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Abstract

We study the problem of detecting and counting simultaneous, overlapping
speakers in a multichannel, distant-microphone scenario. Focusing on a super-
vised learning approach, we treat Voice Activity Detection (VAD), Overlapped
Speech Detection (OSD), joint VAD and OSD (VAD+OSD) and speaker count-
ing in a unified way, as instances of a general Overlapped Speech Detection
and Counting (OSDC) multi-class supervised learning problem. We consider
a Temporal Convolutional Network (TCN) and a Transformer based architec-
ture for this task, and compare them with previously proposed state-of-the art
methods based on Recurrent Neural Networks (RNN) or hybrid Convolutional-
Recurrent Neural Networks (CRNN). In addition, we propose ways of exploiting
multichannel input by means of early or late fusion of single-channel features
with spatial features extracted from one or more microphone pairs. We con-
duct an extensive experimental evaluation on the AMI and CHiME-6 datasets
and on a purposely made multichannel synthetic dataset. We show that the
Transformer-based architecture performs best among all architectures and that
neural network based spatial localization features outperform signal-based spa-
tial features and significantly improve performance compared to single-channel
features only. Finally, we find that training with a speaker counting objective
improves OSD compared to training with a VAD+OSD objective.
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1. Introduction

1.1. Motivation

In spontaneous human conversations different speakers tend to overlap with
each other and, in meeting scenarios with more than two participants, the
amount of overlapped speech can account for a significant portion of the total5

speech time, usually between 10% and 20% (McCowan et al., 2005; Watanabe
et al., 2020). This phenomenon is one of the main obstacles towards fully reliable
multi-party speech diarization (Ryant et al., 2018; Garćıa-Perera et al., 2020)
and recognition (Watanabe et al., 2017; Vincent et al., 2018; Haeb-Umbach
et al., 2019). In fact, most current techniques for speech recognition and di-10

arization are not designed to deal directly with overlapped speech. As a result,
their performance can degrade significantly in such conditions.

For this reason, Overlapped Speech Detection (OSD) is crucial to prevent
back-end task performance degradation. This can be accomplished by includ-
ing a reliable OSD algorithm together with Voice Activity Detection (VAD) in15

the very front-end part of the pipeline, possibly followed by speech separation
(Garćıa-Perera et al., 2020; Watanabe et al., 2020). Speaker counting (Stöter
et al., 2019) is a closely related task, which can be seen as an extension of
VAD+OSD. Instead of merely identifying when there is speech and overlapped
speech, speaker counting aims to directly estimate the actual number of concur-20

rent speakers. This task, which is directly related to the problem of counting the
number of coherent sources is of crucial importance for modern spoken language
understanding applications, such as voice-based virtual assistants. In fact, in
many real far-field speech recognition applications, encountering three or more
simultaneous sources is quite common, for example in an home environment,25

where sound could also come from electronic devices. Speaker counting could
be also employed to further help back-end tasks such as speech separation Stöter
(2019) and also diarization, by extending previously proposed methods which
employed only OSD information, such as Bullock et al. (2020). The accuracy of
OSD, VAD and speaker counting algorithms is critical, as errors can propagate30

to the subsequent processing blocks, severely impacting, for example, speech
recognition performance when speech segments are missed (Tong et al., 2014).

1.2. Related works

The research towards reliable OSD spans more than one decade, with the
first systems relying on handcrafted features and classical machine-learning35

approaches. Most of these early studies focused on Gaussian Mixture Model
(GMM) or Hidden Markov Model (HMM) based classifiers (Boakye et al., 2011;
Vipperla et al., 2012; Charlet et al., 2013; Yella and Bourlard, 2014; Lee et al.,
2016) with the exception of Geiger et al. (2013) who showed a Long-Short Term
Memory (LSTM) neural network to outperform a GMM-HMM system. Boakye40

et al. (2011), Vipperla et al. (2012), and Yella and Bourlard (2014) reported a
substantial reduction of the Diarization Error Rate (DER) on the AMI meeting
corpus (Carletta et al., 2005) by removing overlapped speech segments from the
segment clustering phase and performing overlap attribution afterwards.
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When multiple microphone channels are available, speaker counting can be45

performed by clustering interchannel features (Drude et al., 2014; Pasha et al.,
2017) or explicitly localizing the speakers in space (Brutti et al., 2010; Pavlidi
et al., 2012), both in the single-array and multiple-array scenarios. Single-
channel speaker counting is more challenging, with early works focusing on
handcrafted features such as the modulation index (Arai, 2003), the mean and50

variance of the 7th Mel filter (Ouamour et al., 2008) or the cosine similarity
between Mel Frequency Cepstrum Coefficient (MFCC) feature vectors along
with pitch (Xu et al., 2013). More recently, Andrei et al. (2015) estimated
the number of speakers by computing the distance between the mixture and a
reference single-speaker utterance in the magnitude spectral domain.55

CountNet (Stöter et al., 2019) marked a significant departure from these
previous works by showing that a neural network can be trained to perform
speaker counting without relying on handcrafted features, and it can even out-
perform humans. Andrei et al. (2019) also showed that a neural network based
speaker counting algorithm can defeat human ability especially when more than60

three speakers are active. Kanda et al. (2020) took a different direction: they
trained a neural network to perform joint speaker counting, speech recognition
and speaker identification in a fully end-to-end fashion. In all these works,
synthetic mixtures are employed for both training and testing and, crucially,
the datasets are designed with balanced proportions of single-speaker speech,65

two-speaker overlapped speech, three-speaker overlapped speech, and so on.
This does not match the characteristics of real-world datasets where single-
speaker speech is more frequent than two-speaker overlapped speech, which is
itself much more frequent than three-speaker overlapped speech. Also related
to speaker counting, End-to-End Neural Diarization (EEND) firstly proposed in70

Fujita et al. (2019a) and subsequently improved by Fujita et al. (2019b) by us-
ing a Transformer-based architecture. In such works a neural network is trained
to perform diarization by using a permutation invariant multi-label training
scheme. As these systems are trained to perform diarization they can be easily
adapted to perform speaker counting. In a similar manner also the recently pro-75

posed Target-Speaker VAD (TS-VAD) framework of Medennikov et al. (2020)
can be employed for the purpose of counting speakers. This technique has been
shown to be particularly effective even in challenging scenarios such as CHi-
ME-6 (Watanabe et al., 2020). TS-VAD employs a neural network to estimate
each speaker speech activity. However, unlike EEND and CountNet, it requires,80

as an additional input to the network, i-vectors (Dehak et al., 2010) for each
speaker. This additional requirement makes TS-VAD more cumbersome to im-
plement, especially for streaming applications, than both EEND and CountNet
which employ end-to-end neural approaches.

Regarding OSD, Andrei et al. (2017) and Sajjan et al. (2018) recently showed85

that deep neural networks significantly outperform classical machine-learning
approaches for this task too. Notably, Sajjan et al. (2018) evaluated four net-
work architectures for joint VAD and OSD (VAD+OSD): a feedforward net-
work, a 2-D convolutional network, a recurrent LSTM network and a hybrid
2-D convolutional-LSTM network. They showed that these approaches surpass90
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a baseline GMM-based method on both synthetic data and AMI distant-speech
data, that the LSTM-based approach performs best, and that it significantly
improves diarization results. More recently Kunešová et al. (2019) and Bullock
et al. (2020) reported impressive OSD performance in near-field conditions, with
Bullock et al. (2020) reporting up to 20% relative Diarization Error Rate (DER)95

reduction on the AMI headset mix. In another vein, Málek and Žďánskỳ (2020)
addressed VAD+OSD by employing simple classifiers on top of pre-trained x-
vector speaker embeddings (Snyder et al., 2018) and evaluated them on synthetic
data corrupted by noise and artificial reverberation.

1.3. Our contribution100

In this article, we unify VAD, OSD, joint VAD+OSD, and speaker counting
as instances of a general Overlapped Speech Detection and Counting (OSDC)
supervised classification task. We study two TCN (Bai et al., 2018) and Trans-
former (Vaswani et al., 2017) based architectures for this task, compare them
with the LSTM-based architecture of Sajjan et al. (2018) and CountNet, and105

present an in-depth study of their computational efficiency. In addition, we
explore the use of spatial features to aid VAD+OSD and speaker counting. As
mentioned above, a number of works have shown that spatial features can be
used for counting (Drude et al., 2014; Pasha et al., 2017; Brutti et al., 2010;
Pavlidi et al., 2012) and VAD (Vecchiotti et al., 2019b). However, to our knowl-110

edge, no study has yet been performed where spatial features are used in con-
junction with deep neural networks to tackle OSD and speaker counting directly.
We perform an extensive experimental evaluation using a purposely made multi-
channel synthetic dataset and two real-world, multi-microphone, distant-speech
datasets: AMI (McCowan et al., 2005) and CHiME-6 (Watanabe et al., 2020).115

This article significantly extends and improves upon our preliminary study (Cor-
nell et al., 2020), which did not include the Transformer-based architecture, was
restricted to single-channel input and a single type of single-channel features,
did not analyze the results as a function of speaker distance or angle, and did
not report computational efficiency.120

In detail, we first evaluate the different architectures on AMI and CHiME-6
for both VAD+OSD and speaker counting, considering single-channel features
only for the sake of comparison with Sajjan et al. (2018) and Cornell et al.
(2020). We show that the proposed Transformer-based network, despite hav-
ing the lowest computational footprint, achieves the best performance on all125

tasks. We then study how its real-world performance can be further improved
by adding spatial features. We examine different such features, including clas-
sical interchannel features and neural network based localization features. Also
suitable early fusion and late fusion schemes for combining single-channel spec-
tral features and spatial features are compared. The synthetic dataset is used130

to further study and validate our findings in a controlled environment where
oracle speaker locations are known. For the sake of reproducibility, the code
used to perform the experiments and to generate the synthetic dataset is made
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publicly available.1

The remainder of this paper is structured as follows. In Section 2, we ex-135

plain the multi-class classification framework adopted through this work for
supervised VAD+OSD and speaker counting. Section 3 presents the proposed
and existing neural architectures and Section 4 introduces the spatial features
we explore for this purpose. Then, in Section 5, we describe the datasets used
for the experiments and, in Section 6, we report and discuss our extensive ex-140

perimental evaluation, including the comparison of computational requirements
and the results achieved by single-channel and multichannel systems. Finally,
in Section 7, we summarize the results obtained, draw conclusions and outline
possible future work directions.

2. Overlapped Speech Detection and Counting Framework145

In this work, we treat supervised VAD, OSD, VAD+OSD, and speaker count-
ing in a unified way, as special instances of a general OSDC task. This task can
be formulated as a multi-class supervised sequence labeling problem, with a dif-
ferent number of classes for VAD, OSD, joint VAD+OSD, and speaker counting.

We consider a parametric model F(X;θ) which takes as input a sequence150

of frame-level feature vectors X = {x1,x2, . . . ,xm} and outputs a sequence of
class posterior probabilities. We assume that the model may perform internal
subsampling, i.e., one output frame is provided every K input frames. This is
because frame-level estimation is unnecessary for most speech segmentation ap-
plications and, by employing subsampling operations, the computational burden155

can be reduced.
In the supervised setting, we are given the ground-truth class label sequence

y = {y1, y2, . . . , yl} of length l ≤ m, and we wish to estimate the optimal model

parameters θ̂ according to a certain criterion. As in this paper we focus on
neural approaches, the optimal model parameters are estimated on a suitable160

training set composed of N pairs of input feature sequences and corresponding
class label sequences T = {(X1,y1), . . . (XN,yN)} by using Stochastic Gradient
Descent (SGD) to minimize the cross-entropy loss between the estimated frame-
level posterior probabilities and the true class distribution.

In this framework, VAD and OSD can be treated either separately as binary165

classification tasks (speech vs. non-speech, overlap vs. non-overlap), or jointly as
a three-class (non-speech, single speaker, overlapped speech) problem. Similarly,
speaker counting can be formulated as an C-class classification task where C
is equal to the maximum possible number of overlapping speakers plus one.
While this approach is not the only one for supervised speaker counting, it has170

been found to be the most effective (Stöter et al., 2019), provided the maximum
possible number of concurrent speakers is known.

1github.com/popcornell/OSDC
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3. Neural Architectures for OSDC

We study four neural network architectures for tackling the OSDC task.

3.1. Long-Short Term Memory (LSTM)175

The first one is the best neural network for joint VAD+OSD among the ones
examined by Sajjan et al. (2018) which, to our knowledge and with the excep-
tion of our preliminary work (Cornell et al., 2020), achieves the best reported
performance on AMI single-channel distant-speech data.

It consists of a unidirectional LSTM layer with a hidden size of 512 neurons,180

followed by 3 dense layers with 1024, 512 and 256 neurons, respectively. A final
256 × N pointwise convolutional layer along with softmax is used to output
the probability of each frame belonging to one of the N classes (e.g., N = 3 for
VAD+OSD). This network features a total of 2 million parameters and generates
one output vector for every input frame given a context of 11 frames (current185

frame plus 5 past and 5 future frames).
As the original architecture lacked any normalization technique, in our ex-

periments we added batch normalization (Ioffe and Szegedy, 2015) before each
dense layer activation as well as layer normalization (Ba et al., 2016) on the
input features. This, coupled with data-augmentation, allows us to improve190

performance over the original network as it will be shown in Section 6.5.

3.2. Hybrid Convolutional-Recurrent Neural Network

We also consider the best CountNet architecture among the 5 different net-
works compared by Stöter et al. (2019). This network is a hybrid Convolutional-
Recurrent Neural Network (CRNN) , composed of a 2-D Convolutional Neural195

Network (CNN) block followed by an RNN block. The main idea behind this
architecture is that the CNN extracts a local representation of the input fea-
tures while the RNN deals with long-term temporal modeling, thus combining
the advantages of both CNNs and RNNs.

Input features of shape F ×T are fed to the CNN which is composed of two200

blocks, each composed of two 2-D convolutional layers with kernel size 3 × 3
followed by ReLU activation and a 3 × 3 max-pooling subsampling operation.
A total of 4 convolutional layers is thus employed with 64, 32, 128 and again 64
channels, respectively. Dropout (Srivastava et al., 2014) is applied on the output
of the CNN and the representation is fed to an LSTM layer with a hidden size205

of 40. As an LSTM operates on 2-D sequences while the output of the CNN
is a 3D tensor with channel, frequency, and time dimensions, a 2-D sequence is
obtained by stacking the frequency dimension onto the channel dimension.

Stöter et al. (2019) performed an additional max-pooling operation on the
whole time dimension in order to output a single prediction for the entire input210

because they aimed to count the maximum number of speakers in the whole
sequence. Here, as explained in Section 2, we are interested in estimating the
number of speakers in each time frame instead so we omit this final pooling
layer. In this way, the network generates one output vector for every 6 feature
vectors in input. As this architecture also originally lacked any normalization215
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strategy, we added batch normalization after each convolutional layer and layer
normalization at the input.

3.3. Temporal Convolutional Network

In addition to the above two state-of-the-art architectures, we consider a
TCN architecture for the OSDC task. This type of architecture has been shown220

to achieve state-of-the-art performance in many sequence-related tasks (Bai
et al., 2018) and for source separation (Luo and Mesgarani, 2019).

TCNs rely on multiple stacked dilated convolutional layers whose dilation
factor increases progressively as depth increases. This makes it possible to
greatly expand the receptive field, such that upper layers can have access to long-225

term contextual information without any pooling operation. This in turn allows
TCNs to outperform recurrent models in some tasks (Bai et al., 2018). In fact,
because they are based only on convolutional operations, TCNs have several
benefits with respect to RNNs. First, being feedforward, they are not affected
by the vanishing gradient problem which plagues RNNs, as skip-connections230

and residual connections can be used to backpropagate the gradient unscathed
down to the very first layers. Second, in RNNs the information about the past
must be contained in the hidden state. This makes it difficult to learn very long-
term dependencies as all relevant information about the past must be squeezed
into this finite-sized representation. On the contrary, TCNs process the whole235

sequence and, because no downsampling is performed, the information at all
steps is preserved in all layers. Finally, as no recurrent operations are employed,
TCNs are significantly faster than recurrent models in both the training and
inference phases. However, the fact that the representation is not pooled leads
TCNs to have large memory requirements in general, especially if a very wide240

receptive field is desired.
The architecture we employ here (Cornell et al., 2020) is depicted in Fig.

1. It is inspired from MobileNet (Howard et al., 2017) and Conv-TasNet (Luo
and Mesgarani, 2019). Input frame-level feature vectors of size F (e.g., log-Mel
filterbanks) are fed to a layer normalization (Ba et al., 2016) layer followed245

by an F × 64 1D pointwise convolutional layer (denoted as conv 1x1 ) and by
R = 3 blocks of X = 5 residual blocks (res blocks) with 1D dilated convolu-
tions, where the dilation factor increases in each block as 20, 21, . . . , 2X−1. Each
residual block consists of a 64 × 128 pointwise convolutional layer followed by
batch normalization and activation, a dilated depthwise separable 128×128 con-250

volutional layer (d-conv) followed by batch normalization and activation, and
another 128× 64 pointwise convolution which squeezes the representation back
so that it can be summed with the input. We use PReLU (He et al., 2015) as
the activation function in all residual blocks and a kernel size of 3 in depthwise
dilated convolutions.255

3.4. Transformer

Finally, we propose a Transformer-based architecture for OSDC. Transform-
ers, which were originally proposed by Vaswani et al. (2017) for natural language
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Figure 1: Proposed TCN architecture for the OSDC task.

processing applications, are pure attention-based models which have been shown
recently to achieve state-of-the-art performance in many speech processing tasks260

including diarization (Fujita et al., 2019b). They have several advantages over
recurrent models, including faster inference speed and better modeling of long-
term dependencies. Being feedforward models, the whole sequence is attended
at once, eliminating any recurrence and any need for an internal hidden state to
keep track of past elements. For this reason, they exhibit the same advantages265

as TCNs over RNNs, even if their inherent functioning is significantly different.
Similarly to TCNs and while being much faster than RNNs, Transformers also
have higher memory requirements, due to the fact that the attention mechanism
grows as O(n2) in memory with n the length of the input sequence.

Our Transformer-based architecture is depicted in Figure 2 and, as it can be270

seen, has some input and output blocks in common with the previously described
TCN network. To counter the quadratical memory growth induced by the at-
tention mechanism, we adopt a concatenate-subsample (cat-pool) operation over
the input feature vectors. For each frame, we concatenate the feature vectors
from C past frames and C future frames with the current one. Afterwards, we275

subsample this representation on the frame axis by a factor of S. In this way,
the information contained in the temporal dimension is effectively transferred to
the feature dimension with a resampling factor of C/S the original rate. This
concatenated and pooled representation is then fed to a layer normalization
layer followed by a pointwise convolutional layer (conv 1x1 ) which shrinks the280

representation to a predefined size H to reduce the memory requirements of
subsequent blocks, allowing us to process longer sequences or, alternatively, to
reduce the computational footprint of the model as it will be shown in Section
6.4. Sinusoidal positional encoding is added right after this bottleneck convo-
lutional layer and the result is fed to a succession of R Transformer Encoder285

blocks, each composed of two residual sub-blocks.
The structure of each Transformer Encoder block is identical to the one pro-

posed by Vaswani et al. (2017) with the exception that, in our architecture, layer
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Figure 2: Proposed Transformer architecture for the OSDC task.

normalization is performed at the beginning of each residual block rather than
in the end. Indeed, Nguyen and Salazar (2019) recently found that this results290

in better performance as well as faster convergence. The first residual block
consists of a normalization layer followed by a Multi-Head Attention (MHA)
layer and dropout. The second one consists of a normalization layer followed
by a position-wise feedforward neural network (FFN) composed of one dense
layer,2 a ReLU activation followed by dropout, and another dense layer which295

projects the hidden representation back. As in the TCN model, a final H ×N
pointwise convolutional layer followed by softmax is used at the output.

4. Spatial Features and Feature Fusion Schemes for OSDC

Intuitively, spatial features can help VAD, OSD and speaker counting. For
example, OSD and speaker counting can benefit from knowing whether the300

sound comes from one or more Directions of Arrival (DoAs). VAD can also
benefit from spatial features to distinguish speech, which is usually directional,
from noise, which can be spatially diffuse.

In fact, as mentioned in Section 1.2, many works have tackled speaker count-
ing by framing it as a localization problem. These works resort to DoA esti-305

mation methods based on generalized cross-correlation with phase transform
(GCC-PHAT) (Knapp and Carter, 1976) as in (Brutti et al., 2010; Drude et al.,
2014), magnitude-squared coherence (MSC) (Pasha et al., 2017) or simple cross-
power spectrum (Pavlidi et al., 2012; Walter et al., 2015). The speaker number is
estimated via a direct approach such as in (Brutti et al., 2010) by counting peaks310

in GCC-PHAT based acoustic maps or by clustering methods, where speaker
clusters are identified by iterative grouping of complex-valued time-frequency
coefficients (Drude et al., 2014), magnitude squared coherence feature vectors

2Note that dense layers are equivalent to conv 1x1.
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(Pasha et al., 2017), or DoAs estimated over single-source time-frequency zones
(Pavlidi et al., 2012) or individual time-frequency bins (Walter et al., 2015).315

Recently, a series of works have proven that neural network based localiza-
tion is more robust than signal-based methods in reverberant and noisy envi-
ronments. In these works, a neural network is trained to estimate the DoA on
a synthetic dataset for which the true position of the sources is known. Input
features include GCC-PHAT (Xiao et al., 2015), cosine-sine interchannel phase320

difference (CSIPD) features (Sivasankaran et al., 2020), the phase spectra of
all channels (phasemap) (Chakrabarty and Habets, 2017), the magnitude and
phase spectra (Adavanne et al., 2018), or the raw waveform (Vecchiotti et al.,
2019a).

4.1. Signal-based Spatial Features325

In this paper, for what concerns signal-based spatial features, we explore the
interchannel phase difference (IPD) and CSIPD, as they have been shown in the
aforementioned works to work well in reverberant and noisy environments. In
particular, our choice of IPD instead of phasemap is justified by the fact that,
both in AMI and CHiME-6, microphones are close to each other and thus some330

microphone pairs can be discarded as they do not add much spatial diversity at
16 kHz. On AMI, we consider only those pairs of microphones with maximal
distance from each other, i.e., the 4 pairs formed by opposite microphones in
each circular array instead of all 28 possible pairs. On CHiME-6, due to the
asymmetrical placement of microphones in Kinect devices, we consider the 3335

pairs formed by channels 1 and 4, channels 2 and 4, and channels 3 and 4.
The IPD or CSIPD features of all pairs are then concatenated together over
the frequency dimension. Thus, in these contexts, using interchannel features
allows us to reduce the feature size with respect to the phasemap and hence
save computational resources with practically no loss in spatial information.340

IPD and CSIPD features are tightly related and derive from the phase spec-
trum. Denoting by xi(n, f) and xj(n, f) the STFT of the i-th and j-th micro-
phone signals, where n and f are respectively the frame and frequency index,
the IPD φi,j(n, f) between channel i and j is given by

φi,j(n, f) = 6 xi(n, f)− 6 xj(n, f), (1)

where 6 (.) is the function returning the phase from the input complex value.
The IPD feature vector in time frame n is then defined as

IPD(n) = [φi,j(n, 0), φi,j(n, 1), . . . , φi,j (n, F/2)]
T
, (2)

with F the FFT size. The CSIPD feature vector in time frame n can be ob-
tained directly from the IPD feature vector and is another way of encoding the
information contained in it by using its cosine and sine values:

CSIPD(n) = [cosφi,j(n, 0), sinφi,j(n, 0), . . . , sinφi,j (n, F/2)]
T
. (3)

An important property of CSIPD is that the GCC-PHAT angular spectrum
for a given microphone pair (or the SRP-PHAT spectrum when there are 3 or
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more microphones and all pairs are considered) can be expressed as a linear
transformation of the CSIPD feature vector (Sivasankaran, 2020). When these
features are to be input to a neural network model, there is therefore no benefit345

in using the GCC-PHAT or SRP-PHAT angular spectra as inputs instead, since
this linear transformation can be learned by the neural network itself. This was
confirmed by our experiments, so we do not report results obtained with GCC-
PHAT or SRP-PHAT features in the following.

4.2. Neural Network-based Localization Features350

As an alternative, we also consider the strategy of training a neural network
to estimate the DoAs of multiple overlapped speakers on a suitable synthetic
dataset for which the true DoAs are known. The embeddings extracted by
some intermediate layer of this network can then be used as “higher-level”, pos-
sibly more robust spatial features to be employed in the OSDC system. In this355

work, we adopt the multi-speaker localization method of Chakrabarty and Ha-
bets (2017), where the space of DoAs is discretized and the neural network is
trained to estimate the posterior probability that a speaker is active for each
discrete DoA by minimizing the sum of binary cross-entropies across all dis-
crete DoAs. Binary cross-entropy is used as the cost function since multiple360

concurrent speakers with different DoAs can be active at the same time.
In detail, even for localization, we use the networks outlined in Section 3

by modifying the output layer which is replaced with mean pooling over the se-
quence dimension and a new linear layer with output size D followed by sigmoid
activation, where D is the number of discrete DoAs considered. The network365

representation before the mean pooling operation is then employed as a spatial
feature vector for OSDC systems.

One advantage of neural network-based features over signal-based features
is that joint fine-tuning of the two networks can be performed, thus optimizing
the localization feature extraction network for OSDC applications. However, it370

must be noted that the computational footprint significantly increases by using
neural network based features. Also, the fact that true source DoAs are needed
for training necessitates the use of a synthetic training dataset, which can be
mismatched with real-world data.

4.3. Fusion schemes375

Spatial features are not sufficient for reliable OSDC when used alone. For
example, directional noise sources may sometimes be confused with speech, or
concurrent speakers can have the same DoA. They must hence be combined
with single-channel spectral features, such as log-Mel spectra. We consider two
different fusion schemes for this combination, which we call early and late fusion.380

These fusion schemes are illustrated in Figure 3 for the Transformer-based
network. In early fusion, the two features are stacked together in the very first
layer of the neural network. Layer normalization on spatial features is performed
separately prior to concatenation. In late fusion, after layer normalization, the
spatial features are injected before each Transformer Encoder Block (TE Block),385
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using Feature-wise Linear Modulation FiLM (Perez et al., 2018). In this way,
each block of the architecture can focus on a different aspect of the input spatial
features since they are available even in deeper layers. As the spatial and single-
channel features are concatenated together in early fusion, they must have same
temporal length. Thus, for proposed Transformer network we employ the same390

cat-pool operation also on spatial features prior to concatenation. The same
argument applies also for late fusion where instead spatial features are used to
modulate activations at multiple layers.

Figure 3: Fusion strategies for single-channel features and spatial features for the proposed
Transformer architecture: a) early fusion, b) late fusion. TE stands for Transformer Encoder.

5. Datasets

We conduct experiments on two real-world multi-microphone datasets: AMI395

and CHiME-6. Moreover, we also use a synthetic dataset to further study, in a
controlled situation, the use of spatial features to improve the performance of
OSDC systems.

5.1. Synthetic Dataset

We simulate multi-speaker mixtures captured by a single microphone array.400

Clean speech utterances are taken from Librispeech (Panayotov et al., 2015)
train-clean-100 for training, dev-clean for validation, and test-clean for test.
The Montreal Forced Aligner (MFA) (McAuliffe et al., 2017) is used to split
these original Librispeech utterances in order to obtain shorter “sub-utterances”
for each speaker. This splitting is performed whenever pauses of more than 150405

ms are encountered. MFA is also used, in parallel, to obtain ground truth
word-level speaker activity. For each mixture, we sample from 1 to 4 different
speakers, and, for each speaker one clean speech sub-utterance is sampled. The
starting time of each speaker sub-utterance is sampled independently from an
exponential distribution. In this way, by varying the decay rate parameter,410

the amount of overlap between the speakers and the amount of silence can
be controlled. A different acoustic scenario is sampled for each mixture. We
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simulate a rectangular room whose size is varied between 10 and 60 m2. The
position of each speaker is chosen randomly inside the room but with some
constraints. Namely, the speakers cannot be less than 0.5 m from each other and415

from the walls. We consider a 4-microphone linear array placed randomly with
respect to the walls, whose height with respect to the floor can vary between
1.7 and 2 m and whose distance to the closest wall is larger than a minimal
distance which is varied between 10 and 30 cm. We use the gpuRIR (Diaz-
Guerra et al., 2018) toolkit for room simulation with a T60 reverberation time420

uniformly sampled between 0.2 and 0.6 s. Anechoic noise from Furnon et al.
(2020) is also employed to make the dataset more realistic. The positions of noise
sources inside the room are selected with the same criteria as the speakers’ ones.
The whole synthetic dataset consists of a total of 10 k mixtures (∼ 23 hours)
for training, 2 k for validation and 2 k for test (∼ 4.6 hours).425

5.2. AMI

The AMI Corpus (McCowan et al., 2005) is over 100 h of meeting recordings.
Each meeting has been recorded by a variety of devices including cameras,
microphone arrays, and per-speaker headset and lapel microphones and has
from 3 to 5 participants. Ground truth speaker activity was obtained by human430

annotators from close-talk speaker-worn microphones while distant speech was
recorded by two 8-microphone circular arrays, each with a 10 cm diameter: one
placed at the end and another at the centre of the meeting table used by the
participants.

5.3. CHiME-6435

The CHiME-6 corpus comprises dinner party recordings. The recordings are
divided into 20 sessions for a total of more than 60 h of data. In each session, 4
speakers are recorded in a real home environment consisting of different rooms.
Due to the particular setting, it features conversational speech and low Signal-
to-Noise Ratio (SNR). Recordings from binaural microphones worn by each440

speaker are provided along with distant speech captured by 6 array devices with
4 microphones each for a total of 24 microphones. Two different annotations
are provided for the start and end time of every utterance: looser ones geared
towards Automatic Speech Recognition (ASR) and tighter ones obtained via
forced-alignment. The latter ones are more suitable for evaluating VAD and445

diarization systems and we use them in the following.

6. Experimental Results

In the following, we evaluate the neural architectures in Section 3 and the
spatial features and feature fusion schemes in Section 4 on the datasets de-
scribed in Section 5. Firstly, in Section 6.1, we define and motivate the chosen450

performance metric. In Section 6.2, we outline the training and testing proce-
dure adopted in our experiments and, in Section 6.3, we highlight the impact
of different choices of hyperparameters and single-channel input features for the
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Transformer-based architecture. Then, in Section 6.4, we provide an analysis
of the computational footprint of the four considered neural architectures when455

applied to single-channel data and, in Section 6.5, we report their OSDC per-
formance on AMI and CHiME-6. Finally, in Section 6.6, we assess the impact
of spatial features on the best single-channel system: we explore different spa-
tial features, fusion schemes and number of microphone pairs, and evaluate the
results on AMI, CHiME-6 and the proposed synthetic dataset.460

6.1. Evaluation Metric

On real-world data, VAD, OSD and speaker counting tasks are affected by
class imbalance. This imbalance, which arises from intrinsic characteristics of
human conversations, can be more or less severe depending on the context. This
can be seen in Table 1, which reports the class statistics on AMI and CHiME-6465

for the counting task.3 Due to its informal, “cocktail-party” scenario, the CHi-
ME-6 dataset exhibits a slightly higher proportion of overlapped speech than
the AMI dataset, which consists of meetings. Nevertheless, in both datasets,
the proportion of 4-speaker and 3-speaker overlap is very small. The imbalance
is less severe for VAD and OSD tasks but, even for these, the choice of the470

evaluation metric can be crucial.

Table 1: Frame-level class frequency (%) for the speaker counting task on the AMI and CHi-
ME-6 development and evaluation sets.

Class frequency 0-spk 1-spk 2-spk 3-spk 4-spk

AMI
dev 15.87 67.17 13.95 2.59 0.42
eval 15.12 68.39 12.63 3.09 0.76

CHiME-6
dev 24.05 54.25 17.74 3.49 0.47
eval 33.47 51.52 12.03 2.46 0.51

We argue that metrics such as accuracy and precision-recall, as used respec-
tively by Sajjan et al. (2018) and by Kunešová et al. (2019) and Bullock et al.
(2020), do not provide a fair evaluation of OSDC algorithms on real-world data
due to this fundamental imbalance. For example, concerning OSD on the AMI475

evaluation set, an accuracy of 83.7% can be reached by labeling all the material
as no-overlap. As it has been observed by Cornell et al. (2020, Table 5), this
leads to small accuracy differences even for classifiers with drastically different
performance. In this scenario, precision and recall are a better choice than ac-
curacy. However, similarly to accuracy, their value depends on the choice of the480

detection threshold which can be application-specific (e.g., a different threshold
for diarization and speech recognition is often desirable). This does not allow
for a fair comparison between different OSDC algorithms.

3We disregard the 5-speaker overlap class on AMI since it does not occur in practice.
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For these reasons, we propose the use of Average Precision (AP) metric
which summarizes the precision-recall curve and is widely used, for example, in
object segmentation (Lin et al., 2014), information retrieval (Kishida, 2005) and
other tasks exhibiting strong class imbalance. It can be obtained from precision
P and recall R at the k-th threshold as:

AP =

M∑
k=1

(Rk −Rk−1)Pk, (4)

where M is the total number of unique thresholds considered. The number of
elements in this set is upper bounded by the number of unique elements in the485

classifier output probabilities vector. In this work we use each time the maxi-
mum number of possible thresholds to compute AP. As it can be seen, AP has
the advantage that it does not depend on a particular threshold, making it both
more robust to imbalanced data and more suitable for comparison purposes. In
all experiments, AP scores are computed on 10 ms time frames.4490

AP in Equation (4) is suitable only for binary classification tasks such as
VAD and OSD. However, it can be extended easily to multi-class classification
problems such as Speaker Counting with a leave-one-out classification strategy:
e.g. AP for the 1-spk class can be obtained by considering an equivalent binary
task where the true positives are the frames correctly classified as 1-speaker and495

the true negatives are the frames classified as silence (0-spk), 2-speaker (2-spk),
3-speaker (3-spk), or 4-speaker (4-spk). In a similar way one can compute VAD
and OSD AP from a neural network trained to perform Speaker Counting or
VAD+OSD. For example, for a Speaker counting algorithm, VAD predictions
can be obtained by summing the probabilities for the classes with at least one500

speaker: 1-spk, 2-spk, 3-spk, and 4-spk, thus obtaining the total probability of
speech; OSD by summing classes with at least 2 speakers: 2-spk, 3-spk, and
4-spk.

Unless stated otherwise, in each Table, we highlight in bold font the best
result and the ones which are statistically equivalent to it (if any) with p = 0.001.505

Because we found the distribution of the AP metric to be highly non-gaussian,
we use the Wilcoxon-Signed Rank non-parametric test (Demšar, 2006).

6.2. Training and Testing Procedure

In the following experiments, we use the exact same training and testing
procedure as in our preliminary work (Cornell et al., 2020). This allows the510

results to be directly comparable. In detail, we train all models using RAdam
(Liu et al., 2020) on 5 s chunks obtained from training signals with 50% overlap.
The last chunk is discarded if shorter. Hyperparameters such as batch size,
learning rate and dropout rate are tuned for each network, dataset and training
objective (speaker counting or VAD+OSD) on the development set. Inference515

4The sequence output by the Transformer model is stretched by a factor of S, in order for
the number of input and output frames to be equal, similarly to the other models.
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is performed by using a sliding window approach is used where the logits of
overlapping blocks are averaged to obtain the final estimate. Popular speech
processing toolkits such as Pyannote (Bredin et al., 2020) use this approach. In
this work we use a sliding window of 3 s with 50% overlap.

In our preliminary work (Cornell et al., 2020), we found that using train-520

ing targets obtained via Forced-Alignment (FA) brings considerable improve-
ment even when manual annotation is used as the ground truth in the testing
phase. We also studied the efficacy of FA as an automatic labeling procedure
for speech segmentation applications using synthetic data and we found that,
when close-talk worn microphones are employed, it can be considered reliable525

even in overlapped speech regions and challenging SNR conditions. Thus, we
employ FA labels to train OSDC models on both AMI and CHiME-6. In detail,
we use the Kaldi (Povey et al., 2011) recipes for AMI and CHiME-6 and get the
segmentation from the tri3 GMM-HMM speech recognition model.

The results on the test set are evaluated using the official annotation, which530

is manual in the case of AMI and FA-based in the case of CHiME-6. In fact,
the FA-based annotation of the CHiME-6 development and evaluation sets was
obtained with similar FA procedure as used here.

Moreover, to further improve performance on real-world data and counter-
act class imbalance, we resort, in our experiments, to the data-augmentation535

strategy described by Cornell et al. (2020), where it was shown to bring sig-
nificant improvements. This data-augmentation technique, which is itself an
extension of the one proposed by (Bullock et al., 2020), consists of on-the-fly
creation, at training time, of new concurrent speaker examples by overlapping
2, 3, and 4 random single-speaker chunks from the original dataset in order to540

re-balance the classes. To further increase the training material, a random gain
factor sampled from N (µ = −16.7, σ = 4) in dB scale is applied to each chunk
independently. In this way, we augmented the original AMI data by a factor of
70% and CHiME-6 data by 40 %. This augmentation factor is tuned for each
dataset using the development set. In parallel, to improve generalization, we545

also use SpecAugment (Park et al., 2019) on both single-channel and spatial
features separately.

6.3. Choice of Transformer Hyperparameters and Single-Channel Features

In Table 2, we show the hyperparameter space explored for the proposed
Transformer-based architecture. We varied number of future and past frames550

(C) and subsampling factor (S) used in cat-pool operation as well as size of hid-
den representation (H), number of attention heads, size of feed-forward neural
network hidden layer (FFN size) and number of transformer encoder blocks (R).
The hyperparameters were tuned on the development set of AMI, for fair com-
parison with Sajjan et al. (2018) who also optimized his LSTM model on AMI.555

The models were trained to perform VAD+OSD according to the framework
introduced in Section 2. The best combination was selected using two criteria:
overall VAD+OSD performance and inference-time computational footprint, to
give an overview of how much demanding the model is when used in practical
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applications. In fact, if the OSDC model has a modest computational bur-560

den, using it at the very first stage of a speech processing pipeline has the
advantage of lowering the computational requirements of the whole pipeline,
as subsequent processing can be applied only when needed. Moreover, models
with modest computational requirements allow for deployment on mobile and
edge-computing devices.565

Table 2: Hyperparameter space explored for the Transformer-based architecture. The best
combination of hyperparameters is highlighted in bold.

Hyperparameter C S H heads FFN size R

Values (7, 5) (10, 5) (256, 384) (4, 8, 16) (1024, 2048) (2, 4, 8)

In Table 3, we show the VAD and OSD performance on the AMI develop-
ment set, as well as the total number of floating point operations (FLOP) and
total memory consumption (Mem) with the best combination of hyperparam-
eters (Best) and when changing the value of one hyperparameter at a time.
FLOP and Mem are computed with a 300-frame (3 s) dummy 80-dimensional570

feature sequence (matching the 80 log-Mel features used in the following exper-
iments), generated from a uniform distribution. These computational footprint
figures are estimated using the built-in profiler in the Pytorch toolkit and the
Performance Application Programming Interface (Terpstra et al., 2009). Several
observations can be made. First, the choice of hyperparameters does not affect575

the VAD performance, which is arguably a simpler task than OSD and is more
easily tackled by the network. Second, doubling the number of Transformer
Encoder blocks only marginally improves performance at the cost of a signifi-
cant increase of the computational footprint. Third, increasing time resolution
by halving the sub-sampling rate also significantly increases the computational580

requirements without bringing significant benefits, meaning that a resolution in
the order of 100 ms is enough in the application scenario considered here.

Table 3: VAD and OSD AP (%) and computational footprint of the Transformer-based ar-
chitecture on the AMI development set for different architecture hyperparameter values.

Model Parameters FLOP [106] Mem [106] AP

VAD OSD

Best 85.6 3.3 98.5 57.4

S = 5 166.8 6.9 98.5 57.5
R = 8 161.0 6.2 98.5 57.8

heads = 8 85.4 3.6 98.5 56.9
FFN size = 2048 153.1 5.1 98.5 57.6

In Table 4, we report the results achieved by the proposed Transformer-based
architecture on the AMI development set for different choices of single-channel
input features. In the past, Sajjan et al. (2018) and Stöter et al. (2019) explored585
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different single-channel features for the LSTM and CountNet architectures: Saj-
jan et al. (2018) used gammatone filterbanks, log-Mel and other features such
as kurtosis and spectral flatness, while Stöter et al. (2019) explored magnitude
STFT spectra, log spectra and 40 Mel-scale filterbanks. In both studies, the
features were extracted with a 25 ms window and 10 ms hop-size. Hereafter,590

we consider magnitude spectra computed over 32 ms and 64 ms windows (512
and 1024 samples respectively), 40 and 80 log-Mel, 40 and 80 gammatone filter-
banks, and 20 and 40 MFCCs instead. All these features were computed with a
10 ms hop-size. Regarding MFCCs, we used 20 and 40 Mel bands, respectively.
A window of 25 ms was used for log-Mel, gammatone and MFCCs. We can595

see that OSD and to a lesser extent VAD performance correlate with frequency
resolution. In fact, especially for OSD, the use of compact features such as
MFCCs, 40 log-Mel or 40 gammatone filterbanks leads to a loss in performance.
These results partially agree with the findings of Sajjan et al. (2018), who found
64 gammatone filterbanks to be superior to 40 log-Mel features for OSD.600

Table 4: VAD and OSD AP (%) achieved by the Transformer-based architecture on the AMI
development set with different choices of single-channel features.

AP MagSpec Log-Mel Gammatone MFCC

512 1024 40 80 40 80 20 40

VAD 98.5 98.5 98.4 98.5 98.4 98.5 98.3 98.4
OSD 61.1 61.0 58.2 61.0 58.0 59.8 56.8 58.4

Because no statistical difference was found between 80 gammatones and 80
log-Mel and higher-resolution features (e.g., 64 ms magnitude spectra) did not
result in higher performance, we ultimately decided to use 80 log-Mel features
in the following.

6.4. Computational Footprint Comparison Across Architectures605

In Figure 4 we report the total number of floating point operations (FLOP),
the total memory usage and the inference time in clock cycles for the four
considered network architectures as a function of the input signal duration from
1 s to 100 s. Inference time is computed over batches of 64 examples in order to
get reliable estimates. As we are interested in comparing only the architectures,610

we use the same single-channel features for all architectures, namely 80 log-Mel
features with 25 ms window and 10 ms hop-size. An Intel i9-10920X CPU is
employed to perform the comparison.

As expected, regarding inference speed, the RNN-based architectures (LSTM
and CRNN) are slower than the TCN and the Transformer, which do not employ615

recurrence. A similar trend is observable in the FLOP plot, with the difference
that the CRNN has a much higher FLOP count than the other architectures
due to the use of 2-D convolutions, despite the fact that it is slightly faster
than the LSTM architecture as it employs pooling operations and the CNN
part is parallelizable. The use of 2-D convolutions also increases the CRNN620
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Figure 4: Inference-time computational footprint for the four considered neural network archi-
tectures as a function of the input signal duration. Top: number of floating point operations
(FLOP). Middle: Total memory usage in GB. Bottom: number of CPU clock cycles. The
numbers in parentheses in the legend indicate the number of model parameters. The two axes
are in log-scale.

memory footprint with respect to the other architectures. The small number
of parameters employed in the TCN leads to similar memory footprint as the
LSTM architecture.

Overall, the proposed Transformer architecture is the most efficient accord-
ing to the three criteria despite having the second largest number of parameters625

after the LSTM. Due to the cat-pool operation, the total memory usage is kept
contained and grows almost linearly until a duration of 100 s. In practice, due to
the fact that OSDC typically requires a context of a few seconds only, inference
is never performed directly over such long signals. In fact, a sliding window
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approach, as explained in Section 6.2 is employed. More generally, all archi-630

tectures, including previously proposed LSTM and CRNN ones, attain overall
computational resources figures which are suitable for edge devices deployment.
For example, the FLOP count for one second of audio is comparable to the one
reported by Choi et al. (2019) for keyword spotting in smartphone devices.

An important take from these results is also that the number of parameters,635

which is widely used as a gauge for model computational burden, does not
correlate well with the latter and can be deceptive when comparing very different
architectures.

6.5. Single-Channel Experimental Results

We now evaluate the performance achieved by the four architectures on the640

AMI and CHiME-6 distant speech datasets. For the sake of comparison with
Sajjan et al. (2018) and Stöter et al. (2019), we use single-channel features only,
namely 80 log-Mel features with 25 ms window and 10 ms hop-size.

Each architecture is trained and evaluated according to two different tasks:
VAD+OSD and speaker counting. Indeed, we are interested in assessing the645

feasibility of VAD+OSD and speaker counting on real-world data. Speaker
counting, as already said, has the advantage of providing more information to
downstream tasks, but it is plagued by extreme class imbalance. VAD+OSD,
by contrast, does not provide any clue about concurrent speakers, but exhibits
a less extreme class imbalance.650

Concerning AMI, to allow direct comparison with previous works (Sajjan
et al., 2018; Cornell et al., 2020), data from all microphone channels is used
during training while testing is performed on the first microphone of array 1.
Regarding CHiME-6, training is also performed using all microphone channels
from all array devices but, when evaluating, we consider for each array the first655

channel and then average the outputs of single-channel systems across all arrays
because of the multi-room environment of CHiME-6.5

In Table 5, we report the VAD and OSD results obtained when training the
models with a VAD+OSD objective. It can be seen that the AP figures on both
datasets are considerably higher for VAD than for OSD. This is expected since660

OSD is inherently a more challenging task than VAD. As also expected, the
performance is better on AMI than CHiME-6, as CHiME-6 is arguably a much
more challenging dataset, having lower SNR due to the more unconstrained
setting. The proposed Transformer architecture performs on-par or better than
the other architectures, with the TCN architecture closely following. LSTM and665

CRNN perform significantly worse, despite the addition of normalization layers
which were not present in the respective original works of Sajjan et al. (2018)
and Stöter et al. (2019).6

5The single-channel evaluation protocol for CHiME-6 differs from the multichannel protocol
adopted by Cornell et al. (2020), who averaged the outputs of single-channel systems across
all 24 microphones instead.

6These normalization layers do improve performance, as can be seen by comparison with
the results reported in our preliminary work (Cornell et al., 2020) which did not include them.
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Table 5: VAD and OSD AP (%) achieved by the four considered neural network architectures
on the AMI and CHiME-6 evaluation sets using single-channel features and VAD+OSD as a
training objective.

VAD+OSD Model VAD OSD

AMI CHiME-6 AMI CHiME-6

LSTM 95.4 93.4 34.3 28.7
CRNN 96.7 93.8 38.9 33.2
TCN 98.5 94.3 54.2 49.0

Transformer 98.5 94.3 57.8 49.9

Similarly, Tables 6 and 7 report the speaker counting results achieved on the
evaluation sets of AMI and CHiME-6, respectively, when training the models670

with a counting objective. The fact that the AP for the 0-spk class is remarkably
lower on AMI is a rather unexpected result, as it features a much higher SNR
than CHiME-6 overall. This could be explained by class imbalance since, as
reported in Table 1, the proportion of 0-spk in AMI is significantly lower than
in CHiME-6. The proposed Transformer architecture achieves the best figures675

overall on both datasets. In general, compared to the 0-spk and 1-spk classes,
the AP degrades considerably for the 2-spk class and even more so for the 3-
spk and 4-spk classes. This suggests that the data-augmentation strategy, is
only able to partially compensate for the extreme imbalance of 3-spk and 4-spk
classes. Therefore, it can be said that speaker counting is still far from being680

reliable on real-world data.

Table 6: Speaker counting AP (%) achieved by the four considered neural network archi-
tectures on the AMI evaluation set using single-channel features and counting as a training
objective.

Counting Model 0-spk 1-spk 2-spk 3-spk 4-spk

LSTM 47.0 82.4 24.7 6.4 0.02
CRNN 49.8 84.2 34.8 9.2 0.03
TCN 50.7 86.1 40.4 11.3 0.03

Transformer 50.9 87.2 41.8 11.2 0.03

In Table 8 we compare the performance of Transformer models trained to
perform either VAD, OSD, VAD+OSD or counting for the VAD and OSD tasks.
For each dataset, we report the evaluation set performance and, in parentheses,
the development set performance. Regarding VAD, the choice of the training685

objective has little impact on performance on all datasets. Regarding OSD,
interestingly, the model trained to perform speaker counting, which is inherently
a more difficult task, leads to better OSD performance than the model trained
directly with a VAD+OSD or OSD objective on the AMI development and
evaluation sets and on the CHiME-6 evaluation set. This is especially evident690
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Table 7: Speaker counting AP (%) achieved by the four considered neural network architec-
tures on the CHiME-6 evaluation set using single-channel features and counting as a training
objective.

Counting Model 0-spk 1-spk 2-spk 3-spk 4-spk

LSTM 79.1 69.7 20.5 6.1 0.002
CRNN 86.2 73.8 25.4 8.5 0.003
TCN 88.3 77.3 30.0 12.3 0.003

Transformer 88.2 77.3 30.6 12.5 0.003

on AMI, where a larger gap between the two models is observed. So, while
speaker counting performs poorly on real-world data, it can be convenient to
use models trained to perform speaker counting to perform VAD and OSD
instead. This may be explained by the fact that speaker count labels provide
the model with more information during training than mere OSD labels.695

Table 8: VAD and OSD AP (%) achieved by the Transformer-based architecture on the AMI
and CHiME-6 development and evaluation sets when using single-channel features and either
VAD, OSD, VAD+OSD or counting as the training objective. The values obtained on the
development sets are in parentheses.

Method VAD OSD

AMI CHiME-6 AMI CHiME-6

Transformer-VAD 98.5 (98.6) 94.3 (93.2) n.a. n.a.
Transformer-OSD n.a. n.a. 57.8 (61.0) 50.2 (55.4)

Transformer-VAD+OSD 98.5 (98.6) 94.3 (93.1) 57.8 (61.0) 49.9 (55.1)
Transformer-Counting 98.5 (98.5) 94.3 (93.2) 59.1 (64.3) 50.8 (55.8)

6.6. Multichannel Experimental Results

In the following, we select the best model found in Section 6.5, namely the
proposed Transformer model trained with a speaker counting objective, and we
show how its performance can be improved by employing spatial features along
with single-channel features. To do so, we evaluate the IPD, CSIPD and neural700

network-based spatial features and the early and late fusion schemes described
in Section 4 using AMI, CHiME-6 and the proposed synthetic dataset.

In order to allow direct comparison with single-channel results, we adopt the
same training strategy as above. Data augmentation is extended to the multi-
channel scenario by overlapping multichannel audio chunks and being careful,705

when mixing, in maintaining the array topology (i.e., the first channel is always
mixed with the first channel). Training is performed by considering each array
separately and using the same FA-based targets as above. Testing is performed,
on AMI and CHiME-6, by averaging the predictions made independently for
each array across all arrays (i.e., 2 devices for AMI and 6 for CHiME-6).710

22



The IPD and CSIPD features are computed with an STFT window length
of 50 ms and the same 10 ms hop-size as single-channel log-Mel features. The
corresponding feature vectors, for each microphone pair, are thus of size 801
and 1602, respectively.

Neural network based localization features are extracted using the same715

Transformer-based architecture as for OSDC, but with R = 2 and the modifi-
cations outlined in Section 4.2. The network takes CSIPD features relative to
most distant microphone pairs with the same STFT window length and hop-size
as above, and it outputs D = 181 discrete DoAs. It is trained on matched syn-
thetic datasets. More specifically, concerning AMI, we use our synthetic dataset720

by simulating a circular array instead of the linear one and compute CSIPDs
over the 4 pairs obtained by taking opposing microphones in the circular array.

Regarding CHiME-6, we perform training on the Kinect-WSJ2Mix dataset
(Sivasankaran et al., 2021) which involves simulated Kinect devices and real
CHiME-6 noise and we use CSIPD features between the 3 microphone pairs725

with largest distance, as explained in Section 4.1. Because Kinect-WSJ2Mix
involves at most 2 overlapping speakers while in CHiME-6 up to 4 concurrent
speakers can be present, we extend the original data by creating on-the-fly
mixtures of up to 4 overlapped speakers and use this newly generated data to
train the localization network.730

Regarding the experiments performed on the synthetic dataset, we also use
CSIPD features between the 3 microphone pairs with largest distance as inputs.
Contrary to the AMI and CHiME-6 real-world datasets, in which the localization
network is trained on a separate dataset, here we use the same synthetic data
for both the OSDC and the localization network.735

In addition, to avoid possible domain mismatch between the simulated train-
ing dataset for the localization network and the test dataset for the OSDC
network, we fine-tune the localization network with the OSDC model by joint
optimization with respect to the speaker counting task on the OSDC training
dataset. This fine-tuning step is critical to achieve good performance when ap-740

plying the OSDC network to real-world datasets: for example, on CHiME-6
without fine-tuning the resulting AP is in the order of 50% only. We summarize
the datasets used for training the neural localization network, fine-tuning and
testing with the back-end OSDC system in Table 9.

Table 9: Datasets used for the neural localization network experiments: training (train), fine-
tuning (adapt) with OSDC back-end and testing (test) dataset splits. The total number of
hours for each dataset is reported in parenthesis.

Datasets

Localization Network OSDC Network

train adapt test

Synthetic (23h) AMI (81h) AMI (9h)
Reverberated WSJ-2mix (47h) CHiME-6 (40.3h) CHiME-6 (5.2h)

Synthetic (23h) Synthetic (23h) Synthetic (4.6h)
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In Tables 10 and 11, we report the performance achieved for the VAD and745

OSD tasks, respectively, with different spatial features, fusion schemes, and
numbers of microphone pairs. Microphone pairs are selected as described in
Section 4.1, by considering, as the upper bound (all), only pairs which add
significant spatial diversity, i.e., from 1 to 4 pairs formed by opposing micro-
phones in AMI and from 1 to 3 pairs in CHiME-6 and the synthetic dataset.750

We also include in the comparison of a single-channel ensemble system with
no spatial features, where ensembling is done by averaging the OSDC network
outputs over all microphones in the array and a single-channel system trained
on beamformed audio using BeamformIt (Anguera et al. (2007)).

Table 10: VAD AP (%) achieved on the AMI, CHiME-6 and synthetic evaluation sets by the
Transformer-based architecture trained with a speaker counting objective for different spatial
features, fusion schemes, and numbers of microphone pairs (1, 2 or all), as compared to single-
channel features only (None, 1 ch.), an ensemble of single-channel systems (None, all ch.)
and a single-channel system + BeamformIt (None, enh).

Dataset Fusion IPD CSIPD Neural None

1 2 all 1 2 all all 1 ch. all ch. enh

AMI
early 98.6 98.7 98.7 98.6 98.7 98.7 98.7
late 98.6 98.7 98.7 98.6 98.7 98.7 98.7 98.5 98.6 98.5

CHiME-6
early 94.7 94.8 94.8 94.7 94.9 95.1 95.4
late 94.8 95.4 95.4 94.9 95.4 95.4 95.5 94.3 94.5 94.3

Synth
early 96.3 96.8 97.2 96.1 96.4 96.8 97.5
late 96.5 97.2 97.4 96.3 97.1 97.4 97.5 96.4 96.6 96.4

For what concerns VAD performance in Table 10, it can be seen that neural755

network-based localization features result in on-par or higher performance than
the other spatial features, and they outperform single-channel systems by a
significant margin on CHiME-6 and the synthetic dataset. Regarding AMI,
the AP saturates for most models due to the fact that, as noted previously in
Section 6.5, silence is under-represented in the material. An interesting trend760

which appears on CHiME-6 and synthetic data is that the performance of signal-
based spatial features improves when increasing the number of microphone pairs
and by using late fusion. Especially on models with late fusion, using more
microphones considerably boosts the performance for IPD and CSIPD features.
Instead, a smaller improvement is noticeable when early fusion is employed,765

due to the fact that the size of CSIPD and IPD features grows linearly with the
number of pairs but the bottleneck convolutional layer applied in early fusion
maps them to a fixed-size representation (384 neurons, as reported in Table 2).
Thus some information is inevitably lost in early fusion. On top of that, in late
fusion spatial features are available at multiple stages of the architecture.770
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Table 11: OSD AP (%) achieved on the AMI, CHiME-6 and synthetic evaluation sets by the
Transformer-based architecture trained with a speaker counting objective for different spatial
features, fusion schemes, and numbers of microphone pairs (1, 2 or all), as compared to single-
channel features only (None, 1 ch.), ensemble of single-channel systems (None, all ch.) and
a single-channel system + BeamformIt (None, enh).

Dataset Fusion IPD CSIPD Neural None

1 2 all 1 2 all all 1 ch. all ch. enh

AMI
early 58.1 58.6 59.4 57.8 58.4 58.9 59.3
late 58.4 59.5 60.3 58.1 59.6 60.4 59.7 57.8 58.6 57.6

CHiME-6
early 51.4 51.5 51.6 51.3 51.4 51.5 51.8
late 51.6 52.4 52.4 51.7 52.3 52.2 51.9 50.8 51.2 50.2

Synth
early 81.8 82.3 82.7 81.6 82.0 82.4 83.8
late 82.8 83.4 84.2 82.9 83.6 84.4 84.3 82.4 83.1 82.1

Similar trends can be also observed for OSD performance in Table 11 regard-
ing the number of microphone pairs and early fusion versus late fusion. Notably,
neural network-based spatial features are outperformed by signal-based ones on
AMI and CHiME-6 when late-fusion is used but reach on-par or top perfor-
mance when early fusion is employed instead. This suggests that fine-tuning775

the localization network compensates for the synthetic/real domain mismatch
only up to a certain point regarding OSD. It can also be observed that the
performance gain achieved by late fusion with respect to early fusion appears
modest for neural spatial features, while it is substantial for signal-based ones.
This is explained by the fact that neural network-based features are less affected780

by the aforementioned “bottleneck issue” in early fusion, as they have a more
compact size than signal-based ones and, moreover, are jointly fine-tuned with
the OSDC system. Again, models with spatial features are able to outperform
the single-channel systems and ensembles of single-channel systems. This is no-
table, as the ensemble is performed using all channels in the array and it comes785

at the cost of increasing the computational footprint linearly in the number of
channels. By contrast, spatial features allow us to boost performance with a
smaller increase in computational requirements. The use of beamformed au-
dio degrades OSD performance but not VAD performance with respect to the
single-channel only baseline system. This could be explained by the fact that790

BeamformIt tends to enhance the source with the highest energy and attenuate
the rest.

In Tables 12 and 13 we report the counting performance achieved for different
spatial features on AMI and CHiME-6, respectively, using two microphone pairs
and late fusion. On both datasets, a similar trend can be noticed. On the795

one hand, neural network based localization features achieve the best figures
regarding the 0-spk and 1-spk classes which are the most represented ones.
This is in accordance with the VAD results in Table 10 where neural spatial
features have in general higher scores. On the other hand, CSIPD and IPD
obtain similar or higher AP values for 2 and 3 concurrent speakers. This is800

in accordance with the OSD results in Table 11. Nonetheless, while systems
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based on spatial features are able to substantially increase the speaker counting
performance over single-channel systems, the observations made in Section 6.5
are still valid, and reliable speaker counting remains out of reach on real-world
data.805

Table 12: Speaker counting AP (%) achieved on the AMI evaluation set by the Transformer-
based architecture trained with a speaker counting objective for different spatial features,
as compared to single-channel features only (None, 1 ch.) or an ensemble of single-channel
systems (None, all ch.).

Spatial Features 0-spk 1-spk 2-spk 3-spk 4-spk

IPD 52.8 88.3 45.0 12.8 0.03
CSIPD 52.9 88.4 45.1 12.7 0.03
Neural 53.1 88.8 44.9 11.8 0.03

None, 1 ch. 50.9 87.2 41.8 11.2 0.03
None, all ch. 51.3 87.9 42.4 11.5 0.03
None, enh 50.8 87.4 41.6 10.8 0.03

Table 13: Speaker counting AP (%) achieved on the CHiME-6 evaluation set by the
Transformer-based architecture trained with a speaker counting objective for different spa-
tial features, as compared to single-channel features only (None, 1 ch.) or an ensemble of
single-channel systems (None, all ch.).

Spatial Features 0-spk 1-spk 2-spk 3-spk 4-spk

IPD 89.9 78.8 32.6 12.4 0.003
CSIPD 90.1 78.7 32.5 12.4 0.002
Neural 90.2 79.0 32.2 11.9 0.003

None, 1 ch. 88.2 77.3 30.6 12.5 0.003
None, all ch. 90.1 78.4 31.4 11.9 0.003
None, enh 88.1 77.4 30.3 11.8 0.003

Finally in Figure 5 we use the synthetic dataset to further explain the ben-
efit of spatial features. Using mixtures of two speakers, we report the OSD AP
values obtained by the system using single-channel features only versus the ones
obtained with late fusion and CSIPD features computed using the 3 microphone
pairs with largest distance. The OSD AP performance is plotted against the810

mean distance of the two speakers from the array and the angle between them
as seen from the array. It can be seen that, for the single-channel model, per-
formance degrades to some extent as the speaker distance increases (i.e., colors
become darker from bottom to top), but it is largely independent of the angle
between the speakers. By contrast, for the model employing spatial features,815

performance still degrades as the speaker distance increases but at the same
time it clearly improves as the angle between the speakers increases (i.e., colors
become lighter from left to right). In fact, the AP is significantly boosted for
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angles greater than 30 degrees, indicating that spatial features offer complemen-
tary information which allows the model to more effectively discriminate frames820

with overlapped speech.

Figure 5: OSD AP (%) achieved on the synthetic evaluation set by the Transformer-based
architecture trained with a speaker counting objective as a function of the mean distance of
the speakers from the array and the angle between the speakers. Left: single-channel features
only. Right: CSIPD spatial features and late fusion.

7. Conclusions

In this paper we studied the problem of performing VAD+OSD and speaker
counting on real-world data featuring distant microphone arrays. We focused
on neural network based approaches and compared different architectures for825

the two tasks, on AMI, CHiME-6 and a purposedly developed synthetic dataset.
Among the neural networks compared we introduced two novel architectures:
one based on TCNs and another based on the Transformer. In parallel we ex-
plored the use of spatial features, both signal-based and neural-based, to aid
in the VAD+OSD and speaker counting tasks when multiple microphones are830

available. We conducted an extensive experimental evaluation by comparing
the models’ computational footprint and VAD, OSD and counting performance
on single-channel and multichannel distant speech data. On CHiME-6, our pro-
posed TCN and Transformer-based architectures achieve an absolute improve-
ment in AP of 15% and 16% over previous techniques, respectively. Overall, we835

found the proposed Transformer-based architecture to be the most promising
as it was shown to be able to reach on-par or better results than the other
architectures with a significantly lower computational footprint. In general, in
comparing VAD+OSD and speaker counting tasks we found that, due to class
imbalance, speaker counting performs poorly on real-world data, but, on the840

other hand, it is desirable to use a speaker counting objective to train a system
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to perform VAD+OSD as it is shown to improve OSD. Finally, concerning spa-
tial features, we found that significant further improvements can be obtained by
using a late-fusion strategy and by increasing the number of microphone pairs
considered. Neural-based spatial features show a clear advantage over signal-845

based ones for VAD across all datasets, but no spatial feature shows a clear
advantage over another for OSD or counting. Future work includes fusing es-
timates over multiple arrays in a way that favors arrays closer to the speakers
and exploits the relative positions and orientations of the arrays whenever they
are known, and exploring suitable techniques to counteract the class imbalance850

problem.
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Málek, J., Žďánskỳ, J., 2020. Voice-activity and overlapped speech detection
using x-vectors, in: International Conference on Text, Speech, and Dialogue,
pp. 366–376.

McAuliffe, M., Socolof, M., Mihuc, S., Wagner, M., Sonderegger, M., 2017.
Montreal Forced Aligner: Trainable text-speech alignment using Kaldi, in:970

Interspeech, pp. 498–502.

McCowan, I., Carletta, J., Kraaij, W., Ashby, S., Bourban, S., Flynn, M.,
Guillemot, M., Hain, T., Kadlec, J., Karaiskos, V., Kronenthal, M., Lathoud,
G., Lincoln, M., Lisowska Masson, A., Post, W., Reidsma, D., Wellner, P.,
2005. The AMI meeting corpus, in: 5th International Conference on Methods975

and Techniques in Behavioral Research, pp. 137–140.

Medennikov, I., Korenevsky, M., Prisyach, T., Khokhlov, Y., Korenevskaya,
M., Sorokin, I., Timofeeva, T., Mitrofanov, A., Andrusenko, A., Podluzhny,
I., et al., 2020. Target-speaker voice activity detection: A novel approach for
multi-speaker diarization in a dinner party scenario. Interspeech , 274–278.980

Nguyen, T.Q., Salazar, J., 2019. Transformers without tears: Improving the
normalization of self-attention. arXiv preprint arXiv:1910.05895 .

Ouamour, S., Guerti, M., Sayoud, H., 2008. Pens: a confidence parameter esti-
mating the number of speakers, in: Second ISCA Workshop on Experimental
Linguistics, pp. 177–180.985

Panayotov, V., Chen, G., Povey, D., Khudanpur, S., 2015. Librispeech: an ASR
corpus based on public domain audio books, in: ICASSP, pp. 5206–5210.

Park, D.S., Chan, W., Zhang, Y., Chiu, C.C., Zoph, B., Cubuk, E.D., Le, Q.V.,
2019. SpecAugment: A simple data augmentation method for automatic
speech recognition, in: Interspeech, pp. 2613–2617.990

31



Pasha, S., Donley, J., Ritz, C., 2017. Blind speaker counting in highly reverber-
ant environments by clustering coherence features, in: 2017 APSIPA Annual
Summit and Conference, pp. 1684–1687.

Pavlidi, D., Griffin, A., Puigt, M., Mouchtaris, A., 2012. Source counting in real-
time sound source localization using a circular microphone array, in: 2012995

IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM),
pp. 521–524.

Perez, E., Strub, F., De Vries, H., Dumoulin, V., Courville, A., 2018. Film:
Visual reasoning with a general conditioning layer, in: 32nd AAAI Conference
on Artificial Intelligence, pp. 3942–3951.1000

Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N.,
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