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Abstract 

We present a fast video retrieval system with three novel characteristics. First, it exploits the methods 

of machine learning to construct automatically a hierarchy of small subsets of features that are 

progressively more useful for indexing.  These subsets are induced by a new heuristic method called Sort-

Merge feature selection, which exploits a novel combination of Fastmap for dimensionality reduction and 

Mahalanobis distance for likelihood determination. Second, because these induced feature sets form a 

hierarchy with increasing classification accuracy, video segments can be segmented and categorized 

simultaneously in a coarse-fine manner that efficiently and progressively detects and refines their 

temporal boundaries. Third, the feature set hierarchy enables an efficient implementation of query 

systems by the approach of lazy evaluation, in which new queries are used to refine the retrieval index in 

real-time. We analyze the performance of these methods, and demonstrate them in the domain of a 75- 

minute instructional video and a 30-minute baseball video. 
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1. Introduction 

With the growth of applications in multimedia technology, video data has become a fundamental 

resource for modern databases.  The problem of efficient retrieval and manipulation of semantically 

labelled video segments is an important issue [1]. 

Methods focused on efficiency take several forms.  Audio information analysis [2] [3] [4] and 

text extraction and recognition [5] [6] are often used, as are some approaches based on segmentation 

of video shots and key-frame selection [7] [8] [9].  Some specialized applications, particularly sports 

videos [10], use object recognition [11] and object tracking [12] for efficient compression.  Some 

systems combine several methods together [13], and some can work directly on compressed domain 

[14].  However, there appears to be little work that supports efficient on-line video retrieval without 

some prior human specification of the underlying feature sets. 

A second concern is semantic video indexing and retrieval. As Lew et al mentioned in [15], the 

main challenge in image and video retrieval is bridging the semantic gap between the high level query 

from the human and the low-level features that can be easily measured and computed.  This gap 

persists because of a lack of a good understanding of the "meanings" of the video, of the "meaning" 

of a query, and of the way a result can incorporate the user's knowledge, personal preferences, and 

emotional tone. 

This paper addresses these two problems, and presents a method of efficient semantic video 

retrieval, based on automatically learned feature selection. We do not pre-select features, as the 

relation between features and concepts in video data is unclear, even perhaps to the user.  Instead, we 

induce their relationship, and find those subsets of features which most capture the trained semantic 

categories given by the user.  By imposing a natural hierarchical structure on these subsets, we can 

use these learned features to efficiently segment and label the video without loss of accuracy, and to 

adaptably improve response of a query system by efficiently caching dynamic results.  We also show 

that these methods can be applied to either the original video, or its compressed form. 
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The heart of our method is a novel approach to feature selection.  This form of learning has 

received significant attention in the AI literature, and has been applied to moderately large data sets in 

applications like text categorization and genomic microarray analysis.  Learning research is not often 

carried out in video indexing and retrieval--although Lew et al [16] used a feature selection method to 

refine features for stereo image matching. This is because the sheer magnitude of video data has 

limited the choice and application of existing feature selection algorithm, which have been designed 

for smaller databases and which run inordinately long even on those. One emphasis of this paper is 

the low time cost of our heuristic method, which can exploit several properties unique to video data to 

induce appropriate but small feature sets. 

This paper is organized as follows. Some related work in video retrieval and in feature selection 

is introduced in section 2.  Section 3 proposes the novel algorithm, and gives some proofs of some of 

its essential features and of its time complexity.  The data structure output by the feature selection 

supports two additional methods, boundary refinement and lazy query evaluation, which are 

presented in section 4.  Section 5 provides empirical validation.  We close the paper in section 6. 

 

2. Related work 

2.1. Video retrieval 

We are interested in how to retrieve video sequences based on metadata: video segmentations, 

indices, annotations, and summaries, derived primarily from the visual (not audio) steam.  There has 

been a great deal of work in this area, and we cannot review it all here. 

One typical way is to make use of existing image retrieval algorithms, starting from a good 

segmentation of the video into shots and then selecting certain images of the shots as key-frames.  

Among other approaches, Pickering et al in [7] consider the key-frames of each shot as a single image, 

and use the machine learning approach of Boosting Image Retrieval of Tieu and Viola in [8] to 
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retrieve matching video sequences.  One of several semantic-based key-frame approaches is that of 

Schaffalitzky and Zisserman in [9], where they consider video shots to happen in the same 3D real 

world scene by representing their key-frames using invariant descriptors and by pruning out false 

matches using a spatial neighborhood consensus. 

Semantic video retrieval in some special applications such as sports or TV news, can be based on 

object recognition and object tracking. For example, by tracking a basketball and related objects in 

Kim et al [28], useful semantics about a class of shots are extracted. In another specialized domain 

[30], Wei and Sethi use the presence of skin-tone pixels coupled with shape, edge patterns, and face-

specific features to detect faces for image and video retrieval.  

Among more general approaches is that of Naphade et al in [12], who propose a framework for 

video indexing and retrieval using semantic unit "multijects" (i.e., "multiple objects").  Different 

feature sets such as color, texture, edges, shape, and motion are extracted from each frame and pass 

through different classifiers that check the multijects individually and combine the results to get the 

final decision. Similarly, Smith et al in [19] propose a problem of feature fusion when integrating 

features, models, and semantics for TREC video retrieval.  They represent and retain the results from 

different feature sets in GMMs (Gaussian mixture models), instead of combining different feature sets 

to one. However, they no longer can index only once into one uniform feature space because of the 

large dimensionality of their feature space model. 

This paper follows the spirit of the more uniformed approach, where frames are represented by a 

large feature set, but one that is not selected based on any preconceived ideas of the appropriateness 

of a feature. Instead, we solve this problem using a novel feature selection algorithm that learns the 

most appropriate feature subset. 

 

2.2. Feature selection 

2.2.1. Definition of feature selection 
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A precise mathematical statement of the feature selection problem is not widely agreed upon, 

partly because there has been substantial independent work on feature selection in several fields: 

machine learning, pattern recognition, statistics, information theory, and the philosophy of science. 

Each area has formalized the definition from its own viewpoint, and each definition has been colored 

by the intended application. However, there appears to be two major approaches.  

The first approach emphasizes the discovery of any relevant relationship between features and 

concept.  This is referred to as a filter method, and it finds a feature subset independently of the actual 

induction algorithm that will use this subset for classification.  This is formalized by Blum and 

Langley in [20]: 

Definition 1 (Relevance to the target) 

A feature xi is relevant to a target concept c if there exist a pair of examples A and B in the 

instance space such that A and B differ only in their assignment to xi and c(A)≠c(B). 

The second approach explicitly seeks a feature subset that minimizes prediction error.  This is 

referred to as a a wrapper method, and it searches the space of feature subsets, using cross-validation 

to compare the performance of a trained classifier on each tested subset, and directly optimizes the 

induction algorithm that uses the subset for classification.  This is formalized by Caruana and Freitag 

in [21]. 

Definition 2 (Incremental usefulness) 

Given a sample of data S, a learning algorithm L, and a feature set A, feature xi   is incrementally 

useful to L with respect to A if the accuracy of the hypothesis that L produces using the feature set      

{ xi } ∪  A is better than the accuracy achieved using just the feature set A. 

 

2.2.2. Filter methods 

Ordinarily, filter methods use simple statistics computed from the empirical feature distribution to 

select strongly relevant features, and to filter out weakly relevant features before induction occurs; see 

 6



Blum and Langley [20].  Greedy set-cover algorithms are the simplest filter methods that are often 

used for classifiers, particularly binary concept classifiers.  They begin with zero chosen features, and 

assume that every data instance is in a single category. By incrementally adding to the evolving 

feature set that next best feature which can discriminate those data belonging to another category, it 

constructs the final subset of features using this greedy approach. 

A better and more typical filter method is the Focus algorithm proposed by Almuallim and 

Dietterich in [22]. This method begins by looking at each feature in isolation, then turns to pairs of 

features, then triples, and so forth, halting only when it finds a combination that generates pure 

partitions of the training set, using a decision-tree induction.  Similar algorithms are proposed by 

Cardie in [23] using KNN induction, and Kubat et al in [24] using native Bayesian induction. Jebara 

and Jaakkola in [25] follow a similar approach, but employ better metrics based on information 

theory, using SVM induction. 

 

2.2.3. Wrapper methods 

Wrapper methods assess the quality of feature subsets according to their prediction error. The 

typical wrapper algorithm searches in the feature subset space.  It evaluates alternative subsets by 

running an induction algorithm on training data, and uses the estimated accuracy of the resulting 

classifier as its metric to find an optimal subset of features. 

As Xing et al. state in [26], wrapper methods attempt to optimize directly the predictor 

performance so that they can perform better than filter algorithms, but they require more computation 

time. This cost has led some researchers to invent ingenious techniques for speeding the evaluation 

process.  For example, Langley and Sage's OBLIVION algorithm [27] carries out a backward greedy 

search decision-tree induction; nevertheless the cost is still substantial. 

Alternatively, Singh and Provan use information-theoretic metrics in [28] based on the forward 

greedy algorithm in a Bayesian network they proposed in [29]. Likewise, Koller and Sahami in [30] 

employ a cross-entropy measure, designed to find Markov blankets of features using a backward 
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greedy algorithm; this algorithm has been successfully applied to the classification of Genomic 

Microarray data by Xing et al in [26].  The approach we propose is also a wrapper method. 

 

3. Sort-Merge feature selection algorithm 

Feature selection methods are typically designed and evaluated with respect to the accuracy and 

cost of their three components: their search algorithm, their statistical relationship method (in the case 

of filter methods) or their induction algorithm (in the case of wrapper methods), and their evaluation 

metric (which is simply prediction error in the case of wrapper methods).  The dominating cost of any 

method, however, is that of the search algorithm, since feature selection is fundamentally a question 

of choosing one specific subset of features from the power set of features. This is an exponentially 

hard problem, and intractable if the set of features is very large as it is with image data.  A more 

realistic design is to look for an approximate search algorithm that achieves high performance; this is 

necessarily a heuristic approach. 

Although many efficient feature selection techniques have been proposed, applying them to 

applications adequately is another problem. It is related with the size of the feature space, the data 

type and data range of each feature, the accuracy of certain classifier and complexity cost. Lew et al 

[16] used a filter model of feature selection to refine the feature sets in stereo matching and found 

good performance in image matching. They selected one of several traditional feature selection search 

methods to reduce the original feature space, which consisted of the gray levels of every pixel in the 

image, in order to more tractably evaluate their optimality criterion, defined as the average distance 

between elements of all classes. This is an interesting beginning, but the nature of video data, such as 

massive data, high dimensionality, and complex hypotheses, together with the unrealistic amounts of 

computer time involved even in these more limited domains (on the order of weeks), limits the choice 

and application of existing feature selection algorithms for video retrieval. This paper proposes a 
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novel Sort-Merge feature selection method to select features for video retrieval with low time and 

space cost. 

 

3.1. Sort-Merge search algorithm for feature selection 

There are 2N possible subsets for a feature space with N features. Exhaustive testing of each 

subset is impossible even when N is moderate.  Necessarily heuristic in approach, current feature 

selection algorithms often work well when there are a straightforward logical relationships (in the 

sense of conjunctions or disjunctions) between features and categories.  Categorization of entire video 

frames, however, does not appear to be either straightforward or logical, and is further complicated by 

the redundancy of neighboring pixels. 

So far, three general kinds of heuristic search algorithms have been used: forward selection, 

backward elimination, and genetic algorithms. Forward selection starts with the empty set and 

successively adds individual features, usually following a variant of a greedy algorithm, terminating 

when no improvement is possible.  However, it can not remove any features, and therefore ends up 

making what amounts to local optimizations to the growing set.  Backward elimination, which does 

the reverse, starts with the full set of features and heuristically subtracts individual features.  It suffers 

from a similar problem of local optimization, as the removal of a feature is irrevocable. A genetic 

algorithm, which permits both the addition and deletion of features to a surviving population of 

evolving subsets of limited cardinality, is more likely to seek a global optimum.  But it is 

computationally costly, and requires a more elaborate definition of algorithm convergence. 

Our Sort-Merge feature selection algorithm combines the features of forward selection, backward 

elimination, and genetic algorithms. To avoid irrevocable adding or subtracting, it always operates on 

some representation of the original feature space, so that at each step every feature has an opportunity 

to impact the selection.  To avoid heuristic randomness, at each step a greedy algorithm is used to 
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govern subset formation. Further, the recursive nature of our method enables the straightforward 

creation of a hierarchical family of feature subsets with little additional work.  

The Sort-Merge algorithm can be divided into two parts: the creation of a tree of feature subsets, 

and the manipulation of the tree to create a feature subset of desired cardinality or accuracy. Each part 

uses a heuristic greedy method. 

Table 1 shows the Sort-Merge feature selection basic algorithm.  The method is straightforward.  

Initially, there are N singleton feature subsets.  Their performance is evaluated on training data, and 

they are sorted in order of performance.  Then, N/2 subsets of cardinality 2 are formed by merging, 

pair-wise and in order, the sorted singleton feature sets.  After another round of training and sorting, a 

third level of N/4 subsets of cardinality 4 are formed, and the process continues until it attains a level 

or condition prespecified by the user.  Figure 1 illustrates the algorithm with an initial set of features 

with cardinality N = 256. 

 
Initialize level = 0 

Create N singleton feature subsets. 
While level <  log2 N 

Induce on every feature subset. 
Sort subsets based on performance. 
Combine, pairwise, feature subsets. 
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Table 1.  Sort-Merge feature selection basic algorithm
e related algorithm to select exactly r features from the hierarchy of feature 

set is desired, and Figure 2 illustrates this process when r = 20.  Since r is 

 leftmost and therefore most accurate sub-tree with 25 nodes is extracted from 

es a sub tree with 12 nodes in excess of the desired amount, thus, the value of 

gorithm then, as part of its recursive greedy approach, looks for further subtrees 

size 8 to next remove; the branch that impacts performance the least is chosen 

e is now 4 nodes in excess, and the algorithm repeats once again (and then 
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terminates) by finding which subtree of this branch-size has the least impact on this wrapper-based 

classification performance. 
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Select the leftmost branch of size 2  log2r . 
Initialize cutout = 2 log2 r  - r. 
While cutout >0 
 Let branch-size = 2 log2 cutout. 

For all remaining branches of this size, evaluate the induction        
 result of removing those branches individually. 
Remove the branch with best result.  
Let cutout = cutout – branch-size. 

   
able 2. Algorithm to select exactly r features from the tree of feature subsets.

 

 

 
B1          B2   B3    B4                            B128 

  A1   A2    A3   A4       A5   A6   A7   A8                             A255  A256 

      C1             C2                                 C64 

 Sort-Merge feature selection algorithm. Leaves correspond to singleton feature subsets.  
are formed by the pair-wise merge of neighboring feature subsets that have been sorted 
heir classification accuracy. 

  I1

it should be apparent that the Sort-Merge method should select relevant features 

 due to the nature of the sort, it is not clear that it also gives priority to features that are 

useful (Definition 2) due to the nature of the merge.  Although we have no rigorous 

 is so, we illustrate what we have found to be its reliable occurance in Figure 3. Some 
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examples of how Sort-Merge feature selection addresses the problem of redundant features are 

discussed in section 5.1.2.  

 

 

 

 

 

 

       (a) Select the leftmost sub-tree                 (b) Cut the most errorful thick branch from the sub-tree 

 

 

 

 

 

 

 

 

 
Figure2.  Selecting a feature subset of a pre-specified size from the full Sort-Merge feature selection tree

(c) Cut the most errorful thin branch from the sub-tree  

Figure 3 is a more detailed view of the lowest two levels of the tree in Figure 1. In the original feature 

space, there are a total of N=256 features.  We first divide them into 256 singleton feature subsets.  Next 

we induce using each feature subset in the given dataset, and evaluate the performance of the feature 

subsets by their accuracy.  We sort feature subsets based on their prediction error; feature subset A1 has 

the lowest prediction error. Then we combine two neighboring singleton sets in rank order into new 

feature subsets and induce again, and again evaluate the performance of the 128 feature pairs and sort 
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them based on their prediction error. As Figure 3 illustrates, feature subsets A1 and A2, which are ranked 

first and second after the first sort, may be ranked (as a pair) third after the second sort; similarly feature 

subsets A5 and A6 which are ranked fifth and sixth after the first sort, are ranked second after the second 

sort.  Since the merge step always combines neighbors with very similar performance, any decrease in the 

rank order of a new pairing cannot be ascribed to one or other of the individual neighbors being "bad". 

What makes a pair (A1 and A2) worse is that their combined performance did not increase as much as 

those of other pairs (A5 and A6).  That is, their two elements tended to be redundant in their classification 

failures whereas other pairs had complementary strengths.   
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Figure 3. A more detailed view of how the Sort-Merge algorithm addresses the problem of
redundant features. Even though features of a level are combined only by performance, redundant
features (A1, A2) don’t increase performance as much as non-redundant features (A5, A6) after merge.
 

3.2. Induction algorithm for feature selection 

The performance of a wrapper feature selection algorithm not only depends on the search method, 

but also on the induction algorithm. Some feature selection methods have high computational cost 

only because the induction algorithm is time-consuming and does not scale well to large feature 

spaces.  For our induction method during the course of the learning, we use the novel, low-cost, and 

scalable combination of Fastmap for dimensionality reduction, with Mahalanobis maximum 
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likelihood for classification.  We refer readers to the literature for a detailed explanation of these two 

component methods, but we summarize their significance here. 

In brief, as defined in statistical texts Duda et al. [31], or in the documentation of Matlab, the 

Mahalanobis distance computes the likelihood that a point belongs to a distribution that is modeled as 

a multidimensional Gaussian with arbitrary covariance.  During training, each image frame in a 

training set for a video category is first mapped to a point in the space of reduced dimension c. Then 

the distribution of these mapped points is approximated by a c-dimensional Gaussian with a non-

diagonal covariance matrix.  Multiple categories and training sets are represented each with their own 

Gaussian distribution. The classification of a test image frame is obtained by mapping it, too, into the 

reduced c-dimensional space, and then calculating the most likely distribution to which it belongs. 

That is, the classification label assigned to it is the label of the training set center to which it has the 

minimum Mahalanobis distance. 

The Mahalanobis metric has good performance in classifying data with multiple dimensions, even 

if each dimension has a different range of feature values.  However, it is necessary that the cardinality 

of the training set be much larger than the number of dimensions; the usual lower bound given by  

Devijver and Kittler in [34] for this cardinality is N(N-1)/2, where N is the number of dimensions. 

Principal Component Analysis (PCA) is the usual method of choice for dimensionality reduction, 

but carries high computational complexity. Instead, the Fastmap method proposed in [32] 

approximates PCA, with only linear cost in the number of reduced dimensions sought, c, and in the 

number of features, N.  The method heuristically replaces the computation of the PCA eigenvector of 

greatest eigenvalue, which represents the direction in the full feature space that has maximum 

variation, with a (linear) search for the two data elements that are maximally separated in the space.  

The vector between these two elements is taken as a substitute for the eigenvector of greatest 

eigenvalue, and the full space is then projected onto the subspace orthogonal to this substitute vector 

for the first eigen dimension.  The process then repeats for a desired and usually small number of 

times.  By the use of clever bookkeeping techniques, each additional new dimension and projection 
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takes time approximately linear in the number of features. This linearity of the cost of Fastmap is a 

critical advantage, and permits its use for high-dimensional feature sets: the method scales well. 

In summary, then, our full Sort-Merge method consists of the repeated application of the 

following processing steps at each level of the tree.  For each feature subset at a level, the 

dimensionality of its feature space (which is always a power of 2) is reduced by using the Fastmap 

algorithm to a small number of dimensions (which is a parameter set by the user; we report on 

performance of this dimension c, for c = 1 to 10).  Then, within this reduced space, induction occurs 

by modeling the classifications by their likelihoods given by the Mahalanobis distance to 

classification centers.  The scores of each subset's test classification accuracy are then rank ordered, 

and new subsets of features are formed by merging pairwise those old subsets that are adjacent in the 

rank ordering. 

It is appropriate to comment on why, given its virtues, we do not apply Fastmap to the entire 

feature space directly, and simply use the first c dimensions of the resulting reduced space as the set 

of features.  The answer is that each of these c eigen-like vectors is a linear sum of the full feature 

space, and the classification of any video frame would require the accessing and transformation of 

every original feature, at substantial cost.  By first determining a good subset of the features, the cost 

of any subsequent classification, whether by Fastmap-Mahalanobis or otherwise, is greated reduced. 

 

3.3. Analysis of Sort-Merge feature selection algorithm 

Generally speaking, the accuracy of a classifier based on the Mahalanobis distance increases as 

the dimensionality of the feature space increases.  In our method, this means that accuracy tends to 

increase as the feature subsets are merged to form the hierarchy.  We now analyze the time and space 

cost of doing so, which we show is linear in the number of features N.  Using Fastmap-Mahalanobis, 

the induction step is also linear in the size of the training data, m. Therefore, the method is well-suited 

to the high data volumes necessary in video retrieval applications.  
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We use the following definitions: 

N: Number of dimensions of the original feature space 

r: Number of dimensions of the reduced feature space 

m: Cardinality of the training data set 

c: Number of dimensions extracted using the Fastmap algorithm  

l: level number of Sort-Merge feature selection tree  

Tm: Time of induction using m training data in the Mahalanobis classifier 

Tbasic: Time of the basic Sort-Merge feature selection algorithm 

Tselect: Time of algorithm to select r features from the tree 

We first show that Tbasic = O(NTm) = O(Nmc2).  The cost of each level is proportional to: the 

number of subsets at that level, the cost of reducing the dimensionality of each subset, the cost of 

classifying the training data, the cost of evaluating the classifier on test data, and the cost of the final 

sort.  (The merge cost is trivially linear in the number of subsets.)  The number of subsets is N/(2l).  

The cost of the Fastmap per subset is O(mc), based on the proof given in [32], and the cost of the 

Mahalanobis classification is O(mc2), based on the proof given in [31].  Thus, the cost of the 

induction is a fixed Tm = O(mc2).  The final sort is again dependent on the number of subsets at that 

level, and is O((N/2l)log(N/2l)). The cost at a given level is therefore O((N/2l)mc2) + O((N/2l)log 

(N/2l)).  Given that the size of the training data generally must dominate the size of the feature set, it 

certainly dominates its logarithm, and therefore the cost at a level is O((N/2l)mc2).  Summing these 

costs up the levels of the tree yields a total cost of O(Nmc2).  It is not hard to show in a similar 

manner that the space cost is also linear in N. 

Similarly, one can show that the additional cost of Tselect = O(rTm) = O(rmc2); this is dominated by 

Tbasic. The argument is based again on the sum of a geometrically decreasing series of costs, with each 

cost proportional to the effects of pruning ever smaller numbers of subtrees. 
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4. Fast off-line video indexing and on-line video retrieval system 

The linear time and space costs of our novel feature selection approach allows us the practical 

implementation of three related retrieval applications, two of which are novel in their own right. 

Other retrieval tasks would now also appear to be feasible, and it is likely that the feature selection 

method can also be applied to other data from video sequences, such as audio data or higher level 

features such as shape descriptions.  Here we focus on three purely visual tasks of: fast video frame 

classification and retrieval, video segment boundary refinement, and lazy evaluation of unanticipated 

on-line queries.  Our inputs are the compressed frames of MPEG-1 instructional videos, generally 

without prior temporal segmentation into shots. 

 

4.1. Fast video frame classification and retrieval 

Although the method is transparent to these particular video preprocessing transformations, in our 

examples we illustrate its application after down-sampling a 75 minute long MPEG-1 video both 

temporally and spatially.  We use only every other I frame (that is, one I frame per second), and we 

spatially subsample by only using the DC terms of each macroblock of the I frame (consisting of six 

terms: four luminance DC terms, one from each block, and two chrominance DC terms).  We 

therefore do not have to decompress the video.  We did not further spectrally subsample, but the 

method again would be transparent to this. This gives us, for each second of video, 300 macroblocks 

(15 by 20) of 6 bytes (4 plus 2) of data: 1800 initial features.  This is a much larger feature set than 

virtually all examples in the machine learning literature.  For convenience of accessing and decoding, 

we generally consider the 6 DC terms from the same macro-block to be an undecomposable vector, so 

our initial application most often consists more accurately of 300 features per second of video. Each 

six-dimensional feature is first placed into its own subset to initialize the Sort-Merge process. So, in 

our application, we start with 300 such feature subsets, and each feature subset has cardinality 1. 
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Next, using Fastmap, the dimensionality of each feature subset is reduced to a pre-specified small 

number, c, of dimensions.  (For this stage, we do in fact look inside the vectors and use each 

component as a dimension.)  In our applications, we ran experiments in which c varied from 1 to 10. 

The value of c is not fixed and is related with the original size of feature space, which will be 

discussed in the experiment section. 

Then, for each feature subset at this level, using the reduced dimensionality representation, the 

training frames of the video train the induction algorithm to classify the test frames of the video.  In 

our application, this means that each training set was represented by a c-dimensional Gaussian 

according to the Mahalanobis classifier, although other learning methods can be trained on the 

reduced representation.  In our application, in the context of instructional video, we had four class 

labels: the instructor is writing an overhead slide, the instructor is announcing, the instructor is 

displaying a computer demo, and the class is discussing. 

Next, the classification accuracy of each feature subset is measured. If any subset achieves the 

user's pre-specified desired accuracy, or if the cardinality of each subset achieves the user's pre-

specified desired cardinality, the process stops, and that subset is the desired feature subset.  

Otherwise, the feature subsets are sorted by accuracy, and the next level of the feature subset 

hierarchy is formed by merging these subsets pair-wise and in order (see Figure 1). 

Lastly, the process repeats again, starting at the Fastmap step.  It is clear that at most O(log N) 

iterations of this Sort-Merge algorithm are necessary.  The resulting feature subset is then used for 

classification in the usual way: the given features are taken from any other video frame, reduced to c 

dimensions, and classified by their maximum likelihood in the Mahalanobis sense. 

 

4.2. Video segments boundary refinement 

We now show how the feature subset hierarchy can be exploited to efficiently refine the 

boundaries of contiguous video segments with differing classification labels.  The hierarchy enables 
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less work to be done on the segment interiors, and permits a multi-level refinement strategy using 

more accurate but more costly feature subsets at segment edges.  

To illustrate, we select the best 2-feature subset from the 300 features using Sort-Merge feature 

selection algorithm, and classify each frame of the video into the four different categories mentioned 

above.  This is shown as the uppermost line in figure 4 as C2, C1, C3, etc.  The classification tends to 

have more errors at segment transitions, whether they are abrupt (cuts) or gradual (fades and dissolves) 

(see Koprinska and Carrato in [33]).  So we devise a multi-level (coarse-to-fine) strategy to more 

carefully investigate the video wherever a neighborhood of frames shows a lack of consistency of 

labeling.  Note that this will occasionally occur even within the interior of a well-defined segment.  
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Figure 4.  Video segment boundary refinement by multi-level feature selec
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where Prmahal(Cj) is the maximum Mahalanobis likelihood among all categories using this feature 

subset.  This threshold ensures that classification is correct and unambiguous. 

Figure 4 illustrates three typical cases.  Most of the refinements result in the first case: a 

clarification of the location of the boundary developed by the intial classification of frames.  However, 

in a second case, shown at the transition between C1 and C3, it is possible that an intervening segment 

of a completely different label is refined such as C2.  In the third case, refinement is forced to proceed 

to full use of all available features in order to resolve the labeling of an individual frame sufficiently 

confidently: this frame is often the exact center of a dissolve between two classes. 

 

4.3. Lazy evaluation of unanticipated on-line queries 

This application allows the dynamic extension of video retrieval indices.  An off-line part of the 

application classifies video segments into categories that users are often interested in, and constructs a 

main index with text tags used for retrieval.  As shown in figure 5, a user then inputs a textual query 

which is first matched with the main textual index, then with any dynamically created sub-index or 

aide-index, which are described below.  If all miss, the lazy evaluation method has not found anything 

in its cache, and on-line computation is necessary. 

In the on-line evaluation and retrieval part, the user provides a short training video clip as a 

positive example of the frames of his textual query, together with a negative example clip.  Using the 

multi-level feature selection algorithm, a feature subset is progressively sought that discriminates the 

two.  Then, other clips are retrived from the video which have been labeled as being in the same 

category as the training clip, and the user is asked for iterative feedback.  If necessary, the feature 

subset is progressively increased further until discrimination is satisfactory to the user.  The resultant 

text query and its successful feature subset are then stored appropriately in the following way.  If the 

clips match an existing labeled set of clips in the index, then the new label is stored as a synonym in 

the main index.  If they are instead a proper subset of some main index clips, then both the text and 
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the feature subset are stored in the sub-index. If the concept sought is neither a synonym nor a 

specialization, its text and feature subset are stored in a simple aide-index list (or a more elaborate 

data structure).  The speed of the multi-level feature selection algorithms enable such lazy evaluations, 

and the indexing system becomes self-adaptive.  
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5. Experiments 

Figure 5. Lazy evaluation of unanticipated on-line queries.  

5.1. Fast video frame classification and retrieval 
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The first experiment evaluates the effectiveness of the Sort-Merge feature selection algorithm on 

standard video frame classification and retrieval.   

 

5.1.1. The basic classification task 

Our goal is to classify one extended instructional video mentioned above, of 75 minutes duration, 

which has about 134,010 frames in MPEG-1 format, each with 240 by 320 pixels into four categories 

as illustrated in figure 6: handwriting, announcement, demo, and discussion.  For training data, we 

used 400 I-frames distributed over the video and across these four classes. 

             
 Handwriting             Announcement               Demo                     Discussion  
    
     Figure 6. Main-index of video 

 

 

As mentioned above, the time cost of feature selection algorithms is decided by the cost of the 

search algorithm and the induction algorithm together. The primary contribution of the Sort-Merge 

feature selection algorithm is the low time complexity of these two components. Existing feature 

selection methods, which typically have been reported to run for several days on features sets of 

cardinality of at least one decimal order of magnitude smaller, as Koller and Sahami note [30], are 

intractable on this dataset. Therefore, we first compared the indexing accuracy of our new method 

against two imperfect but feasible benchmarks: random feature selection, and hand feature selection.  

These application experiments all used the same data and same induction methods; the only 

difference is how the feature subsets are chosen. Secondly, we fixed the induction algorithm to 

highlight the efficiency of the search algorithm in Sort-Merge feature selection, and then compared its 

performance and time cost with reasonable implementations of the forward selection, backward 

elimination, and genetic algorithm approaches. To simplify our presentation, only the comparison 
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experiments that selected 30 features from the 300 possible feature are displayed here, although we 

do display the effect of varying the value of c. 

 
Figure 7. Classification results for random feature selection and hand feature selection.
Error bar is shown for one standard derivation, but all points have positive error rates.  

For random feature selection, we ran 100 experiments in which 30 features were selected 

randomly.  Points in Figure 7 show the error rate of frame categorization under different Fastmap 

reduced dimensions of c, from 1 to 10, where “error rate” is defined as the pure ratio (not percentage) 

of misclassified frames to total frames.  The error bars are drawn at the mean error plus one standard 

deviation.  The dashed-line shows the base of error rate of zero.  Superimposed on the graph are 

asterisks representing the error rate of hand selection, typically about 0.002 (9 misclassifications out 

of 4467). For precision, Table 3 lists the exact mean, maximum, and minimum of the classification 

error rate for these different values of c.  Figure 8 gives more detail still, as it depicts the error rate of 

scene categorization under one of these cases, the case of c=2, with each run of the random 

experiments explicitly illustrated.  As expected, the rate of error of random selection is highly 

variable, with the standard deviation being larger than the mean. 
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Figure 8. Error rates for classification results with Fastmap dimension c=2. 

 

 C 1 2 3 4 5 6 7 8 9 10 

Mean 0.0531 0.0125 0.0153 0.0182 0.0255 0.0266 0.0294 0.0293 0.0335 0.0328

Max 0.0531 0.1101 0.2677 0.3141 0.7347 0.3971 0.7405 0.6013 0.6367 0.6409

Min 0.0531 0.0011 0.0009 0.0011 0.0011 0.0011 0.0011 0.0009 0.0016 0.0016

 

 
Table 3. Error-rate of classification using 30 randomly selected macroblocks. 

For hand feature selection, we show as black boxes in Figure 9 those 30 features (i.e., macro-

blocks) selected by hand, based solely on the experimenter’s intuition and with some effort taken to 

provide pixels sensitive to the positions of instructor, desk, paper, and frame border. The error rate of 

the classification that results is also shown in figure 7 as asterisks and in figure 8 as a solid line, 

which is obviously better than the random selection result. 
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 Handwriting             Announcement               Demo                     Discussion  
    
   Figure 9. Hand-selected macro-blocks.  

 

 

For the Sort-Merge feature selection, we show in Figure 10 the 30 features (i.e., macro-blocks) 

selected by the Sort-Merge method; surprisingly, the method favors border macro-blocks, with 20 of 

the 30 chosen on, or just one macro-block away from, the image border.  This is possibly because 

these pixels tend to be the most stable over time and little human movement appears to affect them.  
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Figure 10. Macro-blocks selected by Sort-Merge method. 
re 11 is a grand summary comparing these three feature selections (random, hand, Sort-

The classification error rate of the Sort-Merge method is not only less than that of hand 

, but also appears to be very stable as the Fastmap dimension varies.  As discussed later, this 

ed to be a critical consideration for retrieval system designers. 

e 4 summarizes the results of our second comparison, that of the accuracy and efficiency of 

erent search algorithms for feature selection. Although we used the same low time cost 

 algorithm, we found that the forward selection, the backward elimination, and the genetic 

 approaches have at least a decimal order of magnitude higher time cost than Sort-Merge 

election, solely attributable to the different search strategies.  Backward elimination, in fact, 

rminate. 
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Figure 11. Off-line video indexing result of different feature selection methods 
 

Search algorithm Forward Selection Backward Elim. Genetic Alg. Sort-Merge 

Error rate 0.007 --------- 0.007 0.002 

Running time 691.32 minutes Several weeks(?) 306.95mins 31.01mins 

 

 
Table 4. Classification performance of different search algorithms  

5.1.2. Further analysis and discussion 

In this section, we further demonstrate that the Sort-Merge method tends to avoid selecting 

redundant features that add little further discriminating power to a developing feature subset.   

In Figure 12(a) we have encoded the accuracy score of the 300 individual macro-blocks, where 

darker blocks are those with lower error rate, that is, dark means "good".  This also simultaneously 

illustrates the results of the first step of the algorithm: the darker blocks represent those more accurate 

singleton feature subsets that would appear in the leftmost leaves of the feature selection tree. Figure 

12(b) encodes the results of the next step of the algorithm, after singleton sets have been merged into 

150 feature pairs and their performance evaluated.  Again, a darker block represents a macro-block 
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that is a member of a highly performing pair that would appear in the leftmost part of the feature 

selection tree at exactly one level above the leaves.   

                          

 

 

(a)            (b)        (c) 
 
Figure 12.  Visualization of the accuracy of features: (a) singleton sets, (b) pairs, (c) difference.

Figure 12(c) displays the difference of  (a) and (b). That is, it shows the change in rank order of 

performance, where again dark means "good"; dark blocks are those features whose performance as a 

member of pair increased in rank order, compared with their placement in the rank order of singleton 

performance. Careful comparison of Figure 12(c) against Figure 8 shows that the right central area of 

the frame (roughly, the area of the instructor's body and outstretched arm in the "announcement" 

example)  is encoded in Figure 12(c) with lighter colors, indicating redundancy, and is missing any 

selected macro-blocks in Figure 8, indicating relatively high error rate. In a second example, we 

illustrate this more exactly in Figures 13 and 14, by tracing the performance of an evolving feature 

subset.  Figure 13 shows a 2-feature subset, consisting of macro-block 16 (in the top row at right, as 

each row has 20 blocks) and macro-block 44 (in the third row at left).  They have become a 2-feature 

subset because as singleton features they were ranked by performance in neighboring positions 34 

and 33, respectively, out of 300 singletons.  However, their performance together as a pair improved, 

and was ranked in position 5 out of 150 2-feature subsets. 

 It is not hard to see why: the pair is spatially separated, and therefore less likely to detect 

redundant information.  For example, in the discussion example in Figure 13, macro-block 16 always 

views the bright classroom wall even when the camera pans, whereas macro-block 44 intercepts the 

colored clothing of the students. Similarly, in the demo example in Figure 13, macro-block 16 always 

views the black border of the computer screen, whereas macro-block 44 views varying content over 
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time. (Both blocks, however, see essentially the same information in the handwritting and 

announcement examples.)   

           
Figure 13. The 2-feature subset consisting of macro-block 16 (top row) and macro-block 44 
(third row); it performs well.  

 

           
Figure 14.  The 4-feature subset consisting of the 2-feature subset in Figure 12, together
with its successor in rank order, consisting of macro-blocks 22 and 59; it performs poorly. 

 

 

 Nevertheless, at the next level of the Sort-Merge, as shown in Figure 14, this fifth-best pair 

consisting of blocks 16 and 44, is merged with the neighboring sixth-best pair consisting of blocks 22 

(in the second row at extreme left) and 59 (in the third row at extreme right), to form a feature subset 

of size 4.  The performance suffers dramatically, however, and is ranked only 53 of 75 four-element 

subsets. Again, a glance at their spatial distribution shows why. The pairs cover very similar areas of 

the frame; they are redundant, rather than complementary.   

It is necessary to point out that Sort-Merge feature selection is necessarily heuristic, and is more 

likely to be successful in precisely those domains for which it was designed: those with very many 

features.  Like all greedy methods, it can and does occasionally suffer from the inability to more 

intelligently look ahead in its merging choices, and will occasionally fail to pick complementary 

feature subsets to merge.  For example, if the best two singleton feature subsets were spatially 

redundant but not perfect in their classification, and the third best singleton feature was spatially 

complementary to the first two and again not perfect, the method as currently developed would 
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greedily merge the first two singletons, even though a merge of either of those two with the third is 

more likely to increase performance.  Once merged, this pair can never be undone, potentially 

“wasting” one or other of its component features.   

This problem becomes more acute as the number of features becomes smaller and there is less 

likelihood that (many) other merges will happen to be complementary.  But if the number of features 

becomes very small, more traditional methods then become more tractable and more appropriate.  

Likewise, as the training set becomes smaller, performance scores become more coarsely quantized, 

and more feature subsets appear to be redundant.  However, under this circumstance, other feature 

selection algorithms suffer similar degradations.  We currently are exploring these issues, by 

incorporating additional inexpensive merge heuristics that are sensitive to where in the training set a 

feature’s error occurs, and to the spatial relationships among the merged feature subsets’ macroblocks. 

 

5.2. Fast video retrieval using multi-level feature selection 

The second experiment uses multi-level feature selection to demonstrate its improvement of the 

efficiency of video segment boundary detection. 

 

5.2.1. The basic refinement task 

Table 5 summarizes the results of the application of the method detailed in section 4.2 to the 

entire instructional video.  The method begins by seleting the best 2-feature subset (R1 = 2) for 

classification.  Using it to classify all the frames of the video (fraction of video examined = 1), there 

remain 27 video segments that contain frames that did not attain the unambiguous level of likelihood 

determined by the value of Si.  These frame numbers are listed in the first column, where R1 = 2; the 

value of c is also given for reference, and is discussed below. 
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Clip R1=2, c=9 R2=4, c=7 R3=8, c=4 R4=16, c=4 R5=32, c=3
1 109 109 109 109 109 
2 212 212 212 212 212 
3 240 237-243 234-240 240 240 
4 251 251 251 251 251 
5 1389-1410 1410 1408-1411 1410 1407-1410
6 1532-1533 1532-1536 X X X 
7 2566-2567 2563-2567 X X X 
8 2571-2572 2571-2572 X X X 
9 2577-2578 2577-2578 X X X 
10 2630-2632 2630-2632 2629-2632 2629-2632 X 
11 2763-2764 2762-2764 2762-2763 2763-2764 X 
12 2880-2887 2880-2890 X X X 
13 2895-2904 2892-2905 X X X 
14 2942-2944 2942-2944 X X X 
15 3103-3116 3103-3119 X X X 
16 3138-3141 3138-3144 X X X 
17 3165-3166 3163-3169 3164-3169 X X 
18 3174-3175 3171-3178 3170-3180 X X 
19 3184-3190 3181-3190 3181-3186 X X 
20 3249-3250 3249-3250 X X X 
21 3271-3275 3268-3275 X X X 
22 3287-3289 3287-3289 X X X 
23 3304-3305 3301-3308 X X X 
24 3366-3369 3364-3372 X X X 
25 3380-3389 3377-3392 X X X 
26 3401-3402 3398-3405 X X X 
27 3408-3410 3406-3410 X X X 

Fraction of video 
examined 1 0.631 0.714 0.231 0.119 

 

 

 
Table 5. Classification of video clips in a coarse-fine manner using multi-level feature selection
algorithm. At iteration i, Ri = size of feature subset, c = Fastmap dimension. Frames with
uncertain classifications are indicated in the column of the level that failed to resolve them. 
 

We now proceed through four additional rounds of refinement.  We keep the neighborhood of 

examination constant at Li = 6, meaning that the 3 frames before and after any ambiguous frame are 

also re-examined and reclassified with the more costly but more accurate classifiers that use the larger 

feature subsets.  For example, since frame 109 did not attain the required level of likelihood, we will 

examine frames 106 to 112 using the classifier with four features (R2 = 4); likewise, since frames 

2880 to 2887 were all determined to be ambiguous, we will examine frames 2877 to 2890 with the 

same classifier (R2 = 4).   
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The table shows that even though the neighborhood adds 6 frames for each suspect frame or 

frame range, the first round of refinement at R2 = 4 has re-examined only 7% of the video.  The 

column labeled R2 = 4 now lists the frame numbers that again failed to meet the likelihood threshold; 

this is a more refined threshold determined from the properties of the more refined 4-feature classifier.  

As a comparision of this column with its predecessor indicates, there are several different possible 

outcomes to this refinement.  Some frame ranges are partially resolved, as in clip 5, where the range 

of ambiguous frames is reduced from 22 to only 1.  Some frames remain ambiguous, as in clip 1.  But 

sometimes the entire expanded neighborhood fails to meet the more stringent likelihood test, as in 

clip 3; this forces upward the fraction of the video that must be examined in the next round, as shown 

at the bottom of the R3 = 8 column.  The fourth outcome, the one most desired, appears at the next 

level of refinement at R3 = 8, where all frames in many clips are classified with the required level of 

certainty.   

In this experiment, we terminate the process at R5 = 32, where we attain a classification error rate 

of 0.002.  We stop here for comparison reasons, as we already know that this error rate is equivalent 

to the error rate attained by applying the more expensive 30-feature Sort-Merge classifier of Section 

5.1 above to the full video.  However, the accumulated work of this boundary refinement approach 

has been much less, as the bulk of the processing has been done with simpler classifiers; on average, 

only 3.6 features are used per frame. 

 

5.2.2. Further analysis and discussion 

Figure 15 shows three frames that remain (properly) ambiguous even after refinement ends using 

a 32-feature classifier.  Table 6 shows their Mahalanobis likelihood for each category.  These three 

frames are the exact midpoints of three dissolves, and their Mahalanobis likelihoods are properly 

much lower than those of more usual frames. 
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Data 240   Data 251  Data 1410 
 

        Figure 15. Dissolves in uncertain segmentation areas, using 32 macro-blocks

Data number (every 
other I-frame number) 

Handwriting 
 

Announcement
 

Demo 
 

Discussion 
 

240 0.0000 0.0000 0.0000 0.0444 
251 0.0000 0.0152 0.0000 0.0000 
1410 0.6013 0.0000 0.0000 0.0227 

 

 
Table 6. Mahalanobis likelihood (in units of 10-6) of dissolves belonging to the four classes.

Revisiting Table 5, it is clear that the selection of the Fastmap dimension c decreases with 

increasing refinement level.  Partly this is due to the very small size of the initial feature subsets, R1 = 

2 and 4, representing features spaces with 12 and 24 components, respectively (as each feature 

records a macroblock's vector of 4 intensity and 2 chrominance DC terms).  For feature subsets this 

small, Fastmap does show increased performance with increasing c.  However, for feature subsets of 

more moderate size, the choice c becomes less significant, as one of the notable advantanges of the 

Sort-Merge feature selection algorithm is its empirically observed performance stability over a range 

of values of c.  Nevertheless, the boundary refinement method is still cost-effective compared to a full 

application of a more elaborate classifier, even if the boundary refinement begins with a 2-feature 

subset at c = 9, and the full classifier uses a 30-feature subset at c = 2, since the cost of a single 

classification is O(Nc+c2), that is, it is dominated by N. 

 

5.3. Lazy evaluation of unanticipated on-line queries 

The third experiment demonstrates the construction of a feature subset using the Sort-Merge 

feature selection algorithm, for a category that has not been previously determined and computed off-

line.  We use two very different sources of video data. 
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5.3.1. On-line video retrieval of instructional video 

Our first task is to discriminate between two subcategorizes of the handwriting category of the 

instructional video.  The experiment is based on the intuition that handwriting frames are probably of 

more use to the student if they are accompanied by the instructor explaining what has just been 

written.  These frames of "emphasis" are characterized by the lack of hand or pen regions obscuring 

the hand-drawn words and diagrams; such frames are essentially pre-formatted "clean" slides. 

We noted that there were a total of 69 segments of "emphasis" and "non-emphasis" handwriting 

in the video, totaling about 1 hour.  We simulated the user query by selecting and labeling 10 positive 

example sequences of ten frames each, and an equal number of negative ones.  For classification, we 

limited the feature subset to 16 macroblocks. 

 

Figure 16. Retrieval results for random feature selection and Sort-Merge feature selection. 

Figure 16 shows the error rate of labeling the 69 segments based on a classifier using 16 features 

selected randomly; this was repeated 100 times.  The error bars are drawn at the mean error plus one 

standard deviation.  In contrast, asterisks show the error rate of retrieval using 16 features selected by 
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the Sort-Merge feature selection algorithm.  This query requirement is based on the lazy evaluation of 

a semantic query defined by example, but this retrieval is possible at low cost, and is again stable with 

respect to the choice of dimensionality reduction parameter, c. 

The second example illustrates a somewhat different exercise.  We show that lazy evaluation can 

proceed by the method of boundary refinement, that is, these two applications can be combined.  In 

this task we attempt to retrieve frames in the category of announcement using only a very limited 

feature subset, and only a very limited example set, of a size comparable to what a user can be 

reasonably expected to provide: 80 frames, 40 positive and 40 negative examples each.  Figure 17 

shows the retrieval result for feature subsets of size 2, 4, and 8 (with Fastmap dimension c held equal 

to 4).  However, it is important to note that the Sort-Merge method is progressive, and than only 0.02 

of the frames were need to be re-examined by the 4-feature classifier, and only 0.01 needed the full 

power of the 8-feature classifier. 
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Figure 17. Retrieval results for random feature selection and multi-level feature selection 

 

5.3.2. On-line video retrieval of baseball video 

 Our second example of on-line video retrieval applies the Sort-Merge feature selection algorithm 

to sports videos. As shown in Figure 18, we are interested in defining “pitching frames” that look like 
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Figure 18(a); the rest of the video has many different competing image types, some of which are 

shown in Figure 18(b). The data is sampled somewhat more finely, with every I-frame of extracted as 

one data frame, giving 3600 frames for the half-hour. We classify frames as to their binary 

membership in the category “pitching”. We ran two experiments.  The first did not use any prior 

temporal segmentation or other pre-processing.  Figure 19 shows the result, which fixes the Fastmap 

dimension c=2 and compares the classification error rate of random feature selection and Sort-Merge 

feature selection. In general, the error rate is halved.  Figure 20 shows as black boxes those macro-

blocks selected by the Sort-Merge feature selection under several choices for the number of features. 

             

(a)               (b)     
 
Figure 18. Task: retrieve “pitching”(a) from an entire video with competing image types(b). 
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Figure 19. Retrieval results for random feature selection and multi-level feature selection 
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Figure 20. Selected features  (macroblocks) using Sort-Merge feature selection.

r = 2 
 
 
 
 
 
r = 8 
 
 
 
 
 
r = 16 
 
 
 
 
 
r = 32 

 

 

 In the second experiment, the video has been segmented to 182 segments (roughly, “shots”, 

except that commercials are considered one segment).  We attempt to retrieve the 45 “pitching” 

segments. As mentioned by Lin and Hauptman in [35], simple accuracy is often an insufficient 

measure, so we compare the feature selection algorithms based on recall and precision in Figure 21. 

Precision is nearly perfect, and recall is better by a factor of 2, compared to random feature selection. 

 

6. Conclusion 

We have presented a novel feature selection algorithm that is well-suited to the difficult domain 

of video frame classification.  It relies on three underlying algorithms that are well-adapted to this 

large and continuous-valued domain and work together in linear time: Fastmap for dimensionality 

reduction, Mahalanobis distance for classification likelihood, and the Sort-Merge approach to 

combining relevant and non-redundant feature subsets into more accurate ones. Together, they  
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Figure 21. Precision and recall of random feature selection vs. multi-level feature selection. 

 
combine the performance guarantees of wrapper methods with the speed and logical organization of 

filter methods.  The method is shown to be linear in the number of features and in the size of the 

training set, and it constructs a complete hierarchy of increasingly accurate classifiers.  It therefore 

leads to new feasible approaches for rapid video segment boundary refinement and for lazy 

evaluation of on-line queries.  We have illustrated its performance using two long videos from 
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different genres.  We plan to investigate its utility both across a library of videos of these genres, and 

also on other genres such as situation comedies, which share a similar  recurring category structure. 
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