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Abstract

In this paper we address the problem of matching two images with two different resolutions: a high-resolution image and a low-
resolution one. The difference in resolution between the two images is not known and without loss of generality one of the images is
assumed to be the high-resolution one. On the premise that changes in resolution act as a smoothing equivalent to changes in scale,
a scale-space representation of the high-resolution image is produced. Hence the one-to-one classical image matching paradigm
becomes one-to-many because the low-resolution image is compared with all the scale-space representations of the high-resolution
one. Key to the success of such a process is the proper representation of the features to be matched in scale-space. We show how
to represent and extract interest points at variable scales and we devise a method allowing the comparison of two images at two
different resolutions. The method comprises the use of photometric- and rotation-invariant descriptors, a geometric model mapping
the high-resolution image onto a low-resolution image region, and an image matching strategy based on local constraints and on the
robust estimation of this geometric model. Extensive experiments show that our matching method can be used for scale changes up
to a factor of 6.

Keywords: Image matching, scale-space, points of interest, matching constraints, rotation-invariant descriptors.

1. Introduction

The problem of matching two images has been an active topic
of research in computer vision for the last two decades. The vast
majority of existing methods consider two views of the same
scene where the viewpoints differ by small offsets in position,
orientation and viewing parameters such as focal length. Un-
der such conditions, the image features associated with the two
views have comparative resolutions and hence they encapsulate
scene features which appear in the two images at approxima-
tively the same scale. In this paper we address a somehow dif-
ferent problem that has received little attention in the past. We
consider the problem of matching two images with very differ-
ent resolutions.

Obviously, the resolution with which a 3-D object is ob-
served in an image mainly depends on two factors: the dis-
tance d from camera to object and the focal length f associated
with the camera lens. Image resolution increases with f and
decreases with d. Therefore, r = f /d is a good, first-order ap-
proximation, measure of image resolution. We are interested in
developing matching techniques which take as input an image
pair whose resolutions are quite different, r1 << r2. In practice
we will describe an image-matching technique which takes as
input a low-resolution image (image #1) and a high-resolution
one (image #2). It will be shown that, using the approach ad-
vocated below, it is possible to match two images satisfying
r2/r1 = 6.

As an example we consider the image pair in Figure 1. Both
images were taken with a camera placed at 11 kilometers (6.9

Figure 1: An example of an image pair with different resolutions: low-
resolution (left) and high-resolution (right).

miles) away from the top of the mountain. For the first image
(left) we used a focal length equal to 12mm while for the sec-
ond one (right) we used a focal length equal to 72mm. Notice
that the high-resolution image corresponds to a small region of
the low-resolution one and it is quite difficult to find the exact
position and size of this region. Moreover, the low-resolution
image (left) covers in practice a wide range of resolutions be-
cause scene objects appear at various depths values.

Therefore, the search space associated with the feature-to-
feature matching of two such images is larger and more com-
plex than the one associated with the classical stereo matching
paradigm. The classical approach to image matching proceeds
as follows: (i) extract interesting point-features from each im-
age, (ii) match them based on cross-correlation, (iii) compute
the epipolar geometry through the robust estimation of the fun-
damental matrix, and (iv) establish many other matches once
this matrix is known. For a number of reasons, this method
cannot be applied to the problem at hand:
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1. Point-feature extraction and matching are resolution-
dependent processes.

2. The high-resolution image corresponds to a small region
of the low-resolution one and hence the latter contains
many features which do not have a match in the former.

3. It may be difficult to estimate the epipolar geometry be-
cause there is not enough depth associated with both the
high resolution image and its associated small area of the
low-resolution image.

The solution suggested in this paper consists of considering a
scale-space representation of the high-resolution image and of
matching the low-resolution image against the scale-space de-
scriptions of the high-resolution one. A scale-space represen-
tation may be obtained by smoothing an image with Gaussian
kernels of increasing standard deviations. Therefore, the high-
resolution image will be described by a discrete set of images
at various scales. On the premise that decreasing the resolution
can be modeled as image smoothing which is equivalent to a
scale change, the one-to-one image matching problem at hand
becomes a one-to-many image matching problem [4].

In this paper we describe such a matching method. Key to its
success are the following characteristics:

• The scale-space representation of image point features (or
interest points) together with their associated descriptors;

• A geometric model describing the mapping from the high-
resolution image to a region of the low-resolution one.

• An image-matching strategy combining point-to-point as-
signments with a robust estimation of the geometric map-
ping between image regions.

Several authors addressed the problem of matching two im-
ages gathered from two very different viewpoints [6, 20, 24, 25]
but they did not consider a large change in resolution. The use
of scale-space in conjunction with stereo matching has been
restricted to hierarchical matching: correspondences obtained
at low resolution constrain the search space at higher resolu-
tions [7, 21, 14]. Scale-space properties are thoroughly studied
in [15] and the same author attempted to characterize the best
scale at which an image feature should be represented [16]. A
similar idea is presented in [17] to detect stable points in scale
space.

Our work is closely related to [9] who attempts to match two
images of the same object gathered with two different zoom
settings. Point-to-point correspondences are characterized in
scale space by correlation traces. The method is able to recover
the scale factor for which two image points are the most similar
but it cannot deal with camera motions.

Local descriptors that are invariant with respect to affine grey
value changes, image rotations, and image translations were
studied theoretically in [13] and were used in the context of
image matching in [22]. These descriptors are based on convo-
lutions with Gaussian kernels and their derivatives. Therefore

they are consistent with scale-space representations. They are
best applied at image locations found by interest points and a
recent study showed that the Harris corner detector [10] is the
most reliable interest point detector [23]. However, these lo-
cal descriptors are not scale-invariant and, in spite of good the-
oretical models for scale-space invariants [12, 15], it is more
judicious, from a practical point of view, to compute local de-
scriptors at various scales in a discrete scale-space [22].

The main contributions of this paper are the followings. We
thoroughly study the behaviour of the Harris interest point de-
tector under a similarity transformation. This detector com-
prises convolutions with two Gaussian kernels, one for weigth-
ing and one for computing grey-level derivatives. We show un-
der which conditions the detector is invariant to rotations and
translations in the image plane. Based on this we derive a scale-
space representation of interest points. This representation al-
lows to match points from images at very different resolutions,
which has never been performed in the past – up to a factor of
6. In order to match points we describe a way to represent local
collections of points and we seek similarities between such lo-
cal collections at different scales. Finally a one-to-many image
matching technique (with scale adjustment) is described. Many
examples with various scenes, camera configurations and set-
tings illustrate the method both quantitatively and qualitatively.

Paper organization. The remainder of this paper is organized
as follows. Section 2 briefly outlines the geometric model as-
sociated with the image pair. Section 3 suggests a framework
for adapting the detection of interest points to scale changes,
image rotations, and image translations. Section 4 describes
the high-resolution to low-resolution matching and section 5
presents experimental results.

2. Geometric modeling

One of the key observations enabling the matching of two
images at two different resolutions is that the high-resolution
image corresponds to a small region of the low-resolution one.
Without loss of generality, it may be assumed that the high-
resolution image has homogeneous resolution because the ob-
served 3-D features are, approximatively at the same distance.
Clearly this is not the case for the low resolution image which
contains various features at various ranges. The matching task
therefore consists in finding a small region in the low resolution
image that can be assigned to the whole high resolution one.

One reasonable assumption is to consider that the mapping
between the high resolution image and the corresponding low-
resolution region is a plane projective transformation, i.e., the
scene corresponding to this region is planar. Such a homogra-
phy may well be represented by a 3×3 homogeneous full rank
matrix H. Let m be a point in the high-resolution image I and
m′ be a point in the low-resolution image I′. One can charac-
terize a region in the low-resolution image such that the points
m′ ∈ R within this region verify:

m′ ≃ Hm (1)
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Similarly, points outside this region do not verify this equa-
tion. In general, image descriptors which are invariant to such a
general plane-to-plane projective transformation are difficult to
compute and therefore it is difficult to properly select potential
candidate points satisfying eq. (1).

We can further simplify the geometric model and consider a
restricted class of homographies, namely a rotation about the
optical axis by an angle θ, a translation in the image plane by a
vector (a, b), and a similitude factor h:

m′ =

 h cos θ −h sin θ a
h sin θ h cos θ b

0 0 1

 m (2)

Notice that the projective equality in eq. (1) is replaced by an
equality. In practice it will be useful to replace the 3-vectors m
and m′ used above by 2-vectors x and x′ such that:

m′ =

 u′

v′

1

 =
(

x′
1

)
and m =

 u
v
1

 =
(

x
1

)
With this notation, eq. (2) becomes:

x′ = hRx + t (3)

where R is the 2×2 rotation matrix and t is the translation vec-
tor.

In order to match two images which differ by such a geomet-
ric transformation, one has to define a measure of similarity.
One possibility is to use correlation. In this case, the similarity
between x ∈ I and x′ ∈ I′ can be written as:∑

∆p

[
I′(x′ − ∆p′) − I(x − ∆p)

]2

where ∆p and ∆p′ are shift vectors. With the substitution for x′
above, i.e., eq. (3) and with ∆p′ = hR∆p we obtain:∑

∆p

[
I′(hR(x − ∆p) + t) − I(x − ∆p)

]2 (4)

Therefore, one must find a scale factor h, a rotation matrix
R, and a translation vector t for which the expression above is
minimized. The search space associated with such a technique
is very large and the associated non-linear minimization proce-
dure has to deal with a four-parameter cost function [8].

3. Interest point detection for image matching

Alternatively, one may use interest points. Ideally, one would
like to characterize such image points by descriptors invariant
to image rotation, translation and scale. Unfortunately, scale-
invariant image descriptors are hard to compute in practice.
Therefore, the matching strategy will build a discrete scale-
space for the high-resolution image thus by-passing the scale-
invariance problem. The image matching problem at hand then
becomes a one-to-many image matching technique.

The steps for image-to-image matching are:

(i) extract sets of interest points from the two images,
(x1, . . . , xM) and (x′1, . . . , x

′
N),

(ii) characterize these points such that point-to-point compar-
isons are made possible, and

(iii) determine the largest set of such correspondences compat-
ible with a similarity between the high-resolution image
and a low-resolution region.

The one-to-many matching algorithm uses this procedure
and the image pair with the highest matching score determines
the appropriate scale for matching and allows to estimate the
scale change. The advantage of this approach mainly resides in
step (iii) above. Two point-to-point correspondences are suffi-
cient to estimate the similarity parameters described in eq. (2)
(four such correspondences are necessary for a full homogra-
phy) and therefore the largest set of point correspondences is
found by an efficient robust estimator.

3.1. Interest point detection under similarity

We use the interest point detector proposed in [10]. This op-
erator was studied experimentally and it was shown to be robust
to image rotations, translations and illumination changes [23].
However, the Harris point detector is not invariant to changes
in scale. In this section and in the next section we derive an
exact formula for analyzing the behaviour of this interest-point
detector over changes in scale, rotation, and translation.

We consider as before two images I(x) and I′(x′) with x =
(u, v)⊤ and x′ = (u′, v′)⊤.

An interest point is detected in image I (or in image I′) as
follows:

1. Compute the image derivatives in the u and v directions,
Iu, and Iv. These computations are carried out by convolu-
tion with the differential of a Gaussian kernel of standard
deviation σ:

Iu(x, σ) = I(x) ⋆Gu(x, σ)
Iv(x, σ) = I(x) ⋆Gv(x, σ)

IuIv(x, σ) = Iu(x, σ) Iv(x, σ)

2. Form the auto-correlation matrix M(x, σ, σ̃). This matrix
sums up derivatives in a window around a point x with a
Gaussian kernel G(x, σ̃) being used for weighting:

M(x, σ, σ̃) =[
G(x, σ̃) ⋆ I2

u (x, σ) G(x, σ̃) ⋆ IuIv(x, σ)
G(x, σ̃) ⋆ IuIv(x, σ) G(x, σ̃) ⋆ I2

v (x, σ)

]
(5)

3. x is an interest point if the matrix M has two significant
eigenvalues, that is, if the determinant and trace of this
matrix verify a measure of “cornerness”:

C(x) = det(M(x)) − α trace (M(x))2 (6)

where α is a fixed parameter. An interest point is detected
at image location x if C(x) > t, where t is a threshold.
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In order to study the behaviour of this operator to changes
in scale, rotation, and translation, let us introduce the following
notation:

M(x, σ, σ̃) = G(x, σ̃) ⋆Q(x, σ) (7)

with:

Q(x, σ) =
[

I2
u (x, σ) IuIv(x, σ)

IuIv(x, σ) I2
v (x, σ)

]
=

(
Iu

Iv

) (
Iu Iv

)
(8)

Under the assumption that the two images are properly nor-
malized, the condition that must be satisfied is the equality of
the two image intensities at two pixels:

I′(x′) = I(x) (9)

This allows us to build a relationship that must hold between the
autocorrelation matrices associated with two matching points
in the two images and between cornerness measurements C and
C′ associated with the autocorrelation matrix. The following
proposition establishes these relationships:

Proposition 1. The auto-correlation matrices at locations x
(in image I) and x′ (in image I′) are related by the following
formula provided that the standard deviation of the smoothing
Gaussian kernels are choosen such that σ̃′ = hσ̃:

M′(x′, σ′, σ̃′) =
1
h2 RM(x, σ, σ̃)R⊤ (10)

The equivalent relationship between the two cornerness mea-
surements is given by the formula:

C′ =
1
h4C (11)

Proof: Noticing that the trace and determinant of a ma-
trix are invariant with respect to a similarity transformation,
i.e., A → B−1AB, it is straightforward to derive eq. (11) from
eqs. (10) and (6).

In order to show that eq. (10) holds, let us derive both sides
of eq. (9) with respect to u and v:

(
Iu

Iv

)
=


∂I
∂u

∂I
∂v

 =

∂I′
∂u

∂I′
∂v

 =
(

I′u
I′v

)
The relationship between the pixel coordinates x′ = hRx + t
combined with the chain rule of derivation allows us to otbain:

(
I′u
I′v

)
=


du′
du

dv′
du

du′
dv

dv′
dv


(

I′u′
I′v′

)
= hR⊤

(
I′u′
I′v′

)

The formulae above allow us to express a relationship be-
tween the quadratic forms Q(x, σ) and Q′(x′, σ′), i.e., eq. (8):

Q(x, σ) = h2R⊤Q′(x′, σ′)R (12)

Finally, using the properties of convolution applied to eq. (7)
we obtain the formula given by eq. (10) (see appendix Ap-
pendix A for a formal derivation).

3.2. Interest point detection and scale-space

We consider now the scale-space associated with the high-
resolution image I. The scale-space is obtained by convolving
the initial image with a Gaussian kernel whose standard devia-
tion is increasing monotonically, say sσ with s > 1. At scale s
we have the following image derivatives that allow the estima-
tion of interest points:

Iu(x, sσ) = I(x) ⋆Gu(x, sσ)
Iv(x, sσ) = I(x) ⋆Gv(x, sσ)

If the task consists of matching a high-resolution image I
with a low-resolution one I′, it is crucial to select the scale of I
at which this matching has to be performed. The scale param-
eter s must “absorb” the similarity factor h such that interest
points that are detected in image I at scale s best correspond to
interest points detected in image I′. Since the resolution of I
decreases with increasing s one needs to set:

s =
1
h

The scale-space interest-point detector is then defined as fol-
lows. From eq. (10) and with the relationship between s and h
we obtain the autocorrelation matrix:

Ms(x, sσ, sσ̃) =

s2G(x, sσ̃) ⋆
[

I2
u (x, sσ) IuIv(x, sσ)

IuIv(x, sσ) I2
v (x, sσ)

]
(13)

The cornerness measure becomes:

Cs(x) = s4
(
det(Ms(x)) − α trace (Ms(x))2

)
The following proposition is straightforward:

Proposition 2. If the interest points of an image I are detected
with the cornerness measurement C and with a threshold t such
that C > t, then at scale s the interest points are detected with
s4Cs > t.

In order to illustrate the results obtained with this scale-space
interest-point detector, we applied it to the high-resolution im-
age of Figure 1 (right). Figure 2 shows these results with σ = 1
and σ̃ = 2. The left side of this figure shows the interest points
detected in the low-resolution image. The image region corre-
sponding to the high resolution image is zoomed out by a factor
of 5.3 which is the true scale factor between the two images.
The right side of this figure shows the high-resolution image
with interest points detected at four different scales, 1, 3, 5, and
7. The best matching scale is shown, side by side, with the
zoomed-out low-resolution region. This is clear evidence that
the scale-space representation and detection of interest points
facilitates the matching task.
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s = 1

s = 3

s = 5

s = 7
Figure 2: Interest points detected at 4 scales (left) and the points detected in the corresponding low-resolution image (right).
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Figure 3: Comparison of the standard Harris detector (Standard or bottom
curve) and the scale-space version (Adapted or top curve). The comparison
criteria is the repeatability rate which is displayed as a function of the scale
factor.

The importance of adapting the scale for interest point de-
scription and detection is shown on Figure 3. This figure shows
a comparison between the standard Harris detector and the
scale-space interest point detector. The scale factor varies from
1 to 6. The scale-space version uses the known scale factor
between test images to adapt the interest point detection. The
measure used in order to evaluate the performance is the re-
peatability rate introduced and thoroughly investigated in [23].
This measure takes into account the number of points repeated
between the reference image and the scaled image with respect
to the total number of points. One may clearly see that the
scale-space detector shows very good performance. In the case
of the standard detector the results are insufficient above a scale
factor of 2 (less than 40% of the points are repeated).

4. Robust image matching

The scale-space extraction and representation of interest
points will enable us to devise an image matching method. The
main idea is to compare the low-resolution image at one scale
with the high-resolution image at many scales. The scale at
which the matching performs the best corresponds to the largest
set of point-to-point assignments between a low-resolution im-
age region and the high-resolution image.

Without loss of generality, while the low-resolution image I′

is represented at one scale, the high-resolution image I is rep-
resented at 8 different scales σ, 2σ, . . . , 8σ with σ = 1. At
each scale si, interest points are extracted using eq. (13). Fur-
thermore, each interest point (in both images and at all scales)
is characterized by a description-vector whose elements are dif-
ferential invariants. These invariants were introduced by Koen-
derink et al. [13] and were adapted for image matching by
Schmid & Mohr [22].

Following Schmid & Mohr [22] two points of interest match
if the Mahalanobis distance between their associated descrip-
tors is small. Let Vm be a description-vector associated with
point m. The distance between two points, m and m′ writes:

dM(m,m′) =
√

(Vm − Vm′ )⊤Λ−1(Vm − Vm′ ) (14)

This distance selects potentially good matches but is not
powerful enough because it does not take into account neither
local configurations of image points nor the global geometric
transformation between the two images.

4.1. Matching based on local collections of points

One way to disambiguate point matches is to consider col-
lections of interest points in a small image region and to try to
match mutually compatible sets of points rather than individual
points. Here compatibility is understood both in the sense of
topology and geometry. The concept of mutually compatible
feature matches stems from earlier work in 2-D object recog-
nition [1], 3-D object recognition [2], [5], and stereo matching
[11].

Here we are interested in considering a match (m − m′),
a neighbourhood N(m) around point m, and a neighbourhood
N(m′) around m′. We seek to establish whether there are other
point matches within these two neighbourhoods which are topo-
logically, photometrically, and geometrically compatible. Let k
be the number of point matches based on the Mahalanobis dis-
tance: (m1−m′1), . . . (m j−m′j), . . . (mk−m′k), such that m j ∈ N(m),
m j , m and m′j ∈ N(m′), m′j , m′ for all j, 1 ≤ j ≤ k.

These point-to-point matches allow to compute a similarity
transformation between the two regions along the following
lines:

1. select two matches (the central match plus an additional
one),

2. compute the parameters of the associated similarity trans-
formation, e.g. eq. (2),

3. verify how many other matches in the neighbourhood are
consistent with these parameters,

4. etc.

This matching method is implemented as a depth-first tree
search. A final test based on eq. (4) allows to assess the match.
The difference between matching points without local support
and with local support is illustrated on figures 4 and 5. The im-
age shown onto the left is the low-resolution image. The image
shown onto the right is the high resolution image which is rep-
resented here at scale 5.3σ – the true scale factor between the
two images. Figure 4 shows point matches established based
on the Mahalanobis distance while Figure 5 shows the result of
matching using the method just described.

6



Figure 4: Matching points using the Mahalanobis distance between their description vectors.

Figure 5: Matching points using constraints based on local collections of points.

Figure 6: Matching result for the image pair in Figure 1. The high-resolution image is mapped onto the low-resolution one using the similarity estimated from the
17 matches.

4.2. Matching at different scales

The matching algorithm considers, one by one, the scale-
space representations of the high resolution image and attempts
to find which one of these images best matches a region in the
low resolution image. Since there is a strong relationship be-
tween scale and resolution, one may assume that the scale of
the best match roughly corresponds to the resolution ratio be-
tween the two images. The final exact transformation between

image and region is found by estimating the associated similar-
ity.

Once an approximate scale has been selected using this strat-
egy, a robust estimator takes as input the potential one-to-one
point assignments, computes the best transformation between
the two images, and splits the point assignments into two sets:
(1) inliers, i.e., points lying within the small region correspond-
ing to the similartity mapping of the high resolution image onto
the low resolution one and (2) outliers, i.e., points that are either
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outside this region or mismatched points inside the region.

Commonly used robust estimators include M-estimators,
least-median-squares (LMedS), and RANdom SAmple Con-
sensus (RANSAC). In our case, the number of outliers may
be quite large. This occurs in particular when the two im-
ages have very different resolutions and hence only 20% or less
of the low-resolution image corresponds to the high resolution
one. Therefore, we ruled out M-estimators because they toler-
ate only a few outliers. Among the two remaining techniques,
we preferred RANSAC because it allows the user to define in
advance the number of potential outliers through the selection
of a threshold. Hence, this threshold can be chosen as a func-
tion of the scale factor. Details concerning threshold selection
can be found in [3].

5. Experiments

The matching strategy just described was applied and tested
over a large number of image pairs where the resolution factor
between the two images varied from 2 to 6. Let us explain in
detail how this type of result is obtained for another example,
e.g., Table 1 and Figures 7, 8, and 9. Interest points are first
extracted from the low-resolution image at one scale (s = 1)
and from the high-resolution image at 8 different scales (1 to
8). Therefore, eight image matchings are performed. Figure 7
shows the results of the point-to-point matching based on the
Mahalanobis distance at four different scales: 1, 3, 5, and 8.
These results correspond to the column named “Initial” in Ta-
ble 1. Obviously, scales 3 and 5 have the best matches associ-
ated with them and scale 5 is a better candidate. Therefore, it
would have been sufficient to run the remainder of the matching
algorithm at scale 5 only. In practice we run the latter algorithm
at all scales.

These initial matches are used for enforcing the local con-
straints and for the robust estimation of the similarity transfor-
mation. Figure 8 shows the results of applying both these two
stages of the algorithm. The results are summarized in Table 1
in the column “Inliers”. One may verify that the best match is
obtained at s = 5. Out of 25 points detected at this scale, 23
among them have a potential assignment in the low-resolution
image and 16 among them are finally selected by the robust
matching technique. The latter rejected 30% of the matches.
Notice that the resolution factor computed from the homogra-
phy is correct for s = 4, s = 5 and s = 6. Finally the image-
to-region transformation thus obtained was applied to the high
resolution image and this image is reproduced on top of the
low-resolution one (cf. Figure 9).

5.1. Further examples

So far we have been concerned with matching based on the
hypothesis that there is a similarity transformation between one
image and a region in the other image. This is a relatively
restrictive hypothesis. The following examples show that the

Scale factor No of points No matches
s estimated initial inliers outliers
1 1.3 329 8 - 100 %
2 0.7 126 64 4 94 %
3 1.8 64 41 4 90 %
4 5 31 26 10 62 %
5 5 25 23 16 30 %
6 5 18 17 12 29 %
7 1.1 14 14 - 100 %
8 0.4 5 5 - 100 %

Table 1: This table shows, at each scale, the computed resolution factor, the
number of points in the high-resolution image, the number of potential matches,
the final number of matches, and the percentage of outliers. Notice that scales
4, 5 and 6 yield very similar results.

matching method described in this paper may well be applied
(with some modifications) to cases were the two images differ
by affine, projective, or epipolar transformations.

The matching strategy remains the same up to the robust es-
timator. The latter uses either an affine transformation, a plane
homography, or the fundamental matrix to confirm matches and
to reject outliers. Figure 10 shows an aerial view (left) as well
as a detail (right). An affine transformation was hypothesized
and correctly estimated. A second example (Figure 11) shows a
mock-up, a planar detail, and the correct matches using a plane
homography.

Figure 12 displays a stereo pair of a complex 3-D scene. The
two images are taken from very different viewpoints with dif-
ferent zoom settings: Classical stereo matching methods fail to
find the epipolar geometry. In spite of some mismatches along
epipolar lines, the epipolar geometry is correctly estimated by
the matching method described in this paper.

6. Conclusions

We presented a new method for matching images with two
very different resolutions. We showed that it is enough to repre-
sent the high-resolution image in scale-space and we described
a one-to-many robust image matching strategy. Key to the suc-
cess of this method is the scale-space representation of inter-
est points and their descriptors. We thoroughly investigated the
similarity invariance of the Harris interest point detector as well
as its scale-space behaviour. Recently this work was extended
to characterize the most significant scale of an interest point
and to devise a matching and indexing method that encapsu-
lates scale changes [18]. The extension to affine-invariant local
image descriptors is also on its way [19].

In spite of a huge number of publications in the image-
matching domain, it seems to us that none of the existing meth-
ods is able to deal with large changes in resolution. Here we
have been able to match images which differ by a resolution
factor up to 6. In practice the images shown in this paper were
gathered by varying the focal length using the zoom-lens of a
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Figure 7: Initial point-to-point assignments obtained at four scales (1,3,5,8). The true resolution factor between the two images is 5.
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Figure 8: Inliers after applying the local constraints and the robust estimator to the previous results.
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Figure 9: The final result obtained for the example in Figure 7. All of the 16 matches are correct. The high-resolution image is mapped onto the low-resolution one
using the homography consistent with the 16 matches. The estimated rotation angle is 34 degrees and the estimated resolution change is 5.

Figure 10: Example for a 2D scene. All of the 11 matches are correct. The estimated rotation angle is 65 degrees and the estimated resolution change 3.7.

digital camcorder. The advent of digital photography opens
new fields of applications and we believe that our matching
technique will allow the simultaneous exploitation of multiple
viewpoints and variable resolutions.

Appendix A. Interest point detection under similarity

In order to prove eq. (10) we consider the convolution of the
Harris operator with a Gaussian kernel, i.e., eq. (7):

M(x, σ, σ̃) = G(x, σ̃) ⋆Q(x, σ)

=

∫
U

∫
V

Q(U,V)G(U − u,V − v, σ̃)dUdV

Using eq. (12) we obtain:

G(x, σ̃) ⋆Q(x, σ) =∫
U

∫
V

h2R⊤Q′(U′,V ′)RG(U − v,V − v, σ̃)dUdV

The similarity transformation x′ = hRx + t applied to vectors
(U V)⊤ and (u v)⊤ yields:

dU′dV ′ = h2dUdV

and

(U′ − u′)2 + (V ′ − v′)2 = h2((U − u)2 + (V − v)2)

Using the latter, the Gaussian kernel G(U−u,V−v, σ̃) becomes:

G(U − u,V − v, σ̃) =
1

2πσ̃2 exp
(

(U − u)2 + (V − v)2

2σ̃2

)
= h2 1

2π(hσ̃)2 exp
(

(U′ − u′)2 + (V ′ − v′)2

2(hσ̃)2

)
= h2G(U′ − u′,V ′ − v′, hσ̃)
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Figure 11: Example for the 3D scene “tunnel”. All of the 7 matches are correct. The estimated rotation angle is 77 degrees and the estimated resolution change is
3.2.

Figure 12: This figure shows the epipolar geometry as computed with the matching and estimation method described in this paper. Notice the large discrepancy in
the viewpoints associated with the two images. The matcher seems to give advantage to collections of coplanar points.

By substitution we get:

G(σ̃) ⋆Q(x, σ) =

h2R⊤
(∫

U′

∫
V ′

Q′(U′,V ′)G(U′ − u′,V ′ − v′, hσ̃)dU′dV ′
)

R

By taking σ̃′ = hσ̃ we obtain:

G(σ̃) ⋆Q(x, σ) = h2R⊤ G(σ̃′) ⋆Q′(x′, σ′) R

which proves the formula given by eq. (10).
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