which uncertain-420

ties can be estimated. Specifically, model uncertainty and data uncertainty are

estimated with a BNN implemented by the Monte Carlo dropout and a novel

way of calculating uncertainties in KBQA systems is proposed. Furthermore,

a novel end-to-end framework is proposed to jointly select entity and predicate

in one single training procedure, avoiding the uncertainty propagation problem.425

Experimental results show that our model outperforms some state-of-the-art

KBQA methods and our proposed uncertainty measures could be employed to

detect the misclassification and the causes of errors in KBQA systems.
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