
Fast Video Segment Retrieval by Sort-Merge Feature Selection,

Boundary Refinement, and Lazy Evaluation

Yan Liu and John R. Kender

Department of Computer Science

Columbia University

New York, NY 10027

{liuyan, jrk}@cs.columbia.edu

 1

Abstract

We present a fast video retrieval system with three novel characteristics. First, it exploits the methods

of machine learning to construct automatically a hierarchy of small subsets of features that are

progressively more useful for indexing. These subsets are induced by a new heuristic method called Sort-

Merge feature selection, which exploits a novel combination of Fastmap for dimensionality reduction and

Mahalanobis distance for likelihood determination. Second, because these induced feature sets form a

hierarchy with increasing classification accuracy, video segments can be segmented and categorized

simultaneously in a coarse-fine manner that efficiently and progressively detects and refines their

temporal boundaries. Third, the feature set hierarchy enables an efficient implementation of query

systems by the approach of lazy evaluation, in which new queries are used to refine the retrieval index in

real-time. We analyze the performance of these methods, and demonstrate them in the domain of a 75-

minute instructional video and a 30-minute baseball video.

Keywords

Fast video retrieval, Sort-Merge feature selection, Boundary refinement, Lazy Evaluation

 2

1. Introduction

With the growth of applications in multimedia technology, video data has become a fundamental

resource for modern databases. The problem of efficient retrieval and manipulation of semantically

labelled video segments is an important issue [1].

Methods focused on efficiency take several forms. Audio information analysis [2] [3] [4] and

text extraction and recognition [5] [6] are often used, as are some approaches based on segmentation

of video shots and key-frame selection [7] [8] [9]. Some specialized applications, particularly sports

videos [10], use object recognition [11] and object tracking [12] for efficient compression. Some

systems combine several methods together [13], and some can work directly on compressed domain

[14]. However, there appears to be little work that supports efficient on-line video retrieval without

some prior human specification of the underlying feature sets.

A second concern is semantic video indexing and retrieval. As Lew et al mentioned in [15], the

main challenge in image and video retrieval is bridging the semantic gap between the high level query

from the human and the low-level features that can be easily measured and computed. This gap

persists because of a lack of a good understanding of the "meanings" of the video, of the "meaning"

of a query, and of the way a result can incorporate the user's knowledge, personal preferences, and

emotional tone.

This paper addresses these two problems, and presents a method of efficient semantic video

retrieval, based on automatically learned feature selection. We do not pre-select features, as the

relation between features and concepts in video data is unclear, even perhaps to the user. Instead, we

induce their relationship, and find those subsets of features which most capture the trained semantic

categories given by the user. By imposing a natural hierarchical structure on these subsets, we can

use these learned features to efficiently segment and label the video without loss of accuracy, and to

adaptably improve response of a query system by efficiently caching dynamic results. We also show

that these methods can be applied to either the original video, or its compressed form.

 3

The heart of our method is a novel approach to feature selection. This form of learning has

received significant attention in the AI literature, and has been applied to moderately large data sets in

applications like text categorization and genomic microarray analysis. Learning research is not often

carried out in video indexing and retrieval--although Lew et al [16] used a feature selection method to

refine features for stereo image matching. This is because the sheer magnitude of video data has

limited the choice and application of existing feature selection algorithm, which have been designed

for smaller databases and which run inordinately long even on those. One emphasis of this paper is

the low time cost of our heuristic method, which can exploit several properties unique to video data to

induce appropriate but small feature sets.

This paper is organized as follows. Some related work in video retrieval and in feature selection

is introduced in section 2. Section 3 proposes the novel algorithm, and gives some proofs of some of

its essential features and of its time complexity. The data structure output by the feature selection

supports two additional methods, boundary refinement and lazy query evaluation, which are

presented in section 4. Section 5 provides empirical validation. We close the paper in section 6.

2. Related work

2.1. Video retrieval

We are interested in how to retrieve video sequences based on metadata: video segmentations,

indices, annotations, and summaries, derived primarily from the visual (not audio) steam. There has

been a great deal of work in this area, and we cannot review it all here.

One typical way is to make use of existing image retrieval algorithms, starting from a good

segmentation of the video into shots and then selecting certain images of the shots as key-frames.

Among other approaches, Pickering et al in [7] consider the key-frames of each shot as a single image,

and use the machine learning approach of Boosting Image Retrieval of Tieu and Viola in [8] to

 4

retrieve matching video sequences. One of several semantic-based key-frame approaches is that of

Schaffalitzky and Zisserman in [9], where they consider video shots to happen in the same 3D real

world scene by representing their key-frames using invariant descriptors and by pruning out false

matches using a spatial neighborhood consensus.

Semantic video retrieval in some special applications such as sports or TV news, can be based on

object recognition and object tracking. For example, by tracking a basketball and related objects in

Kim et al [28], useful semantics about a class of shots are extracted. In another specialized domain

[30], Wei and Sethi use the presence of skin-tone pixels coupled with shape, edge patterns, and face-

specific features to detect faces for image and video retrieval.

Among more general approaches is that of Naphade et al in [12], who propose a framework for

video indexing and retrieval using semantic unit "multijects" (i.e., "multiple objects"). Different

feature sets such as color, texture, edges, shape, and motion are extracted from each frame and pass

through different classifiers that check the multijects individually and combine the results to get the

final decision. Similarly, Smith et al in [19] propose a problem of feature fusion when integrating

features, models, and semantics for TREC video retrieval. They represent and retain the results from

different feature sets in GMMs (Gaussian mixture models), instead of combining different feature sets

to one. However, they no longer can index only once into one uniform feature space because of the

large dimensionality of their feature space model.

This paper follows the spirit of the more uniformed approach, where frames are represented by a

large feature set, but one that is not selected based on any preconceived ideas of the appropriateness

of a feature. Instead, we solve this problem using a novel feature selection algorithm that learns the

most appropriate feature subset.

2.2. Feature selection

2.2.1. Definition of feature selection

 5

A precise mathematical statement of the feature selection problem is not widely agreed upon,

partly because there has been substantial independent work on feature selection in several fields:

machine learning, pattern recognition, statistics, information theory, and the philosophy of science.

Each area has formalized the definition from its own viewpoint, and each definition has been colored

by the intended application. However, there appears to be two major approaches.

The first approach emphasizes the discovery of any relevant relationship between features and

concept. This is referred to as a filter method, and it finds a feature subset independently of the actual

induction algorithm that will use this subset for classification. This is formalized by Blum and

Langley in [20]:

Definition 1 (Relevance to the target)

A feature xi is relevant to a target concept c if there exist a pair of examples A and B in the

instance space such that A and B differ only in their assignment to xi and c(A)≠c(B).

The second approach explicitly seeks a feature subset that minimizes prediction error. This is

referred to as a a wrapper method, and it searches the space of feature subsets, using cross-validation

to compare the performance of a trained classifier on each tested subset, and directly optimizes the

induction algorithm that uses the subset for classification. This is formalized by Caruana and Freitag

in [21].

Definition 2 (Incremental usefulness)

Given a sample of data S, a learning algorithm L, and a feature set A, feature xi is incrementally

useful to L with respect to A if the accuracy of the hypothesis that L produces using the feature set

{ xi } ∪ A is better than the accuracy achieved using just the feature set A.

2.2.2. Filter methods

Ordinarily, filter methods use simple statistics computed from the empirical feature distribution to

select strongly relevant features, and to filter out weakly relevant features before induction occurs; see

 6

Blum and Langley [20]. Greedy set-cover algorithms are the simplest filter methods that are often

used for classifiers, particularly binary concept classifiers. They begin with zero chosen features, and

assume that every data instance is in a single category. By incrementally adding to the evolving

feature set that next best feature which can discriminate those data belonging to another category, it

constructs the final subset of features using this greedy approach.

A better and more typical filter method is the Focus algorithm proposed by Almuallim and

Dietterich in [22]. This method begins by looking at each feature in isolation, then turns to pairs of

features, then triples, and so forth, halting only when it finds a combination that generates pure

partitions of the training set, using a decision-tree induction. Similar algorithms are proposed by

Cardie in [23] using KNN induction, and Kubat et al in [24] using native Bayesian induction. Jebara

and Jaakkola in [25] follow a similar approach, but employ better metrics based on information

theory, using SVM induction.

2.2.3. Wrapper methods

Wrapper methods assess the quality of feature subsets according to their prediction error. The

typical wrapper algorithm searches in the feature subset space. It evaluates alternative subsets by

running an induction algorithm on training data, and uses the estimated accuracy of the resulting

classifier as its metric to find an optimal subset of features.

As Xing et al. state in [26], wrapper methods attempt to optimize directly the predictor

performance so that they can perform better than filter algorithms, but they require more computation

time. This cost has led some researchers to invent ingenious techniques for speeding the evaluation

process. For example, Langley and Sage's OBLIVION algorithm [27] carries out a backward greedy

search decision-tree induction; nevertheless the cost is still substantial.

Alternatively, Singh and Provan use information-theoretic metrics in [28] based on the forward

greedy algorithm in a Bayesian network they proposed in [29]. Likewise, Koller and Sahami in [30]

employ a cross-entropy measure, designed to find Markov blankets of features using a backward

 7

greedy algorithm; this algorithm has been successfully applied to the classification of Genomic

Microarray data by Xing et al in [26]. The approach we propose is also a wrapper method.

3. Sort-Merge feature selection algorithm

Feature selection methods are typically designed and evaluated with respect to the accuracy and

cost of their three components: their search algorithm, their statistical relationship method (in the case

of filter methods) or their induction algorithm (in the case of wrapper methods), and their evaluation

metric (which is simply prediction error in the case of wrapper methods). The dominating cost of any

method, however, is that of the search algorithm, since feature selection is fundamentally a question

of choosing one specific subset of features from the power set of features. This is an exponentially

hard problem, and intractable if the set of features is very large as it is with image data. A more

realistic design is to look for an approximate search algorithm that achieves high performance; this is

necessarily a heuristic approach.

Although many efficient feature selection techniques have been proposed, applying them to

applications adequately is another problem. It is related with the size of the feature space, the data

type and data range of each feature, the accuracy of certain classifier and complexity cost. Lew et al

[16] used a filter model of feature selection to refine the feature sets in stereo matching and found

good performance in image matching. They selected one of several traditional feature selection search

methods to reduce the original feature space, which consisted of the gray levels of every pixel in the

image, in order to more tractably evaluate their optimality criterion, defined as the average distance

between elements of all classes. This is an interesting beginning, but the nature of video data, such as

massive data, high dimensionality, and complex hypotheses, together with the unrealistic amounts of

computer time involved even in these more limited domains (on the order of weeks), limits the choice

and application of existing feature selection algorithms for video retrieval. This paper proposes a

 8

novel Sort-Merge feature selection method to select features for video retrieval with low time and

space cost.

3.1. Sort-Merge search algorithm for feature selection

There are 2N possible subsets for a feature space with N features. Exhaustive testing of each

subset is impossible even when N is moderate. Necessarily heuristic in approach, current feature

selection algorithms often work well when there are a straightforward logical relationships (in the

sense of conjunctions or disjunctions) between features and categories. Categorization of entire video

frames, however, does not appear to be either straightforward or logical, and is further complicated by

the redundancy of neighboring pixels.

So far, three general kinds of heuristic search algorithms have been used: forward selection,

backward elimination, and genetic algorithms. Forward selection starts with the empty set and

successively adds individual features, usually following a variant of a greedy algorithm, terminating

when no improvement is possible. However, it can not remove any features, and therefore ends up

making what amounts to local optimizations to the growing set. Backward elimination, which does

the reverse, starts with the full set of features and heuristically subtracts individual features. It suffers

from a similar problem of local optimization, as the removal of a feature is irrevocable. A genetic

algorithm, which permits both the addition and deletion of features to a surviving population of

evolving subsets of limited cardinality, is more likely to seek a global optimum. But it is

computationally costly, and requires a more elaborate definition of algorithm convergence.

Our Sort-Merge feature selection algorithm combines the features of forward selection, backward

elimination, and genetic algorithms. To avoid irrevocable adding or subtracting, it always operates on

some representation of the original feature space, so that at each step every feature has an opportunity

to impact the selection. To avoid heuristic randomness, at each step a greedy algorithm is used to

 9

govern subset formation. Further, the recursive nature of our method enables the straightforward

creation of a hierarchical family of feature subsets with little additional work.

The Sort-Merge algorithm can be divided into two parts: the creation of a tree of feature subsets,

and the manipulation of the tree to create a feature subset of desired cardinality or accuracy. Each part

uses a heuristic greedy method.

Table 1 shows the Sort-Merge feature selection basic algorithm. The method is straightforward.

Initially, there are N singleton feature subsets. Their performance is evaluated on training data, and

they are sorted in order of performance. Then, N/2 subsets of cardinality 2 are formed by merging,

pair-wise and in order, the sorted singleton feature sets. After another round of training and sorting, a

third level of N/4 subsets of cardinality 4 are formed, and the process continues until it attains a level

or condition prespecified by the user. Figure 1 illustrates the algorithm with an initial set of features

with cardinality N = 256.

Initialize level = 0

Create N singleton feature subsets.
While level < log2 N

Induce on every feature subset.
Sort subsets based on performance.
Combine, pairwise, feature subsets.

Table 2 shows th

subsets, if such a sub

between 24 and 25, the

the full tree. This giv

"cutout" is 12. The al

with "branch-size" of

for removal. The tre

Table 1. Sort-Merge feature selection basic algorithm
e related algorithm to select exactly r features from the hierarchy of feature

set is desired, and Figure 2 illustrates this process when r = 20. Since r is

 leftmost and therefore most accurate sub-tree with 25 nodes is extracted from

es a sub tree with 12 nodes in excess of the desired amount, thus, the value of

gorithm then, as part of its recursive greedy approach, looks for further subtrees

size 8 to next remove; the branch that impacts performance the least is chosen

e is now 4 nodes in excess, and the algorithm repeats once again (and then

10

terminates) by finding which subtree of this branch-size has the least impact on this wrapper-based

classification performance.

T

Combine

Sort

Sort

Combine

Sort

Combine

Sort

Figure 1. The
Interior notes
according to t

 Although

(Definition 1)

incrementally

proof that this

Select the leftmost branch of size 2  log2r .
Initialize cutout = 2 log2 r  - r.
While cutout >0
 Let branch-size = 2 log2 cutout.

For all remaining branches of this size, evaluate the induction
 result of removing those branches individually.
Remove the branch with best result.
Let cutout = cutout – branch-size.

able 2. Algorithm to select exactly r features from the tree of feature subsets.

B1 B2 B3 B4 B128

 A1 A2 A3 A4 A5 A6 A7 A8 A255 A256

 C1 C2 C64

 Sort-Merge feature selection algorithm. Leaves correspond to singleton feature subsets.
are formed by the pair-wise merge of neighboring feature subsets that have been sorted
heir classification accuracy.

 I1

it should be apparent that the Sort-Merge method should select relevant features

 due to the nature of the sort, it is not clear that it also gives priority to features that are

useful (Definition 2) due to the nature of the merge. Although we have no rigorous

 is so, we illustrate what we have found to be its reliable occurance in Figure 3. Some

11

examples of how Sort-Merge feature selection addresses the problem of redundant features are

discussed in section 5.1.2.

 (a) Select the leftmost sub-tree (b) Cut the most errorful thick branch from the sub-tree

Figure2. Selecting a feature subset of a pre-specified size from the full Sort-Merge feature selection tree

(c) Cut the most errorful thin branch from the sub-tree

Figure 3 is a more detailed view of the lowest two levels of the tree in Figure 1. In the original feature

space, there are a total of N=256 features. We first divide them into 256 singleton feature subsets. Next

we induce using each feature subset in the given dataset, and evaluate the performance of the feature

subsets by their accuracy. We sort feature subsets based on their prediction error; feature subset A1 has

the lowest prediction error. Then we combine two neighboring singleton sets in rank order into new

feature subsets and induce again, and again evaluate the performance of the 128 feature pairs and sort

 12

them based on their prediction error. As Figure 3 illustrates, feature subsets A1 and A2, which are ranked

first and second after the first sort, may be ranked (as a pair) third after the second sort; similarly feature

subsets A5 and A6 which are ranked fifth and sixth after the first sort, are ranked second after the second

sort. Since the merge step always combines neighbors with very similar performance, any decrease in the

rank order of a new pairing cannot be ascribed to one or other of the individual neighbors being "bad".

What makes a pair (A1 and A2) worse is that their combined performance did not increase as much as

those of other pairs (A5 and A6). That is, their two elements tended to be redundant in their classification

failures whereas other pairs had complementary strengths.

B1 B2 B3 B4 B5 B128

Combine

Sort by
prediction error

Induce and
display error

Combine

Sort by
prediction error

Induce and
display error
Raw features

 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A255 A256

Figure 3. A more detailed view of how the Sort-Merge algorithm addresses the problem of
redundant features. Even though features of a level are combined only by performance, redundant
features (A1, A2) don’t increase performance as much as non-redundant features (A5, A6) after merge.

3.2. Induction algorithm for feature selection

The performance of a wrapper feature selection algorithm not only depends on the search method,

but also on the induction algorithm. Some feature selection methods have high computational cost

only because the induction algorithm is time-consuming and does not scale well to large feature

spaces. For our induction method during the course of the learning, we use the novel, low-cost, and

scalable combination of Fastmap for dimensionality reduction, with Mahalanobis maximum

13

likelihood for classification. We refer readers to the literature for a detailed explanation of these two

component methods, but we summarize their significance here.

In brief, as defined in statistical texts Duda et al. [31], or in the documentation of Matlab, the

Mahalanobis distance computes the likelihood that a point belongs to a distribution that is modeled as

a multidimensional Gaussian with arbitrary covariance. During training, each image frame in a

training set for a video category is first mapped to a point in the space of reduced dimension c. Then

the distribution of these mapped points is approximated by a c-dimensional Gaussian with a non-

diagonal covariance matrix. Multiple categories and training sets are represented each with their own

Gaussian distribution. The classification of a test image frame is obtained by mapping it, too, into the

reduced c-dimensional space, and then calculating the most likely distribution to which it belongs.

That is, the classification label assigned to it is the label of the training set center to which it has the

minimum Mahalanobis distance.

The Mahalanobis metric has good performance in classifying data with multiple dimensions, even

if each dimension has a different range of feature values. However, it is necessary that the cardinality

of the training set be much larger than the number of dimensions; the usual lower bound given by

Devijver and Kittler in [34] for this cardinality is N(N-1)/2, where N is the number of dimensions.

Principal Component Analysis (PCA) is the usual method of choice for dimensionality reduction,

but carries high computational complexity. Instead, the Fastmap method proposed in [32]

approximates PCA, with only linear cost in the number of reduced dimensions sought, c, and in the

number of features, N. The method heuristically replaces the computation of the PCA eigenvector of

greatest eigenvalue, which represents the direction in the full feature space that has maximum

variation, with a (linear) search for the two data elements that are maximally separated in the space.

The vector between these two elements is taken as a substitute for the eigenvector of greatest

eigenvalue, and the full space is then projected onto the subspace orthogonal to this substitute vector

for the first eigen dimension. The process then repeats for a desired and usually small number of

times. By the use of clever bookkeeping techniques, each additional new dimension and projection

 14

takes time approximately linear in the number of features. This linearity of the cost of Fastmap is a

critical advantage, and permits its use for high-dimensional feature sets: the method scales well.

In summary, then, our full Sort-Merge method consists of the repeated application of the

following processing steps at each level of the tree. For each feature subset at a level, the

dimensionality of its feature space (which is always a power of 2) is reduced by using the Fastmap

algorithm to a small number of dimensions (which is a parameter set by the user; we report on

performance of this dimension c, for c = 1 to 10). Then, within this reduced space, induction occurs

by modeling the classifications by their likelihoods given by the Mahalanobis distance to

classification centers. The scores of each subset's test classification accuracy are then rank ordered,

and new subsets of features are formed by merging pairwise those old subsets that are adjacent in the

rank ordering.

It is appropriate to comment on why, given its virtues, we do not apply Fastmap to the entire

feature space directly, and simply use the first c dimensions of the resulting reduced space as the set

of features. The answer is that each of these c eigen-like vectors is a linear sum of the full feature

space, and the classification of any video frame would require the accessing and transformation of

every original feature, at substantial cost. By first determining a good subset of the features, the cost

of any subsequent classification, whether by Fastmap-Mahalanobis or otherwise, is greated reduced.

3.3. Analysis of Sort-Merge feature selection algorithm

Generally speaking, the accuracy of a classifier based on the Mahalanobis distance increases as

the dimensionality of the feature space increases. In our method, this means that accuracy tends to

increase as the feature subsets are merged to form the hierarchy. We now analyze the time and space

cost of doing so, which we show is linear in the number of features N. Using Fastmap-Mahalanobis,

the induction step is also linear in the size of the training data, m. Therefore, the method is well-suited

to the high data volumes necessary in video retrieval applications.

 15

We use the following definitions:

N: Number of dimensions of the original feature space

r: Number of dimensions of the reduced feature space

m: Cardinality of the training data set

c: Number of dimensions extracted using the Fastmap algorithm

l: level number of Sort-Merge feature selection tree

Tm: Time of induction using m training data in the Mahalanobis classifier

Tbasic: Time of the basic Sort-Merge feature selection algorithm

Tselect: Time of algorithm to select r features from the tree

We first show that Tbasic = O(NTm) = O(Nmc2). The cost of each level is proportional to: the

number of subsets at that level, the cost of reducing the dimensionality of each subset, the cost of

classifying the training data, the cost of evaluating the classifier on test data, and the cost of the final

sort. (The merge cost is trivially linear in the number of subsets.) The number of subsets is N/(2l).

The cost of the Fastmap per subset is O(mc), based on the proof given in [32], and the cost of the

Mahalanobis classification is O(mc2), based on the proof given in [31]. Thus, the cost of the

induction is a fixed Tm = O(mc2). The final sort is again dependent on the number of subsets at that

level, and is O((N/2l)log(N/2l)). The cost at a given level is therefore O((N/2l)mc2) + O((N/2l)log

(N/2l)). Given that the size of the training data generally must dominate the size of the feature set, it

certainly dominates its logarithm, and therefore the cost at a level is O((N/2l)mc2). Summing these

costs up the levels of the tree yields a total cost of O(Nmc2). It is not hard to show in a similar

manner that the space cost is also linear in N.

Similarly, one can show that the additional cost of Tselect = O(rTm) = O(rmc2); this is dominated by

Tbasic. The argument is based again on the sum of a geometrically decreasing series of costs, with each

cost proportional to the effects of pruning ever smaller numbers of subtrees.

 16

4. Fast off-line video indexing and on-line video retrieval system

The linear time and space costs of our novel feature selection approach allows us the practical

implementation of three related retrieval applications, two of which are novel in their own right.

Other retrieval tasks would now also appear to be feasible, and it is likely that the feature selection

method can also be applied to other data from video sequences, such as audio data or higher level

features such as shape descriptions. Here we focus on three purely visual tasks of: fast video frame

classification and retrieval, video segment boundary refinement, and lazy evaluation of unanticipated

on-line queries. Our inputs are the compressed frames of MPEG-1 instructional videos, generally

without prior temporal segmentation into shots.

4.1. Fast video frame classification and retrieval

Although the method is transparent to these particular video preprocessing transformations, in our

examples we illustrate its application after down-sampling a 75 minute long MPEG-1 video both

temporally and spatially. We use only every other I frame (that is, one I frame per second), and we

spatially subsample by only using the DC terms of each macroblock of the I frame (consisting of six

terms: four luminance DC terms, one from each block, and two chrominance DC terms). We

therefore do not have to decompress the video. We did not further spectrally subsample, but the

method again would be transparent to this. This gives us, for each second of video, 300 macroblocks

(15 by 20) of 6 bytes (4 plus 2) of data: 1800 initial features. This is a much larger feature set than

virtually all examples in the machine learning literature. For convenience of accessing and decoding,

we generally consider the 6 DC terms from the same macro-block to be an undecomposable vector, so

our initial application most often consists more accurately of 300 features per second of video. Each

six-dimensional feature is first placed into its own subset to initialize the Sort-Merge process. So, in

our application, we start with 300 such feature subsets, and each feature subset has cardinality 1.

 17

Next, using Fastmap, the dimensionality of each feature subset is reduced to a pre-specified small

number, c, of dimensions. (For this stage, we do in fact look inside the vectors and use each

component as a dimension.) In our applications, we ran experiments in which c varied from 1 to 10.

The value of c is not fixed and is related with the original size of feature space, which will be

discussed in the experiment section.

Then, for each feature subset at this level, using the reduced dimensionality representation, the

training frames of the video train the induction algorithm to classify the test frames of the video. In

our application, this means that each training set was represented by a c-dimensional Gaussian

according to the Mahalanobis classifier, although other learning methods can be trained on the

reduced representation. In our application, in the context of instructional video, we had four class

labels: the instructor is writing an overhead slide, the instructor is announcing, the instructor is

displaying a computer demo, and the class is discussing.

Next, the classification accuracy of each feature subset is measured. If any subset achieves the

user's pre-specified desired accuracy, or if the cardinality of each subset achieves the user's pre-

specified desired cardinality, the process stops, and that subset is the desired feature subset.

Otherwise, the feature subsets are sorted by accuracy, and the next level of the feature subset

hierarchy is formed by merging these subsets pair-wise and in order (see Figure 1).

Lastly, the process repeats again, starting at the Fastmap step. It is clear that at most O(log N)

iterations of this Sort-Merge algorithm are necessary. The resulting feature subset is then used for

classification in the usual way: the given features are taken from any other video frame, reduced to c

dimensions, and classified by their maximum likelihood in the Mahalanobis sense.

4.2. Video segments boundary refinement

We now show how the feature subset hierarchy can be exploited to efficiently refine the

boundaries of contiguous video segments with differing classification labels. The hierarchy enables

 18

less work to be done on the segment interiors, and permits a multi-level refinement strategy using

more accurate but more costly feature subsets at segment edges.

To illustrate, we select the best 2-feature subset from the 300 features using Sort-Merge feature

selection algorithm, and classify each frame of the video into the four different categories mentioned

above. This is shown as the uppermost line in figure 4 as C2, C1, C3, etc. The classification tends to

have more errors at segment transitions, whether they are abrupt (cuts) or gradual (fades and dissolves)

(see Koprinska and Carrato in [33]). So we devise a multi-level (coarse-to-fine) strategy to more

carefully investigate the video wherever a neighborhood of frames shows a lack of consistency of

labeling. Note that this will occasionally occur even within the interior of a well-defined segment.

FC1 FC1FC1 FC1 FC1

FD1

C4

FI1

FD1

Figure 4. Video segment boundary refinement by multi-level feature selec

FB1

This strategy is governed by several parameters, which vary depending on th

successive iterations of refinement. We therefore define a feature subset size Ri, whi

i and therefore increases the classification accuracy, and a neighborhood parameter L

constant or decreases with i and therefore focuses the attention of the more costly cl

we define a decision threshold Si, according to:

Si = Prmahal(Cj) - ∑Prmahal(Ck) k = 1, 2 … n and k ≠ j

C4
C1
 C3
C2
C4
C2
C3
C1
C2
FD1
frames

tion.

e number of the

ch increases with

i, which remains

assifier. Further,

19

where Prmahal(Cj) is the maximum Mahalanobis likelihood among all categories using this feature

subset. This threshold ensures that classification is correct and unambiguous.

Figure 4 illustrates three typical cases. Most of the refinements result in the first case: a

clarification of the location of the boundary developed by the intial classification of frames. However,

in a second case, shown at the transition between C1 and C3, it is possible that an intervening segment

of a completely different label is refined such as C2. In the third case, refinement is forced to proceed

to full use of all available features in order to resolve the labeling of an individual frame sufficiently

confidently: this frame is often the exact center of a dissolve between two classes.

4.3. Lazy evaluation of unanticipated on-line queries

This application allows the dynamic extension of video retrieval indices. An off-line part of the

application classifies video segments into categories that users are often interested in, and constructs a

main index with text tags used for retrieval. As shown in figure 5, a user then inputs a textual query

which is first matched with the main textual index, then with any dynamically created sub-index or

aide-index, which are described below. If all miss, the lazy evaluation method has not found anything

in its cache, and on-line computation is necessary.

In the on-line evaluation and retrieval part, the user provides a short training video clip as a

positive example of the frames of his textual query, together with a negative example clip. Using the

multi-level feature selection algorithm, a feature subset is progressively sought that discriminates the

two. Then, other clips are retrived from the video which have been labeled as being in the same

category as the training clip, and the user is asked for iterative feedback. If necessary, the feature

subset is progressively increased further until discrimination is satisfactory to the user. The resultant

text query and its successful feature subset are then stored appropriately in the following way. If the

clips match an existing labeled set of clips in the index, then the new label is stored as a synonym in

the main index. If they are instead a proper subset of some main index clips, then both the text and

 20

the feature subset are stored in the sub-index. If the concept sought is neither a synonym nor a

specialization, its text and feature subset are stored in a simple aide-index list (or a more elaborate

data structure). The speed of the multi-level feature selection algorithms enable such lazy evaluations,

and the indexing system becomes self-adaptive.

 If no match

C3-1-1

V
I
D
E
O

Category 1

Category 2

Category 3

Category k

C1-1

C3-2

C3-1

Main Index

User
Query Sub-Index Aide-Index

C-aid1

C-aid2

C-aid3

C-aid4

Check and Update

On-line

Video

Retrieval

5. Experiments

Figure 5. Lazy evaluation of unanticipated on-line queries.

5.1. Fast video frame classification and retrieval

 21

The first experiment evaluates the effectiveness of the Sort-Merge feature selection algorithm on

standard video frame classification and retrieval.

5.1.1. The basic classification task

Our goal is to classify one extended instructional video mentioned above, of 75 minutes duration,

which has about 134,010 frames in MPEG-1 format, each with 240 by 320 pixels into four categories

as illustrated in figure 6: handwriting, announcement, demo, and discussion. For training data, we

used 400 I-frames distributed over the video and across these four classes.

 Handwriting Announcement Demo Discussion

 Figure 6. Main-index of video

As mentioned above, the time cost of feature selection algorithms is decided by the cost of the

search algorithm and the induction algorithm together. The primary contribution of the Sort-Merge

feature selection algorithm is the low time complexity of these two components. Existing feature

selection methods, which typically have been reported to run for several days on features sets of

cardinality of at least one decimal order of magnitude smaller, as Koller and Sahami note [30], are

intractable on this dataset. Therefore, we first compared the indexing accuracy of our new method

against two imperfect but feasible benchmarks: random feature selection, and hand feature selection.

These application experiments all used the same data and same induction methods; the only

difference is how the feature subsets are chosen. Secondly, we fixed the induction algorithm to

highlight the efficiency of the search algorithm in Sort-Merge feature selection, and then compared its

performance and time cost with reasonable implementations of the forward selection, backward

elimination, and genetic algorithm approaches. To simplify our presentation, only the comparison

 22

experiments that selected 30 features from the 300 possible feature are displayed here, although we

do display the effect of varying the value of c.

Figure 7. Classification results for random feature selection and hand feature selection.
Error bar is shown for one standard derivation, but all points have positive error rates.

For random feature selection, we ran 100 experiments in which 30 features were selected

randomly. Points in Figure 7 show the error rate of frame categorization under different Fastmap

reduced dimensions of c, from 1 to 10, where “error rate” is defined as the pure ratio (not percentage)

of misclassified frames to total frames. The error bars are drawn at the mean error plus one standard

deviation. The dashed-line shows the base of error rate of zero. Superimposed on the graph are

asterisks representing the error rate of hand selection, typically about 0.002 (9 misclassifications out

of 4467). For precision, Table 3 lists the exact mean, maximum, and minimum of the classification

error rate for these different values of c. Figure 8 gives more detail still, as it depicts the error rate of

scene categorization under one of these cases, the case of c=2, with each run of the random

experiments explicitly illustrated. As expected, the rate of error of random selection is highly

variable, with the standard deviation being larger than the mean.

 23

Figure 8. Error rates for classification results with Fastmap dimension c=2.

 C 1 2 3 4 5 6 7 8 9 10

Mean 0.0531 0.0125 0.0153 0.0182 0.0255 0.0266 0.0294 0.0293 0.0335 0.0328

Max 0.0531 0.1101 0.2677 0.3141 0.7347 0.3971 0.7405 0.6013 0.6367 0.6409

Min 0.0531 0.0011 0.0009 0.0011 0.0011 0.0011 0.0011 0.0009 0.0016 0.0016

Table 3. Error-rate of classification using 30 randomly selected macroblocks.

For hand feature selection, we show as black boxes in Figure 9 those 30 features (i.e., macro-

blocks) selected by hand, based solely on the experimenter’s intuition and with some effort taken to

provide pixels sensitive to the positions of instructor, desk, paper, and frame border. The error rate of

the classification that results is also shown in figure 7 as asterisks and in figure 8 as a solid line,

which is obviously better than the random selection result.

 24

 Handwriting Announcement Demo Discussion

 Figure 9. Hand-selected macro-blocks.

For the Sort-Merge feature selection, we show in Figure 10 the 30 features (i.e., macro-blocks)

selected by the Sort-Merge method; surprisingly, the method favors border macro-blocks, with 20 of

the 30 chosen on, or just one macro-block away from, the image border. This is possibly because

these pixels tend to be the most stable over time and little human movement appears to affect them.

Figu

Merge).

selection

is expect

Tabl

four diff

induction

algorithm

feature s

did not te

Handwriting Announcement Demo Discussion

Figure 10. Macro-blocks selected by Sort-Merge method.
re 11 is a grand summary comparing these three feature selections (random, hand, Sort-

The classification error rate of the Sort-Merge method is not only less than that of hand

, but also appears to be very stable as the Fastmap dimension varies. As discussed later, this

ed to be a critical consideration for retrieval system designers.

e 4 summarizes the results of our second comparison, that of the accuracy and efficiency of

erent search algorithms for feature selection. Although we used the same low time cost

 algorithm, we found that the forward selection, the backward elimination, and the genetic

 approaches have at least a decimal order of magnitude higher time cost than Sort-Merge

election, solely attributable to the different search strategies. Backward elimination, in fact,

rminate.

25

Comparison of error rate using different feature
selection algorithms

0

0.01

0.02

0.03

0.04

0.05

0.06

1 2 3 4 5 6 7 8 9 10

Fastmap dimension c (1~10)

Er
ro

r r
at

e

Mean of Random Hand selection Sort-Merge

Figure 11. Off-line video indexing result of different feature selection methods

Search algorithm Forward Selection Backward Elim. Genetic Alg. Sort-Merge

Error rate 0.007 --------- 0.007 0.002

Running time 691.32 minutes Several weeks(?) 306.95mins 31.01mins

Table 4. Classification performance of different search algorithms

5.1.2. Further analysis and discussion

In this section, we further demonstrate that the Sort-Merge method tends to avoid selecting

redundant features that add little further discriminating power to a developing feature subset.

In Figure 12(a) we have encoded the accuracy score of the 300 individual macro-blocks, where

darker blocks are those with lower error rate, that is, dark means "good". This also simultaneously

illustrates the results of the first step of the algorithm: the darker blocks represent those more accurate

singleton feature subsets that would appear in the leftmost leaves of the feature selection tree. Figure

12(b) encodes the results of the next step of the algorithm, after singleton sets have been merged into

150 feature pairs and their performance evaluated. Again, a darker block represents a macro-block

 26

that is a member of a highly performing pair that would appear in the leftmost part of the feature

selection tree at exactly one level above the leaves.

(a) (b) (c)

Figure 12. Visualization of the accuracy of features: (a) singleton sets, (b) pairs, (c) difference.

Figure 12(c) displays the difference of (a) and (b). That is, it shows the change in rank order of

performance, where again dark means "good"; dark blocks are those features whose performance as a

member of pair increased in rank order, compared with their placement in the rank order of singleton

performance. Careful comparison of Figure 12(c) against Figure 8 shows that the right central area of

the frame (roughly, the area of the instructor's body and outstretched arm in the "announcement"

example) is encoded in Figure 12(c) with lighter colors, indicating redundancy, and is missing any

selected macro-blocks in Figure 8, indicating relatively high error rate. In a second example, we

illustrate this more exactly in Figures 13 and 14, by tracing the performance of an evolving feature

subset. Figure 13 shows a 2-feature subset, consisting of macro-block 16 (in the top row at right, as

each row has 20 blocks) and macro-block 44 (in the third row at left). They have become a 2-feature

subset because as singleton features they were ranked by performance in neighboring positions 34

and 33, respectively, out of 300 singletons. However, their performance together as a pair improved,

and was ranked in position 5 out of 150 2-feature subsets.

 It is not hard to see why: the pair is spatially separated, and therefore less likely to detect

redundant information. For example, in the discussion example in Figure 13, macro-block 16 always

views the bright classroom wall even when the camera pans, whereas macro-block 44 intercepts the

colored clothing of the students. Similarly, in the demo example in Figure 13, macro-block 16 always

views the black border of the computer screen, whereas macro-block 44 views varying content over

 27

time. (Both blocks, however, see essentially the same information in the handwritting and

announcement examples.)

Figure 13. The 2-feature subset consisting of macro-block 16 (top row) and macro-block 44
(third row); it performs well.

Figure 14. The 4-feature subset consisting of the 2-feature subset in Figure 12, together
with its successor in rank order, consisting of macro-blocks 22 and 59; it performs poorly.

 Nevertheless, at the next level of the Sort-Merge, as shown in Figure 14, this fifth-best pair

consisting of blocks 16 and 44, is merged with the neighboring sixth-best pair consisting of blocks 22

(in the second row at extreme left) and 59 (in the third row at extreme right), to form a feature subset

of size 4. The performance suffers dramatically, however, and is ranked only 53 of 75 four-element

subsets. Again, a glance at their spatial distribution shows why. The pairs cover very similar areas of

the frame; they are redundant, rather than complementary.

It is necessary to point out that Sort-Merge feature selection is necessarily heuristic, and is more

likely to be successful in precisely those domains for which it was designed: those with very many

features. Like all greedy methods, it can and does occasionally suffer from the inability to more

intelligently look ahead in its merging choices, and will occasionally fail to pick complementary

feature subsets to merge. For example, if the best two singleton feature subsets were spatially

redundant but not perfect in their classification, and the third best singleton feature was spatially

complementary to the first two and again not perfect, the method as currently developed would

 28

greedily merge the first two singletons, even though a merge of either of those two with the third is

more likely to increase performance. Once merged, this pair can never be undone, potentially

“wasting” one or other of its component features.

This problem becomes more acute as the number of features becomes smaller and there is less

likelihood that (many) other merges will happen to be complementary. But if the number of features

becomes very small, more traditional methods then become more tractable and more appropriate.

Likewise, as the training set becomes smaller, performance scores become more coarsely quantized,

and more feature subsets appear to be redundant. However, under this circumstance, other feature

selection algorithms suffer similar degradations. We currently are exploring these issues, by

incorporating additional inexpensive merge heuristics that are sensitive to where in the training set a

feature’s error occurs, and to the spatial relationships among the merged feature subsets’ macroblocks.

5.2. Fast video retrieval using multi-level feature selection

The second experiment uses multi-level feature selection to demonstrate its improvement of the

efficiency of video segment boundary detection.

5.2.1. The basic refinement task

Table 5 summarizes the results of the application of the method detailed in section 4.2 to the

entire instructional video. The method begins by seleting the best 2-feature subset (R1 = 2) for

classification. Using it to classify all the frames of the video (fraction of video examined = 1), there

remain 27 video segments that contain frames that did not attain the unambiguous level of likelihood

determined by the value of Si. These frame numbers are listed in the first column, where R1 = 2; the

value of c is also given for reference, and is discussed below.

 29

Clip R1=2, c=9 R2=4, c=7 R3=8, c=4 R4=16, c=4 R5=32, c=3
1 109 109 109 109 109
2 212 212 212 212 212
3 240 237-243 234-240 240 240
4 251 251 251 251 251
5 1389-1410 1410 1408-1411 1410 1407-1410
6 1532-1533 1532-1536 X X X
7 2566-2567 2563-2567 X X X
8 2571-2572 2571-2572 X X X
9 2577-2578 2577-2578 X X X
10 2630-2632 2630-2632 2629-2632 2629-2632 X
11 2763-2764 2762-2764 2762-2763 2763-2764 X
12 2880-2887 2880-2890 X X X
13 2895-2904 2892-2905 X X X
14 2942-2944 2942-2944 X X X
15 3103-3116 3103-3119 X X X
16 3138-3141 3138-3144 X X X
17 3165-3166 3163-3169 3164-3169 X X
18 3174-3175 3171-3178 3170-3180 X X
19 3184-3190 3181-3190 3181-3186 X X
20 3249-3250 3249-3250 X X X
21 3271-3275 3268-3275 X X X
22 3287-3289 3287-3289 X X X
23 3304-3305 3301-3308 X X X
24 3366-3369 3364-3372 X X X
25 3380-3389 3377-3392 X X X
26 3401-3402 3398-3405 X X X
27 3408-3410 3406-3410 X X X

Fraction of video
examined 1 0.631 0.714 0.231 0.119

Table 5. Classification of video clips in a coarse-fine manner using multi-level feature selection
algorithm. At iteration i, Ri = size of feature subset, c = Fastmap dimension. Frames with
uncertain classifications are indicated in the column of the level that failed to resolve them.

We now proceed through four additional rounds of refinement. We keep the neighborhood of

examination constant at Li = 6, meaning that the 3 frames before and after any ambiguous frame are

also re-examined and reclassified with the more costly but more accurate classifiers that use the larger

feature subsets. For example, since frame 109 did not attain the required level of likelihood, we will

examine frames 106 to 112 using the classifier with four features (R2 = 4); likewise, since frames

2880 to 2887 were all determined to be ambiguous, we will examine frames 2877 to 2890 with the

same classifier (R2 = 4).

30

The table shows that even though the neighborhood adds 6 frames for each suspect frame or

frame range, the first round of refinement at R2 = 4 has re-examined only 7% of the video. The

column labeled R2 = 4 now lists the frame numbers that again failed to meet the likelihood threshold;

this is a more refined threshold determined from the properties of the more refined 4-feature classifier.

As a comparision of this column with its predecessor indicates, there are several different possible

outcomes to this refinement. Some frame ranges are partially resolved, as in clip 5, where the range

of ambiguous frames is reduced from 22 to only 1. Some frames remain ambiguous, as in clip 1. But

sometimes the entire expanded neighborhood fails to meet the more stringent likelihood test, as in

clip 3; this forces upward the fraction of the video that must be examined in the next round, as shown

at the bottom of the R3 = 8 column. The fourth outcome, the one most desired, appears at the next

level of refinement at R3 = 8, where all frames in many clips are classified with the required level of

certainty.

In this experiment, we terminate the process at R5 = 32, where we attain a classification error rate

of 0.002. We stop here for comparison reasons, as we already know that this error rate is equivalent

to the error rate attained by applying the more expensive 30-feature Sort-Merge classifier of Section

5.1 above to the full video. However, the accumulated work of this boundary refinement approach

has been much less, as the bulk of the processing has been done with simpler classifiers; on average,

only 3.6 features are used per frame.

5.2.2. Further analysis and discussion

Figure 15 shows three frames that remain (properly) ambiguous even after refinement ends using

a 32-feature classifier. Table 6 shows their Mahalanobis likelihood for each category. These three

frames are the exact midpoints of three dissolves, and their Mahalanobis likelihoods are properly

much lower than those of more usual frames.

 31

Data 240 Data 251 Data 1410

 Figure 15. Dissolves in uncertain segmentation areas, using 32 macro-blocks

Data number (every
other I-frame number)

Handwriting

Announcement

Demo

Discussion

240 0.0000 0.0000 0.0000 0.0444
251 0.0000 0.0152 0.0000 0.0000
1410 0.6013 0.0000 0.0000 0.0227

Table 6. Mahalanobis likelihood (in units of 10-6) of dissolves belonging to the four classes.

Revisiting Table 5, it is clear that the selection of the Fastmap dimension c decreases with

increasing refinement level. Partly this is due to the very small size of the initial feature subsets, R1 =

2 and 4, representing features spaces with 12 and 24 components, respectively (as each feature

records a macroblock's vector of 4 intensity and 2 chrominance DC terms). For feature subsets this

small, Fastmap does show increased performance with increasing c. However, for feature subsets of

more moderate size, the choice c becomes less significant, as one of the notable advantanges of the

Sort-Merge feature selection algorithm is its empirically observed performance stability over a range

of values of c. Nevertheless, the boundary refinement method is still cost-effective compared to a full

application of a more elaborate classifier, even if the boundary refinement begins with a 2-feature

subset at c = 9, and the full classifier uses a 30-feature subset at c = 2, since the cost of a single

classification is O(Nc+c2), that is, it is dominated by N.

5.3. Lazy evaluation of unanticipated on-line queries

The third experiment demonstrates the construction of a feature subset using the Sort-Merge

feature selection algorithm, for a category that has not been previously determined and computed off-

line. We use two very different sources of video data.

 32

5.3.1. On-line video retrieval of instructional video

Our first task is to discriminate between two subcategorizes of the handwriting category of the

instructional video. The experiment is based on the intuition that handwriting frames are probably of

more use to the student if they are accompanied by the instructor explaining what has just been

written. These frames of "emphasis" are characterized by the lack of hand or pen regions obscuring

the hand-drawn words and diagrams; such frames are essentially pre-formatted "clean" slides.

We noted that there were a total of 69 segments of "emphasis" and "non-emphasis" handwriting

in the video, totaling about 1 hour. We simulated the user query by selecting and labeling 10 positive

example sequences of ten frames each, and an equal number of negative ones. For classification, we

limited the feature subset to 16 macroblocks.

Figure 16. Retrieval results for random feature selection and Sort-Merge feature selection.

Figure 16 shows the error rate of labeling the 69 segments based on a classifier using 16 features

selected randomly; this was repeated 100 times. The error bars are drawn at the mean error plus one

standard deviation. In contrast, asterisks show the error rate of retrieval using 16 features selected by

 33

the Sort-Merge feature selection algorithm. This query requirement is based on the lazy evaluation of

a semantic query defined by example, but this retrieval is possible at low cost, and is again stable with

respect to the choice of dimensionality reduction parameter, c.

The second example illustrates a somewhat different exercise. We show that lazy evaluation can

proceed by the method of boundary refinement, that is, these two applications can be combined. In

this task we attempt to retrieve frames in the category of announcement using only a very limited

feature subset, and only a very limited example set, of a size comparable to what a user can be

reasonably expected to provide: 80 frames, 40 positive and 40 negative examples each. Figure 17

shows the retrieval result for feature subsets of size 2, 4, and 8 (with Fastmap dimension c held equal

to 4). However, it is important to note that the Sort-Merge method is progressive, and than only 0.02

of the frames were need to be re-examined by the 4-feature classifier, and only 0.01 needed the full

power of the 8-feature classifier.

Comparison of random feature selection and
multi-level feature selection

0
0.002
0.004
0.006
0.008
0.01

0.012
0.014
0.016
0.018

2 4 8

Number of features

Er
ro

r r
at

e

Mean of Random Multi-level feature selection

Figure 17. Retrieval results for random feature selection and multi-level feature selection

5.3.2. On-line video retrieval of baseball video

 Our second example of on-line video retrieval applies the Sort-Merge feature selection algorithm

to sports videos. As shown in Figure 18, we are interested in defining “pitching frames” that look like

 34

Figure 18(a); the rest of the video has many different competing image types, some of which are

shown in Figure 18(b). The data is sampled somewhat more finely, with every I-frame of extracted as

one data frame, giving 3600 frames for the half-hour. We classify frames as to their binary

membership in the category “pitching”. We ran two experiments. The first did not use any prior

temporal segmentation or other pre-processing. Figure 19 shows the result, which fixes the Fastmap

dimension c=2 and compares the classification error rate of random feature selection and Sort-Merge

feature selection. In general, the error rate is halved. Figure 20 shows as black boxes those macro-

blocks selected by the Sort-Merge feature selection under several choices for the number of features.

(a) (b)

Figure 18. Task: retrieve “pitching”(a) from an entire video with competing image types(b).

Comparison of random feature selection and
multi-level feature selection

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18

2 8 16 32

Number of features

Er
ro

r r
at

e

Mean of Random Sort-Merge

Figure 19. Retrieval results for random feature selection and multi-level feature selection

 35

Figure 20. Selected features (macroblocks) using Sort-Merge feature selection.

r = 2

r = 8

r = 16

r = 32

 In the second experiment, the video has been segmented to 182 segments (roughly, “shots”,

except that commercials are considered one segment). We attempt to retrieve the 45 “pitching”

segments. As mentioned by Lin and Hauptman in [35], simple accuracy is often an insufficient

measure, so we compare the feature selection algorithms based on recall and precision in Figure 21.

Precision is nearly perfect, and recall is better by a factor of 2, compared to random feature selection.

6. Conclusion

We have presented a novel feature selection algorithm that is well-suited to the difficult domain

of video frame classification. It relies on three underlying algorithms that are well-adapted to this

large and continuous-valued domain and work together in linear time: Fastmap for dimensionality

reduction, Mahalanobis distance for classification likelihood, and the Sort-Merge approach to

combining relevant and non-redundant feature subsets into more accurate ones. Together, they

 36

Feature number r = 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision Recall

Mean of Random Sort-Merge

Feature number r = 8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision Recall

Mean of Random Sort-Merge

Feature number r = 16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision Recall

Mean of Random Sort-Merge

Feature number r = 32

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision Recall

Mean of Random Sort-Merge

Figure 21. Precision and recall of random feature selection vs. multi-level feature selection.

combine the performance guarantees of wrapper methods with the speed and logical organization of

filter methods. The method is shown to be linear in the number of features and in the size of the

training set, and it constructs a complete hierarchy of increasingly accurate classifiers. It therefore

leads to new feasible approaches for rapid video segment boundary refinement and for lazy

evaluation of on-line queries. We have illustrated its performance using two long videos from

 37

different genres. We plan to investigate its utility both across a library of videos of these genres, and

also on other genres such as situation comedies, which share a similar recurring category structure.

Acknowledgements

The authors gratefully acknowledge fruitful discussions with Prof. Tony Jebara about

computational costs in feature selection, and thank Dongqing Zhang for the digitized sports video.

We thank one of the referees for pointing out the example used at the end of section 5.1.2. This

research was supported in part by NSF grant EIA-00-71954.

References

 [1] Z. Lei and Y.T. Lin, “3D Shape Inferencing and Modeling for Semantic Video Retrieval”,
Proceedings of Multimedia Storage and Archiving Systems, SPIE’s Photonics East 96 Symposium,
Boston, MA, November 1996.

[2] R. Brunelli, O. Mich, C. M. Modena, “A Survey on Video Indexing”, J. of Visual Communication
and Image Representation 10, pp.78-112, 1999.

[3] Bakker, E., Lew, M., “Semantic Video Retrieval Using Audio Analysis”, International
Conference on Image and Video Retrieval, Lecture Notes in Computer Science, vol. 2383, Springer
2002, pp.260-267.

[4] A. G. Hauptmann, M. A. Smith, “Text, Speech and Vision for Video Segmentation: The
Informedia Project”, In AAAI-95 Fall Symposium on Computational Models for Integrating
Language and Vision, November, 1995.

[5] Rainer Lienhart and Wolfgang Effelsberg, “Automatic Text Recognition for Video Indexing”,
Proceedings of ACM Multimedia 96, Bosten, MA, Nov. 1996.

[6] T. Sato, T. Kanade, E. Hughes, M. Smith, S. Satoh, “Video OCR: Indexing Digital News
Libraries by Recognition of Superimposed and Caption ”, ACM Multimedia Systems Special Issue on
Video Libraries, February, 1998.

[7] Pickering, M., Ruger, S., Sinclair, D., “Video Retrieval by Feature Learning in Key Frames”,
International Conference on Image and Video Retrieval, Lecture Notes in Computer Science, vol.
2383, Springer 2002, pp.316-324.

[8] K. Tieu and P. Viola, “Boosting Image Retrieval”, Proceedings of IEEE Conference of Computer
Vision and Patter Recognition, 2000.

 38

[9] F. Schaffalitzky and A. Zisserman, “Automated Scene Matching in Movies”, International
Conference on Image and Video Retrieval, Lecture Notes in Computer Science, vol. 2383, Springer
2002, pp.186-197.

[10] Kyungsu Kim, Junho Choi, Namjung Kim, and Pankoo Kim, “Extracting Semantic Information
from Basketball Video Based on Audio-Visual Features”, International Conference on Image and
Video Retrieval, Lecture Notes in Computer Science, vol. 2383, Springer 2002, pp.278-288.

[11] Gang Wei and Ishwar K. Sethi, “Omni-face detection for video/image content description”,
ACM Multimedia Workshops, 2000, pp.185-189.

[12] M. R. Naphade, T. Kristjansson, B. Fery and T. S. Huang, “Probabilistic Multimedia Objects
Multijects: A novel Approach to Indexing and Retrieval in Multimedia Systems”, Proceedings of
IEEE International Conference on Image Processing, vol. 3, pp.536-540.

[13] H. Zhang, C. Y. Low and S. W. Smoliar, “Video Parsing and Browsing Using Compressed
Data”, Multimedia Tools and Applications, vol. 1, 1995, pp.89-111.

[14] J. Lee and B. W. Dickinson, “Multiresolution video indexing for subband coded video
databases”, SPIE Proceedings: Image and Video Processing, vol. 2185,1994, pp. 162-173.

[15] Michael S. Lew, Nicu Sebe, John P. Eakins, “Challenges of Image and Video Retrieval”,
International Conference on Image and Video Retrieval, Lecture Notes in Computer Science, vol.
2383, Springer 2002, pp.1-6.

[16] Michael S. Lew, Thomas S. Huang, Kam W. Wong, “Learning and Feature Selection in Stereo
Matching”, IEEE Transactions on Pattern Analysis and Machine Intelligence on Learning in
Computer Vision, September, 1994, pp. 869-881.

[17] Chih-Chin Liu and Arbee L. P. Chen, “3D-List: A Data Structure for Efficient Video Query”,
IEEE Transactions on Knowledge and Data Engineering, vol. 14, 2002, pp.106-122.

[18] Gulrukh Ahanger, Dan Benson, and T.D.C. Little, “Video Query Formulation”, SPIE
Proceedings: Image and Video Processing, vol. 2420,1995, pp. 280-291.

 [19] John R. Smith, Savitha Srinivasan, Arnon Amir, Sanker Basu, Giri Iyengar, Ching-Yung Lin,
Milind Naphade, Dulce Ponceleon, Belle Tseng, “Integrating Features, Models, and Semantics for
TREC Video Retrieval”, NIST TREC-10 Text Retrieval Conference, Gaithersburg, Maryland,
November, 2002.

[20] Avrim L. Blum and Pat Langley, “Selection of Relevant Features and Examples in Machine
learning”, Artificial Intelligence, 1997, pp.245-271.

[21] Caruana, R.A., & Freitag, D, “How useful is relevance”, Working notes of the AAAI Fall
Symposium on Relevance, 1994, pp 25-29.

[22] Almuallim & Dietterich, T. G., “Learning with many irrelevant features”, Proceedings of Ninth
National Conference on Artificial Intelligence, 1991, pp. 547-552.

[23] Cardie, C., “Using decision trees to improve case-based learning”, Proceedings of the tenth
International Conference on Machine Learning, 1993, pp 25-32.

 39

 [24] Kubat, M., Flotzinger, D., & Pfurtscheller, “Discovering patterns in EEG signals: Comparative
study of a few methods”, Proceedings of the 1993 European Conference on Machine Learning, pp.
367-371.

[25] Tony Jebara & Tommi Jaakkola, “Feature selection and dualities in maximum entropy
discrimination. Uncertainty in Artificial Intelligence”, Proceedings of the Sixteenth Conference (UAI-
2000), pp. 291-300.

[26] Eric P. Xing, Michael I. Jordan, Richard M. Karp, “Feature selection for high-dimensional
genomic microarray data”, Proceedings of the Eighteenth International Conference on Machine
Learning, 2001.

[27] Langley, P., & Sage, S., “Oblivious decision trees and abstract cases”, Working Notes of the
AAAI 94 Workshops on Case-Based Reasoning, pp. 113-117.

[28] Singh, M., & Provan, G. M., “Efficient learning of selective Bayesian network classifiers”,
Proceedings of the Thirteenth International Conference on Machine Learning 1996.

[29] Singh, M., & Provan, G. M., “A comparison of induction algorithms for selective and non-
selective Bayesian classifiers”, Proceedings of the Twelfth International Conference on Machine
Learning, 1995, pp. 497-505.

[30] Koller, D. & Sahami,M., “Toward optimal feature selection”, Proceedings of the Thirteenth
International Conference on Machine Learning 1996.

[31] Richard O. Duda, Peter E. Hart and David G. Stork, Pattern classification, Wiley, New York,
2000.

[32] Christons Faloutsos and king-Ip (David) Lin, “FastMap: a fast algorithm for indexing, data-
mining and visualization of traditional and multimedia datasets”, Proceedings of ACM SIGMOD,1995,
pp 163-174.

[33] Irena Koprinska and Sergio Carrato, “Temporal video segmentation: A survey”, Signal
processing: Image communication 16, 2001, pp.477-500.

[34] P. A. Devijver and J. Kittler, Pattern Recognition: A Statistical Approach, Prentice-Hall
International, Englewood Cliffs, NJ, 1980.

[35] Wei-Hao Lin and Alexander Hauptman, “News video classification using SVM-based
multimodal classifiers and combination strategies”, Proceedings of ACM Multimedia 2002, Juan-les-
Pins, France, December 1-6, 2002.

 40

