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Abstract

The direction-of-arrival (DOA) of sound sources is an essential acoustic parameter used, e.g., for multi-channel speech

enhancement or source tracking. Complex acoustic scenarios consisting of sources-of-interest, interfering sources,

reverberation, and noise make the estimation of the DOAs corresponding to the sources-of-interest a challenging

task. Recently proposed attention mechanisms allow DOA estimators to focus on the sources-of-interest and disregard

interference and noise, i.e., they are signal-aware. The attention is typically obtained by a deep neural network

(DNN) from a short-time Fourier transform (STFT) based representation of a single microphone signal. Subsequently,

attention has been applied as binary or ratio weighting to STFT-based microphone signal representations to reduce

the impact of frequency bins dominated by noise, interference, or reverberation. The impact of attention on DOA

estimators and different training strategies for attention and DOA DNNs are not yet studied in depth. In this paper,

we evaluate systems consisting of different DNNs and signal processing-based methods for DOA estimation when

attention is applied. Additionally, we propose training strategies for attention-based DOA estimation optimized via

a DOA objective, i.e., end-to-end. The evaluation of the proposed and the baseline systems is performed using data

generated with simulated and measured room impulse responses under various acoustic conditions, like reverberation

times, noise, and source array distances. The best-performing systems are also evaluated using measured data. Our

experiments show that DNNs used for DOA estimation are biased to the spectral source characteristics and the

spectral attention distribution used during training (e.g., spectrally flat/sparse). We also show that this bias in

the DOA estimator can be avoided if signal-processing methods are used in combination with attention. Overall,

DOA estimation using attention in combination with signal-processing methods exhibits a far lower computational

complexity than a fully DNN-based system; however, it yields comparable results.
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1. Introduction

The sound emitted by a point source in an enclosed space spreads spherically and gets reflected by walls and other

obstacles. Typically, the non-reflected sound is referred to as direct, whereas reflections are referred to as reverberation.

Additional interfering sources like a ventilator, or background noise, e.g., from a nearby road, add further complexity

to the sound field and severely degrade humans’ and machines’ ability to localize sources or understand speech. When

such a sound field is captured with an array of microphones, acoustic signal-processing techniques can be used to

increase the speech intelligibility, e.g., with beamformers [1–5], or to track sources [6], e.g., with acoustic simultaneous

localization and mapping [7]. These techniques often require estimates of the direction-of-arrival (DOA) of the sound

sources. For some applications, only the DOA of the source-of-interest (SOI) is desired or required. For example,

consider two concurrently active sources: SOI and interference. Conventional DOA estimators yield the DOA of both

sources. Typically, it is unclear which of both DOAs corresponds to the SOI and which to the interfering source. A

correct DOA assignment to the SOI is crucial for beamformers, as a wrong assignment leads to an attenuation of the

SOI.

Estimation methods for the DOA have been investigated thoroughly in the literature (e.g., [8–10]). Typically, DOA

estimators exploit spatial features present in the microphone signals due to a level difference and a time difference of

arrival (TDOA) of the source signal between the individual microphones. For far-field scenarios and omnidirectional

microphones, the level difference is usually minimal and can be neglected. In the frequency domain, the TDOA

translates to frequency-band specific phase-differences between the microphones. Here, the spatial features can be

exploited per frequency band (narrowband) or from all frequency bands (broadband). Signal processing-based methods

to estimate the DOA from these features can be based on the inter-microphone cross-correlations [11–13], beamformers

[14–16] or subspaces [16–22]. The inter-microphone cross-correlations, like the generalized-cross-correlation [23] with

maximum likelihood or phase transform (PHAT) [13] weighting exploit the DOA and frequency dependency of the

inter-microphone phase-differences to estimate the DOA. In [24], a least square approach is used to minimize the

phase differences obtained from measurements and an estimated DOA. Beamforming techniques like steered-response

power, e.g., with PHAT weighting [15, 16] (SRP-P), or a steered minimum-variance distortionless response beamformer

[14] sample the DOA space by steering in pre-defined directions. The DOA is subsequently estimated by maximum

picking. An alternative is null-steering [25], where the idea is similar, but the DOA is obtained by minimum picking.

Alternatively, the DOA can be estimated using subspace-based methods like MUltiple SIgnal Classification (MUSIC)

[16–18], based on noise subspaces, or estimation of signal parameters via rotational invariant techniques [19–22],
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based on sub-arrays. In [26], the authors exploit reflection patterns using semi-supervised manifold learning with a

distributed microphone array to localize a single source.

Also, deep-learning techniques have been used for DOA estimation [27–51]. Typically, deep-learning methods

for DOA estimation are computationally more complex than signal-processing methods and require retraining or

architecture modifications if fundamental parameters like the number of microphones or the array architecture change.

When using deep learning for DOA estimation, a deep neural network (DNN) learns to map a feature representation of

the microphone signals to the DOA. This enables matching the trained DNN via the training data to specific scenarios.

The estimated DOA on the DNN output can be represented in a classification manner, where a class activity symbolizes

an active source from the corresponding direction, or a regression manner, where a single variable represents the DOA

(e.g., an angle). According to [28], both representations yield comparable results such that the output representation of

the DOA is a design choice. Some of the DNNs for DOA estimation (referred to as DDNNs) are trained with directional

noise signals (e.g., [40, 45, 52]) as this allows to generate an infinite amount of simulated training data. Conceptually,

training with noise implies that the DDNN learns spatial and no spectral source characteristics, as expected of a DOA

estimator. Very recently, [53] showed that training with speech improves the localization of speech sources compared

to training with noise, although the DDNN was only provided with the short-time Fourier transform (STFT) phases of

the microphone signals and not the respective magnitudes. The DDNN, consequently, is biased towards speech sources

if trained with speech or towards spectrally white sources when trained with spectrally white noise. In comparison,

signal-processing methods for DOA estimation do not exhibit such a bias towards spectral source characteristics.

In the so-called sound event localization and detection (SELD) task [29, 41, 43], the ability of DNNs to be tailored to

specific (spectral) source characteristics for DOA estimation is exploited to localize specific sources and their activity,

only. In SELD, a DNN is used to detect a sound event and the respective DOA. In [29, 41, 43], the sources-of-

interest have to be defined during training the DDNN. For each SOI class, the DDNN has outputs for the respective

source activity and the DOA. This approach requires retraining the DDNN if the SOI changes. Additionally, the

number of DDNN outputs has to be increased each time the number of SOI classes increases, which could introduce

scaling problems for a high number of SOI classes, or changing classes. An example of many changing classes is the

localization of multiple speakers, where each class represents a specific speaker. In [29, 41, 43], each SOI speaker had

to be defined during training and treated as an individual class on the DDNN output. Changing SOI speakers would

require retraining the DDNN, which is impractical for many applications.

In SELD, a single DNN is designed to detect the activity of sources-of-interest and determine their DOAs. Al-

ternatively, these two tasks can be separated via the concept of attention [44, 46, 46–48, 54–56]. Systems using

attention for DOA estimation often consist of a DOA module, which estimates the DOA (e.g., a DDNN or a signal-
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processing method) and an attention module, which provides the attention that is used in the DOA module to focus

on the SOI and disregard interference, reverberation, and noise. If the SOI selection is performed independently of

the DOA module (e.g., if the DOA module is a signal-processing method), no DOA module change (architecture

change, retraining) is required for a changing or an increasing number of SOI classes as in SELD [29, 41, 43]. Only

the attention has to be modified. Attention can be estimated from spectral [44, 46–48] or spatial [57] features and

can be implemented as a weighting applied to a feature representation of the microphone signals in or before the

DOA module. The weighting concept of attention is similar to the time-frequency masking concept for single-channel

source extraction/separation/enhancement (e.g., [58–67]), which allows adopting the concepts of this highly investi-

gated field to compute attention to enable signal-aware DOA estimation. For example, a promising direction is to

adopt techniques from universal sound source separation for attention-based multi-source DOA estimation [68, 69].

Consequently, attention provides additional flexibility.

Typically, the attention module is implemented in the form of a DNN (referred to as ADNN) for both fully DNN-

based systems and hybrid systems, where a signal-processing method is used as DOA module. In hybrid systems

[46, 54–56], the ADNN estimates a time-frequency mask and was optimized using the ideal binary mask [46, 56], the

Wiener filter [55], or the phase-sensitive mask [54] as the target. That way, feature representations of the input signals

are modified to be dominated by the SOI. Subsequently, MUSIC [56], SRP-P [54, 55], or a complex Watson mixture

model [46] were used to estimate the DOA of the SOI. The SOI, thereby, was exclusively defined as a speech source.

In [46], a multi-speaker environment was considered where the SOI was defined in a speakerbeam [70] like manner

using a reference audio snippet of the respective SOI (speaker) processed in the ADNN. In [54–56], the environment

consisted of a single speech source (the SOI) and non-speech interference or babble noise.

In fully DNN-based systems [44, 47, 48], the ADNN estimates attention for a DDNN to enable signal-aware

DOA estimation. The DDNNs typically consist of a convolutional neural network (CNN) to extract features from the

microphone signals and a subsequent feed-forward neural network (FFNN) to map the features to the DOA. Attention

has been applied either before [44, 47, 48] or after the feature extracting CNN [48, 57]. In our preliminary work [48], we

showed that attention application after the CNN outperforms attention application at the input. Training the ADNN

has been done using masking-based [44, 47, 48] or end-to-end (E2E) using DOA-based [44] objectives. For low-SNR

scenarios and unmatched training-test conditions, E2E training performed best, whereas, for high SNR scenarios,

attention degraded the performance slightly compared to the attention-free scenario [44]. As for the hybrid systems,

the focus of the fully DNN-based methods is on localizing speech sources. In [47], the SOI is a specific speaker defined

by a spoken keyword in a multi-speaker environment, whereas in [44, 48], there is only a single speaker and non-speech

interference.
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To this point, it is not clear how hybrid systems perform in comparison to fully DNN-based systems, although

hybrid systems typically exhibit a far lower computational complexity. Additionally, the effect of attention on DDNNs

is not yet investigated thoroughly. To investigate the effect of attention on DDNNs, we evaluate different DDNN

architectures, input features, attention-application methods, and training data simulation methods and compare their

performance on data simulated using measured room impulse responses (RIRs). In particular, we investigate the

importance of spectral context for DDNNs (see Sections 3.1.3, 3.2.2, 5.1), whether DDNNs are biased towards a

specific attention distribution via training (see Section 5.1) and whether the DDNN architecture can be reduced

significantly dependent on the input features/architecture (see Sections 3.1, 5.1). Subsequently, we evaluate different

attention-application and DDNN/ADNN training methods in Section 5.2. Finally, the best performing fully DNN-

based system is compared to different hybrid systems for signal-aware DOA estimation of a single speech source in

the presence of directional interference and noise. Experiments with a fine-grained DOA resolution (≈ 1◦) and using

measured data are conducted in Section 5.3 and Section 5.4, respectively.

The main contributions can be summarized as follows: (I) Exhaustive evaluation and comparison of existing

and proposed methods for signal-aware DOA estimation using simulated and measured data in Section 5. (II) The

proposition of novel training methods for fully DNN-based and hybrid systems in Section 3.2. In particular, we

propose: a) An E2E training method when attention is applied in the DDNN - differences to [44] are explained in

Section 2.2.2 and to [57] in Section 3.2.1; b) A narrowband DDNN; c) Training an ADNN in combination with SRP-P

with a DOA-related loss (state-of-the-art is based on masking/enhancement-related losses [46, 54–56]) (III) Evaluation

of the role of attention and spectral context for DDNNs. The work presented here builds upon our work [48] presented

at ICASSP 2020.

The remainder of the paper is organized as follows. In Section 2, we introduce a signal model and introduce

our preliminary work [48] and baselines for hybrid [54] and fully DNN-based [44] signal-aware DOA estimation.

Subsequently, we introduce the proposed modifications to the DNN architecture from [48] and the proposed training

methods for hybrid and fully DNN-based systems. In Section 4, we describe the data sets used for evaluation and

training. Finally, in Section 5, we evaluate the proposed and baseline systems using measured and simulated data.

2. Fundamentals

2.1. Problem Formulation

We assume a uniform-linear microphone array (ULA) with Q microphones with microphone index q ∈ {1, . . . , Q}
positioned in a reverberant room with several directional sound sources. We define the microphone signals in the
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θi

θ̂i

i-th source

Figure 1: Scheme for DOA (θi) estimation of the i-th source.

STFT domain as Y ∈ CQ×K×N , where C specifies the complex domain, K specifies the number of frequencies of

the one-sided STFT spectrum with frequency-index k ∈ {1, ...,K} and N specifies the number of time-frames with

time-frame index n ∈ {1, ..., N}. The microphone signals can be modelled as a superposition of representations of the

source signals Xi ∈ CQ×K×N with source index i and spatio-temporally white microphone self-noise V ∈ CQ×K×N ,

i.e.,

Y =

I∑

i=1

Xi + V, (1)

where I ∈ N is the number of sources. The source Xi can be split into a direct component Xd
i ∈ CQ×K×N that

reaches the microphones without being reflected (e.g., from walls, or other obstacles) and a reverberant component

Xr
i ∈ CQ×K×N , i.e.,

Xi = Xd
i +Xr

i . (2)

For a ULA, the DOA of the i-th source is defined as the angle θi ∈ [0, 180] which specifies the direction of the i-th

source to the microphone array as shown in Figure 1. From Figure 1, it can be inferred that this information is

embedded in Xd
i . Other sources, reverberation, or noise, consequently complicate the DOA estimation of the i-th

source.

In a typical DOA estimation context, the objective is to estimate from Y the DOA of all I sources. In signal-aware

DOA estimation, the aim is to estimate from Y only the DOAs of the sources-of-interest, which are in a subset of

all I sources. The definition of sources-of-interest, thereby, is user and application-defined. To reduce the impact of

reverberation, noise, and interference on the DOA estimate and enable signal-aware DOA estimation, attention in the

form of a weighting mask M ∈ [0, 1]K×N can be applied to Y or a feature representation of it. In STFT domain,

the smallest unit to estimate the DOA from is a single STFT-bin Y [:, k, n]. The largest unit is the whole signal

Y [:, :, :]. Strong interference or pauses of the SOI can deteriorate to the final DOA estimate. Via weighting with M ,

the influence of STFT-bins that degrade the DOA estimation performance of the sources-of-interest can be reduced.
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If M attends to multiple directional sound sources, there is no assignment of the estimated DOAs to the respective

sources-of-interest. For multiple sources-of-interest, the weighting M can be constructed such that all sources-of-

interest are attended to simultaneously. Alternatively, different sound classes can be defined, where each class, for

example, represents a single speaker or a collection of directional sounds. In this case, a weighting Mu can be

constructed to attend to a source belonging to the u-th class. This process can be repeated for all sources-of-interest

to estimate their respective DOAs. For example, consider two active sources-of-interest, a speaker and a loudspeaker

playing music. When both sources are attended to simultaneously with a single mask, two DOAs are obtained without

an assignment to speech and music. With M1 and M2, each time one DOA is obtained, where the assignment of M1

and M2 to speech and music, respectively, allows assigning the respective DOAs to speech and music in the same way.

This has the additional advantage that two DOAs are obtained even if the sources come from the same direction. Using

multiple masks enables multi-source DOA estimation via single-source DOA estimation. Consequently, we restrict the

experiments to a single SOI of type speech without loss of generality.

2.2. Fully DNN-Based Signal-Aware DOA Estimation

In this section, we review our recently proposed DNN for signal-aware DOA estimation [48]. The architecture is

depicted in Figure 2.

2.2.1. Architecture and Training

The DDNN [45] consists of two parts, a CNN and a FFNN. The CNN consists of Q−1 convolutional layers with 64

filters of shape (2, 1) (inter-microphone application), each, stride 1, padding 0, and ReLU activation after each layer.

The FFNN consists of 3 layers with ReLU activation and a sigmoid output activation with shapes (257 · 64, 512),

(512, 512), (512, C), where C represents a discrete representation of the DOA space corresponding to angles θ̃ ∈ RC ,

where here C = 37, and θ̃[c] = (c − 1) · 180
C−1

◦
, with c ∈ {1, . . . , C}. We denote the discrete DOA representation for

N consecutive time-frames as E ∈ [0, 1]C×N . The input of the DDNN consists of the microphone phases of a single

time-frame n, P [:, :, n] ∈ [−π, π]Q×K . We denote the features after the CNN for N separately processed time-frames

as F ∈ RK×64×N , where 64 is the total number of CNN filters, and N specifies the number of processed time-frames.

Consequently, the CNN filters extract inter-microphone but not inter-frequency information from P [:, :, n]. Finally,

the FFNN maps F [:, :, n] to E[:, n], where values close to 1 specify source activity in the respective direction in time-

frame n [45], and zero specifies no activity. The DDNN is trained with the categorical cross-entropy (CCE) loss on a

time-frame basis. Training data was simulated with noise and simulated RIRs as in [38].
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Y [2, :, n] ∠•

Y [3, :, n] ∠•
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CNN
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a) Signal-aware DOA estimation using feature masking.

E ∈ [0, 1]C

Y [1, :, n] ∠•

Y [2, :, n] ∠•

Y [3, :, n] ∠•

Y [4, :, n] ∠•

| • | LSTM

P
h
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M
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b) Signal-aware DOA estimation using phase masking.

P
h
ase

M
ask

in
g
(P

M
)

CNN FFNN
P̃ [:, :, n] F [:, :, n]

M

E ∈ [0, 1]C

Figure 2: Scheme of the DNN system from our preliminary work [48]. |•| symbolizes magnitude extraction of the input and 6 • phase

extraction of the respective input. A DDNN based on a CNN and a FFNN maps the STFT phases frame-wise to 37 DOA classes. Attention

is included in a) via feature masking [see (7)] and alternatively in b) via phase masking [see (6)] such that only the SOI, here a speech

source, is localized. The attention is computed from the magnitude spectrum of one microphone using a long short-term memory neural

network (LSTM), the ADNN.
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For evaluation, the time-frame estimates in E can be combined by averaging, i.e.,

Ē[c] =
1

N
·

N∑

n=1

E[c, n] ∈ [0, 1], (3)

to obtain a global estimate. The estimated DOA of the SOI is θ̃[argmax{Ē}] where “argmax” returns the index of

the maximum.

The ADNN maps the magnitude representation of a single microphone |Y [1, :, :]| to a ratio mask Mr ∈ [0, 1]K×N

of equal size for the speech source. The ADNN consist of a bidirectional long short-term memory neural network

(BLSTM) [71] with 3 layers and 1200 neurons per layer. The output layer is a feed-forward layer with sigmoid

activation. The ADNN is trained for a single-channel speech enhancement objective, to minimize the mean-squared

error (MSE) between the direct signal of the SOI and the respective estimate at the first microphone,

MSE =
1

K ·N ·
∑

n

∑

k

(|Xd
1 [1, k, n]|−|Mr[k, n] · Y [1, k, n]|)2, (4)

where only Source 1 is a speech source and all other sources are non-speech.

2.2.2. Attention Application

In [48], we proposed to compute binary attention Mb[k, n] for the speech source via thresholding, i.e.,

Mb[k, n] =





0 if Mr[k, n] < vthr;

1 otherwise,
(5)

where the threshold vthr ∈ [0, 1]. Subsequently, Mb can be applied to the DDNN via two methods. First, via binary

phase-masking (B-PM) by directly modifying the DDNN input P , such that

P̃ [q, k, n] = Mb[k, n] · P [q, k, n] + (1−Mb[k, n]) · ν[q, k, n], (6)

where ν[q, k, n] ∈ [−π, π] is a uniformly distributed random variable and P̃ [:, :, n] is the new DDNN input. Note that

ν[q, k, n] is used to avoid all-zero phase inputs in a frequency band as this would correspond to a DOA of 90◦. For

robust DOA estimation of a single source in the presence of reverberation and noise, the authors in [44] proposed a

similar phase masking approach as in (6), with vq = 0 and ratio attention Mr[k, n] ∈ [0, 1] instead of Mb[k, n]. We

refer to phase masking with Mr and vq = 0 using our DNN architecture as ratio phase-masking without randomization

(referred to as R-PM*) and compare it to B-PM and ratio phase-masking with randomization, which is described in

Section 3.2.1.
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Secondly, attention can be applied via binary feature-masking (B-FM) by zeroing selected features after the CNN,

i.e.,

F̃ [k, :, n] = F [k, :, n] ·Mb[k, n], (7)

where F [:, :, n] are the features after the CNN, and F̃ [:, :, n] are masked features (see Figure 2) which are fed in the

FFNN instead of F [:, :, n] when B-FM is used. The same binary attention value, thereby, is used for all 64 features

in a specific time-frequency bin. Please note that either B-PM or B-FM is applied in previous works and that an

application of both would be equal to B-FM [48].

2.3. Baseline System: Hybrid Signal-Aware DOA Estimation

In [54, 55], the authors proposed a steered-response power with modified PHAT weighting (SRP-MP) to perform

signal-aware DOA estimation. Attention, thereby, is used to modify the PHAT weighting. In [55], attention is

computed from averaged microphone features using an ADNN trained for a Wiener filter objective. In [54], attention

is computed from each microphone separately and is trained using a variant of the phase-sensitive mask (PSM) for

the speech source as the target, i.e.,

PSM[q, k, n] = max

{
0,

√
|Xd

1 [q, k, n]|2
|Xd

1 [q, k, n]|2+|Y [q, k, n]−Xd
1 [q, k, n]|2 · cos( 6 Xd

1 [q, k, n]− P [q, k, n])

}
, (8)

where 6 Xd
1 [q, k, n] provides the phase of Xd

1 [q, k, n]. In SRP-P and SRP-MP, the microphone signals are transformed

in the STFT domain, and each time-frequency bin is normalized with its magnitude (PHAT weighting). The PHAT

weighting can be denoted as

W[q, k, n] =





1

|Y [q, k, n]| if |Y [q, k, n]|> ε;

ε otherwise,

(9)

with the small constant ε ∈ R+. Subsequently, the power of the normalized spectrum coming from different sampled

directions is computed. The DOA is obtained by picking the direction with the maximum power.

For signal-aware DOA estimation, the PHAT weighting can be modified by applying the mask Mr to it, i.e.,

W̃[q, k, n] = W[q, k, n] ·Mr[k, n], (10)

to obtain a new weighting function. In [55], the same Mr is used for all microphones, whereas in [54], the mask is

channel dependent. We refer to the application of the SRP-P algorithm with weighting W̃ as SRP-MP1. Subsequently,

1Derivation of the equality of PHAT weighting and (9) can be found in [15].
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the weighting is applied to the microphone signals and the matrix Φ ∈ CK×N×Q×Q is computed, i.e.,

Φ[k, n, q1, q2] = Y [q1, k, n] · W̃[q1, k, n] · W̃[q2, k, n] · Y ∗[q2, k, n], (11)

where ∗ denotes the complex conjugate. As in SRP-P [15], the DOA space is sampled assuming a far-field model and

relative transfer functions D ∈ CC×K×Q w.r.t. the first microphone, where a single element is denoted as

D[c, k, q] = e
−j·2·π·k·fs·cos(θ̃[c])·dq

cs·K , (12)

where e is Euler’s number, cs is the speed of sound, fs is the sampling frequency, j =
√
−1 is the complex unit, and

dq denotes the distance between the first and the q-th microphone. Finally, SRP-MP steered to all elements in θ̃ is

obtained via

SRP-MP[c](Φ) =

N∑

n=1

K∑

k=1

Q∑

q=1

Q∑

j=q+1

(
2 · Real{D[c, k, q] · Φ[k, n, q, j] ·D∗[c, k, j]}

N ·K · (Q− 1) · (Q− 1)

)
, (13)

where “Real” provides the real part, only. Finally, ĒSRP-MP is obtained by normalizing SRP-MP, i.e.,

ĒSRP-MP[c] =
SRP-MP[c]

max1≤u≤C(SRP-MP[u])
. (14)

The same normalization procedure can be applied to SRP-P, which results in ĒSRP-P. The estimated DOA θ̂ of the

SOI is θ̃[argmax{Ē}] where “argmax” returns the index of the maximum. Note that the SRP-MP approach differs

from SRP-P [15] only in the application of Mr in (10), which is not used in SRP-P.

As SRP-P is solely model-based (not data-driven) and the individual ADNN input is from a single microphone

[54], the ADNN of SRP-MP can be trained once, and then it can be used for any (static or dynamic) microphone

architecture by adjusting the SRP-P model. Note that Mr can nevertheless be array dependent, and unmatched array

architectures during training and testing could lead to degraded results compared to the matched scenario. In contrast,

as DDNNs are connected to a specific array architecture via training (e.g., fixed inter-microphone distance, number

of microphones, etc.), an application to a different array cannot yield reasonable results. Consequently, retraining

is required, and sometimes even modifications to the DDNN architecture are necessary due to a different number of

microphones. For implementation details of SRP-MP/SRP-P, we refer to [15, 72].

We like to note that the computational complexity of SRP-MP is much lower than of the DNNs. To assess

computational complexity, we follow the approach in [73] and count the number of multiplications/divisions, addi-

tions/subtractions, i.e., the number of floating-point-operations (FLOPs). Non-linearities are not taken into account.

A more accurate complexity analysis would require knowledge about the employed hardware. Assuming complex

numbers to be represented by a real and imaginary part, SRP-P requires 5 ·K ·Q real-valued divisions per time-frame
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to compute and apply the PHAT weighting to each microphone. Efficiently implemented, SRP-P requires 6 ·K · (Q−1)2

2

operations to compute the upper-triangle components of (11) and approximately 4·K ·C · (Q−1)2

2 operations to compute

the components in (13) per time-frame. In total this sums up to approximately (Q−1)2

2 · (4 ·K ·C + 6 ·K) + 5 ·K ·Q
FLOPs. For K = 257, C = 37 and Q = 4 the number of FLOPs is lower than 0.2 · 106. For comparison, see the

FLOPs of the DNNs in Table 1.

3. Proposed Frequency-Selective DOA Estimation

In this section, we propose different systems and training strategies for signal-aware DOA estimation using atten-

tion. A system, thereby, consists of a module for attention and another module for DOA estimation. We compare

these systems to [48], [54], and the R-PM* concept of [44] in the performance evaluation.

3.1. DOA Modules

In the following, we describe the proposed extensions and modifications of our preliminary work [48]. In Table 1,

we present various variants of different DDNNs designed to investigate specific research questions. We modified the

architecture from [48] by including batch normalization layers [74] between the CNNs as it is known to reduce training

time and makes the model less prone to the initialized weights. These models are marked with a superscript B in

Table 1.

3.1.1. Phase Vs. Phase Difference Input

The DOA information is, according to physical models, given in the inter-microphone phase-differences denoted as

∆P ∈ [−π, π]Q−1×K×N , where ∆P [q, k, n] = MOD(P [q + 1, k, n]− P [q, k, n], π), where MOD is the modulo operator.

The information of the phase differences is in the phases, however, with an additional random offset. Consequently,

mapping microphone phases to the DOA is a many-to-one mapping due to a random phase offset on the microphone

phase-differences. When using the phase difference, a frequency-dependent one-to-one mapping exists (in the absence

of noise and other distortions) from the input features to the DOA. In Table 1, these DNNs are marked with a ∆P in

the “Feature” column. Note that using ∆P as input reduces the number of CNN layers to Q− 2.

3.1.2. Parameter Reduction

The number of parameters of the DDNN [48] is dominated by the weight matrix of the first feed-forward layer.

The size of this layer is very large due to the multiplication of the number of CNN filters with the number of frequency

bands (see Table 1). If the CNN is removed, the number of frequency bands is only multiplied with the number of
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Table 1: Overview of all DDNNs: “Feature” specifies the input of the DDNN. “BN” specifies whether additional 2D batch normalization

layers (size 64 = number of CNN filters per layer) are between the CNN layers. “Size FFNN” specifies the sizes of the 3 feed-forward

layers in the format: input-l1;output-l1;output-l2;output-l3. For the narrowband models, the size of the three feed-forward layers is given

for each frequency band. “NB” specifies whether there is an FFNN per frequency band (narrowband) or a single FFNN processing all

frequency bands together to map F to the DOA. “Abbreviation” specifies the abbreviation we use for the respective DNN. The CNNs

have 64 filters of shape (2, 1), each, a stride of 1, no padding as in [40]. We use a ReLU activation after each hidden layer and a sigmoid

activation after the output layer. Between each feed-forward layer, we use a dropout of 0.5 as in [45]. The number of FLOPs gives the

approximate number of multiplications and additions required by each of the models per time-frame (without the masking network) for

Q = 4, K = 257, C = 37.

# Abbreviation Feature BN # CNNs Size FFNN NB # FLOPS

1 CNNB
∆P ∆P 3 Q− 2 64·257;512;512;37 7 ≈ 22 · 106

2 CNNN,B
∆P ∆P 3 Q− 2 64;74;74;37 3 ≈ 11 · 106

3 CNN∆P ∆P 7 Q− 2 64·257;512;512;37 7 ≈ 22 · 106

4 CNNN
∆P ∆P 7 Q− 2 64;74;74;37 3 ≈ 11 · 106

5 CNNB
P P 3 Q− 1 64·257;512;512;37 7 ≈ 30 · 106

6 CNNN,B
P P 3 Q− 1 64;74;74;37 3 ≈ 19 · 106

7 CNNP P 7 Q− 1 64·257;512;512;37 7 ≈ 30 · 106

8 CNNN
P P 7 Q− 1 64;74;74;37 3 ≈ 19 · 106

9 FFNN∆P ∆P 7 0 (Q− 1)·257;512;512;37 7 ≈ 1.4 · 106

10 FFNNN
∆P ∆P 7 0 Q− 1;74;74;37 3 ≈ 4.3 · 106

11 FFNNP P 7 0 Q·257;512;512;37 7 ≈ 1.6 · 106

12 FFNNN
P P 7 0 Q;74;74;37 3 ≈ 4.4 · 106

13



| • | LSTM

CNN

Y [1, :, n] ∠•

..
.

Y [2, :, n] ∠•

..
.

Y [3, :, n] ∠•

..
.

Y [4, :, n] ∠•

..
.

O
u
tp
u
t
M
a
sk
in
g
(O

M
)

M

FFNN
F [ 1, :, n] ENB [:, 1, n]

FFNN
F [ 2, :, n] ENB [:, 2, n]

FFNN
F [ K-1, :, n] ENB [:, K-1, n]

FFNN
F [ K, :, n] ENB [:, K, n]

E ∈ [0, 1]C

Figure 3: Narrowband DDNN with an independent FFNN per frequency band.

microphones resulting in a parameter reduction of approximately Q
64 . Consequently, we propose a DDNN without

CNNs to investigate whether this massive parameter reduction leads to performance degradation. In Table 1, these

DNNs are abbreviated with “FFNN”.

3.1.3. Narrowband DDNNs

Many signal processing-based DOA estimators perform narrowband DOA estimation and subsequently merge the

narrowband estimates (e.g., via averaging [75]) to obtain a broadband estimate. Motivated by these approaches, we

propose to use the same rationale for DOA estimation with a DNN. We assume such a procedure has an additional

advantage in the case of signal-aware DOA estimation, where some frequency bands have to be disregarded. In [48],

this was achieved using binary masking (B-PM, B-FM). The band selection, thereby, strongly depends on the spectral

characteristics of the interference and the desired signals. Both B-PM and B-FM may introduce different kinds of

noise, dependent on the spectral characteristics of the sources, in the DOA estimation as the zeroed/randomized

features are fed in the DDNN. Suppose the DOA is estimated independently per frequency band. In that case, the

DOA estimates of the individual bands can subsequently be combined (e.g., by averaging the DOA estimates over

the frequency) to obtain a broadband estimate. Additionally, we hypothesize that such a process is more robust

w.r.t. masking than B-FM and B-PM as zeroed/randomized inputs are not fed in the DDNN. As the CNN filters

only combine inter-microphone but not inter-frequency information, it is sufficient to modify the DDNN in [48] such

that there is an individual FFNN with sigmoid output activation per frequency band. A scheme of this architecture

is given in Figure 3. In Table 1, these DNNs are marked with a 3in the “NB” column.
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3.2. Attention Module and Training Strategies

For comparability, we use the same ADNN architecture for all DOA modules (proposed and baselines). The

ADNN consists of 2 long short-term memory layers (LSTM) (input dim. = 257, hidden dim. = 512) followed

by a feed-forward layer with an output shape of 257 with sigmoid activation. Per time-frame, this model requires

approximately 7.6 million FLOPs2. The input/output shapes are selected such that they fit the number of frequency

bins per STFT time-frame of the input. In contrast to [48], we use an LSTM with fewer parameters instead of a

BLSTM to enable online DOA estimation. We used a dropout of 0.4 between the LSTM layers and of 0.7 before the

output layer during training to avoid overfitting [76]. In [48], we optimized the ADNN using a speech enhancement

objective. In particular, we selected frequency bands in a binary fashion to estimate the DOA. This binary selection

breaks the gradient path, as the rounding to either 0 or 1 is non-differentiable. Consequently, the ADNN cannot be

trained E2E with the DOA estimation objective using supervised learning. Additionally, to train the ADNN E2E,

training data cannot be simulated using noise as in [38, 40] as the ADNN has to learn the spectral and temporal

characteristics of the SOI. Consequently, training data must be simulated with the SOI. Using the time-frame-based

training method in [38, 40] would require an activity detection for the SOI. To avoid SOI activity detection and

train the ADNN and the DDNN E2E, we propose different training strategies using ratio instead of binary attention

techniques for frequency bin selection.

3.2.1. End-to-End Training With Feature or Phase Masking

The ADNNs yield the (single-channel) ratio attention Mr ∈ [0, 1]K×N for N successive time-frames. We assume

the source to be static, i.e., it does not move for N time-frames. We propose to apply Mr [rather than Mb as in (6)

and (7)] to the features, i.e.,

F̃ [k, :, n] = F [k, :, n] ·Mr[k, n], (15)

or to the input, i.e.,

P̃ [q, k, n] = Mr[k, n] · P [q, k, n] + (1−Mr[k, n]) · ν[q, k, n]. (16)

We refer to the application of ratio attention in (15) and (16) as ratio feature-masking (R-FM) and ratio phase-

masking (R-PM), respectively. The respective DDNN output is marked as EFM, or EPM. For evaluation over multiple

2FLOPs of feed-forward layers are computed by doubling the multiplication of the input dimension with the output dimension to account

for multiplications and additions. An LSTM layer contains 4 feed-forward matrices of shape (input dim.× hidden dim.), and 4 feed-forward

matrices of shape (hidden dim.× hidden dim.). FLOPs of CNN layers are computed by doubling the multiplication of the output dimension

with the filter dimension, and the number of filters. Non-linearities or batch-normalization layers are not taken into account.
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time-frames it is common [45] to gather DOA information across consecutive time-frames by averaging, i.e.,

Ē•[e] =
1

N

N∑

n=1

E•[:, n] ∈ [0, 1]37, (17)

where • specifies either FM or PM. We propose to use the same averaging concept for training. Using several time-

frames for training enables training without the necessity for a source activity detector (e.g., see [77]) as the DOAs of

silent time-frames average out and allow the LSTM of the ADNN to exploit temporal context for attention estimation.

Note that the DOA label is only based on the DOA of the SOI but not on the other interfering sources. Please note, in

contrast to [48], Mr provides a soft rather than binary attention. We investigate training the ADNN and the DDNN

together using the CCE loss for a DOA objective. In the performance evaluation, we investigate using a pre-trained

DDNN with noise [38]. Subsequently, the DDNN weights are frozen, and the ADNN is trained E2E with the DDNN

(frozen weights) for a DOA estimation objective via the CCE loss. With these experiments we investigate whether

the DDNNs are biased via training towards specific spectral source characteristics and attention distributions.

In parallel to the present work, [57] proposed to use feature masking trained end-to-end with an automatic speech

recognition loss. In particular, the authors proposed to average the CNN features before the FFNN such that the

FFNN learns to map denoised features to the DOA. To avoid bias of the FFNN, we propose to average the frame-wise

DOA estimates after the FFNN for training purposes only. In that way, the DDNN still operates on a time-frame

basis. Additionally, in [57], the authors estimate attention from the spatial features obtained by the CNN of the STFT

phases (i.e., without using the magnitude information); In contrast, we estimate attention from the magnitude STFT

to differentiate between the SOI and other sound sources.

3.2.2. End-to-End Training for Narrowband Estimators

For the narrowband DDNNs, R-PM or R-FM is not necessary, as we obtain a separate DOA per frequency band,

denoted as ENB ∈ [0, 1]37×K×N . Consequently, we propose to weight the individual estimates to obtain a single

broadband estimate, i.e.,

ĒNB[c] =

∑K
k=1

∑N
n=1Mr[k, n] · ENB[c, k, n]

∑K
k=1

∑N
n=1Mr[k, n]

. (18)

We refer to this weighting using a ratio mask as output masking (OMr). We use the CCE loss between the label and

ĒNB for training.

3.2.3. DOA-Based Training using SRP-MP

Finally, we compare the DDNN based approaches with SRP-MP. To train the ADNN using a DOA objective,

we propose to minimize the MSE between the SRP-P spatial pseudo spectrum (SPS) obtained from the clean non-
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Table 2: Parameters of the RIRs for the different data sets.

Training Validation Test Measured [78] Test Simulated

T60[s] {.2, .3, .4, .6, .8} {.45, .6, .75} {.16, .36, .61} {.38, .7}
SMD [m] {1, 2} {1.2, 2.3} {1, 2} {1.3, 1.7}
θ [◦] {0, 5, . . . , 180} {0, 5, . . . , 180} {0, 15, . . . , 180} {0, 180

179 , . . . , 180}

reverberant signals Xd
1 (denoted as Ē

Xd
1

SRP-P) and the SRP-MP SPS obtained from the mixture signals Y , i.e.,

JSRP-MP =
1

C

∑

c

(
ĒSRP-MP[c]− ĒXd

1

SRP-P[c]
)2

. (19)

We implemented the SRP-P code [72] in PyTorch to enable training and included the attention mechanism. Note that

a CCE loss cannot be applied here, as even the SRP-P estimate of the non-reverberant, noise, and interference-free

signals exhibit broad lobes with non-zero entries aside from the desired DOA. Consequently, these non-zero entries

cannot be removed in the proposed framework such that the CCE loss cannot be applied.

4. Data Sets

The data sets used for training, validation, and test are introduced in this section. The STFT parameters were a

sampling frequency of 16 kHz, a hop-size of 16 ms, and a window-length of 32 ms such that K = 257. Each file contains

speech at its center. Parts (N = 100) of longer speech files were extracted based on local energy accumulations around

the center to exclude silent files/files with little speech activity. Subsequently, the files are convolved with RIRs and

cut to N = 100 (≈ 1.6 s).

4.1. Room Impulse Responses

For training, validation, and test, different RIRs were simulated using the image-method [79, 80]. For test, also mea-

sured RIRs were used from [78]. All RIRs specify a ULA with four microphones and an 8 cm inter-microphone distance.

From [78], we used the central four microphones from the eight microphones 8 cm configuration. The RIR parameters,

like the source microphone-center distance (SMD) or the reverberation time T60, are summarized in Table 2. The train-

ing, validation, and test RIRs were simulated in different rooms [m], {[6, 6, 2.7], [5, 4, 2.7], [10, 6, 2.7], [8, 3, 2.7], [8, 5, 2.7]}
for training, and {[9, 11, 2.7], [10, 10, 2.7], [9, 5, 2.7]} for validation, and {[9, 4, 3], [5, 7, 3]} for the simulated test set

(testSIMRIR). Note that although the SMD in training and the measured test (testMEASRIR) is the same, the
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different reverberation times and rooms change the direct-to-reverberation ratio such that it can be seen as unmatched

conditions. testMEASRIR consists of T60 ·SMD·DOAs = 3·2·13 = 78 RIR configurations [RIRs to all microphones].

Combining the rooms with the parameters from Table 2 results in 3 · 50 · 37, 18 · 37, 8 · 180 RIR configurations for

the training, validation, and simulated test sets, where 37 and 180 are the numbers of DOAs, respectively. For each

simulation, the microphone array was placed randomly in the room. The source was placed according to the respective

ground-truth DOA and SMD. The constellation was rotated randomly around a random axis. The minimum distance

from all microphones and the source to the wall was set to 1 m. For the training RIRs, the generation process was

repeated three times.

4.2. Single-Source Data Sets

To investigate the influence of attention on the performance of DDNNs, we generate data sets with a single speech

source and spatiotemporally white microphone self-noise with a signal-to-noise-ratio (SNR) ∈ [10, 30] dB. Speech

files from the test set from Librispeech [81] were convolved with the RIRs from testMEASRIR. Per microphone

configuration, the process was repeated 20 times with a random SNR. For the training and validation set, we generated

data by convolving the training and validation RIR sets with white noise as in [38]. From each resulting file, we selected

the first 1.6 s, which results in 100 STFT frames per file (≈ 1.6 s). The total number of training, validation, and

test time-frames is 11.1 · 1e6, 1.3 · 1e6, and 156 · 1e3 STFT frames for the respective sets. We refer to these sets as

train-1S, val-1S, and test-1S.

4.3. Two-Sources Data Sets

To investigate the effect of E2E training for signal-aware DOA estimation of the ADNN and the DDNN, we

generate training, validation, and test sets consisting of two sources (signal-to-interference ratio (SIR) ∈ [−6, 6] dB)

and spatiotemporally white microphone self-noise with an SNR ∈ [20, 30] dB. The first source is always a speech

source from the respective set of Librispeech [81]. The second source is random interference, e.g., guitar, engine,

piano, ..., from the respective sets of the YouTube-based FSDnoisy18k [82, 83]. Due to the temporal sparsity of some

files in FSDnoisy18k, we computed local energy accumulations to select energy-rich source segments such that very

sparse files can be excluded. Please note, the second source does not contain speech. The DOA of the speech source

is selected deterministically to yield a uniform distribution over all C possible DOAs. The DOA of the interfering

source was selected randomly from all C DOAs with a spatial separation of both sources larger than 5◦ for evaluation

purposes. The rest of the procedure is similar to the single-source case resulting in the same number of time-frames

in the respective sets. We refer to these sets as train-2S, val-2S, and test-2S. Additionally, we generated a third
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high-resolution test set referred to as test-2S-HR with the RIRs from testSIMRIR with a total of ≈ 2.88 · 1e6
STFT frames. Note that for this test set, the minimum angular distance between both sources is larger than 180

179

◦
.

For training the ADNNs, we used the signals of the first microphone of the training sets.

5. Performance Evaluation

We evaluate the ADNNS and DDNNs using the mean absolute error (MAE), accuracy (ACC), and pseudo accuracy

(psACC) metrics. The MAE is the average over several files of the absolute error (AE), which is defined as

AE =

∣∣∣∣∣θ1 − θ̃
[

argmax

{
Ne∑

n=1

E•[n, :]

}]∣∣∣∣∣ , (20)

where Ne is the considered number of time-frames per file for evaluation in the test set. We assume a result to be

accurate if the AE is smaller than 5◦ and pseudo accurate if the AE is smaller than 10◦ such that the neighbouring

classes of the DDNN output are included. We report these metrics on a frame (Ne = 1), a 50-frame (≈ 0.8 s, Ne = 50),

or 100-frame (≈ 1.6 s, Ne = 100) basis to show the performance of the algorithms over different context lengths. The

desired length Ne, thereby, depends on the application. For tracking fast moving sources, for example, a small Ne is

required to provide sufficient temporal resolution. For slowly moving or static sources, a large Ne might be beneficial

to increase the DOA estimation accuracy. As the focus of the paper is the localization of static sources, we base most

of our experiments on Ne = 50 or Ne = 100. Unless stated differently, all DOA estimators (signal processing and

DNN-based) sample the DOA space with a resolution of 5 degrees.

5.1. Impact of Binary Frequency Selection on DOA Estimation

The effect of attention in terms of masking on the DDNNs has not yet been studied in depth. In particular, it is

not clear what effect different attention distributions have on the DDNN performance/whether there is a bias in the

DDNN towards specific attention distributions. To investigate the effect in a controlled way, we evaluate two different

attention distributions represented by binary masks that contain 50 ones and 257− 50 = 207 zeros per time frame. In

a file with multiple time-frames, the mask is the same for all time-frames. In the first attention distribution, the ones

are selected randomly via a uniform distribution per file. In the second attention distribution, the ones are selected

deterministically. We refer to these attention distributions as attention-distribution one and attention-distribution two,

respectively. We distinguish three different binary masking procedures, (I) random phase-masking (rB-PM) and (II)

random feature-masking (rB-FM) using attention-distribution one and (III) deterministic feature-masking (dB-FM)

using attention-distribution two, where the binary mask contains ones in the frequency bands from 100 to 150. The
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Table 3: Evaluation of all DNNs on test-1S for the central 0.8 s (50 STFT frames). The first column represents a broadband evaluation.

In the second and third columns, in each file, 50 randomly selected frequency bands were used (rB-PM, rB-FM) - meaning that the

respective mask Mb consists of ones in the 50 randomly selected bands and zeros, elsewhere. In the fourth column, the frequency bands

100 to 150 were used (dB-FM/dB-OM). Models 13 and 14 are DDNNs trained for DOA estimation only (not signal-aware). Model 13

is the DDNN basis we extended in [48] for signal-aware DOA estimation. The trained weights of the Models 13 and 14 are available

on https://github.com/Soumitro-Chakrabarty/Single-speaker-localization. Model 15 and 16 are standard implementations of MUSIC and

SRP-P from the pyroomacoustics library [72] that were evaluated on the randomly/deterministically selected frequency bands. In MUSIC,

we additionally used the band-wise normalization proposed in [75]. “No Masking” is equivalent to a mask that consists of ones, only. The

results in the table demonstrate the effect of attention on DOA estimators.

# Model No Masking rB-PM rB-FM/rB-OM dB-FM/dB-OM

MAE ACC psACC MAE ACC psACC MAE ACC psACC MAE ACC psACC

1 CNNB
∆P 2.2 70 89 7.1 50 79 3.9 58 85 15.2 41 66

2 CNNN,B
∆P 2.4 77 86 — — — 7.4 57 79 52.4 28 35

3 CNN∆P 2.3 73 88 7.3 44 77 3.2 64 84 14.2 48 73

4 CNNN
∆P 4.5 67 87 — — — 10.1 50 75 57.1 20 33

5 CNNB
P 1.8 77 88 6.7 63 84 2.5 71 90 20.1 50 67

6 CNNN,B
P 5.8 59 77 — — — 12.5 43 68 51.5 14 26

7 CNNP 2.1 75 87 5.3 58 78 2.8 68 83 16.1 51 69

8 CNNN
P 4.1 60 85 — — — 11.0 44 71 67.0 9 18

9 FFNN∆P 3.4 64 86 36.8 17 26 48.5 8 8 48.5 8 8

10 FFNNN
∆P 3.3 69 86 — — — 7.8 56 78 39.7 29 52

11 FFNNP 6.0 41 80 34.9 14 26 36.8 21 32 48.4 4 15

12 FFNNN
P 4.0 59 83 — — — 8.2 45 74 47.6 18 36

13 MSCNN [45] 3.3 72 85 15.6 58 69 3.6 72 85 19.3 55 71

14 SSCNN [38] 2.8 68 88 — — — — — — — — —

15 MUSIC [72, 75, 84] 2.0 74 87 — — — 2.1 74 88 5.9 64 84

16 SRP-P/-MP [15, 72] 2.2 73 87 — — — 2.4 71 86 7.2 63 82
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Figure 4: Frame-wise psACC results over the DOA for different reverberation times in test-1S (only the central frame where n = 50 was

used for evaluation to ensure speech activity). The square represents a T60 of 0.16 s, the triangle of 0.36 s, and the circle of 0.61 s. In the

left column, B-FM/B-OM was applied such that only 50 randomly selected frequency bands were used. In the right column, B-FM/B-OM

was applied for different frequency ranges (FRs), from k = 0 to k = 50, from k = 100 to k = 150, and from k = 200 to k = 250 were

evaluated. In the respective scenarios, only frequency bands in the respective range were used.

21



results are summarized in Table 3. The results in this section are based on the single-source data set test-1S and the

DDNNs are trained with train-1S.

If no masking (i.e., M = 1) is applied, all methods (except Model 6) achieve a psACC higher than or equal to

80% in Table 3 in the presence of noise and reverberation. The signal-processing methods perform comparably to the

deep-learning methods; see Models 2, 5, and 15, 16. Using the inter-microphone phase-differences as input instead of

the raw phases does not result in better performance for the broadband CNN-based DDNNs. The phase difference

input only improves the results for the DDNNs based solely on feed-forward layers. This shows that CNNs can denoise

the input better than FFNNs. In particular, Model 5, which uses the raw phase as input, performs best in terms of

ACC and MAE. A possible explanation is the additional convolution layer of the CNNs, which use the raw phases

instead of the phase differences as input that increases the learning capabilities of the DDNN. Batch normalization

between the CNN layers does not influence the results, as the performance of Models 1 and 5 is comparable to the

performance of Models 3 and 7.

When masking is applied, rB-FM outperforms rB-PM consistently, as in [48]. The results show that if only feed-

forward layers are used, the performance drops when any type of masking is applied, as can be seen in the rB-PM

column of Models 9 and 11. Consequently, we exclude these models from further evaluations. Using rB-FM, the

narrowband models perform worse than the broadband models. Therefore, having inter-frequency connections in the

DDNN helps to estimate the DOA, especially given noisy inputs. Interestingly, using the phase differences instead of

the phases as input improves the performance for the narrowband models. For dB-FM, the narrowband models fail

completely. Also, the performance of the broadband models is strongly degraded, although having access to the same

number of frequency bins as when using rB-FM. The performance degradation is much less severe for signal processing-

based methods like MUSIC or SRP-P. This effect can be explained by DNN training. The DDNNs have been trained

with spatiotemporally white noise and directional temporally white noise. On a short time-frame basis (≈ 32 ms), the

addition of two white noise processes leads to time-frequency bins where the relative energy of directional and non-

directional noise can vary strongly, meaning that time-frequency bins where the directional noise source is dominant

are uniformly distributed over the frequencies. This distribution is resembled by rB-FM, where the bin-wise SNR for

masked bins (i.e., unattended) can be assumed to be − 8 dB, corresponding to the time-frequency bins dominated by

the non-directional noise during training. Consequently, the bin-wise SNR distribution during testing is very different

when employing dB-FM compared to the uniform bin-wise SNR distribution during training.

To investigate the effect further, we plot the psACC on a frame-basis over the DOA and for different reverberation

times in Figure 4 for selected models. For rB-FM, on the left side, the performance of the DDNNs and SRP-P

deteriorates slightly. Please note the bias to 90◦ is typical for a ULA. For dB-FM, shown on the right side of Figure 4,
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Table 4: Results for different attention schemes with different training methods for the DDNN. The ADNN is always trained E2E with the

respective attention technique (R-FM, R-PM, R-PM*) and the respective DDNN. Note that when the DDNN was trained with noise [38],

the DDNN weights were frozen for the ADNN training.

DDNN Training Noise [38] E2E (17, 18, or 19)

Masking MAE ACC psACC MAE ACC psACC

No Mask 37.9 42 47 16.7 63 74

R-FM 31.6 48 53 6.2 70 83

R-PM*[44] — — — 9.0 67 80

R-PM 32.6 48 53 13.3 65 76

the DDNNs fail to estimate specific directions correctly, completely for all tested reverberation times. However, the

results of SRP-P do not exhibit such complete failures for specific DOAs for different frequency distributions. The

performance of the DDNNs deteriorates for all three considered frequency-band ranges in dB-FM compared to rB-FM,

although having the same number of frequency bands to estimate the DOA from. Remarkably, when using dB-FM,

the performance deterioration of the DDNNs is DOA and frequency-band range dependent. For specific DOAs and

band ranges, e.g., band range 100-150, 60◦ DOA, FFNNN
∆P , the psACC drops to almost 0, whereas for other DOAs,

e.g., 15◦, the performance is comparable to no masking. This effect is especially prominent for the narrowband model,

less for the broadband model, and again less for SRP-P as it did not require any training. Consequently, having access

to all frequencies as the broadband model provides more reliable DOA estimates. Based on these findings, we exclude

the narrowband estimators from further evaluations and investigate training for speech. Additionally, the performance

gap between dB-FM and rB-FM suggests that training the DDNNs with the signal class to estimate the DOA from

and with the spectral attention distribution used in the test instead of uniformly distributed noise can further improve

the performance. We further evaluate this hypothesis in the next section.

5.2. Impact of Training Data and Attention Application on Signal-Aware DOA Estimation

Here we compare different training strategies for the DOA and attention modules in the presence of two sources (a

directional speech and a directional interference source) and noise. For fully DNN-based DOA estimation, we evaluate

attention application in the form of the proposed R-FM and R-PM and compare to R-PM* [44]. Training strategies

include: (I) Training the ADNN and the DDNN jointly E2E using the CCE loss for the DOA label of speech with

train-2s (see Equation (17)). (II) Training the DDNN on a time-frame basis with directional noise sources from

23



Table 5: Results for different training schemes for the ADNN (MSE and DOA-based with the respective DOA module). The DDNN

was trained with speech. The SRP-P results without masking were 39.4◦, 37 %, 43 %, for MAE, ACC, and psACC, respectively. For

comparison, we use our ADNN architecture for the baseline trained with PSM and use the same mask for all microphone channels instead

of the channel-dependent masks as in [54] (results for microphone channel-dependent masks as in [54] are 6.9◦, 67 %, 80 % for MAE, ACC

and psACC, respectively).

ADNN Training MSE (4) E2E/SPS (17, 18, or 19) PSM ([54])

Method MAE ACC psACC MAE ACC psACC MAE ACC psACC

SRP-MP 9.0 62 78 6.7 69 82 6.8 67 81

R-FM 24.5 51 62 6.2 70 83 - - -

train-1S [38], freezing the DDNN weights and training the ADNN E2E using train-2s and the CCE loss with

the DOA label of speech (see Equation (17)). (III) Training an ADNN with the MSE for speech enhancement and

combining it with the DDNNs from (I) and (II). (IV) Training the DDNN without attention using train-2s and

the CCE loss with the DOA label of speech. (see Equation (17)). (V) Training the DDNN without attention and

directional noise sources [38]. For hybrid systems, we compare ADNNs combined with SRP-MP trained using the

MSE, or the PSM for speech enhancement with the proposed training based on the SPS using train-2s. We refer to

the respective methods via SRP-P (MSE), SRP-P (PSM), SRP-P (SPS), respectively. The evaluation was performed

using data simulated with measured RIRs using test-2S. Note that the ground-truth label is only based on the DOA

of the SOI. Unless specified differently, the used DDNN is CNNB
P .

In Table 4, we report results for the different training strategies for the DDNN. The worst results are expected

with training strategies (IV) and (V) as no attention is applied. The DDNN trained with noise in (V) cannot decide

whether to focus on the speech or the noise source but estimates the DOAs of both sources. By chance, either the

speech or the noise DOA is picked in the evaluation (see, for example, the red line of the CNN in Figure 5). Note

that (V) only serves as an anchor that puts the results into perspective. As it is not performing signal-aware DOA

estimation, it does not serve as a baseline. When training with speech in (IV) instead of noise, the DDNN seems to

learn speech-specific structures in the phase map such that the DOA of the speech source is more prominent than the

DOA of the noise source. As a result, when training the DDNN with speech rather than noise, the MAE is reduced

from 37.9◦ to 16.7◦ when no mask is applied. Consequently, the DDNN learned speech-specific characteristics from the

input to be biased to speech sources. Note that no magnitude information is used here. This bias cannot be learned

when training with spatiotemporally white Gaussian noise [38] as in (V).
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When additional attention in the form of R-PM, R-PM*, or R-FM is applied, the results improve further. The

best performance is achieved using the proposed R-FM. The application of R-FM yields better results than R-PM*

[44]. This shows that the masking of features after the CNN layers is superior to masking the input. Interestingly,

the DDNN achieves better results for R-PM* compared to R-PM. When the mask is zero at some bins in R-PM*,

this corresponds to a DOA of 90◦ assuming the DDNN learns a physical model. The additional noise included by

the unlearnable phase randomization of R-PM seems to deteriorate the results more severely than the deviation of

the physical model when using R-PM*. This result and the strong discrepancy between the DDNN performance for

rB-FM and dB-FM in Section 5.1 show that the DDNN does not learn an exact physical model. Instead, it learns the

mapping from input to the DOA that optimizes the loss based on the training data.

In Table 5, we report the results of different training methods for the ADNN, namely the MSE (4), the PSM (8)

and with the respective DOA module using the SPS loss for SRP-MP (19) and E2E for the DDNN (17). All methods

improve the result compared to the attention-free scenarios. For SRP-MP, training the ADNN with a localization loss

yields slightly better results than training with the MSE. Training with the PSM further minimizes the gap. This

can be explained as the PSM takes the phase into account, which is important for source localization. Additionally,

the MSE weights mask differences with the mixture magnitude. This increases the weight of low frequencies if the

SOI is speech, although higher frequencies allow for more accurate localization. For the DDNN, E2E training is more

important, as the MSE mask yields an MAE of 24.5◦, and the E2E mask an MAE of 6.2◦. Note that the computational

complexity of SRP-MP is much less than for the DDNN, but the performance is comparable. Also, SRP-MP does not

have a bias towards the respective training source in the DOA module in contrast to the DDNN.

Especially interesting is the small performance difference for SRP-MP when a PSM or an SPS mask is used.

In terms of dual-use, this approach allows using independently trained source separation/enhancement/extraction

ADNNs with signal processing-based methods for DOA estimation without strong performance degradation in terms

of DOA estimation compared to SPS training or E2E training using the DDNN. Another advantage of the SRP-

MP (PSM) approach is the independence of the training data of the array architecture, as only an ADNN and no

DDNN is used. When DDNNs are used, retraining is required for every new array architecture, whereas with SRP-MP,

the SRP-P model can be adjusted w.r.t. the array architecture. Additionally, when the ADNN is trained with the

PSM, it is sufficient to simulate training data for a single microphone and not for an array, which reduces the overall

computational burden when SRP-MP (PSM) is trained. Furthermore, when training the ADNN with the MSE/PSM,

the signal processing-based method can be used as a black box and does not have to be implemented in a differentiable

way. An advantage of the DDNN is that it only requires the DOA label of the SOI for training such that it could

be trained with measured data if the ground-truth DOA is provided, e.g., by an optical tracking system. In contrast,

25



all investigated training objectives for the ADNN using SRP-MP require a representation of the SOI at the first

microphone, which complicates training using measured data.

In Figure 5, we show the DOA estimation performance based on SRP-MP coefficients and based on a DDNN

with the respective attention masks. Training E2E/with the SPS yields different masks that cannot be used for an

enhancement objective. For example, the masks trained with the speech enhancement objective clearly exhibit the

magnitude structure of speech at lower frequencies, whereas the masks trained for localization do not. Especially

interesting are the differences between the masks obtained with the SPS training for SRP-MP and the E2E training

with the DDNN. Where the SRP-MP (SPS) mask is relatively sparse, the DDNN mask is not. In the DDNN, all

frequency bands are connected and yield a single estimate per time frame. SRP-MP can be interpreted as estimating

a DOA per frequency bin and averaging these estimates. In the DDNN case, the internal connection seems to require

rather non-sparse inputs, whereas the averaging of SRP-MP (SPS) seems to select only a few time-frames but then

nearly all of the respective frequency bins. A comparison of the masks of SRP-MP (SPS) and SRP-MP (MSE) shows

that SRP-MP (SPS) yields masks that focus on the low-reverberant speech onsets. The SRP-MP (MSE) mask is

between the SRP-MP (SPS) and the DDNN masks in terms of sparsity. The SRP-MP coefficients of MSE and SPS

masks look very similar, although the respective masks are quite different. This shows the robustness of SRP-MP

w.r.t. different input masks. The DDNN estimates look sharper than the SRP-MP estimates. The DDNN was trained

to have sharp outputs and prior information of an angular separation of sources larger than 5◦ from the training data,

whereas SRP-MP is model-based and not optimized to yield such sharp outputs. The different output representations,

consequently, may be misleading in terms of selecting the best algorithm. This is justified as the respective ACC,

psACC, and MAE results are very comparable for the DDNN and SRP-MP in Table 5.

In Figure 6, we report the results of B-FM as in [48] over vthr for a DDNN trained with noise with train-1S and

an ADNN trained with the MSE (4) with train-2S. Note that the results differ from [48], as the ADNN is a two-layer

LSTM instead of a three-layer BLSTM, the file length is different (1.6 instead of 3 s). We use the same binary mask

with SRP-MP (MSE) to see whether binary or ratio masks are advantageous for SRP-MP (MSE). We compare the

results to the DDNN. The DDNN achieves the best performance at vthr ≈ 0.2. In total, the ACC is improved from 42

to 59 %, and the MAE is reduced from 38◦ to 14.9◦ for the DDNN. For SRP-MP, the best performance is achieved at

vthr ≈ 0.4 when the MAE is reduced from 39◦ to 6.2◦. This result is the same for the best model, the DDNN, with E2E

training in Table 4. The ACC of SRP-MP, however, is still 9 % percent worse compared to the E2E trained DDNN.

The psACC of both is comparable with 79 to 83 %. The performance gap of DDNN and SRP-MP in Figure 6 shows

that DDNNs are more sensitive to attention than SRP-MP. As signal processing-based methods for DOA estimation

are typically not tailored to any source class or array architecture, unlike DDNNs and their computational complexity
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Figure 5: Outputs of SRP-MP and the DDNN (R-FM) in the first row with the respective masks (dB) in the second row. The ADNNs

are trained with the MSE (column 1), using the SPS with SRP-MP (colum 2) or E2E with the DDNN (column 3). Label and Interference

specify the ground-truth DOAs of the two present sources, speech and non-speech, respectively. Note that the temporal evolvement of the

mask is shown on the y-axis, to simplify a comparison of the MSE and the other masks.
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Figure 6: Results of MAE, ACC, and psACC of B-FM [48] and SRP-MP. The ADNN is trained with the MSE (4) for a speech enhancement

objective and the DDNN is trained with noise [38]. Note that the psACC is always higher than the ACC. The black lines mark the results

of R-FM from Table 4.

is typically less than that of DDNNs, we believe that the combination ADNNs for attention and signal processing-based

methods for DOA estimation constitutes a low-complexity solution with high psACC and low MAE.

5.3. Evaluation of Off-Grid DOAs

In the previous experiments using test-2S, the SOI DOAs were matched to the directions that the DOA modules

sample. As all the evaluated DOA estimation algorithms sample the DOA space, such an on-grid comparison is fair

in the sense that no method has an advantage over the other. Also, the use of measured RIRs for data simulation

inherently leads to slight off-grid positions, e.g., due to measurement or microphone placement errors. However,

stronger off-grid DOAs of the sources-of-interest lead to additional rounding errors and consequently to an increased

MAE. Additionally, as DDNNs learn an input to output mapping, it is not inherently clear whether they generalize

to off-grid DOAs.

In this section, we show that the proposed methods generalize to off-grid DOAs. As the baseline in [54] uses a signal

processing method for DOA estimation and the baseline in [44] uses the same DOA DNN architecture as CNNB
P , the

results for off-grid DOAs can be transferred to the respective methods and are not shown here. We evaluate the effect

of off-grid DOAs on the signal-aware DOA estimation performance using the two-source data set test-2S-HR. The

ADNNs are trained E2E/using the SPS with the respective DOA module using train-2S. We show the results of the

MAE and the median absolute-error (MedAE) over the DOA in Figure 7, where the DOA space is sampled with a 5

degree resolution, and the ground-truth DOA of the sources-of-interest is between 0 and 180 degree on 180 grid points

(angular distance between two grid points is 180
179 degree). A decreased performance of the MAE and the MedAE can

be observed around 0 degree, as expected for a ULA. Over the DOA, the MedAE exhibits a clear triangular structure

with the highest MedAE in between the sampling points of the DOA modules. The MAE and the standard deviation,
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Figure 8: Excerpt of the confusion matrix from 0 to 85 degrees of the DOA labels vs. the estimated DOAs of the DDNN (top) and

SRP-MP (bottom). The estimated DOAs have a resolution of 5 degrees and the labels of 1 degree. The evaluated two-source data set is

similar to test-2S-HR; only the label resolution was changed from 180
179

◦
to 1◦ for visualization purposes.

however, do not exhibit such a clear structure. The high ACC and psACC reported in the previous experiments, the

MedAE structure with the 95% confidence interval and the standard deviation of the MAE suggest that the MAE

is mostly dominated by outliers such that no clear on/off-grid structure can be observed as in the MedAE plot. In

addition to SRP-MP (SPS) and CNNB
P with a 5 degree sampling resolution, we also evaluate SRP-MP (SPS) with

a 180
179 degree sampling resolution to show the flexibility of the approach (during training, the DOA resolution was

5 degree). Such a change is not possible for DDNNs without the necessity to change the number of output classes

of the DDNN architecture and retraining. The increased DOA sampling resolution for SRP-MP (SPS) leads to a

reduced MedAE and MAE. This shows that scenario-dependent modifications of the DOA module can be performed

after training if the DOA module is a signal-processing method.

To investigate the effect of off-grid sources further, an excerpt of an estimate vs. actual DOA confusion plot is

shown in Figure 8. It is shown that for SRP-MP (SPS) and for CNNB
P , the estimated DOA of off-grid sources is

typically the closest DOA that can be estimated due to the discrete sampling resolution of 5 degrees of the estimators.

If a source DOA is in the middle of two sampled DOAs, the algorithms choose either of the neighboring classes. Both

algorithms show comparable performance. Around 0 degree, as expected for a ULA, the algorithms perform worse

(the DOA-based changes in inter-microphone phase-differences have a sine dependency; the sine is zero at 0 degree,

which hinders the DOA estimation).
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Figure 9: a) shows an excerpt of the recorded log-STFT of Y [1, ...] and b) shows an excerpt of the recorded log-STFT of X1[1, ...].

Y is a superposition of separately recorded directional interference and X. Please note that microphone self-noise and background

noise are also present in b). The audiofile with aligned DOA estimates is available at https://www.audiolabs-erlangen.de/resources/

2021-CSL-Signal-Aware-DOA-Estimation.

Please note that the overall results in this experiment are better compared to the previous experiments, irrespective

of the off-grid evaluation due to the use of simulated RIRs here. Additionally, SRP-MP (SPS) performs better than

the DDNN with an MAE of 3.6◦ for the coarse and of 2.9◦ for the fine-grid evaluation compared to an MAE of 4.6◦ for

the DDNN. Physical model violations due to the use of measured RIRs with slight microphone perturbations seem to

influence the performance of SRP-MP stronger than of the DDNN. Similar results have been found in [38] for SRP-P.

5.4. Outlook: Evaluation using Measured Data of Moving Sources

Finally, we compare CNNB
P , SRP-MP (SPS) and SRP-MP (PSM) using measured data for one moving speaker

(the SOI), with undesired directional sources, and diffuse background sounds with a SIR smaller than −4.5 dB

(room size: 4.7 m, 4.87 m, 2.6 m height; T60: 0.5 s). A plot of the recorded signals can be seen in Figure 9. The

ground-truth source positions were obtained using an optical tracking system [85]. The outputs of the estimators are

visualized in Figure 10 (not normalized). The output of SRP-P shows a stationary directional interfering source at

approximately 95◦ and moving directional interfering sources. The DOA of the speech source is barely visible. Such

an output is expected if no attention is applied. The output of SRP-MP (SPS) is temporally very sparse, however, the

estimates are very close to the ground truth obtained via optical tracking. This result is consistent with the sparse

masks of SRP-MP (SPS) seen in Figure 5. In this low-SIR environment, SRP-MP (SPS) only bases the DOA estimates

on very few time-frames that yield very accurate estimates. This effect can be explained via the objective function

(19), where the estimated SPS is optimized to resemble the SPS of the ground-truth, both after normalization (see
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Figure 10: DOA estimates of measured data using the respective methods. In a), the raw outputs are shown, whereas in b) the raw outputs

are averaged over 0.4 s, respectively. There is a single moving speech source active tracked via an OptiTrack (orange line). There are

additional directional interfering sources moving from 180 to 0 degrees as can be seen in SRP without attention. The SIR was lower than

−4.5 dB. For SRP-MP (SPS), the ADNN was trained with either N = 30 or N = 100 frames.
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Figure 11: AE per time-frame between the estimated and the ground-truth DOA obtained via an OptiTrack. The figure demonstrates the

number of reliable time-frames per method. For each method, the time-frames are ordered from low AE to high AE irrespective of the

output energy in the respective DOA estimate (see Figure 10). Methods with very sparse outputs consequently have a very fast increasing

AE curve. There are no abrupt increases of the AE as the high number of evaluated time-frames leads to a smooth AE curve. The SIR

was smaller than −4.5 dB.

(14)). The normalization removes the energy-diminishing effects of the mask/attention such that a very sparse mask

can still yield a very low loss. Such sparse estimates are acceptable for static or slowly moving sources, however, not

for tracking moving sources or a very short temporal context.

An additional experiment was conducted to study the influence of the length Nof the training context window on

the output. We expect that the outputs are less sparse if SRP-MP (SPS) is trained with shorter context windows

(N = 30 instead of N = 100 time-frames, during training), denoted as SRP-MP (SPS) N = 30. As shown in Figure 10,

the outputs of SRP-MP (SPS) N = 30 are less sparse than of SRP-MP (SPS) at the cost of reduced performance

on test-2S (79 %, 67 %, 8.7 ◦, for psACC, ACC, MAE, respectively). SRP-MP (SPS) yields sharper outputs than

SRP-MP (PSM) in Figure 10. However, SRP-MP (PSM) also yields less sparse outputs than SRP-MP (SPS). The

outputs are temporally less sparse as the ADNN was trained to resemble the PSM that is defined on a time-frequency

bin-basis. Less-sparse outputs are advantageous for tracking. Interestingly, as shown in Table 5, the sharper outputs

of SRP-MP (SPS) improve the ACC only by 2 % compared to SRP-MP (PSM). The DDNN yields very narrow non-

sparse estimates that are very close to the path of the speech source. In contrast to SRP-MP (SPS), the outputs are

not sparse as the ADNN objective in (17) does not exhibit a normalization of the estimates. The non-sparse outputs

make the DDNN more suited for tracking than SRP-MP (SPS).

All methods also generalize to measured data under low SIR/SNR conditions and moving sources. The outputs

of SRP-MP (PSM) are much broader than those of the DDNN. We compare the frame-wise AE (reordered time-

frames) of the respective file in Figure 11 to investigate whether this is a visualization issue only. As expected,
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SRP-MP (SPS) and SRP-MP (SPS) N = 30 exhibit very few frames with a low error as the estimated outputs are

temporally very sparse. SRP-MP (SPS) N = 30 has a lower AE for more time-frames, as expected. The DDNN and

SRP-MP (PSM) perform comparably for approximately 400 frames before the AE of the DDNN begins to increase

rapidly. Consequently, the broad lobes of SRP-MP (PSM) are misleading in terms of frame-wise MAE for a single

SOI. As multi-source localization of sparse sources (like speech) can be broken down to single-source localization,

the broad lobes of SRP-MP (SPS) pose no disadvantage for localization. Figure 10 shows that both the DDNN and

SRP-MP (PSM) are suited for tracking as there are temporally non-sparse estimates that follow the SOI path.

As all methods estimate the DOA on an STFT time-frame basis, an extension to more sophisticated source tracking

can be achieved, for example, by using recurrent neural networks or particle filters that process the frame-wise DOA

estimates of the proposed and baseline methods (see, e.g., [43]). For tracking, temporally non-sparse estimates are

beneficial if a high temporal DOA resolution is required; for this, SRP-MP (SPS) is less suited than SRP-MP (PSM).

Finally, the DDNN and SRP-MP (PSM) both seem to be suited for tracking. As SRP-MP (PSM) has an overall lower

computational complexity than the DDNN and performs comparable in all tests, we conclude that hybrid approaches

represent a low complexity, high flexibility, highly accurate method for signal-aware DOA estimation.

6. Conclusion

We used a deep neural network (DNN) to estimate attention from a single-channel microphone spectrum. The

attention was subsequently used in a fully DNN-based system or a hybrid fashion in signal processing-based methods

for signal-aware direction-of-arrival (DOA) estimation of speech sources. We showed that spectral context is crucial for

DNN-based DOA estimators and that they are biased towards the source classes and the attention distribution seen

during training. In contrast, signal processing-based DOA estimation does not exhibit such a bias. We proposed DOA-

based training objectives for fully data-driven and hybrid signal-aware DOA estimators and showed that both variants

perform comparably. We also showed that the spectrum of a single microphone is sufficient to compute attention,

making the attention computation independent of the array architecture, assuming a signal-processing method is used

for subsequent DOA estimation. This is especially interesting as, in contrast to DNNs, signal-processing methods can

be modified and adapted during runtime without retraining the attention estimator to match different conditions, like

array architectures, inter-microphone distances, number of microphones, etc. We conclude that hybrid systems pose

a low complexity, high flexibility approach for signal-aware DOA estimation with comparable performance to fully

DNN-based signal-aware DOA estimation.
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